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Preface

Hi. My name is Kurt, and I’m a code-aholic.

I have been writing software for over 35 years. I’ve never worked at Microsoft, or
Google, Facebook, Apple, or anywhere else famous. But beyond a few short vacations,
I have written code every day of that time. I have spent the last 20 years almost exclu‐
sively writing C++ and talking to other very bright developers about C++. This is my
qualification to write a book about optimizing C++ code. I have also written a lot of
English prose, including specifications, comments, manuals, notes, and blog posts. It
has amazed me from time to time that only half of the bright, competent developers I
have worked with can string two grammatical English sentences together.

One of my favorite quotes comes by way of a letter from Sir Isaac Newton, in which
he writes, “If I have seen farther, it is by standing on the shoulders of giants.” I too
have stood on the shoulders of giants, and particularly have read their book: elegant
little books, like Brian Kernighan and Dennis Ritchie’s The C Programming Language;
smart, ahead-of-the-curve books, like Scott Meyers’s Effective C++ series; challenging,
mind-expanding books, like Andrei Alexandrescu’s Modern C++ Design; careful, pre‐
cise books, like Bjarne Stroustrup and Margaret Ellis’s The Annotated C++ Reference
Manual. For most of my career, it never crossed my mind that I might someday write
a book. Then one day, quite suddenly, I found I needed to write this one.

So why write a book about performance tuning in C++?

At the dawn of the 21st century, C++ was under assault. Fans of C pointed to C++
programs whose performance was inferior to supposedly equivalent code written in
C. Famous corporations with big marketing budgets touted proprietary object-
oriented languages, claiming C++ was too hard to use, and that their tools were the
future. Universities settled on Java for teaching because it came with a free toolchain.
As a result of all this buzz, big companies made big-money bets on coding websites
and operating systems in Java or C# or PHP. C++ seemed to be on the wane. It was an
uncomfortable time for anyone who believed C++ was a powerful, useful tool.

xv
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Then a funny thing happened. Processor cores stopped getting faster, but workloads
kept growing. Those same companies began hiring C++ programmers to solve their
scaling issues. The cost of rewriting code from scratch in C++ became less than the
cost of the electricity going into their data centers. All of a sudden, C++ was popular
again.

Uniquely among programming languages in wide use in early 2016, C++ offers devel‐
opers a continuum of implementation choices, ranging from hands-off, automated
support to fine manual control. C++ empowers developers to take control of perfor‐
mance trade-offs. This control makes optimization possible.

There are not many books on optimization of C++ code. One of the few is Bulka and
Mayhew’s meticulously researched but now somewhat dated Optimizing C++. The
authors appear to have had similar career experiences to mine, and discovered many
of the same principles. For readers who are interested in another take on the issues in
this book, their book is a good place to start. Also, Scott Meyers, among many others,
covers avoiding copy construction extensively and well.

There are enough different things to know about optimization to fill 10 books. I have
tried to pick and choose things that seemed to occur frequently in my own work, or
that offered the biggest performance wins. To the many readers with their own per‐
formance tuning war stories who may wonder why I’ve said nothing about strategies
that worked miracles for them, all I can say is, so little time, so much to tell.

I welcome your errata, comments, and favorite optimization strategies at
antelope_book@guntheroth.com.

I love the craft of software development. I enjoy endlessly practicing the kata of each
new loop or interface. At the corner of Sonnet and Science, writing code is a skill so
esoteric, an art form so internal, that almost nobody but another practitioner can
appreciate it. There is beauty in an elegantly coded function, and wisdom in a power‐
ful idiom well used. Sadly, though, for every epic software poem like Stepanov’s Stan‐
dard Template Library, there are 10,000 drab tomes of uninspired code.

The root purpose of this book is to give every reader permission to think a little
harder about the beauty of well-tuned software. Take it and run with it. See farther!

Apology for the Code in This Book
Although I have been writing and optimizing C++ code for over 20 years, most of the
code appearing in this book was developed specifically for this book. Like all new
code, it surely contains defects. I offer my apologies.

I have developed for Windows, Linux, and various embedded systems over the years.
The code presented in this book was developed on Windows. The code and the book
no doubt show a Windows bias. The lessons of how to optimize C++ code that are
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illustrated using Visual Studio on Windows apply equally to Linux, Mac OS X, or any
other C++ environment. However, the precise timings of different optimizations
depend on the compiler and standard library implementation, and the processor on
which the code is tested. Optimization is an experimental science. Taking optimiza‐
tion advice on faith is fraught with negative surprises.

I am aware that compatibility with various other compilers, and with other Unix and
embedded systems, can be challenging, and I apologize if the code does not compile
on your favorite system. Since this book is not about cross-system compatibility, I
have erred on the side of presenting simple code.

The curly-brace indentation style shown here is not my favorite:

if (bool_condition) {
    controlled_statement();
}

However, because it has the advantage of putting the most lines possible on the
printed page, I have chosen to use it for the examples throughout this book.

Using Code Examples
Supplemental material (code examples, sample solutions, etc.) is available for down‐
load at www.guntheroth.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Optimized C++ by Kurt Guntheroth
(O’Reilly). Copyright 2016 Kurt Guntheroth, 978-1-491-92206-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.
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Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Used for menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Control).

Italic
Indicates new terms, URLs, email addresses, pathnames, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.
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CHAPTER 1

An Overview of Optimization

The world has a stupendous appetite for computation. Whether the code you are
writing runs on a watch, phone, tablet, workstation, supercomputer, or planet-
spanning network of data centers, there are many programs that must run flat-out all
the time. So it may not be enough merely to accurately convert the cool idea in your
head into lines of code. It may not be enough even to comb the code for defects until
it runs correctly all the time. Your application may be sluggish on the kind of hard‐
ware your customers can afford. Your hardware team may have saddled you with a
tiny processor to meet their power consumption goals. You may be battling a compet‐
itor over throughput or frames per second. Or you may be building out to planetary
scale and just slightly nervous about boiling the oceans. Enter optimization.

This book is about optimization—specifically, optimizing C++ programs, with partic‐
ular reference to patterns of behavior of C++ code. Some of the techniques in this
book are applicable to other programming languages, but I have made no attempt to
explain the techniques in a universal way. Some optimizations that are effective on
C++ code have no effect or are simply not possible in other languages.

This book is about taking correct code that embodies best practices of C++ design,
and changing it into correct code that still embodies good C++ design but also runs
faster and consumes fewer resources on pretty much any computer. Many opportuni‐
ties for optimization occur because some C++ features, used casually, run slowly and
consume many resources. Such code, while correct, is ill-considered, given just a little
general knowledge about modern microprocessor devices or a little thought about the
costs of various C++ constructs. Other optimizations are available because of the fine
control C++ offers over memory management and copying.

This book is not about laboriously coding assembly language subroutines, counting
clock cycles, or learning how many instructions Intel’s latest silicon stylings can dis‐
patch concurrently. There exist developers who work with a single platform (the
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Xbox is a good example) for several years, and have the time and the need to master
these dark arts. However, the great majority of developers target phones, tablets, or
PCs, which contain an endless variety of microprocessor chips—some of which have
not yet even been designed. Developers of software embedded into products also face
a variety of processors with widely varying architectures. Attempting to learn pro‐
cessor arcana will make most developers crazy and paralyze them with indecision. I
don’t recommend this path. Processor-dependent optimization is simply not fruitful
for most applications, which must by definition run on a variety of processors.

This book is likewise not about learning the fastest operating system–dependent way
to do some operation on Windows, and again on Linux, OS X, and every embedded
operating system. It is about what you can do in C++, including with the C++ stan‐
dard library. Breaking out of C++ to perform an optimization may make it hard for
peers to review or comment on the optimized code. It’s not an action to be taken
lightly.

This book is about learning how to optimize. Any static catalog of techniques or func‐
tions is doomed, as new algorithms are discovered and new language features become
available. Instead, this book provides several running examples of how code may be
improved incrementally, so that the reader becomes familiar with the code tuning
process and develops the mindset that makes optimization fruitful.

This book is about optimizing the coding process as well. Developers mindful of the
runtime cost of their code can write code that is efficient from the start. With prac‐
tice, writing fast code usually takes no longer than writing slow code.

Finally, this book is about performing miracles; about checking in a change and later
hearing a colleague exclaim in surprise, “Wow, what happened? It just started right
up. Who fixed something?” Optimization is something you can also do to your status
as a developer and your personal pride in your craft.

Optimization Is Part of Software Development
Optimization is a coding activity. In traditional software development processes, opti‐
mization takes place after Code Complete, during the integration and testing phase of
a project, when the performance of a whole program can be observed. In an Agile
development process, one or more sprints may be allocated to optimization after a
feature with performance goals is coded, or as needed to meet performance targets.

The goal of optimization is to improve the behavior of a correct program so that it
also meets customer needs for speed, throughput, memory footprint, power con‐
sumption, and so on. Optimization is thus as important to the development process
as coding features is. Unacceptably poor performance is the same kind of problem for
users as bugs and missing features.
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One important difference between bug fixing and performance tuning is that perfor‐
mance is a continuous variable. A feature is either coded, or it is not. A bug is either
present or absent. However, performance can be very bad or very good or somewhere
in between. Optimization is also an iterative process in which each time the slowest
part of the program is improved, a new slowest part appears.

Optimization is very much an experimental science, calling for a scientific mindset to
a greater degree than some other coding tasks. To be successful at optimization
requires observing behavior, forming testable hypotheses based on these observa‐
tions, and performing experiments that result in measurements that either support or
refute the hypotheses. Experienced developers often believe they have valid experi‐
ence and valid intuitions about optimal code. But unless they frequently test their
intuitions, they will frequently be wrong. My personal experiences writing the test
programs for this book revealed several results that contradicted my intuitions.
Experimentation, rather than intuition, is a theme of this book.

Optimization Is Effective
It is difficult for developers to reason about the effects of individual coding decisions
on the overall performance of a large program. Thus, practically all complete pro‐
grams contain significant opportunities for optimization. Even code produced by
experienced teams with plenty of time can often be sped up by a factor of 30%–100%.
For more rushed or less experienced teams, I have seen performance improvements
of 3 to 10 times. A speedup of more than 10x by tweaking code is less likely. However,
selection of a better algorithm or data structure can be the difference between
whether a feature can be deployed or is infeasibly slow.

It’s OK to Optimize
Many treatments of optimization begin with a stern warning: don’t! Don’t optimize,
and if you have to optimize, don’t do it until the end of the project, and don’t do any
more optimizing than you must. For instance, famous computer scientist Donald
Knuth said of optimization:

We should forget about small efficiencies, say about 97 percent of the time: premature
optimization is the root of all evil.

—Donald Knuth, Structured Programming with go to Statements, ACM Computing
Surveys 6(4), December 1974, p268. CiteSeerX: 10.1.1.103.6084
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Or this from William A. Wulf:
More computing sins are committed in the name of efficiency (without necessarily
achieving it) than for any other single reason—including blind stupidity.

—“A Case Against the GOTO,” Proceedings of the 25th National ACM Conference
(1972): 796

The advice not to optimize has become received wisdom, unquestioned even by
many experienced coders, who wince reflexively when conversation turns to perfor‐
mance tuning. I think cynical promotion of this advice has been used too often to
excuse weak development habits and avoid the small amount of analysis that might
result in vastly faster code. I also think uncritical acceptance of this advice is respon‐
sible for a lot of wasted CPU cycles, a lot of frustrated user-hours, and too much time
spent reworking code that should have been more efficient from the start.

My advice is less dogmatic. It is OK to optimize. It is OK to learn efficient program‐
ming idioms, and to apply them all the time, even if you don’t know what code is
performance-critical. These idioms are good C++. You won’t be disrespected by your
peers for having used them. If somebody asks why you didn’t write something “sim‐
ple” and inefficient, you may say, “It takes the same amount of time to write efficient
code as slow, wasteful code. Why would anyone choose deliberately to write ineffi‐
cient code?”

What’s not OK is to make no progress for days because you can’t decide which algo‐
rithm will be better, when you don’t know that it matters. What’s not OK is to spend
weeks coding something in assembler because you guess it might be time-critical,
then spoil the whole effort by calling your code as a function when the C++ compiler
might have inlined it for you. What’s not OK is to demand that your team code half
their program in C because “everybody knows C is faster,” when you do not in fact
know either that C really is faster, or that C++ isn’t fast. In other words, all the best
practices of software development still apply. Optimization isn’t an excuse to break
the rules.

It’s not OK to waste a bunch of extra time on optimization when you don’t know
where you have performance problems. Chapter 3 introduces the 90/10 rule, the
notion that only about 10% of a program’s code is performance-critical. It is thus nei‐
ther necessary nor helpful to change every line of a program in order to improve the
program’s performance. Since only 10% of the program has a significant impact on
performance, your chances of picking a good starting point at random are poor.
Chapter 3 provides tools to help determine where the hot spots in the code are.
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When I was in college, my professors warned that optimal algorithms might have a
higher startup cost than simple ones. They should therefore only be used on large
data sets. Although that’s possibly true for some esoteric algorithms, my experience is
that optimal algorithms for simple searching and sorting tasks take little time to set
up, and they give a performance improvement even on small data sets.

I have also been advised to develop programs using whatever algorithm is easiest to
code, and then go back and optimize it if the program runs too slowly. While it is
undeniably good advice to continue making progress, once you have coded an opti‐
mal search or sort a couple of times, it is no more difficult to get running than a
slower algorithm. You might as well do it right the first time and debug only one algo‐
rithm.

Received wisdom is, in fact, probably the single greatest enemy of performance
improvement efforts. For instance, “everybody knows” that an optimal sort algorithm
runs in O(n log n) time, where n is the size of the data set (see “Time Cost of Algo‐
rithms” on page 92 for a brief review of the big-O notation and time cost). This
received wisdom is valuable to the extent that it keeps developers from believing their
O(n2) insertion sort is optimal, but not so good if it prevents them from checking the
literature to find out that radix sort is faster at O(n logr n) (where r is the radix or
number of sorting buckets), that flashsort has even faster O(n) performance on ran‐
domly distributed data, or that quicksort, which received wisdom makes the bench‐
mark against which other sorts are measured, has painfully bad O(n2) worst-case
performance. Aristotle said that women had fewer teeth than men (The History of
Animals, Book II, part 1), a bit of received wisdom that stood for 1,500 years before
someone was curious enough to count the teeth in a few mouths. The antidote to
received wisdom is the scientific method, in the form of experimentation. Chapter 3
covers instruments to measure software performance and experiments to validate
optimizations.

There is also received wisdom in the software development world that optimization is
not relevant. The reasoning goes that even if your code runs slowly today, each new
year brings faster processors, solving your performance problems for free through the
passage of time. Like most received wisdom, this nugget of thought was never really
true. It might have seemed true in the 1980s and 1990s, when desktop computers and
standalone applications dominated the development scene and single-core processors
doubled in speed every 18 months. But while today’s multicore processors continue to
become more powerful in the aggregate, the performance of individual cores
improves only gradually, or sometimes even declines. Programs today must also run
on mobile platforms, where battery life and heat dissipation constrain the instruction
execution rate. Furthermore, while time may bring new customers with faster com‐
puters, it does nothing to improve the performance of existing hardware. Existing
customers’ workloads are all that is increasing with time. The only speed upgrade an
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existing customer will ever get from your company comes from optimizing subse‐
quent releases. Optimization keeps your program fresh.

A Nanosecond Here, a Nanosecond There
A billion here, a billion there, pretty soon you’re talking real money.

—Frequently misattributed to Senator Everett Dirkson (1898–1969), who claims he
never said this, though he admits saying a lot of things like it

Desktop computers are astonishingly fast. They can dispatch a new instruction every
nanosecond (or better). That’s every 10-9 seconds! It is seductively appealing to believe
that optimization cannot possibly matter when a computer is so fast.

The problem with this way of thinking is that the faster the processor is, the faster
wasted instructions pile up. If 50% of the instructions executed by a program are
unnecessary, that program can be made to run twice as fast by removing them, no
matter how rapidly each unnecessary instruction is executed.

Your colleagues who say “efficiency doesn’t matter” may also mean it doesn’t matter
for certain applications, which are human response–bound and run on desktop com‐
puters that are already very fast. Efficiency matters very much on small embedded
and mobile processors with memory, power, or speed constraints. It also matters on
servers running flat-out on big computers. Another way to say this is that efficiency
matters for any application that must contend for constrained resources (memory,
power, CPU cycles). Efficiency matters a great deal, too, any time your workload is
big enough to be spread across multiple computers. In this case, efficiency can be the
difference between spending on 100 servers or cloud instances versus 500 or 1,000.

In 50 years, computer performance has improved by six orders of magnitude. And
yet, here we are talking about optimization. If the past is any guide, optimization will
likely remain relevant far into the future.

Summary of Strategies for Optimizing C++ Code
Round up the usual suspects.

—Capt. Louis Renault (Claude Rains), Casablanca, 1942

The mix of features in C++ provides a continuum of implementation choices ranging
from hands-off automation and expressiveness on one hand, to increasingly fine con‐
trol over performance on the other hand. It is this degree of choice that makes it pos‐
sible to tune C++ programs to meet requirements for performance.

C++ has its “usual suspects” for optimization hot spots, including function calls,
memory allocation, and loops. The following is a summary list of ways to improve
the performance of C++ programs, which is also an outline of this book. The advice
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is shockingly simple. All of it has been published before. But of course, the devil is in
the details. The examples and heuristics in this book will help you better recognize
optimization opportunities when you see them.

Use a Better Compiler, Use Your Compiler Better
C++ compilers are complex software artifacts. Each compiler makes different deci‐
sions about what machine code to generate for C++ statements. They see different
opportunities for optimization. They will produce different executables from the
same source code. If you are squeezing the last iota of performance from your code, it
may be worthwhile to try several compilers to see if one produces a faster executable
for your code.

The most important advice about which C++ compiler to pick is use a compiler con‐
forming to C++11. C++11 implements rvalue references and move semantics that
eliminate many copy operations that were unavoidable with previous C++ versions.
(Move semantics are discussed in “Implement Move Semantics” on page 137.)

Sometimes using a better compiler means using your compiler better. For instance, if
your application seems sluggish, have a look at the compiler switches to see if the
optimizer is turned on. This seems totally obvious, but I can’t count the number of
times I have given this advice to people who subsequently admitted that, yes, their
code ran much faster when compiled with optimization turned on. In many cases,
you need go no further. The compiler alone may make your program several times
faster if you ask it nicely.

By default, most compilers don’t turn on any optimizations. Compile times are
slightly shorter without the optimization pass. This was a big deal in the 1990s, but
nowadays compilers and computers are so fast that the extra cost is insignificant.
Debugging is also simpler with the optimizer turned off because the flow of execution
exactly follows the source code. The optimizer may move code out of loops, remove
some function calls, and remove some variables altogether. Some compilers won’t
emit debug symbols at all when optimization is turned on. Other compilers are more
generous, but understanding what the program is doing by watching the flow of exe‐
cution in the debugger can be challenging. Many compilers allow individual opti‐
mizations to be turned on and off in a debug build without affecting debugging too
much. Just turning on function inlining can have a significant impact on a C++ pro‐
gram because good C++ style includes writing many small member functions to
access the member variables of each class.

The documentation that comes with a C++ compiler contains an extensive descrip‐
tion of the optimization flags and pragmas available. This documentation is like the
owner’s manual that comes with a new car. You can get in your new car and drive it
without reading the manual, but there is a lot of information there that might help
you use this big, complicated tool more effectively.
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If you are lucky enough to be developing for the x86 architecture on Windows or
Linux, you have a choice of several excellent compilers under very active develop‐
ment. Microsoft pushed out three versions of Visual C++ in the five years before this
book was written. GCC releases more than one version a year.

As of early 2016, there is reasonable consensus that Intel’s C++ compiler generates the
tightest code on both Linux and Windows, that the GNU C++ compiler GCC has
lower performance but excellent standards conformance, and that Microsoft’s Visual
C++ is in between. I would love to help your decision making by producing a little
chart that says Intel C++ generates code that is so many percent faster than GCC, but
it depends on your code, and on who has just pushed out a souped-up release. Intel
C++ costs over a thousand dollars, but offers a 30-day free trial. There are free
express versions of Visual C++. On Linux, GCC is always free. It is inexpensive to
perform a little experiment, trying each compiler on your code to see if any give a
performance advantage.

Use Better Algorithms
The biggest bang for the optimization buck comes from choosing an optimal algo‐
rithm. Optimization efforts can improve the performance of a program in a dramatic
fashion. They can put zip into code that seemed sluggish before, just as upgrading
your PC makes applications run faster. Unfortunately, just like upgrading your PC,
most optimizations improve performance by at most a constant factor. Many optimi‐
zation efforts give an improvement of 30%–100%. If you are lucky, you might triple
your performance. But a quantum leap in performance is unlikely—unless you can
locate a more efficient algorithm.

Optimization War Story
Back in the days of 8-inch floppies and 1 MHz processors, a certain developer
designed a program to manage radio stations. One aspect of this program was to pro‐
duce a sorted log of the songs played each day. The trouble was, it took about 27
hours to sort a day’s worth of data, which was obviously unacceptable. To get this
important sort to run faster, the developer resorted to heroic feats. He reverse engi‐
neered the computer and hacked into the microcode by undocumented means. He
microcoded an in-memory sort that reduced run time to a still-unacceptable 17
hours. Desperate, he called the computer manufacturer, for whom I worked, for assis‐
tance.

I asked the developer what sorting algorithm he was using. He said, “Merge sort.”
Merge sort is a member of the family of optimal comparison sorting algorithms. How
many records was he sorting? “A few thousand,” he replied. This made no sense. The
system he was using should have been able to sort his data in less than an hour.
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I thought to ask the developer to describe his sort algorithm in detail. I can no longer
recall the tortured words that followed, but it turned out the developer had imple‐
mented an insertion sort. Insertion sort is a poor choice, taking time proportional to
the square of the number of records to be sorted (see“Time Cost of Sorting Algo‐
rithms” on page 99). He knew there was something called merge sort, and that it was
optimal. He had found a way to describe his insertion sort using the words “merge”
and “sort.”

I coded a very conventional sort routine for this customer, using a real merge sort. It
sorted his data in 45 minutes.

It is foolish to struggle heroically to optimize a bad algorithm. Learning and using
optimal algorithms for searching and sorting is a broad path to optimal code. An
inefficient search or sort routine can completely dominate the running time of a pro‐
gram. Code tweaking cuts run time by a constant factor. Switching to a more optimal
algorithm can cut run time by a factor that grows bigger the bigger your data set is.
Even on small data sets of a dozen items an optimal search or sort can save a bunch of
time if the data is searched frequently. Chapter 5, Optimize Algorithms contains some
guidance on what optimal algorithms look like.

Chances to use optimal algorithms come in all sizes, from compact little closed-form
computations, to tight keyword search functions, to complex data structures and
massive programs. There are many excellent books covering this subject. Whole
careers can be spent studying it. I regret that I can only touch lightly on the topic of
optimal algorithms in this book.

“Optimization Patterns” on page 100 covers several important techniques for improv‐
ing performance; these include precomputation (moving computation from run time
to link, compile, or design time), lazy computation (moving computation toward the
point where a sometimes unused result is actually needed), and caching (saving and
reusing expensive computations). Chapter 7, Optimize Hot Statements adds many
examples of these techniques in practice.

Use Better Libraries
The standard C++ template and runtime libraries that come with a C++ compiler
must be maintainable, general, and very robust. It may come as a surprise to develop‐
ers that these libraries are not necessarily tuned for speed. It may come as an even
greater surprise that even after 30 years of C++, the libraries that come with commer‐
cial C++ compilers still contain bugs, and may not conform to the current C++ stan‐
dard, or even to the standard in force when the compiler was released. This
complicates the task of measuring or recommending optimizations, and makes non-
portable any optimization experience developers believe they have. Chapter 8, Use
Better Libraries covers these issues.

Summary of Strategies for Optimizing C++ Code | 9



Mastery of the C++ standard library is a critical skill for the optimizing developer.
This book provides recommendations for algorithms for searching and sorting
(Chapter 9, Optimize Searching and Sorting), optimal idioms of use of container
classes (Chapter 10, Optimize Data Structures), I/O (Chapter 11, Optimize I/O), con‐
currency (Chapter 12, Optimize Concurrency), and memory management (Chap‐
ter 13, Optimize Memory Management).

There are open source libraries for important functions like memory management
(see “High-Performance Memory Managers” on page 333) that provide sophisticated
implementations that can be faster and more capable than what’s provided by a ven‐
dor’s C++ runtime library. The advantage of these alternative libraries is that they
may be easy to drop into an existing project, and provide an immediate speed
improvement.

There are many publicly available libraries from the Boost project and Google Code,
among many others, that provide libraries for things such as I/O, windowing, string
handling (see “Adopt a novel string implementation” on page 85) and concurrency
(see “Concurrency Libraries” on page 320) that are not drop-in replacements for the
standard libraries but offer improved performance and added features. These libra‐
ries gain part of their speed advantage from making different design trade-offs than
the ones made for the standard library.

Finally, it is possible to develop a project-specific library that relaxes some of the
safety and robustness constraints of the standard library in exchange for a speed
advantage. All these topics are covered in Chapter 8, Use Better Libraries.

Function calls are expensive in several ways (see “Cost of Function Calls” on page
161). Good function library APIs provide functions that reflect the idioms of use of
these APIs, so that the user doesn’t have to make unnecessarily frequent calls to the
most fundamental functions. For instance, an API that gets characters and provides
only a get_char() function requires the user to spend a function call for each charac‐
ter needed. If the API also provides a get_buffer() function, the API can avoid the
expense of calling a function for each character.

Function and class libraries are good places to hide the complexity that sometimes
comes with highly tuned programs. Libraries should pay your program back for the
cost of calling into them by doing work with maximum efficiency. Library functions
are quite likely to be at the bottom of deeply nested calling chains, where the effect of
improved performance is magnified.

Reduce Memory Allocation and Copying
Reducing calls into the memory manager is such an effective optimization that a
developer can be a successful optimizer knowing only this one trick. While the cost of
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most C++ language features is at most a few instructions, the cost of each call into the
memory manager is measured in thousands of instructions.

Because strings are such an important (and costly) part of many C++ programs, I
have devoted a whole chapter to them as a case study in optimization. Chapter 4,
Optimize String Use: A Case Study introduces and motivates many optimization con‐
cepts within the familiar context of string handling. Chapter 6, Optimize Dynamically
Allocated Variables is devoted to reducing the cost of dynamic memory allocation
without giving up useful C++ programming idioms like strings and standard library
containers.

A single call to a buffer-copying function may also consume thousands of cycles.
Doing less copying is thus an obvious way to speed up your code. A lot of copying
happens in association with memory allocation, so fixing one often does away with
the other. Other hot spots for copying are constructors and assignment operators,
and input/output. Chapter 6, Optimize Dynamically Allocated Variables covers this
subject.

Remove Computation
Aside from allocation and function calls, the cost of a single C++ statement is gener‐
ally insignificant. But execute that same code a million times in a loop, or every time
a program processes an event, and suddenly it’s a big deal. Most programs have one
or more main event processing loops, and one or more functions that process charac‐
ters. Identifying and optimizing these loops is almost always fruitful. Chapter 7, Opti‐
mize Hot Statements offers some advice on how to find frequently executed code. You
can bet it will always be in a loop.

The literature on optimization contains a cornucopia of techniques for using individ‐
ual C++ statements efficiently. Many programmers believe that knowledge of these
tricks is the bread and butter of optimization. The problem with this thinking is that,
unless the code is extremely hot (frequently executed), removing one or two memory
accesses from it does not make a measurable difference in overall perfor‐
mance. Chapter 3, Measure Performance contains techniques to determine what parts
of a program are frequently executed, before attempting to reduce the amount of
computation in these places.

It is also the case that modern C++ compilers do a really outstanding job of finding
these local improvements. Developers should therefore attempt not to go all OCD on
a big code base changing every occurrence of i++ to ++i, unrolling all the loops, and
breathlessly explaining to each colleague exactly what Duff ’s device is and why it’s so
cool. Still, I take a brief look into this cornucopia in Chapter 7, Optimize Hot State‐
ments.
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Use Better Data Structures
Selecting the most appropriate data structure has a profound effect on performance.
This is partly because the algorithms for inserting, iterating, sorting, and retrieving
entries have a runtime cost that depends on the data structure. In addition, different
data structures make differing use of the memory manager. It is also partly because
the data structure may have good cache locality, or not. Chapter 10, Optimize Data
Structures explores the performance, behavior, and trade-offs among data structures
provided by the C++ standard library. Chapter 9, Optimize Searching and Sorting dis‐
cusses use of standard library algorithms to implement table data structures on top of
simple vectors and C arrays.

Increase Concurrency
Most programs must wait for activities taking place in the tiresome, lumbering world
of physical reality to complete. They must wait for files to be read off mechanical
disks, pages to be returned from the Internet, or users’ slow fingers to press mechani‐
cal key switches. Any time a program’s forward progress is blocked waiting for such
an event is a wasted opportunity to perform some other computation.

Modern computers have more than one processor core available to execute instruc‐
tions. If work is parceled out to several processors, it can be completed sooner.

Along with concurrent execution come tools for synchronizing concurrent threads so
that they can share data. These tools can be used well or poorly. Chapter 12, Optimize
Concurrency covers some considerations in synchronizing concurrent threads of con‐
trol efficiently.

Optimize Memory Management
The memory manager, the part of the C++ runtime library that manages the alloca‐
tion of dynamic memory, is frequently executed code in many C++ programs. C++
has an extensive API for memory management, though most developers have never
used it. Chapter 13, Optimize Memory Management shows some techniques for
improving the performance of memory management.

Summary
This book helps the developer identify and exploit the following opportunities to
improve code performance:

• Use better compilers, and turn on the optimizer.
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• Use optimal algorithms.
• Use better libraries, and use libraries better.
• Reduce memory allocation.
• Reduce copying.
• Remove computation.
• Use optimal data structures.
• Increase concurrency.
• Optimize memory management.

As I said, the devil is in the details. Let’s press on.
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CHAPTER 2

Computer Behavior Affecting Optimization

Lying, the telling of beautiful untrue things, is the proper aim of Art.
—Oscar Wilde, “The Decay of Lying,” Intentions (1891)

The purpose of this chapter is to provide the bare minimum of background informa‐
tion about computer hardware to motivate the optimizations described in this book,
to prevent readers going mad poring over 600-page processor handbooks. It takes a
superficial look at processor architecture to extract some heuristics to guide optimi‐
zation efforts. The very impatient reader might skip this chapter for now and return
when other chapters refer to it, though the information here is important and useful.

Microprocessor devices in current use are incredibly diverse. They range from sub-$1
embedded devices with just a few thousand gates and clock rates below 1 MHz to
desktop-class devices with billions of gates and gigahertz clocks. Mainframe comput‐
ers can be the size of a large room, containing thousands of independent execution
units and drawing enough electrical power to light a small city. It is tempting to
believe that nothing connects this profusion of computing devices that would lead to
usable generalizations. In reality, though, they have useful similarities. After all, if
there were no similarities, it would not be possible to compile C++ code for the many
processors for which there are compilers.

All computers in wide use execute instructions stored in memory. The instructions
act upon data that is also stored in memory. The memory is divided into many small
words of a few bits each. A few precious memory words are registers, which are
directly named in machine instructions. Most memory words are named by a numer‐
ical address. A particular register in each computer contains the address of the next
instruction to execute. If the memory is like a book, the execution address is like a fin‐
ger pointing to the next word to read. An execution unit (also called processor, core,
CPU, computer, and a bunch of other names) reads a stream of instructions from the
memory and acts upon them. The instructions tell the execution unit what data to

Computer Behavior Affecting Optimization | 15



read (load, fetch) from memory, how to act upon the data, and what results to write
(store, save) to memory. The computer is made up of devices that obey physical laws.
It takes some nonzero amount of time to read or write each memory address, and
time for an instruction to transform the data upon which it acts.

Beyond this basic outline, familiar to any first-year computer science major, the fam‐
ily tree of computer architectures grows in a riot of profusion. Because computer
architectures are so variable, rigorous numerical rules regarding hardware behavior
are hard to come by. Modern processors do so many different, interacting things to
speed up instruction execution that instruction timing has become for all intents and
purposes nondeterministic. Couple that with the problem that many developers don’t
even know precisely what processors their code will run on, and heuristics are the
most you can expect.

Lies C++ Believes About Computers
Of course, a C++ program at least pretends to believe in a version of the simple
model of the computer laid out in the previous section. There is memory, addressable
in char-sized bytes, which is essentially infinite. A special address called nullptr
exists, which is different from any valid memory address. Integer 0 converts to
nullptr, though nullptr is not necessarily at address 0. There is a single conceptual
execution address pointing to the source code statement that is currently being exe‐
cuted. Statements are executed in the order in which they are written, subject to the
effects of C++ flow of control statements.

C++ knows that computers are really more complex than this simple model. It offers
a few glimpses under the cover at the glittering machinery within:

• A C++ program only has to behave “as if ” statements were executed in order.
The C++ compiler and the computer itself may change the execution order to
make the program run faster, as long as the meaning of any computation is not
changed.

• As of C++11, C++ no longer believes that there is only a single execution
address. The C++ standard library now comes with facilities for starting and
stopping threads, and synchronizing access to memory between threads. Before
C++11, programmers lied to the C++ compiler about their threads, sometimes
leading to difficult-to-debug problems.

• Certain memory addresses may be device registers instead of ordinary memory.
The values at these addresses may change during the interval between two con‐
secutive reads of the location by the same thread, indicating some change in the
hardware. Such locations are described to C++ as volatile. Declaring a variable
volatile requires the compiler to fetch a new copy of the variable every time it is
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used, rather than optimizing the program by saving the value in a register and
reusing it. Pointers to volatile memory may also be declared.

• C++11 offers a magical spell called std::atomic<> that causes memory to behave
for just a moment as if it really was a simple linear store of bytes, wishing away all
the complexities of modern microprocessors, with their multiple threads of exe‐
cution, multilayer memory caches, and so on. Some developers think this is what
volatile is for. They are mistaken.

The operating system also lies to programs and their users. In fact, the whole purpose
of an operating system is to tell each program a set of very convincing lies. Among
the most important lies the OS wants each program to believe are that the program is
alone on the computer, that the physical memory is infinite, and that there are an
infinite number of processors available for running the program’s threads.

The operating system uses the computer’s hardware to hide its lies, so that the C++
program really has no choice but to believe them. These lies don’t generally affect the
running program very much except to slow it down. However, they can complicate
performance measurements.

The Truth About Computers
Only the simplest microprocessors and certain historical mainframe computers cor‐
respond directly to the C++ model. Importantly for optimization, the actual memory
hardware of real computers is very slow compared to the instruction execution rate,
the memory is not really accessed in bytes, the memory is not a simple linear array of
identical cells, and it has a finite capacity. Real computers may have more than one
instruction address. Real computers are fast, not because they execute each instruc‐
tion quickly, but because they overlap execution of many instructions at the same
time and contain intricate circuitry to ensure that overlapping instructions behave as
if they execute one after the other.

Memory Is Slow
The main memory of a computer is very slow compared to its internal gates and reg‐
isters. Pouring electrons out of the microprocessor chip into the relative vastness of a
copper circuit board trace, and then pushing them down the trace to a memory chip
several centimeters away, takes thousands of times as long as moving electrons across
the minute distances separating transistors within the microprocessor. Main memory
is so slow that a desktop processor can execute hundreds of instructions in the length
of time it takes to fetch a single data word from main memory.
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The implication for optimization is that access to memory dominates other costs in a
processor, including the cost of executing instructions.

The von Neumann Bottleneck
The interface to main memory is a choke point that limits execution speed. This
choke point even has a name. It’s called the von Neumann bottleneck, after famous
computer architecture pioneer and mathematician John von Neumann (1903–1957).

For example, a PC using DDR2 memory devices running at 1,000 MHz (typical of
computers a few years ago, and easy to compute with) has a theoretical bandwidth of
2 billion words per second, or 500 picoseconds (ps) per word. But that doesn’t mean
the computer can read or write a random word of data every 500 picoseconds.

First, only sequential accesses can complete in one cycle (one-half of a tick of the
1,000 MHz clock). Access to a nonsequential location completes in somewhere
between 6 and 10 cycles.

Several activities contend for access to the memory bus. The processor continually
fetches memory containing the next instructions to be executed. The cache memory
controller fetches data memory blocks for the cache, and flushes written cache lines.
The DRAM controller also steals cycles to refresh the charge in the dynamic RAM
cells of the memory device. The number of cores in a multicore processor is sufficient
to guarantee that the memory bus is saturated with traffic. The actual rate at which
data can be read from main memory into a particular core is more like 20–80 nano‐
seconds (ns) per word.

Moore’s Law makes it possible to put more cores in a microprocessor each year. But it
does little to make the interface to main memory faster. Thus, doubling the number
of cores in the future will have a diminishing effect on performance. The cores will all
be starved for access to memory. This looming limit on performance is called the
memory wall.

Memory Is Not Accessed in Bytes
Although C++ believes every byte is separately accessible, computers often compen‐
sate for slow physical memory by fetching data in bigger chunks. The smallest pro‐
cessors may fetch a byte at a time from main memory. Desktop-class processors may
fetch 64 bytes at once. Some supercomputers and graphics processors fetch even
more.

When C++ fetches a multibyte data type like an int, double, or pointer, it may be
that the bytes making up that data span two physical memory words. This is called an
unaligned memory access. The implication for optimization is that an unaligned access
takes twice as long as if all the bytes were in the same word, because two words must be
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read. The C++ compiler works to align structs so that every field begins on a byte
address that is a multiple of the field’s size. But this creates its own problem: “holes”
in the structs containing unused data. Paying attention to the size of data fields and
their order in the struct can result in structs that are as compact as possible while still
being aligned.

Some Memory Accesses Are Slower than Others
To further compensate for slow main memory, many computers contain
cache memory, a kind of fast temporary storage located very close to the processor, to
speed up access to the most frequently used memory words. Some computers have no
cache; others have one or several levels of cache, each smaller, faster, and more expen‐
sive than the one before. When an execution unit requests bytes from a cached mem‐
ory word, the bytes may be fetched rapidly without accessing main memory again.
How much faster is cache memory? A rule of thumb is that each level of cache mem‐
ory is about 10 times faster than the one below it in the memory hierarchy. On
desktop-class processors, the time cost of a memory access can vary across five orders
of magnitude depending on whether the data being accessed is in first-, second-, or
third-level cache, in main memory, or on a virtual memory page on disk. This is one
reason why obsessing over instruction clock cycles and other arcana is so often mad‐
dening and unhelpful; the state of the cache makes instruction execution times
largely nondeterministic.

When an execution unit needs to fetch data that is not in the cache, some data that is
currently in cache must be discarded to make room. The data selected to be discarded
is generally the least recently used data. This matters to optimization because it means
heavily used memory locations can be accessed more quickly than less heavily used loca‐
tions.

Reading even one byte of data that is not in cache causes many nearby bytes to be
cached as well (as a consequence, this also means that many bytes currently in the
cache are discarded). These nearby bytes are then ready for quick access. For optimi‐
zation, this is important because it means memory in adjacent locations can be
accessed more quickly (on average) than memory in distant locations.

In C++ terms, the implication is that a block of code containing a loop may execute
faster because instructions making up the loop are heavily used and close together,
and thus likely to stay in cache. A block of code containing function calls or if state‐
ments that causes execution to hop around may execute more slowly because individ‐
ual parts of the code are less heavily used, and not close together. Such a code block
uses up more cache space than a tight loop. If the program is large and the cache is
finite, some of the code must be discarded from the cache to make room for other
things, slowing access the next time that code is needed. Similarly, a data structure
consisting of consecutive locations, like an array or vector, may be faster to access
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than a data structure consisting of nodes linked by pointers, because data in consecu‐
tive locations remains in a small number of cache locations. Accessing a data struc‐
ture consisting of records connected by pointers (e.g., a list or tree) may be slower
because of the need to read data for each node from main memory into new cache
lines.

Memory Words Have a Big End and a Little End
A single byte of data can be fetched from memory, but often what happens is that sev‐
eral consecutive bytes are fetched together to form a number. For instance, in Micro‐
soft’s Visual C++, four bytes fetched together form an int. Because the same memory
can be accessed in two different ways, the people who design computers have to
answer a question. Does the first byte—the one whose byte address is smallest—form
the most significant bits of the int, or the least significant bits?

At first it seems like this couldn’t possibly matter. Of course, it’s important that every
part of a given computer agrees on which end of the int goes at the lowest address, or
chaos reigns. And sure, it’s possible to tell the difference. If the int value 0x01234567
is stored at addresses 1000–1003, and the little end is stored first, address 1000 holds
the byte 0x01 and address 1003 holds the byte 0x67, whereas if the big end is stored
first, address 1000 holds 0x67 and the 0x01 is at address 1003. Computers that read
the most significant bits at the first byte address are called big-endian. Little-endian
computers read the least significant bits first. There are two ways to store an integer
(or pointer), and no reason to choose one over the other, so different teams working
on different processors for different companies may choose differently.

The problem comes when data written on disk or sent over a network by one com‐
puter must be read by a different computer. Disks and networks send a byte at a time,
not a whole int at a time. So it matters which end is stored or sent first. If the sending
computer and the receiving computer don’t agree, the value sent as 0x01234567 is
received as 0x67452301, a very different value indeed.

Endian-ness is just one of the reasons why C++ cannot specify the way bits are laid
out in an int, or how setting one field in a union affects the other fields. It’s one rea‐
son why programs can be written that work on one kind of computer but crash on
another.

Memory Has Finite Capacity
The memory in a computer is not, in fact, infinite. To maintain the illusion of infinite
memory, the operating system can use the physical memory like a cache memory, and
store data that doesn’t fit into physical memory as a file on disk. This scheme is called
virtual memory. Virtual memory produces the illusion of more physical memory.
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However, retrieving a block of memory from disk takes dozens of milliseconds—an
eternity for a modern computer.

Making cache memory fast is expensive. There may be gigabytes of main memory in
a desktop computer or smartphone, but only a few million bytes of cache. Programs
and their data don’t generally fit into the cache.

One effect of all this caching and virtual memory is that due to caching, a particular
function running in the context of a whole program may run slower than the same func‐
tion running in a test harness 10,000 times to measure its performance. In the context
of the whole program, the function and its data are not likely to be in cache. In the
context of the test, they generally are. This effect magnifies the benefit of optimiza‐
tions that reduce the use of memory or disk, while leaving unchanged the benefit of
optimizations that reduce code size.

A second effect of caching is that if a big program is making scattered accesses to
many memory locations, there may not be sufficient cache memory to hold the data
being immediately used by the program. This causes a kind of performance melt‐
down called page thrashing. When page thrashing happens in a microprocessor’s
internal cache, the result is reduced performance. When it happens in the operating
system’s virtual memory file, performance drops a thousandfold. This problem was
more common when physical memory was less plentiful, but it still happens.

Instruction Execution Is Slow
Simple microprocessors of the sort embedded in coffee makers and microwave ovens
are designed to execute instructions as fast as they can be fetched from memory.
Desktop-class microprocessors have additional resources to process many instruc‐
tions concurrently, so they are capable of executing instructions many times faster
than they can be fetched from main memory, relying on a fast cache memory to feed
their execution units most of the time. The significance of this to optimization is that
memory access dominates the cost of computation.

Modern desktop-class computers execute instructions at an awesome rate if nothing
gets in the way. They can complete an instruction every few hundred picoseconds (a
picosecond is 10-12 seconds, a ridiculously short time). But that doesn’t mean that
each instruction only takes picoseconds to perform. The processor contains a “pipe‐
line” of instructions  that it is working on concurrently. Instructions work their way
through the pipeline, being decoded, getting their arguments, performing their com‐
putations, and saving their results. The more powerful the processor, the more com‐
plicated this pipeline becomes, breaking instruction execution into a dozen phases so
that more instructions can be concurrently processed.

If instruction A computes a value needed by instruction B, then instruction B can’t do
its computation until instruction A produces its result. This causes a pipeline stall, a
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brief pause in instruction execution that occurs because execution of the two instruc‐
tions can’t be fully overlapped. The pipeline stall is particularly long if instruction A
fetches a value from memory, then performs a computation that produces a value
needed by instruction B. Pipeline stalls defeat all the fancy machinery of the micro‐
processor, making it nearly as slow as the processor in your toaster from time to time.

Making Decisions Is Hard for Computers
Another thing that can cause a pipeline stall is when the computer needs to make a
decision. After most instructions, execution continues with the instruction at the next
memory address. Most of the time, this next instruction is already in cache. Consecu‐
tive instructions can be fed into the pipeline as soon as the first pipeline stage
becomes available.

Transfer-of-control instructions are different. A jump or jump-to-subroutine instruc‐
tion changes the execution address to an arbitrary new value. The “next” instruction
cannot be read from memory and put in the pipeline until the execution address is
updated, some time during processing of the jump instruction. The memory word at
the new execution address is less likely to be in cache. The pipeline stalls while the
execution address is updated and the new “next” instruction is loaded into the pipe‐
line.

After a conditional branch instruction, execution continues in one of two different
places: either the next instruction or else the instruction at the address that is the
branch target, depending upon the result of some previous computation. The pipe‐
line stalls until all instructions involved in the previous computation complete, and
remains stalled while the next execution address is determined and the value at that
address is fetched.

The significance of this for optimization is that computation is faster than decision.

There Are Multiple Streams of Program Execution
Any program running on a modern operating system shares the computer with other
programs running at the same time, with periodic maintenance processes checking
the disk or looking for Java or Flash updates, and with the various parts of the operat‐
ing system that control the network interface, disks, sound devices, accelerometers,
thermometers, and other peripherals. Every program competes with other programs for
the computer’s resources.

A program generally doesn’t notice this too much. It just runs a little slower. An
exception occurs, however, when many programs start simultaneously and all com‐
pete for the memory and disk. For performance tuning, if a program must run at
startup, or at times of peak load, performance must be measured under load.
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As of early 2016, desktop computers have up to 16 processor cores. The microproces‐
sors used in phones and tablets have up to eight. A quick look at the Windows Task
Manager, Linux’s process status output, or Android’s task list typically shows there are
a great many more software processes than this, and most processes have multiple
threads of execution. The operating system runs each thread for a short time, then
switches contexts to another thread or process. To the program, it is as if one state‐
ment took a nanosecond, and the next statement took 60 milliseconds.

What does it mean to switch contexts? If the operating system is switching from one
thread to another thread in the same program, it means saving the processor’s regis‐
ters for the thread being suspended, and loading the saved registers for the thread
being resumed. The registers of a modern processor contain hundreds of bytes of
data. When the new thread resumes execution, its data may not be in cache, so there
is an initial period of slow execution while the new context is loaded into cache.
There is thus a considerable cost to switching thread contexts.

When the operating system switches context from one program to another, the pro‐
cedure is even more expensive. All dirty cache pages (ones with written data that has
not reached main memory) must be flushed to physical memory. All the processor
registers are saved. Then the physical-to-virtual memory page registers in the mem‐
ory manager are saved. Next, the physical-to-virtual memory page registers for the
new process are reloaded, and the processor registers for the new process are reloa‐
ded. Finally, execution can resume. But the cache is empty, so there is an initial period
of slow performance and heavy memory contention while the cache is refilled.

When a program must wait for some event to occur, it may continue to wait even
after the event occurs until the operating system makes a processor available to con‐
tinue the program. This can make the program run time longer and more variable
when the program runs in the context of other programs competing for the comput‐
er’s resources.

The execution units of a multicore processor and their associated cache memories act
more or less independently of one another to achieve better performance. However,
all execution units share the same main memory. Execution units must compete for
access to the hardware linking them to main memory, making the von Neumann bot‐
tleneck even more limiting in a computer with multiple execution units.

When an execution unit writes a value, the value goes first into cache memory. It
eventually has to be written through the cache all the way to main memory, so that
the value is visible to other execution units. But because of contention for access to
main memory among the execution units, main memory may not be updated until
hundreds of instructions after the execution unit changes a value.

If the computer has multiple execution units, one execution unit may thus not see the
data written by another execution unit change in main memory for an extended
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period of time, and changes to main memory may not occur in the same order as
instruction execution order. Depending upon unpredictable timing factors, an execu‐
tion unit may see either the old value of a shared memory word or the updated value.
Special synchronization instructions must be used to ensure that threads running in
different execution units see a consistent view of memory. The significance of this to
optimization is that it’s much slower to access data shared between threads of execu‐
tion than unshared data.

Calling into the Operating System Is Expensive
All but the smallest processors have hardware to enforce isolation between programs,
so that program A can’t read, write, or execute in physical memory belonging to pro‐
gram B. The same hardware protects the kernel of the operating system from being
overwritten by programs. The OS kernel, on the other hand, needs to access memory
belonging to every program, so the programs can make system calls into the operat‐
ing system. Some operating systems also allow programs to make requests to share
memory. The many ways system calls occur and shared memory is arranged are var‐
ied and arcane. The significance for optimization is that system calls are expensive;
hundreds of times more expensive than function calls within a single thread of one
program.

C++ Tells Lies Too
The biggest lie C++ tells its users is that the computer it runs on has a simple, consis‐
tent structure. In exchange for pretending to believe this lie, C++ lets developers pro‐
gram without having to learn the intimate details of every microprocessor device, like
they would have to do to program in brutally honest assembly language.

All Statements Are Not Equally Expensive
In the peaceful, bygone days of Kernighan and Ritchie’s C programming, every state‐
ment was about as expensive as every other statement. A function call might contain
an arbitrarily complex computation. However, an assignment statement generally
copied something that fit in a machine register into something else that fit into a
machine register. Thus, the statement:

int i,j;

 ...

i = j;

copied 2 or 4 bytes from j to i. The declaration could be int or float or struct big
struct *, but the assignment statement still did about the same amount of work.
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This is no longer true. In C++, assigning one int to another is exactly the same
amount of work as the corresponding C statement. But a statement like BigInstance
i = OtherObject; can copy whole structures. More significantly, this kind of assign‐
ment invokes a constructor member function of BigInstance, which can hide arbi‐
trarily complex machinery. A constructor is also invoked for each expression passed
to a function’s formal arguments, and again as the function returns a value. Arith‐
metic operators and comparison operators can be overloaded too, so A=B*C; may
multiply n-dimensional matrices, and if (x<y) ... may compare two paths through
a directed graph of arbitrary complexity. The importance of this to optimization is
that some statements hide large amounts of computation. The form of the statement does
not tell how expensive it is.

Developers who learned C++ first may not find this rule surprising. But for those
who learned C first, their instincts can lead them disastrously astray.

Statements Are Not Executed in Order
C++ programs behave as if they were executed in order, subject to C++ flow of con‐
trol statements. The weasel-words “as if ” in the previous sentence are the foundation
upon which many compiler optimizations, and many tricks of modern computer
hardware, are built.

Under the hood, of course, the compiler can and does sometimes reorder statements
to improve performance. But the compiler knows that a variable must contain an up-
to-date result of any computation assigned to it before it is tested or assigned to
another variable. Modern microprocessors may also choose to execute instructions
out of order, but they contain logic to ensure that writes to memory happen before
subsequent reads of the same location. Even the microprocessor’s memory control
logic may choose to delay writes to memory for optimal use of the memory bus. But
the memory controller knows which writes are currently “in flight” from the execu‐
tion unit through cache memory to main memory, and makes sure the in-flight value
is used if the same address is subsequently read.

Concurrency complicates this picture. C++ programs are compiled without knowl‐
edge of other threads that may be running concurrently. The C++ compiler does not
know which variables, if any, are shared between threads. The combined effect of the
compiler reordering statements and the computer delaying writes to main memory
damages the illusion that statements are executed in order when a program contains
concurrent threads that share data. The developer must add explicit synchronizing
code to multithreaded programs to ensure consistently predictable behavior. The syn‐
chronizing code reduces the amount of concurrency obtainable when concurrent threads
share data.
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Summary
• Access to memory dominates other costs in a processor.
• An unaligned access takes twice as long as if all the bytes were in the same word.
• Heavily used memory locations can be accessed more quickly than less heavily used

locations.
• Memory in adjacent locations can be accessed more quickly than memory in distant

locations.
• Due to caching, a function running in the context of a whole program may run

slower than the same function running in a test harness.
• It’s much slower to access data shared between threads of execution than unshared

data.
• Computation is faster than decision.
• Every program competes with other programs for the computer’s resources.
• If a program must run at startup, or at times of peak load, performance must be

measured under load.
• Every assignment, function argument initialization, and function return invokes a

constructor, a function that can hide arbitrary amounts of code.
• Some statements hide large amounts of computation. The form of the statement does

not tell how expensive it is.
• Synchronizing code reduces the amount of concurrency obtainable when concurrent

threads share data.
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CHAPTER 3

Measure Performance

Measure what is measurable, and make measurable what is not so.
—Galileo Galilei (1564–1642)

Measurement and experimentation are the basis of any serious attempt to improve a
program’s performance. This chapter introduces two software tools that measure per‐
formance: the profiler and the software timer. I discuss how to design experiments to
measure performance so that their results are meaningful, rather than misleading.

The most basic and most frequently performed measurement of software perfor‐
mance answers the question, “How long?” How long does it take to execute a func‐
tion? How long to fetch a configuration from disk? How long to start up or shut
down?

These questions can be attacked (clumsily) with ridiculously simple instruments.
Isaac Newton measured the gravitational constant by timing falling objects against his
heartbeat. I’m sure every developer has informally timed activities by counting out
loud; in the United States, we count “one-Mississippi, two-Mississippi, three-
Mississippi...” to get approximate seconds. A digital wristwatch with a stopwatch
function was once de rigueur for computer geeks, and not just for the fashion state‐
ment. In the embedded world, hardware-savvy developers have nifty instruments at
their disposal, including frequency counters and oscilloscopes that can time even
short routines accurately. Software vendors sell a variety of specialized tools too
numerous to review here.

This chapter focuses on two tools that are widely available, generally useful, and inex‐
pensive. The first tool, the profiler, is typically provided alongside the compiler by the
compiler vendor. The profiler produces a tabular report of the cumulative time spent
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in each function called during a program run. It is the go-to instrument for software
optimization because it produces a list of the hottest functions in your program.

The second tool, the software timer, is something developers can build, like Jedi
knights constructing their own lightsaber (if you will excuse the cheesy Star Wars ref‐
erence). If the fancy version of the compiler that has a profiler is priced out of reach,
or the compiler vendor on some embedded platform doesn’t offer one, the developer
can still perform experiments by timing long-running activities. The software timer is
also helpful for timing tasks that are not compute-bound.

A third tool, the lab notebook, is so old-school that many developers may think it has
gone completely out of fashion. But a lab notebook or equivalent text file is an indis‐
pensable tool in the optimization toolkit.

The Optimizing Mindset
Before diving into measurements and experiments, I would like to offer just a little of
the philosophy of optimization that I practice and that I hope to teach in this book.

Performance Must Be Measured
Your senses are usually not accurate enough to detect an incremental change in per‐
formance. Your memory is inadequate to exactly recall the results of many experi‐
ments. Book learning can mislead you, causing you to believe things that are not
always true. Developers often show spectacularly poor intuition when thinking about
whether or not a particular piece of code needs to be optimized. They write functions,
knowing they will be used, but with little thought to how heavily or by what code.
Then an inefficient bit of code finds its way into critical components, where it is
called zillions of times. Experience can also deceive you. Programming languages,
compilers, libraries, and processors all evolve. Functions that were once reliable hot
spots can become more efficient, and vice versa. Only measurement tells you if you
are winning or losing the optimization game.

The developers whose skill at optimization I respect most all approach the optimiza‐
tion task systematically:

• They make testable predictions, and write their predictions down.
• They keep a record of code changes.
• They make measurements with the best instruments available.
• They keep detailed notes of experimental results.
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Stop and Think
Go back and read the preceding section again. It contains the most important advice
in this book. Most developers (including the author) don’t behave in this methodical
way naturally. It’s a skill that must be practiced.

Optimizers Are Big Game Hunters
I say we take off and nuke the whole site from orbit. It’s the only way to be sure.

—Ellen Ripley (Sigourney Weaver), Aliens, 1986

Optimizers are big game hunters. Making a program run 1% faster is not worth the
risk that modifying a working program might introduce bugs. The effect of a change
must be at least locally dramatic to make it worthwhile. Furthermore, a 1% speedup
might be a measurement artifact masquerading as improvement. Such a speedup
needs to be proven, with randomization, sample statistics, and confidence levels. It’s
too much work for too little effect. It’s not a place we go in this book.

A 20% improvement is a different animal. It blows through objections about method‐
ology. There are not a lot of statistics in this book, something for which I do not apol‐
ogize. The point of this book is to help the developer find performance improvements
that are dramatic enough to outweigh any question of their value. Such an improve‐
ment may still depend on factors like the operating system and compiler, so it may
not have much effect on another system or at another time. But changes that are dra‐
matic almost never bite with reduced performance when the developers port their
code to a new system.

The 90/10 Rule
The fundamental rule of optimization is the 90/10 rule: a program spends 90% of its
run time in 10% of its code. This rule is a heuristic; not a law of nature, but rather a
useful generalization to guide thinking and planning. This rule is also sometimes
called the 80/20 rule. The idea is the same. Intuitively, the 90/10 rule means that cer‐
tain blocks of code are hot spots that are executed very frequently, while other parts of
the code are hardly ever executed. These hot spots are the targets for optimization
efforts.
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Optimization War Story
I was introduced to the 90/10 rule in one of my first projects as a professional devel‐
oper: an embedded device with a keyboard interface, which very coincidentally was
called the 9010A (Figure 3-1).

Figure 3-1. The Fluke 9010A (British Computer History Museum)

There was a function that polled the keyboard to see whether the STOP key had been
pressed. This function was executed frequently by every routine. Hand-optimizing
the C compiler’s Z80 assembly language output code for this one function (a 45-
minute task) improved overall throughput by 7%, which was a big deal in this partic‐
ular device.

This experience was typical of optimization efforts in general. At the beginning of the
optimization process, a lot of run time was spent in one place in the program. The
place was pretty obvious: a housekeeping activity done repeatedly, at each iteration of
every loop. Optimizing the activity required making the painful choice to code in
assembly language instead of C. But the scope of the assembly language was
extremely limited, reducing the risk entailed by the choice to use assembly language.

The experience was also typical in that this one block of code was very hot. After we
improved this code, another block of code took first place as the most frequently exe‐
cuted—but its contribution to overall run time was much smaller. It was so small, in
fact, that we stopped optimizing after just this one change. We could find no other
change that gave us even a 1% speedup.
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A consequence of the 90/10 rule is that optimizing every routine in a program is not
helpful. Optimizing a small part of your code gives you practically all the perfor‐
mance improvement you are going to get. Identifying the hot 10% is time well spent.
Selecting code to optimize by guesswork is likely time wasted.

I would like to return to the quote by Don Knuth from the first chapter. Here is a
longer version of the same quote:

Programmers waste enormous amounts of time thinking about, or worrying about, the
speed of noncritical parts of their programs, and these attempts at efficiency actually
have a strong negative impact when debugging and maintenance are considered. We
should forget about small efficiencies, say about 97% of the time: premature optimiza‐
tion is the root of all evil.

—Donald Knuth, Structured Programming with go to Statements, ACM Computing
Surveys 6 (Dec 1974): 268. CiteSeerX: 10.1.1.103.6084

Dr. Knuth was not warning that optimization in general was evil, as some people have
suggested. He was saying only that wasting time optimizing the noncritical 90% of a
program was evil. Apparently he was aware of the 90/10 rule too.

Amdahl’s Law
Amdahl’s Law, coined by and named after computer engineering pioneer Gene
Amdahl, describes how much overall performance will improve when a portion of
the code is optimized. There are several ways to express Amdahl’s Law, but with
regard to optimization, it may be expressed by the equation

ST = 1

1 − P + P
SP

where ST is the proportion of improvement in the whole program run time resulting
from an optimization, P is the proportion of total original run time that was subject
to optimization, and SP is the proportion of improvement in the optimized portion P.

For example, suppose a program takes 100 seconds of run time. Through profiling
(see “Profile Program Execution” on page 37), you discover that the program spends
80 seconds performing multiple calls to a single function, f. Now suppose you recode
f to make it 30% faster. How much would this improve the program’s overall run
time?

P, the proportion of the original run time spent within function f, is 0.8. SP is 1.3.
Plugging this into Amdahl’s Law yields

ST = 1

1 − 0 . 8 + 0 . 8
1 . 3

= 1
0 . 2 + 0 . 62 = 1 . 22
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Improving this one function by 30% improved the overall program run time by 22%.
In this case, Amdahl’s Law illustrates the 90/10 rule, and provides an example of how
powerful even a modest performance improvement can be in the hot 10% of the code.

Let’s look at a second example. Suppose again that a program takes 100 seconds of
run time. Through profiling, you discover that a single function, g, consumes 10 sec‐
onds of that run time. Now suppose you recode g so that it runs 100 times faster. How
much will this improve the program’s overall run time?

P, the proportion of the original run time spent within function g, is 0.1. SP is 100.
Plugging this into Amdahl’s Law yields

ST = 1

1 − P + 0 . 1
100

= 1
0 . 9 + 0 . 001 = 1 . 11

In this case, Amdahl’s Law provides a cautionary tale. Even if heroic coding or black
magic reduces the run time of function g to zero, it is still in the unimportant 90%.
The overall performance improvement is still 11%, to two decimal places. Amdahl’s
Law says that even a really successful optimization isn’t valuable if the optimized code
doesn’t account for much of the overall program’s run time. The lesson of Amdahl’s
Law is that, when your colleague comes to a meeting all excited that he knows how to
make some calculation run 10 times faster, it doesn’t necessarily mean all your perfor‐
mance troubles are over.

Perform Experiments
Developing software is always an experiment, in the sense that you start up the pro‐
gram thinking that it is going to do a particular thing, and then watch to see whether
it does. Performance tuning is experimental in a more formal sense. You must start
with correct code, in the sense of code that does what you expect it to do. You have to
look at this code with a fresh set of eyes and ask, “Why is this code hot?” Why does
this particular function, out of the many hundreds in your program, appear at the top
of the profiler’s naughty list? Is the function wasting time doing something redun‐
dantly? Is there a faster way to do the same computation? Is the function using expen‐
sive resources? Is the function, in fact, as efficient as it possibly could be, but just
called a whole lot of times, leaving no opportunity to improve performance?

Your proposed answer to the question “Why is this code hot?” forms the hypothesis
you will test. The experiment takes the form of two elapsed time measurements of the
running program: one before you make a change and one after. If the second time is
less than the first, your experiment validates the hypothesis.
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Note the very special language. Experiments don’t necessarily prove anything at all.
Your modified code may have run faster or slower for a variety of reasons having
nothing to do with your change. For example:

• The computer might receive an email or check for a Java update while you are
measuring run time.

• A colleague might check in an improved library just before you recompile.
• Your fix may run faster because it is not correct.

Good scientists are skeptics. They are always suspicious. If the expected improvement
does not appear, or appears too good to be true, a skeptic tries the experiment again,
or questions her assumptions, or looks for a bug.

Good scientists are also open to new knowledge, even if it contradicts knowledge
already in their heads. I learned several unexpected things about optimization in the
process of writing this book. The technical reviewers learned things too. Good scien‐
tists never stop learning.

Optimization War Story
Chapter 5 contains an example function for keyword lookup. I coded several versions
of the example. One was a linear search, another was a binary search. When I meas‐
ured the performance of these two functions, the linear search was consistently a few
percent faster than the binary search. This, I felt, was unreasonable. The binary search
just had to be faster. But the timing numbers told a different story.

I was aware that someone on the Internet had reported that linear lookup was often
faster because it enjoyed better cache locality than binary search, and indeed my lin‐
ear search implementation should have had excellent cache locality. But this result
violated both experience and long-revered book learning about search performance.

In investigating more deeply, I first realized that I had been testing a table with just a
few keywords, and using sample words that would be found in the table in my test. If
the table had eight entries, a linear search would examine half (four) of them on aver‐
age before returning. The binary search would divide the table in half four times
before it found the keyword each time it was called. The two algorithms had exactly
the same average performance on small keyword sets. This reality invalidated my
intuition about binary search “always” being better.

But this was not the result I intended to demonstrate! So I made the table larger,
thinking there must be a size at which the binary search was faster. I also added more
words to my test that were not in the table. The results were as before, with the linear
search being faster. At this time, I had to put this coding task aside for a couple of
days. But the result gnawed at me.
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I was still sure that the binary search should be faster. I reexamined the unit tests for
the two searches, eventually to discover that the linear search always returned success
after the first comparison. My test case had checked for a nonzero return, rather than
testing for the correct return. Sheepishly, I fixed the linear search code and test cases.
Now the experiment produced the expected result that the binary search was faster.

In this case, the experimental results first rejected and later validated my hypothesis—
and challenged my assumptions along the way.

Keep a Lab Notebook
Good optimizers (like all good scientists) are concerned with repeatability. This is
where the lab notebook comes into use. Each timing run starts with a hypothesis, one
or more small code tweaks, and an input data set, and ends up with an unremarkable
integer number of milliseconds. It’s not too hard to remember the previous run’s time
long enough to compare it with the next. As long as each code change is successful,
that’s enough.

Eventually, however, the developer will guess wrong and the timing of the latest run
will be worse than that of the previous run. Suddenly the developer’s mind will be full
of questions. Was run #5 faster than run #3 even though it was slower than run #4?
And just what code change produced run #3? Was the speed difference just an arti‐
fact, or was it really faster?

If each experiment run is documented, it can quickly be repeated. This makes answer‐
ing such questions trivial. Otherwise, the developer must go back and rerun a previ‐
ous experiment to get the timing—that is, if he can remember exactly what code
change to make or unmake. If runs are brief and the developer’s memory is excellent,
then he’s lucky and may waste only a little time. But it is possible to be unlucky too,
and lose track of a promising line of work, or maybe repeat it unnecessarily the next
day.

When I give this advice, there is always someone who says, “I can do that without
paper! I can write a Perl script that would modify the FOO command of the Smart‐
FOO check-in tool to save the test results of each run with the change set for that run.
If I save the test results in a file... If I run the test in a directory set up just so...”

I don’t want to discourage innovation among software developers. If you’re a senior
manager driving uptake of best practices, go for it. I will say, however, that writing on
paper is a robust, easy-to-use technology that is a thousand years down its learning
curve. It will continue to work when the team updates the revision manager or test
suite. It will work at the developer’s next job. This old-school solution may still opti‐
mize use of the developer’s time.
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Measure Baseline Performance and Set Goals
For a developer working alone on her own time, the optimization process can be cas‐
ual, iterating until performance “feels good enough.” Developers working in teams,
however, have managers and stakeholders to satisfy. Optimization efforts are guided
by two numbers: a baseline measure of performance before optimization, and a per‐
formance goal. The baseline performance measurement is important not just for
measuring the success of individual improvements, but also for justifying the cost of
optimization efforts to stakeholders.

A performance goal is important because optimization is a process with diminishing
returns. Initially there is “low-hanging fruit” that may easily be picked: individual
processes or naïvely coded functions that produce big improvements when opti‐
mized. But once these easy optimization targets have been improved, more effort is
required for each next turn of the optimization crank.

Many teams do not initially think to set design goals for performance or responsive‐
ness, simply because they are not accustomed to doing so. Fortunately, poor perfor‐
mance is usually obvious (a user interface with long periods of unresponsiveness, a
server that won’t scale, excessive hosting costs for CPU time, etc.). Once a team looks
at performance, numerical goals are easy to set. A whole subdiscipline of user experi‐
ence (UX) design centers on how users perceive waiting time. Here is a list of com‐
monly measured performance aspects to start you off, plus just enough UX numbers
to make you dangerous:

Startup time
The elapsed time from pressing the Enter key until the program enters its main
input processing loop. Often, but not always, the developer can just measure the
time elapsed between entering the main() procedure and entering the main loop.
Operating system vendors who offer certification for programs have strict
requirements for programs that run as the computer starts up, or whenever a
user logs on. For instance, Microsoft demands of hardware vendors seeking cer‐
tification that the Windows shell must enter its main loop less than 10 seconds
after starting. This limits the number of other programs the vendor is allowed to
preload and launch in the busy startup environment. Microsoft offers specialized
tools to measure startup time.

Shutdown time
The elapsed time from the user clicking the Close icon or entering a command to
exit until the process actually exits. Often, but not always, you can just measure
the time elapsed between the main window receiving the shutdown command
and exiting main(). Shutdown time also includes the time needed to stop all
threads and dependent processes. Operating system vendors who offer certifica‐
tion have strict requirements for shutdown time. Shutdown time is also impor‐
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tant because the time it takes to restart a service or long-running program is
equal to its shutdown time plus its startup time.

Response time
The average or worst-case time needed to perform a command. For websites,
both the average response time and worst-case response time contribute to users’
satisfaction with the site. Response times can be categorized into coarse powers-
of-10 baskets as follows:

Less than 0.1 seconds: user in direct control
If response time is less than 0.1 seconds, the users feel like they are directly
controlling the user interface, and that UI changes result directly from their
actions. This is the maximum delay between a user beginning to drag and the
dragged object moving, or between a user clicking a field and the field being
highlighted. Any longer and the user feels like he is issuing a command that
the computer carries out.

0.1 to 1 seconds: user in control of command
If response time is between 0.1 and 1 seconds, the users feel as though they
are in charge, but interpret the brief delay as the computer executing a com‐
mand and causing a change to the UI. The users are able to tolerate this
amount of delay without losing their focus on their current train of thought.

1 to 10 seconds: computer in charge
If response time is between 1 and 10 seconds, the users feel they have exe‐
cuted a command and have lost control to the computer while it processes
the command. Users may lose focus and forget things in short-term memory
that they need to complete the task; 10 seconds is about the maximum time a
user can remain focused. User satisfaction with the UI drops rapidly if they
encounter many waits of this duration.

More than 10 seconds: time for a coffee break
If response time is greater than 10 seconds, the users perceive that they have
enough time to do some other task. If their work requires them to use the UI,
they will go for coffee while the computer crunches numbers. If it’s an
option, the user may close the program and look elsewhere for satisfaction.

Jakob Nielsen wrote an interesting article about time scales in user experience
that points to scholarly studies for the extra-curious.

Throughput
The inverse of response time. Throughput is generally expressed as the average
number of operations per unit of time on some test workload. Throughput meas‐
ures the same thing as response time, but is more appropriate for batch-oriented
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programs like databases and web services. Generally you want this number as big
as possible.

It is also possible to overoptimize. For instance, in many cases, users regard a
response time of under 0.1 seconds as instantaneous. In such a situation, improving
response time from 0.1 seconds to 1 millisecond adds virtually no value, even though
it is 100 times faster.

You Can Improve Only What You Measure
Optimizing a single function, subsystem, task, or test case is never the same as
improving the performance of a whole program. Your test setup differs in many ways
from the production-version program running on customer data, so the performance
improvements measured in your test rarely translate into the same performance
improvements in the wild. Making a single task faster may not make the whole pro‐
gram faster, even if the task exercises much of the program’s logic.

For instance, if a database developer profiles a database performing a specific select
query 1,000 times, and optimizes based on that profile, she will speed up not the
whole database, but the database performing a specific select query. This speedup
may well improve the performance of other select queries. It will have a less predicta‐
ble effect on delete or update queries, indexing, and all the other things a database
does.

Profile Program Execution
A profiler  is a program that produces statistics about where another program spends
its time. The profiler constructs a report showing how frequently each statement or
function is executed, and how much time accumulates in each function.

Many compiler suites, including both Visual Studio on Windows and GCC on Linux,
come with a profiler to help find hot spots. Historically, Microsoft only offered its
profiler with expensive versions of Visual Studio, but Visual Studio 2015 Community
Edition comes with very extensive profiler support. There are open source profilers
for Windows, for earlier versions of Visual Studio.

There are several ways to implement a profiler. One method used by both Windows
and Linux works as follows:

1. The programmer recompiles the program to be profiled with a special compiler
flag that instruments every function in the program. This involves adding a cou‐
ple of extra assembly language instructions to the beginning and end of each
function.

2. The programmer links the instrumented program with a profiling library.
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3. Any time the instrumented program runs, it creates a profiling table as a file on
disk.

4. The profiler takes the profiling table as input, and produces a range of available
textual or graphical reports.

Another profiling method works in this way:

1. The unmodified program is instrumented by linking it with a profiling library.
The library contains a routine that interrupts program execution at a high rate
and records the value of the instruction pointer.

2. Any time the instrumented program runs, it creates a profiling table as a file on
disk.

3. The profiler reads the profiling table as input, and produces a range of available
textual or graphical reports.

The output of the profiler may take several forms. One form is a source listing anno‐
tated with the number of times each line was executed. Another form is a list of func‐
tion names along with the number of times each was invoked. Another form is the
same list of functions, with the total time accumulated within each function and all
functions called from within it. Still another form is a list of functions and the
amount of time spent in each function, minus the time spent in called functions, in
system code, or waiting for events.

The profiler instrumentation is carefully designed to be as inexpensive as possible. Its
effect on overall run time is small, and typically takes the form of a few percent slow‐
down of every operation. The first method gives exact numbers, at the cost of higher
overhead and disabling of certain optimizations. The second method gives approxi‐
mate results and may miss a few infrequently called functions, but has the advantage
of running over the production code.

The most important advantage of a profiler is that it directly displays a list of the hot‐
test functions in the code. The process of optimization is reduced to making a
“naughty list” of functions to investigate, inspecting each function for optimization
opportunities, making a change, and rerunning the code to obtain new profiler out‐
put until no single function appears particularly hot or until you run out of ideas.
Because hot spots observed by the profiler are by definition places where a lot of
computation takes place, this process is generally straightforward.

My experience with profiling is that profiling a debug build of a program produces
results that are just as relevant as those obtained from a release build. In some ways,
the debug build is easier to profile because it includes all functions, including those
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that are inlined, whereas the release build hides very frequently called inlined func‐
tions.

Optimizing Pro Tip
One issue with profiling a debug build on Windows is that the debug build is linked
with a debug version of the runtime library. The debug version of the memory man‐
ager functions performs many extra tests so it can better report doubly freed storage
and memory leaks. The cost of these extra tests can significantly increase the cost of
certain functions. There is an environment variable to tell the debugger not to use the
debug memory manager: go to Control Panel→System Properties→Advanced System
Settings→Environment Variables→System Variables, and add a new variable called
_NO_DEBUG_HEAP with a value of 1.

Using a profiler is an excellent way to find candidates for optimization, but it isn’t
perfect:

• A profiler cannot tell you that there is a more efficient algorithm to solve your
computing problem. Tuning a bad algorithm is just a waste of time.

• A profiler does not give crisp results on input that exercises many different tasks.
For instance, a SQL database may execute very different code when doing an
insert query from when doing a select query. Thus, code that is hot when loading
up the database with insert queries may not be executed at all when reading data
from the database with select queries. Running a test that is a mix of loading the
database and querying the database makes the insert code less prominent in the
profiler report, unless the profiled run performs a lot of computation.
Therefore, to identify the hottest functions more easily, try optimizing one task at
a time. It can be helpful to profile a subsystem of the full program running in a
test harness, if test code is available. However, you introduce another source of
uncertainty if you optimize one task at a time: it doesn’t necessarily improve the
performance of the entire system. Results may be less dramatic when the pro‐
gram is run on input that performs a mix of tasks.

• The profiler gives misleading information when a program is I/O-bound or
multithreaded, because the profiler subtracts time spent in system calls or waiting
on events. Removing this time is theoretically sensible because the program is not
solely responsible for these waits. But the result is that the profiler tells how
much work a program is doing, not how much “wall clock time” it takes to per‐
form its work. Some profilers give a count of the number of function calls as well
as the time spent within each function. A very high call count can be a clue when
the profiler hides wall clock time.
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The profiler is a one-trick pony; there are optimization opportunities it does not
highlight, and issues in interpreting profiler output. Still, for many programs, the
profiler produces results good enough that no other method is needed.

Time Long-Running Code
If a program does one task that is compute-bound, profiling will automatically show
the hot spots. But if a program does a lot of different things, no function may be par‐
ticularly hot in the profiler. The program may also spend time waiting for I/O or
external events that slow down overall progress as measured by a wall clock. In these
cases, you need to time parts of the program with a stopwatch, and then try to reduce
the measured run time of parts that are slow.

A developer uses run timing to find hot spots by successively narrowing the part of a
long-running task being timed until one section takes a length of time that does not
make intuitive sense. After identifying the suspicious section of code, the developer
times experiments on small subsystems or individual functions in a test harness.

Run timing is an effective way to test hypotheses about how to reduce the cost of a
particular function.

It is hardly a stretch to realize that a computer can be programmed to act as a stop‐
watch. A phone or laptop is quite handy for waking you up at 6:45 on weekday morn‐
ings, or reminding you 5 minutes before your stand-up meeting at 10. Measuring the
submicrosecond run times of functions in modern computers is more challenging,
especially because the common Windows/PC platform has historically had trouble
providing a high-resolution clock that behaved consistently across hardware models
and software versions.

As a developer you must therefore be prepared to “roll your own” software stopwatch,
knowing that it may change in the future. To help make this possible, I will discuss
how time is measured, and what tools support measuring time on computers.

“A Little Learning” About Measuring Time
A little learning is a dangerous thing.

—Alexander Pope, “An Essay on Criticism”, 1774

A perfect measurement would exactly capture the size, weight, or, in the case of this
book, duration of a measured phenomenon every single time. Making a perfect meas‐
urement is as likely as an archer reliably hitting the exact center of the bull’s-eye with
every shot, splitting arrow after arrow. Such archery only happens in storybooks, and
it is the same with measurement.

Real measurement experiments (like real archers) must contend with variation: sour‐
ces of error that spoil the quest for perfection. Variation comes in two flavors: random
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and systematic. Random variations affect each measurement differently, like a puff of
wind that causes a particular arrow to drift in flight. Systematic variations affect every
measurement in a similar way, like the way an archer’s stance can bias every shot so
that it goes to the left of its intended destination.

Variation itself can be measured. Summary measures of variation form properties of a
measurement called precision and trueness. Together these properties form the intu‐
itive property called accuracy.

Precision, trueness, and accuracy
It is apparently the case that the scientists who get really excited about measurement
argue endlessly about terminology. You need only look up “accuracy” on Wikipedia
for a taste of how much controversy there is about what words to use for explaining
agreed-upon concepts. I chose to explain terms in the context of the 1994 standard
ISO 5725-1, “Accuracy (trueness and precision) of measurement methods and results
- Part 1: General principles and definitions” (1994).

A measurement is precise if it is free from random variation. That is, if the same phe‐
nomenon is measured repeatedly, and the measured values are close together, the
measurement is precise. A series of precise measurements may still contain systematic
variation. An archer who puts a grouping of shots in the same off-center area can be
said to be very precise even if not very accurate. His target might look like Figure 3-2.

If I measure a phenomenon (say, the run time of a function) 10 times, and get the
same result all 10 times, I may hypothesize that my measurement is precise. (As in
any experiment, I should remain skeptical until I have a lot of evidence.) If I get the
same result six times, a slightly different result three times, and a very different result
once, the measurement is less precise.

A measurement is true if it is free from systematic variation. That is, if I measure the
same phenomenon repeatedly, and the average of all the results clusters close to the
actual quantity being measured, then I may believe the measurement is true. Individ‐
ual measurements may be affected by random variation so that they are closer to or
further from the actual quantity. Trueness is not a skill rewarded in archery. In
Figure 3-3, the average of the four shots would be in the bull’s-eye if only it were an
arrow. Furthermore, all these shots have the same accuracy (distance from the bull’s-
eye) in ring units.
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Figure 3-2. High-precision (but poor-accuracy) target shooting

The accuracy of a measurement is an informal concept that depends on how close
each individual measurement comes to the actual quantity being measured. The dis‐
tance from the actual quantity has a component of random variation and a compo‐
nent of systematic variation. A measurement must be both precise and true to be
accurate.

Figure 3-3. The archer who fired these shots has true aim

Measuring time
The software performance measurements covered in this book are either a duration
(the amount of time that elapses between two events) or a rate (the number of events
per unit of time, the inverse of duration). The instrument used for measuring dura‐
tion is a clock.

All clocks work by counting some periodic fluctuation. In some clocks, the count is
divided into hours, minutes, and seconds for presentation. In other clocks, the count
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is presented directly as a number of ticks. But clocks (other than sundials) don’t
directly measure hours, minutes, and seconds. They count ticks, and it is only by
comparing the ticks to a second reference clock that a clock may be calibrated to
present hours, minutes, and seconds.

All sources of periodic fluctuation are subject to variations that make them imperfect
clocks. Some of these variations are random, while others are systematic:

• A sundial makes use of the periodic off-plane rotation of the Earth. By definition,
one full rotation is one day. The Earth makes an imperfect clock because its
period is long, and because its rotation speeds up and slows down detectably (in
microseconds) as the continents drift slowly across its surface. This variation is
random. Tidal forces from the Moon and Sun slow the overall rate of the Earth’s
rotation. This variation is systematic.

• A grandfather clock counts the regular swinging of a pendulum. Gears divide the
pendulum’s swing down to drive hands that display the time. The period of the
pendulum may be manually adjusted so that the displayed time is synchronized
to the Earth’s rotation. The period of a pendulum’s swing depends on the weight
of the pendulum and its length, so that every swing may be faster or slower than
desired. This variation is systematic. Friction, air pressure, and the accumulation
of dust may all affect a pendulum even if it is initially set perfectly. These are ran‐
dom sources of variation.

• An electric clock uses the periodic 60 Hz sine wave of its AC power supply to
drive a synchronous motor. Gears divide down the fundamental oscillation and
drive hands to display the time. An electric clock is not a perfect clock because
the AC power is only 60 Hz (in the United States) by convention, not by some
law of nature. The power company slows down the oscillation in periods of heavy
use, and speeds it up again later so electric clocks will not run slow. So, a second
measured by an electric clock may be longer on a hot summer afternoon than on
a temperate evening (as we have always suspected). This variation is random. An
electric clock made for use in the United States will run consistently slow if plug‐
ged into a 50 Hz AC outlet in Europe. In contrast to the random variation intro‐
duced by temperature, the variation caused by using a European power outlet is
systematic.

• A digital wristwatch uses the induced vibration of a quartz crystal as its funda‐
mental fluctuation. A logic circuit divides the fundamental oscillation down and
drives a display. The periodic oscillation of the crystal depends on its size, on the
temperature, and on the voltage applied to it. The effect of the crystal’s size is a
systematic variation, while variations of the temperature and voltage are random.

A tick count is an inherently unsigned quantity. There is no such thing as –5 tick
events. I mention this seemingly obvious fact because, as shown later, many develop‐
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ers implementing timekeeping functions choose a signed representation for dura‐
tions. I don’t know why they do this. My teenage son would say, “It’s just a thing.”

Measurement resolution
The resolution of a measurement is the size of the units in which the measurement is
presented.

An archer shooting at a target gets the same score for putting an arrow anywhere in a
given ring. The bull’s-eye is not an infinitesimal point, but rather a circle of a certain
diameter (see Figure 3-4). A shot is either a bull’s-eye or is in the first ring, second
ring, and so on. The width of the ring is the resolution of an archery score.

Figure 3-4. Resolution: a hit anywhere in a circle is the same score

The useful resolution of a time measurement is limited by the duration of the under‐
lying fluctuation. A time measurement can be one tick or two ticks, but nothing in
between. The period between these ticks is the clock’s useful resolution.

An observer may perceive events as happening between two ticks of a slow clock like a
pendulum clock. This just means people have a faster (but less accurate) clock in their
heads that they informally compare to the pendulum clock. An observer wanting to
make measurements of imperceptible durations like milliseconds has only the clock’s
ticks to go on.

There is no required connection between the accuracy of a measurement and the res‐
olution with which it is presented. If I log my daily activities, I may be able to report
that it took two days to write this section of this book. The useful resolution of this
measurement is in this case one day. I suppose I could convert this time to seconds,
reporting instead that I took 172,800 seconds. But unless I had a stopwatch in my
hand, reporting the time in seconds might give a false sense that the measurement
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was more accurate than it was, or a misleading impression that I did not eat or sleep
for this whole period.

A measurement may be reported in units smaller than the useful resolution because
the units are standard. I own an oven that displays the oven temperature in degrees
Fahrenheit. The thermostat that controls the oven, however, has a useful resolution of
5°F, so that as the oven heats, the display reads 300°F, then 305, 310, 315, and so on. It
makes more sense to display the temperature in familiar degree units rather than
thermostat units. It just means that the least significant digit of the measurement can
only assume the values 0 and 5.

The reader might be surprised and disappointed to know the useful resolutions of the
many inexpensive thermometers, scales, and other measuring devices around them
that have display resolutions of one unit or one-tenth of a unit.

Measuring with several clocks
A man with a watch knows what time it is. A man with two watches is never quite sure.

—Most frequently attributed to Lee Segall

When two events happen in the same place, it is easy to measure the elapsed time in
timer ticks on a single clock. When two events happen at a distance from one
another, it may be necessary to use two clocks. Tick counts can’t be compared directly
between different clocks.

Humankind has attacked this problem by synchronizing clocks to the Coordinated
Universal Time reference. Coordinated Universal Time is synchronized to astronomi‐
cal midnight at longitude 0, an arbitrary line that passes through a nifty plaque at the
Royal Observatory in Greenwich, England (see Figure 3-5). This allows a time in ticks
to be converted to a time in hours, minutes, and seconds past midnight UTC (Uni‐
versal Time Coordinated, a clunky acronym negotiated between French and English
horologists that favors neither French nor English spelling).

If two clocks are perfectly synchronized to UTC, the UTC time from one is directly
comparable to the other. But of course, perfect synchronization is not possible. The
two clocks contain independent sources of variation that will cause them to drift from
UTC, and from one another.
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Figure 3-5. Markings of the Prime Meridian at the Royal Observatory, Greenwich
England (photo by Ævar Arnfjörð Bjarmason, license CC BY-SA 3.0)

Measuring Time with Computers
Building a clock on a computer requires a source of periodic fluctuation—preferably
one with good precision and trueness—and a way for software to obtain ticks from
that source. A purpose-built computer designed for telling time could easily be cre‐
ated. However, the most popular current computer architectures were not designed
with much thought to providing good clocks. I will illustrate the problems using the
PC architecture and Microsoft Windows. The problems for Linux and embedded
platforms are similar.

The crystal oscillator at the heart of a PC clock circuit has a typical basic accuracy of
100 parts per million, which is 0.01%, or about 8 seconds per day. While this accuracy
is only a little better than that provided by a digital wristwatch, it is more than
enough for performance measurement, where very informal results accurate to a few
percent are usable. The clock circuits on cheap embedded processors are less accu‐
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rate, but the most serious problem is not with the source of periodic fluctuation—
more difficult is the problem of getting a reliable tick count for use by programs.

Hardware evolution of tick counters
The original IBM PC did not have any hardware tick counters. It did have a time-of-
day clock that the software could read. The earliest Microsoft C runtime library
copied the ANSI C library, providing the function time_t time(time_t*), which
returns the number of seconds since 00:00 January 1, 1970 UTC. The original version
of time() returned a 32-bit signed integer, but during the run-up to Y2K, this was
changed to a 64-bit signed integer.

The original IBM PC used a periodic interrupt from the AC power supply to wake the
kernel to perform task switches and other kernel operations. The period of this tick
was 16.67 milliseconds in North America, because the AC power is 60 Hz, and 10
milliseconds where the AC power is 50 Hz.

By Windows 98, and possibly earlier, Microsoft C provided the ANSI C function
clock_t clock(), which returned a tick counter in a signed format. The constant
CLOCKS_PER_SEC specified the number of ticks per second. A returned value of -1
implied that clock() was not available. clock() originally reported a tick based on
the periodic AC interrupt. clock() as implemented on Windows differs from the
ANSI specification, measuring elapsed wall-clock time and not CPU time. clock()
was recently reimplemented in terms of GetSystemTimeAsFileTime(), and in 2015 it
returned a 1-millisecond tick with 1-millisecond resolution, making it a good milli‐
second clock in Windows.

Starting in Windows 2000, a software tick counter based on the A/C power interrupt
was made available via a call to DWORD GetTickCount(). The tick counted by GetTick
Count() depends on the hardware of the PC, and may be significantly longer than 1
millisecond. GetTickCount() performs a computation to convert the tick to millisec‐
onds to partially relieve this ambiguity. An updated version of this call, ULONGLONG
GetTickCount64(), returns the same tick count in a 64-bit unsigned integer so that
longer durations can be measured. Although there is no way to inspect the current
interrupt period, a pair of functions reduce the period and then restore it:

MMRESULT timeBeginPeriod(UINT)
MMRESULT timeEndPeriod(UINT)

These functions act on a global variable affecting all processes and many other func‐
tions, such as Sleep(), that depend on the AC interrupt. Another call,
DWORD timeGetTime(), appears to get the same tick counter by a different method.

Starting with the Pentium architecture, Intel provided a hardware register called the
Time Stamp Counter (TSC). The TSC is a 64-bit register that counts ticks from the
processor clock. This counter could be accessed very rapidly by the RDTSC instruction.
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Starting in Windows 2000, the TSC could be read by calling the function BOOL Query
PerformanceCounter(LARGE_INTEGER*), which produces a tick count with no partic‐
ular resolution. The resolution can be obtained through a call to BOOL

QueryPerformanceFrequency(LARGE_INTEGER*), which returns the frequency in
ticks per second. LARGE_INTEGER is a struct holding 64 bits of integer in a signed for‐
mat, because the version of Visual Studio at the time these calls were introduced did
not have a native 64-bit signed integer type.

A problem with the initial version of QueryPerformanceCounter() was that its tick
rate depended on the processor’s clock. The processor clock was different for differ‐
ent processors and motherboards. Older PCs, notably those with processors from
Advanced Micro Devices (AMD), did not have a TSC at the time. When the TSC was
not available, QueryPerformanceCounter() fell back to the low-resolution tick
returned by GetTickCount().

Windows 2000 also added void GetSystemTimeAsFileTime(FILETIME*), which
returns the number of 100-nanosecond ticks since 00:00 January 1, 1601 UTC.
FILETIME is a struct holding 64 bits of integer, this time in an unsigned format.
Although the displayed resolution of the tick counter appears to be very high, some
implementations use the same slow counter used by GetTickCount().

More problems with QueryPerformanceCounter() soon appeared. Some processors
implemented a variable clock rate to manage power consumption. This caused the
tick period to change. In multiprocessor systems using several discrete processors, the
value returned by QueryPerformanceCounter() depended on which processor a
thread ran on. Processors began to implement instruction reordering, so that the
RDTSC instruction might be delayed, reducing the accuracy of software using the TSC.

To solve these problems, Windows Vista used a different counter, typically the
Advanced Configuration and Power Interface (ACPI) power management timer, for
QueryPerformanceCounter(). Using this counter solved the synchronization prob‐
lem in multiprocessors, but significantly increased latency. In the meantime, Intel
respecified the TSC to be the maximum, nonchanging clock frequency. Intel also
added the nonreorderable RDTSCP instruction.

Since Windows 8, a reliable high-resolution hardware tick count based on the TSC
has been available. void GetSystemTimePreciseAsFileTime(FILETIME*) produces a
high-resolution tick with fixed frequency and submicrosecond accuracy on any cur‐
rent system running Windows 8 or later.

The summary of this history lesson is that PCs were never designed as clocks, so the
tick counters they provide are unreliable. If the past 35 years are any guide, future
processors and future operating systems may continue to frustrate any hope of get‐
ting a solid, high-resolution tick count.
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The only tick counter reliably available in all generations of PC is the tick counter
returned by GetTickCount(), with all its warts. The 1-millisecond tick returned by
clock() is better, and ought to be available in PCs manufactured in the last 10 years
or so. Limiting consideration to Windows 8 and later and new processors, the 100-
nanosecond tick counter from GetSystemTimePreciseAsFileTime() is very precise.
However, my experience is that millisecond accuracy is sufficient for timing experi‐
ments.

Wraparound
Wraparound  is what happens when the tick counter of a clock achieves its maximum
value and then increments to zero. Twelve-hour analog clocks wrap around every day
at noon and again at midnight. Windows 98 hung if it ran continuously for 49 days
(see Q216641) due to wraparound of a 32-bit millisecond tick counter. The Y2K bug
occurred when time expressed as a two-digit year wrapped around. The Mayan calen‐
dar wrapped around in 2012, supposedly heralding the end of the world. In January
2038, the Unix epoch (signed, 32-bit seconds since 00:00 January 1, 1970 UTC) will
wrap around, possibly causing the actual end of the world for some long-lived
embedded systems. The problem with wraparound is that, in the absence of addi‐
tional bits to record it, the next increment of time is numerically before the previous
time. Clocks that wrap around are good only for measuring durations that are less
than the wraparound interval.

For instance, on Windows, the GetTickCount() function returns a tick count with 1-
millisecond resolution in a 32-bit unsigned integer. The value returned by GetTick
Count() wraps around about every 49 days. GetTickCount() may be used for timing
operations that take much less than 49 days without concern. If a program calls Get
TickCount() at the beginning and end of an operation, the difference between the
returned values may be interpreted as the number of milliseconds elapsed between
the calls. For example:

DWORD start = GetTickCount();
    DoBigTask();
DWORD end = GetTickCount();
cout << "Startup took " << end-start << " ms" << endl;

The way C++ implements unsigned arithmetic produces a correct answer even in the
presence of wraparound.

GetTickCount() is less effective for remembering time since startup. Many long-lived
servers can remain up for months or even years. The problem with wraparound is
that, in the absence of bits to record the number of wraparounds, end-start might
imply no wraparounds, or one, or more.

Starting in Vista, Microsoft added the GetTickCount64() function, which returns a
64-bit unsigned tick count with 1-millisecond display resolution. GetTickCount64()
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takes millions of years to wrap around, greatly reducing the likelihood of anyone ever
witnessing a problem.

Resolution is not accuracy

On Windows, the GetTickCount() function returns an unsigned 32-bit integer. If a
program calls GetTickCount() at the beginning and end of an operation, the differ‐
ence between the returned values may be interpreted as the number of milliseconds
that elapsed between the calls. The resolution of GetTickCount() is thus 1-
millisecond.

For example, the following block of code measures the relative performance of an
arbitrary function called Foo() on Windows, by calling Foo() in a loop. Tick counts
obtained at the start and end of the loop give a time in milliseconds for the loop:

DWORD start = GetTickCount();
for (unsigned i = 0; i < 1000; ++i) {
    Foo();
}
DWORD end = GetTickCount();
cout << "1000 calls to Foo() took " << end-start << "ms" << endl;

If Foo() performed some substantial calculation, this block of code might produce
the following output:

1000 calls to Foo() took 16ms

Unfortunately, the accuracy of the call to GetTickCount() may be 10 milliseconds or
15.67 milliseconds, as documented in Microsoft’s web page on GetTickCount(). That
is, if you call GetTickCount() twice in a row, the difference may be 0, or 1 millisec‐
ond, or 10, 15, or 16 milliseconds. So, the fundamental precision of the measurement
is 15 milliseconds, and the extra resolution is valueless. The result output from the
previous code block might have been 10 ms or 20 ms or exactly 16 ms.

What is especially frustrating about GetTickCount() is that, beyond having a resolu‐
tion of 1 millisecond, it is not guaranteed to be implemented in any particular way, or
in the same way on two different Windows computers.

I tested the various timing functions on Windows to find out what their usable reso‐
lution was on a particular computer (an i7-based Surface 3) and operating system
(Windows 8.1). The test, shown in Example 3-1, calls a timing function repeatedly
and checks the difference between the values returned by consecutive calls. If the usa‐
ble resolution of the tick is greater than the latency of the function call, consecutive
calls will return either the same value or a value differing by the size of the funda‐
mental tick, in units of the function’s resolution. I averaged the nonzero differences
just in case the operating system stole a time slice for some other task.
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Example 3-1. Measuring the tick duration of GetTickCount()

unsigned nz_count = 0, nz_sum = 0;
ULONG last, next;
for (last = GetTickCount(); nz_count < 100; last = next) {
    next = GetTickCount();
    if (next != last) {
        nz_count += 1;
        nz_sum += (next - last);
    }
}
std::cout << "GetTickCount() mean resolution "
          << (double)nz_sum / nz_count
          << " ticks" << std::endl;

The results of this test are summarized in Table 3-1.

Table 3-1. Measured tick durations, i7 Surface Pro 3, Windows 8.1

Function Tick duration
time() 1 sec
GetTickCount() 15.6 ms
GetTickCount64() 15.6 ms
timeGetTime() 15.6 ms
clock() 1.0 ms
GetSystemTimeAsFileTime() 0.9 ms
GetSystemTimePreciseAsFileTime() ~450 ns
QueryPerformanceCounter() ~450 ns

Of particular note is that GetSystemTimeAsFileTime(), which has a display resolu‐
tion of 100 nanoseconds, appears to be based on the same slow 1-millisecond tick as
clock(), and that GetSystemTimePreciseAsFileTime() appears to be implemented
using QueryPerformanceCounter().

Modern computers have fundamental clock periods measured in hundreds of pico‐
seconds (100 picoseconds is 10-10 seconds!). They execute instructions in a few nano‐
seconds each. But there are no accessible tick counters on the PC with picosecond or
nanosecond resolution. On PCs, the fastest tick counters available have 100-
nanosecond resolution, and their fundamental accuracy may be far worse than their
resolution. As a consequence, it isn’t possible to measure the duration of a single call
to many functions. See “Overcoming Measurement Obstacles” on page 54 to find out
how to overcome this problem.

Latency
Latency is the length of time that elapses between commanding an activity to start
and it actually beginning. Latency is the time between dropping a penny into a well
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and hearing the splash (see Figure 3-6). It’s the time between when the starter’s gun
fires, and when the runner begins to move forward.

With regard to time measurement on computers, latency occurs because starting the
clock, running the experiment, and stopping the clock are operations performed seri‐
ally. The measurement performed can be broken up into five phases:

1. “Starting the clock” involves a function call that gets a tick count from the operat‐
ing system. This call takes a nonzero amount of time. Somewhere in the middle
of the function call, the tick counter value is actually read from a processor regis‐
ter. This value becomes the start time. Call this interval t1.

2. After the value of the tick counter is read, it still must be returned and assigned
to a variable. These actions take time. The actual clock is ticking, but the starting
tick count is not increasing. Call this interval t2.

3. The measured experiment begins and ends. Call this interval t3.
4. “Stopping the clock” involves another function call to get the tick count. During

the part of the function call up to the point where the tick counter value is read,
the timer keeps ticking even though the experiment is over. Call this interval t4.

5. After the value of the tick counter is read, it still must be returned and assigned
to a variable. Since the tick counter is read, no more error accumulates even
though the clock is still ticking. This interval is t5.

Figure 3-6. Latency: the time between throwing the penny and hearing the splash
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So, while the actual duration of the measurement is t3, the measured duration is the
longer value t2+t3+t4. The latency is thus t2+t4. If the latency is a significant fraction of
the experiment run time, the experimenter must subtract out the latency.

Assume for instance that it takes 1 microsecond (μs) to obtain a tick count, and that
the tick count is obtained by the very last instruction executed in that time. In the
following pseudocode, time measurement begins on the last instruction of the first
call to get_tick(), so there is no latency before the activity being measured. The
latency of the call to get_tick() at the end of the test gets added to the measured
duration:

start = get_tick() // 1uS latency before, doesn't matter
do_activity()
stop = get_tick()  // 1uS after, added onto measured interval
duration = stop-start

If the measured activity took 1 microsecond, the measured value will be 2 microsec‐
onds, a 100% error. If the measured activity took 1 millisecond, the measured value
will be 1.001 milliseconds, a 0.1% error.

If the same function is called before and after the experiment, then t1=t4 and t2=t5.
The latency is just the duration of the timer function call.

I measured the call latency of the Windows timing functions, which is just their dura‐
tion. Example 3-2 presents a typical test harness for timing the GetSystemTimeAsFile
Time() function.

Example 3-2. Latency of Windows timing functions

ULONG start = GetTickCount();
LARGE_INTEGER count;
for (counter_t i = 0; i < nCalls; ++i)
    QueryPerformanceCounter(&count);
ULONG stop = GetTickCount();
std::cout << stop - start
          << "ms for 100m QueryPerformanceCounter() calls"
          << std::endl;

The results of this test are summarized in Table 3-2.

Table 3-2. Latency of Windows timing functions VS 2013, i7, Win 8.1

Function Call duration
GetSystemTimeAsFileTime() 2.8 ns
GetTickCount() 3.8 ns
GetTickCount64() 6.7 ns
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Function Call duration
QueryPerformanceCounter() 8.0 ns
clock() 13 ns
time() 15 ns
TimeGetTime() 17 ns
GetSystemTimePreciseAsFileTime() 22 ns

Among the interesting things to note here is that the latencies are all in the range of a
few nanoseconds on my i7 tablet, so all these calls are reasonably efficient. This
means latency won’t affect measurement accuracy when function calls are timed in a
loop lasting around one second. Still, the costs vary by a factor of 10, for functions
that read the same low-resolution tick. GetSystemTimePreciseAsFileTime() has the
highest latency, and the highest latency relative to its tick, at about 5%. Latency is a
much bigger problem on slower processors.

Nondeterministic behavior
Computers are incredibly complex devices with tons of internal state, most of which
is invisible to developers. Executing a function changes the state of the computer (for
instance, the contents of cache memory), so that each repeated execution happens
under conditions that are different from the previous one. Uncontrollable changes in
internal state are thus a source of random variation in measurements.

Furthermore, the operating system schedules tasks in unpredictable ways, so that
other activity on the processors and memory buses varies during a measurement run.
This makes any measurement less accurate.

The operating system may even stop the code being timed to give a time slice away to
another program. The tick counter continues to run during such pauses, producing a
larger measured duration than if the operating system had not given a time slice to
another program. This causes a somewhat larger random variation that can affect
measurement.

Overcoming Measurement Obstacles
So, how bad is it really? Can we use a computer at all for timing? And what do we
need to do to make it all work? This section summarizes my personal experience
using the stopwatch class described in the next section to test functions for this book.

Don’t sweat the small stuff
The really good news is that measurements only have to be accurate to within a cou‐
ple of percent to be good enough to guide optimization. Looking at it another way, for
the usual linear kinds of improvement you can expect from optimization, the meas‐
urements need only have about two significant digits—for an experiment that loops
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on some function for 1,000 milliseconds, about 10 milliseconds—of error. If we look
at likely sources of error, as illustrated in Table 3-3, they are all well below this.

Table 3-3. Contribution of variation in 1-second Windows time measurement

Variation Contribution %
Tick counter function latency < 0.00001
Basic clock stability < 0.01
Tick counter usable resolution < 0.1

Measure relative performance
The ratio of the run time of the optimized code to the run time of the original code is
called relative performance. Among the many good things about relative measure‐
ments is that they cancel out systematic variation, since the same variation applies to
both measurements. The relative number in percentage terms is also easier to grasp
intuitively than a number of milliseconds.

Improve repeatability by measuring module tests
Module tests, those staged subsystem tests using canned input data, often make good,
repeatable actions for a profile run or performance measurement. Many organiza‐
tions have an extensive library of module tests, and new tests can be added specifi‐
cally for performance tuning.

A common concern about performance tuning goes like this: “My code is a big ball of
yarn and I don’t have any test cases. I have to test performance on my live input data
or live database, which is always changing. I don’t get consistent or repeatable results.
What should I do?”

I do not have magic bullets to kill this particular beast. If I test modules or subsystems
with a repeatable set of mock input data, improved performance on these tests gener‐
ally translates into improved performance on live data. If I identify hot functions in a
big but unrepeatable test, improving those hot functions using module test cases gen‐
erally improves performance on live data. Every developer knows why they should
build software systems out of loosely coupled modules. Every developer knows why
they should maintain a library of good test cases. Optimization is just one more rea‐
son.

Tune performance with metrics
There is a ray of hope for the developer forced to tune performance in an unpredicta‐
ble live system. Instead of measuring the value of, say, a critical response time, the
developer can collect metrics, population statistics such as mean and variance, or an
exponentially smoothed average of the response time. Since these statistics get their
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value from a large number of individual events, a durable improvement in these sta‐
tistics indicates a successful code change.

Here are just a few of the issues that may arise when optimizing with metrics:

• Population statistics must be based on a large number of events to be valid. The
change/test/evaluate loop is far more time-consuming with metrics than with
direct measurement of a fixed input.

• Collecting metrics requires far more infrastructure than either profiling or run
timing. A persistent store is usually required to hold the statistical data. Feeding
this store can be expensive enough to affect performance. The system for collect‐
ing metrics must be carefully designed to make it flexible enough to support
many experiments.

• Although there is a well-established methodology to verify or refute hypotheses
based on statistics, the methodology requires some statistical sophistication on
the part of developers to do properly.

Improve accuracy by averaging many iterations
An experiment can improve upon the accuracy of a single measurement by averaging
several measurements. This is what happens when a developer times a function call in
a loop or runs a program over input that causes it to call a particular function many
times.

One advantage of measuring many iterations of a function call is that random varia‐
tions tend to cancel out. The state of the caches tends to converge on a single value, so
that each iteration is an apples-to-apples comparison. Over a long enough interval,
random scheduler behavior has about the same effect on the timing of the original
function and the optimized function. Although the absolute times may not be typical
of the same functions in the larger program, the relative performance still measures
the degree of improvement accurately.

Another advantage is that a coarser and easier-to-obtain tick counter can be used.
Computers are fast enough that a single second is long enough for thousands or even
millions of iterations.

Reduce nondeterministic operating system behavior by raising priority
It is possible to reduce the chance of the operating system taking slices out of a meas‐
urement run by increasing the priority of the measurement process. On Windows,
the SetPriorityClass() function manipulates the priority of a process. The Set
ThreadPriority() function does the same for the priority of a thread. The following
code increases the priority of the current process and thread:
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SetPriorityClass(GetCurrentProcess(), ABOVE_NORMAL_PRIORITY_CLASS);
SetThreadPriority(GetCurrentThread(), THREAD_PRIORITY_HIGHEST);

After the measurement, the process and thread priority should usually be restored to
normal:

SetPriorityClass(GetCurrentProcess(), NORMAL_PRIORITY_CLASS);
SetThreadPriority(GetCurrentThread(), THREAD_PRIORITY_NORMAL);

Nondeterminism happens—get over it
The way I measure performance for optimization is extremely casual. It isn’t
informed by great knowledge of statistics. My tests run for seconds, not hours. I don’t
feel the need to apologize for this casual approach. These methods translate into
human-visible performance improvements in overall program run time, so I must be
on the right track.

If I run the same timing experiment on two different days, I get results that may differ
by somewhere between 0.1% and 1%. This is no doubt due to differences in initial
conditions in my PC. I have no way to control these conditions, so I don’t worry. If I
see larger variations, I can make the timing runs longer. As this makes my test/debug
cycles longer, I don’t do it unless I see a need to.

Even when I see variation of a few percent between runs, relative variation of timing
measurements within a single run seems to be way below 1%. That is, I can see even
relatively subtle changes by timing two variations of a function in the same test run.

I try to make timing runs on a quiet computer that isn’t streaming video, running a
Java update, or uncompressing a big archive. I try not to move the mouse or switch
windows during a timing run. When PCs contained only one processor core, this was
really important. With modern multicore processors, I don’t notice much variation
even if I forget to turn off Pandora.

If a timing test calls a function 10,000 times, that code and related data are going to
remain in cache. If I were doing a test of worst-case absolute time for a hard real-time
system, that would matter. But I am doing a relative time measurement on a system
whose kernel is already nondeterministic. Furthermore, I’m testing only functions
that my profiler has already identified as hot. They will thus be in cache already dur‐
ing production runs, so the iterated test actually represents realistic conditions.

If a modified function appears to be 1% faster, it’s generally not worth modifying.
Amdahl’s Law will shrink its small contribution to overall run time to insiginficance.
An improvement of 10% has marginal value. A change of 100% is far more interest‐
ing. Accepting only large changes in performance frees the developer from worrying
about methodology.
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Create a Stopwatch Class
To time part of a program, instrument the code with a stopwatch class. The class
works exactly like a mechanical stopwatch. Instantiate the stopwatch or call its
start() member function, and the stopwatch begins to tick. Call the stopwatch’s
stop() member function or destroy the stopwatch class instance, and the stopwatch
stops ticking and displays the elapsed time.

It’s not hard to build a stopwatch class, and there are plenty available on the Internet.
Example 3-3 shows one I have used.

Example 3-3. Stopwatch class

template <typename T> class basic_stopwatch : T {
    typedef typename T BaseTimer;
public:
    // create, optionally start timing an activity
    explicit basic_stopwatch(bool start);
    explicit basic_stopwatch(char const* activity = "Stopwatch",
                             bool start=true);
    basic_stopwatch(std::ostream& log,
                    char const* activity="Stopwatch",
                    bool start=true);

    // stop and destroy a stopwatch
    ~basic_stopwatch();

    // get last lap time (time of last stop)
    unsigned LapGet() const;

    // predicate: return true if the stopwatch is running
    bool IsStarted() const;

    // show accumulated time, keep running, set/return lap
    unsigned Show(char const* event="show");

    // (re)start a stopwatch, set/return lap time
    unsigned Start(char const* event_namee="start");

    // stop a running stopwatch, set/return lap time
    unsigned Stop(char const* event_name="stop");

private:    //  members
    char const*     m_activity; // "activity" string
    unsigned        m_lap;      // lap time (time of last stop)
    std::ostream&   m_log;      // stream on which to log events
};
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This code just reproduces the class definition. The member functions are inlined for
maximum performance.

The class that is the value of Stopwatch’s template parameter T is an even simpler
kind of timer that provides operating system–dependent and C++ standard–depen‐
dent functions to access a tick counter. I wrote several versions of the TimerBase class
to test different tick counter implementations. Depending on how modern the C++
compiler in use is, the class given by T can use the C++ <chrono> library or can
directly obtain a tick from the operating system. Example 3-4 shows a TimerBase
class that uses the C++ <chrono> library available in C++11 and later.

Example 3-4. TimerBase class using <chrono>

# include <chrono>
using namespace std::chrono;
class TimerBase {
public:
    // clears the timer
    TimerBase() : m_start(system_clock::time_point::min()) { }

    // clears the timer
    void Clear() {
        m_start = system_clock::time_point::min();
    }

    // returns true if the timer is running
    bool IsStarted() const {
        return (m_start.time_since_epoch() != system_clock::duration(0));
    }

    // start the timer
    void Start() {
        m_start = system_clock::now();
    }

    // get the number of milliseconds since the timer was started
    unsigned long GetMs() {
        if (IsStarted()) {
            system_clock::duration diff;
            diff = system_clock::now() - m_start;
            return (unsigned)(duration_cast<milliseconds>(diff).count());
        }
        return 0;
    }
    private:
        system_clock::time_point m_start;
};

Time Long-Running Code | 59



This class has the advantage of portability among operating systems, but it requires
C++11.

Example 3-5 shows a TimerBase class with the same functionality that uses the
clock() function available on both Linux and Windows.

Example 3-5. TimerBase class using clock()

class TimerBaseClock {
public:
    // clears the timer
    TimerBaseClock()        { m_start = -1; }

    // clears the timer
    void Clear()            { m_start = -1; }

    // returns true if the timer is running
    bool IsStarted() const  { return (m_start != -1); }

    // start the timer
    void Start()            { m_start = clock(); }

    // get the number of milliseconds since the timer was started
    unsigned long GetMs() {
        clock_t now;
        if (IsStarted()) {
            now = clock();
            clock_t dt = (now - m_start);
            return (unsigned long)(dt * 1000 / CLOCKS_PER_SEC);
        }
        return 0;
    }
private:
    clock_t m_start;
};

This class has the advantage of portability across C++ versions and operating sys‐
tems, but the disadvantage that the clock() function measures somewhat different
things on Linux and Windows.

Example 3-6 shows a TimerBase class that works for older versions of Windows and
Linux. On Windows, the gettimeofday() function must also be explicitly provided,
since it is not part of the Windows API or the C standard library.

Example 3-6. TimerBase class using gettimeofday()

# include <chrono>
using namespace std::chrono;
class TimerBaseChrono {
public:
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    // clears the timer
    TimerBaseChrono() :
        m_start(system_clock::time_point::min()) {
    }

    // clears the timer
    void Clear() {
        m_start = system_clock::time_point::min();
    }

    // returns true if the timer is running
    bool IsStarted() const {
        return (m_start != system_clock::time_point::min());
    }

    // start the timer
    void Start() {
        m_start = std::chrono::system_clock::now();
    }

    // get the number of milliseconds since the timer was started
    unsigned long GetMs() {
        if (IsStarted()) {
            system_clock::duration diff;
            diff = system_clock::now() - m_start;
            return (unsigned)
                   (duration_cast<milliseconds>(diff).count());
        }
        return 0;
    }
private:
    std::chrono::system_clock::time_point m_start;
};

This class is portable across C++ versions and operating systems, but it requires an
implementation of the gettimeofday() function when used on Windows.

The simplest use of the stopwatch class makes use of the RAII (Resource Acquisition
Is Initialization) idiom. The program instantiates the stopwatch class at the beginning
of any set of statements enclosed by braces. When the stopwatch is instantiated, its
default action is to start timing. When the stopwatch is destroyed at the closing brace,
it outputs the accumulated time. The program can output the accumulated time dur‐
ing the program execution by calling the stopwatch’s show() member function. This
lets the developer instrument several connected regions of code with a single timer.
For example:

{
    Stopwatch sw("activity");
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    DoActivity();
}

This will print two lines on the standard output:

activity: start
activity: stop 1234mS

The stopwatch has no overhead while it is running. Latency at start and stop consists
of the cost of the system call to get the current time, plus the cost of producing output
if the show() member function is called. This latency is not significant when used to
time tasks taking tens of milliseconds or more. Overhead becomes significant, and
thus timing accuracy decreases, if the developer attempts to time microsecond activi‐
ties.

The greatest weakness of run timing is probably the need for intuition, and thus
experience, in interpreting the results. After repeated timing runs narrow the search
to a particular area of interest, the developer must then inspect the code or perform
experiments to identify and remove hot spots. Code inspection makes use of the
developer’s own experience or the heuristic rules outlined in this book. These rules
have the advantage of helping you identify code that has a high runtime cost. The dis‐
advantage is that they don’t point unambiguously to a most-hot place.

Optimization Pro Tip
The developer can’t always time activities that take place before main() gets control or
after main() exits. If there are many classes instantiated at global scope, this may
become a problem. Program time spent outside of main() can be a source of consid‐
erable overhead in large programs with many global variables. See “Remove Code
from Startup and Shutdown” on page 313 for more on program startup.

Time Hot Functions in a Test Harness
Once a profiler or runtime analysis fingers a function as an optimization candidate,
an easy way to work with the function is to build a test harness that calls the function
many times. This allows the run time of the function to grow to a measurable value. It
also evens out variations in run time caused by background tasks, context switching,
and so on. The edit/compile/run cycle to time a function in isolation is faster than the
more lengthy cycle of edit/compile/run followed by running the profiler and inspect‐
ing its output. Many examples in this book use this technique.

The timing test harness (Example 3-7) is just a call to the function, surrounded by a
loop of, say, 10,000 iterations, surrounded in turn by an invocation of the stopwatch.
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Example 3-7. Timing test harness

typedef unsigned counter_t;
counter_t const iterations = 10000;
    ...
{
    Stopwatch sw("function_to_be_timed()");
    for (counter_t i = 0; i < iterations; ++i) {
        result = function_to_be_timed();
    }
}

The number of iterations has to be guessed. The total run time should be a few hun‐
dred to a few thousand milliseconds on desktop processors if the tick counter used by
Stopwatch has a useful resolution of around 10 milliseconds.

I use the type counter_t instead of unsigned or unsigned long because for some
sufficiently brief functions, the variable may have to be a 64-bit unsigned long long
type. It’s just easier to get accustomed to using a typedef than it is to go back and
retype all the type names. It’s an optimization of the optimization process itself.

The outermost set of curly braces is important. It defines the scope within which sw,
the instance of the Stopwatch class, exists. Because Stopwatch uses the RAII idiom,
the sw constructor gets the starting tick count, and its destructor gets the final tick
count and puts the results onto the standard output stream.

Estimate Code Cost to Find Hot Code
Experience has taught me that profiling and measuring run times are effective meth‐
ods of finding candidates for optimization. The profiler may point to a function that
is very frequently called, or that consumes a significant fraction of total processing
time. It is unlikely to point to a specific C++ statement and accuse, “Colonel Mustard,
in the conservatory, with the lead pipe!” There may also be times when instrumenting
code for profiling is very expensive. Run timing also may implicate a large block of
code without pointing to a specific problem.

The developer’s next step is to estimate the cost of each statement in the identified
block. This is not a precise task, like proving a theorem. Most of the value can be
obtained from a cursory inspection, looking for expensive statements and structures
that magnify the cost of code.

Estimate the Cost of Individual C++ Statements
As described in “Memory Is Slow” on page 17, the cost in time of memory access
dominates all other instruction execution costs. On the simple microprocessors used
in toasters and coffee makers, the time taken by an instruction is literally the time
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needed to read each byte of the instruction from memory, plus the time needed to
read data needed as input to the instruction, plus the time needed to write data that is
the result of the instruction. Decoding and executing the instruction itself takes a
comparatively insignificant amount of time, which is hidden underneath the memory
access time.

On desktop-class microprocessors, the situation is more complex. Many instructions
are simultaneously in various stages of being executed. The cost of reading the stream
of instructions is hidden. However, the cost of accessing the data on which the
instructions operate is more difficult to hide. For this reason, the cost of reading and
writing data may be used to approximate the relative cost of instruction execution
across all classes of microprocessor.

To estimate how expensive a C++ statement is, a useful rule of thumb is count the
number of memory reads and writes performed by the statement. For example, in the
statement a = b + c;, where a, b, and c are integers, the values of locations b and c
must be read from memory, and the sum must be written to memory at location a.
This statement thus costs three memory accesses. This count doesn’t depend on the
microprocessor instruction set. It is the unavoidable, inevitable cost of the statement.

r = *p + a[i]; can be counted as follows: one access to read i, one to read a[i],
one to read p, one to read the data to which *p points, and one to write the result in r,
for a total of five accesses. The cost of function calls in memory accesses is described
in “Cost of Function Calls” on page 161.

It’s important to understand that this is a heuristic, a rule of thumb. In actual hard‐
ware, additional memory accesses are needed to fetch the instructions that perform
the statement. However, these accesses are sequential, so they are probably very effi‐
cient. And this additional cost is proportional to the cost of accessing the data. The
compiler may optimize away some of the accesses by reusing previous computations
or taking advantage of static analysis of the code. The cost in units of time also
depends on whether the memory accessed by the C++ statement is in cache.

But all other factors being equal, the part that matters is how many reads and writes
to memory are necessary to access the data used by a statement. This heuristic is not
perfect, but it’s all you get unless you want to read the assembly language intermedi‐
ate output of the compiler, which is tedious and usually unrewarding.

Estimate the Cost of Loops
Because each C++ statement generally performs just a handful of memory accesses, it
is unlikely that a statement standing alone will be very hot unless some other factor
acts on it to execute it very frequently. One such factor is when the statement appears
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in a loop. Then the cost of the statement is multiplied by the number of times it is
executed.

If you’re very lucky, you may occasionally find code that shouts out how hot it is. The
profiler may finger a single function called a million times, or some hot function may
contain a loop like:

for (int i=1; i<1000000; ++i) {
    do_something_expensive();
    if (mostly_true) {
        do_more_stuff();
        even_more();
    }
}

This loop is very obviously executed a million times, and is thus very hot. It’s likely
you’ll have to do a little work to optimize it.

Estimate repeat count in nested loops
When a loop is nested inside another loop, the repeat count of the code block is the
repeat count of the inner loop multiplied by the repeat count of the outer loop. For
example:

for (int i=0; i<100; ++i) {
    for (int j=0; j<50; ++j) {
        fiddle(a[i][j]);
    }
}

Here, the repeat count is 100*50 = 5,000.

This particular block is extremely straightforward. There are infinite variations. For
instance, in mathematics, there are important cases where code iterates over a trian‐
gular part of a matrix. And sometimes poor coding practices make it harder to dis‐
cern the outline of the nested loops.

A nested loop may not be immediately obvious. If a loop invokes a function, and the
function contains another loop, this inner loop is a nested loop. As we will see in
“Push Loops Down into Functions to Reduce Call Overhead” on page 157, the cost of
invoking the function repeatedly in the outer loop can also sometimes be eliminated.

An inner loop may be embedded within a standard library function, particularly a
string-handling or character I/O function. If the repeat count is great enough, it may
be worth recoding the contents of the standard library function to escape the invoca‐
tion cost.
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Estimate loops with variable repeat count
Not every loop provides a nice, neat count of its iterations. Many loops repeat until
some condition occurs. An example is a loop that processes characters until it finds a
space, or that processes digits until it finds a non-digit. The repeat count of such a
loop can be estimated. Only a casual estimate is needed; say, five digits per number or
six letters per word. The goal is to locate likely candidates for optimization.

Recognize implicit loops
Programs that process events (Windows UI programs, for instance) contain an
implicit loop at their top level. This loop is not even visible in the program because it
is hidden in the framework. If the framework is feeding events at the maximum pos‐
sible rate, any code that is executed each time the event handler gets control, before
the event is dispatched, or during dispatch is likely to be hot, as is code in the most
frequently dispatched events.

Recognize false loops

Not every while or do statement is a loop at all. I have encountered code where a do
statement was used to facilitate flow of control. There are other, better ways to code
the simple example that follows, but with more complicated if-then-else logic, this
idiom makes some sense. This “loop” is executed exactly once. If it reaches the
while(0), it exits:

do {
    if (!operation1())
        break;
    if (!operation2(x,y,z))
        break;
} while(0);

This idiom is also sometimes used to package up several statements into a C-style
macro.

Other Ways to Find Hot Spots
A developer familiar with the code can choose to proceed on intuition alone, making
hypotheses about areas of code that may be affecting the overall run time, and per‐
forming experiments to see whether a change in one of these areas improves overall
performance.

I do not recommend this route unless you have no one to please but yourself. Instru‐
menting code with a profiler or timer allows developers to demonstrate to colleagues
and managers that they are making progress in an optimization effort. If you go on
intuition alone and do not deliver results, and sometimes even if you do deliver, your
teammates will question your methods and distract you from whatever good you are
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doing. And they should. From their point of view, there is no way to tell if you are
using your highly trained professional intuition, or just trying stuff at random.

Optimization War Story
My personal record using experience and intuition is mixed. I once reduced the unre‐
sponsive startup time of an interactive game application from an unacceptable 16 sec‐
onds to around 4 seconds. Unfortunately, I did not save a baseline measurement of
the original code. My manager would only believe that I had reduced startup time
from eight seconds to four, because that was what I could show him. This very
evidence-minded manager then went to the trouble of instrumenting the original
code with a profiler and printing the results for me. Interestingly enough, his instru‐
mentation found pretty much the same list of functions as my intuition. However, my
credibility as an optimization expert was blown because I had not pursued the task in
a methodical way.

Summary
• Performance must be measured.
• Make testable predictions, and write the predictions down.
• Make a record of code changes.
• If each experiment run is documented, it can quickly be repeated.
• A program spends 90% of its run time in 10% of its code.
• A measurement must be both true and precise to be accurate.
• Resolution is not accuracy.
• On Windows, the function clock() provides a reliable 1-millisecond clock tick. For

Windows 8 and later, the function GetSystemTimePreciseAsFileTime() provides
a submicrosecond tick.

• Accepting only large changes in performance frees the developer from worrying
about methodology.

• To estimate how expensive a C++ statement is, count the number of memory reads
and writes performed by the statement.
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CHAPTER 4

Optimize String Use: A Case Study

A few can touch the magic string,
    and noisy fame is proud to win them:
Alas for those that never sing,
    but die with all their music in them!”

—Oliver Wendell Holmes, “The Voiceless” (1858)

The C++ std::string class templates are among the most used features of the C++
standard library. For instance, an article in the Google Chromium developer forum
stated that std::string accounted for half of all calls to the memory manager in
Chromium. Any frequently executed code that manipulates strings is fertile ground
for optimization. This chapter uses a discussion of optimizing string handling to
illustrate recurring themes in optimization.

Why Strings Are a Problem
Strings are simple in concept, but quite subtle to implement efficiently. The particular
combination of features in std::string interact in ways that make an efficient imple‐
mentation almost impossible. Indeed, at the time this book was written, several popu‐
lar compilers provided std::string implementations that were non-conforming in
various ways.

Furthermore, the behavior of std::string has been changed over the years to keep
up with changes in the C++ standard. This means that a conforming std::string
implementation from a C++98 compiler may not behave the same way as a
std::string implementation after C++11.
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Strings have some behaviors that make them expensive to use, no matter the imple‐
mentation. They are dynamically allocated, they behave as values in expressions, and
their implementation requires a lot of copying.

Strings Are Dynamically Allocated
Strings are convenient because they automatically grow as needed to hold their con‐
tents. By contrast, C library functions (strcat(), strcpy(), etc.) act on fixed-size
character arrays. To implement this flexibility, strings are allocated dynamically.
Dynamic allocation is expensive compared to most other C++ features, so no matter
what, strings are going to show up as optimization hot spots. The dynamically
allocated storage is automatically released when a string variable goes out of scope or
a new value is assigned to the variable. This is more convenient than having to man‐
ually release the storage, as you would with a dynamically allocated C-style character
array as in the following code:

char* p = (char*) malloc(7);
strcpy(p, "string");
   ...
free(p);

The string’s internal character buffer is still a fixed size, though. Any operation that
makes the string longer, like appending a character or string, may cause the string to
exceed the size of its internal buffer. When this happens, the operation gets a new
buffer from the memory manager and copies the string into the new buffer.

std::string implementations do a trick to amortize the cost of reallocating storage
for the character buffer as the string grows. Instead of making a request to the mem‐
ory manager for the exact number of characters needed, the string implementation
rounds up the request to some larger number of characters. For instance, some
implementations round up the request to the next power of 2. The string then has the
capacity to grow to twice its current size before needing to call the into the memory
manager again. The next time an operation needs to extend the length of the string,
there is room in the existing buffer, avoiding the need to allocate a new buffer. The
benefit of this trick is that the cost of appending characters to a string approaches a
constant asymptotically as the string grows longer. The cost of this trick is that strings
carry around some unused space. If the string implements a policy of rounding up
requests to a power of 2, up to half the storage in a string may be unused.

Strings Are Values
Strings behave as values (see “Value Objects and Entity Objects” on page 112) in
assignments and expressions. Numeric constants like 2 and 3.14159 are values. You
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can assign a new value to a variable, but changing the variable doesn’t change the
value. For example:

int i,j;
i = 3; // i has the value 3
j = i; // j also has the value 3
i = 5; // i now has the value 5, j still has the value 3

Assigning one string to another works in the same way, behaving as if each string
variable has a private copy of its contents:

std::string s1, s2;
s1 = “hot”;  // s1 is "hot"
s2 = s1;     // s2 is "hot"
s1[0] = 'n'; // s2 is still "hot", s1 is "not"

Because strings are values, the results of string expressions are also values. If you con‐
catenate strings, as in the statement s1 = s2 + s3 + s4;, the result of s2 + s3 is a
newly allocated temporary string value. The result of concatenating s4 to this tempo‐
rary string is another temporary string value. This value replaces the previous value of
s1. Then the dynamically allocated storage for the first temporary string and the pre‐
vious value of s1 are freed. This adds up to a lot of calls into the memory manager.

Strings Do a Lot of Copying
Because strings behave as values, modifying one string must not change any other
strings. But strings also have mutating operations that change the contents of a string.
Because of these mutating operations, each string variable must behave as if it has a
private copy of its string. The simplest way to implement this behavior is to copy the
string when it is constructed, assigned, or passed as an argument to a function. If
strings are implemented this way, then assignment and argument passing are expen‐
sive, but mutating functions and non-const references are cheap.

There is a well-known programming idiom for things that behave as values but are
expensive to copy. It is called “copy on write,” and often abbreviated COW in C++
literature (see “Implement the “Copy on Write” Idiom” on page 136). In a COW
string, the dynamically allocated storage can be shared between strings. A reference
count lets each string know if it is using shared storage. When one string is assigned
to another, only a pointer is copied, and the reference count is incremented. Any
operation that changes a string’s value first checks to see that there is only one pointer
to that storage. If multiple strings point to the storage, any mutating operation (any
operation that may change the contents of the string) allocates new storage and
makes a copy of the string before making its change:

COWstring s1, s2;
s1 = "hot";  // s1 is "hot"
s2 = s1;     // s2 is "hot" (s1 and s2 point to the same storage)
s1[0] = 'n'; // s1 makes a new copy of its storage before 
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             // changing anything
             // s2 is still "hot", s1 is "not"

Copy-on-write is such a well-known idiom that developers may easily assume
std::string is implemented that way. But copy-on-write isn’t even permitted for
C++11-conforming implementations, and is problematic in any case.

If strings are implemented using copy-on-write, then assignment and argument-
passing are cheap, but non-const references plus any call to a mutating function
requires an expensive allocate-and-copy operation if the string is shared. COW
strings are also expensive in concurrent code. Every mutating function and non-
const reference accesses the reference count. When the reference count is accessed by
multiple threads, each thread must use a special instruction to get a copy of the refer‐
ence count from main memory, to be sure no other thread has changed the value (see
“Memory fences” on page 302).

In C++11 and later, the burden of copying is somewhat reduced by the presence of
rvalue references and the move semantics (see “Implement Move Semantics” on page
137) that go with them. If a function takes an rvalue reference as argument, the string
can do an inexpensive pointer copy when the actual argument is an rvalue expres‐
sion, saving one copy.

First Attempt at Optimizing Strings
Suppose that profiling a large program reveals that the function remove_ctrl()
reproduced in Example 4-1 consumes significant time in the program. This function
removes control characters from a string of ASCII characters. It looks innocent
enough, but the performance of the function as written is terrible, for many reasons.
In fact, this function is a compact demonstration of the danger of completing a cod‐
ing task without giving thought to performance.

Example 4-1. remove_ctrl(): code ready to optimize

std::string remove_ctrl(std::string s) {
    std::string result;
    for (int i=0; i<s.length(); ++i) {
        if (s[i] >= 0x20)
            result = result + s[i];
    }
    return result;
}

remove_ctrl() processes each character in argument string s in a loop. The code in
the loop is what makes this function a hot spot. The if-condition gets a character
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from the string and compares it to a literal constant. This is unlikely to be the prob‐
lem. The controlled statement on line 5 is another story.

As noted previously, the string concatenation operator is expensive. It calls into the
memory manager to construct a new temporary string object to hold the concaten‐
ated string. If the argument to remove_ctrl() is typically a string of printable charac‐
ters, then remove_ctrl() constructs a new temporary string object for nearly every
character in s. For a string with 100 characters, that’s 100 calls into the memory man‐
ager to create storage for the temporary string, and another 100 calls to release the
storage.

In addition to the temporary strings allocated for the result of the concatenation
operation, additional strings may be allocated when the string expression is assigned
to result, depending on how strings are implemented:

• If strings are implemented using the copy-on-write idiom, then the assignment
operator performs an efficient pointer copy and increments the reference count.

• If strings have a non–shared buffer implementation, then the assignment opera‐
tor must copy the contents of the temporary string. If the implementation is
naïve, or result’s buffer does not have enough capacity, then the assignment
operator also allocates a new buffer to copy into. This results in 100 copy opera‐
tions and as many as 100 additional allocations.

• If the compiler implements C++11-style rvalue references and move semantics,
then the fact that the concatenation expression’s result is an rvalue allows the
compiler to call result’s move constructor instead of its copy constructor. The
result is that the program performs an efficient pointer copy.

The concatenation operation also copies all characters previously processed into the
temporary string each time it is executed. If there are n characters in the argument
string, remove_ctrl() copies O(n2) characters. The result of all this allocation and
copying is poor performance.

Since remove_ctrl() is a small, standalone function, it is possible to build a test har‐
ness that calls the function repeatedly to measure exactly how much performance can
be improved through optimization. Building test harnesses and measuring perfor‐
mance is covered in Chapter 3. The code for the test harness, and other code from the
book, can be downloaded from my website.

I wrote a timing test that repeatedly called remove_ctrl() with a 222-character argu‐
ment string containing several control characters. On average, each call took 24.8
microseconds. This number isn’t important by itself, as it depends on my PC (Intel i7
tablet), operating system (Windows 8.1), and compiler (Visual Studio 2010, 32-bit,
Release build). Rather, it forms a baseline for measuring performance improvement.
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In the following sections, I describe a set of optimization steps, and the resulting
improvement in performance of the remove_ctrl() function.

Use Mutating String Operations to Eliminate Temporaries
I began optimizing remove_ctrl() by removing allocation and copy operations.
Example 4-2 is an improved version of remove_ctrl() in which the concatenation
expression in line 5 that produced so many new temporary string objects is replaced
by the mutating concatenating assignment operator, +=.

Example 4-2. remove_ctrl_mutating(): mutating string operators

std::string remove_ctrl_mutating(std::string s) {
    std::string result;
    for (int i=0; i<s.length(); ++i) {
        if (s[i] >= 0x20)
            result += s[i];
    }
    return result;
}

This small change has a dramatic effect on performance. The same timing test now
showed an average of only 1.72 microseconds per call, a 13x improvement. This
improvement comes from eliminating all the calls to allocate temporary string objects
to hold the concatenation expression result, and the associated copying and deleting
of temporaries. Depending on the string implementation, allocation and copying on
assignment are also eliminated.

Reduce Reallocation by Reserving Storage
The function remove_ctrl_mutating() still performs an operation that lengthens
result. This means result is periodically copied into a larger internal dynamic
buffer. As previously discussed, one possible implementation of std::string doubles
the amount of storage allocated each time the capacity of the string’s character buffer
is exceeded. When std::string is implemented with this rule, reallocation might
happen as many as 8 times for a 100-character string.

If we assume that strings are generally printable characters, with only occasional con‐
trol characters to remove, then the length of the string argument s provides an excel‐
lent estimate of the result string’s eventual length. Example 4-3 improves on
remove_ctrl_mutating() by using std::string’s reserve() member function to
preallocate the estimated amount of storage. Not only does use of reserve() elimi‐
nate reallocation of the string buffer, but it also improves the cache locality of the data
accessed by the function, so we get even more mileage out of this change.
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Example 4-3. remove_ctrl_reserve(): reserving storage

std::string remove_ctrl_reserve(std::string s) {
    std::string result;
    result.reserve(s.length());
    for (int i=0; i<s.length(); ++i) {
        if (s[i] >= 0x20)
            result += s[i];
    }
    return result;
}

The removal of several allocations causes a significant improvement in performance.
A test using remove_ctrl_reserve() consumes 1.47 microseconds per call, an
improvement of 17% over remove_ctrl_mutating().

Eliminate Copying of String Arguments
So far, I have been successful at optimizing remove_ctrl() by removing calls on the
memory manager. It is thus reasonable to continue looking for allocations to remove.

When a string expression is passed into a function by value, the formal argument (in
this case, s) is copy-constructed. This may result in a copy, depending on the string
implementation:

• If strings are implemented using the copy-on-write idiom, then the compiler
generates a call to the copy constructor, which performs an efficient pointer copy
and increments the reference count.

• If strings have a nonshared buffer implementation, then the copy constructor
must allocate a new buffer and copy the contents of the actual argument.

• If the compiler implemented C++11-style rvalue references and move semantics,
then if the actual argument is an expression, it will be an rvalue, so the compiler
will generate a call to the move constructor, resulting in an efficient pointer copy.
If the actual argument is a variable, then the formal argument’s copy constructor
is called, resulting in an allocation-and-copy. Rvalue references and move seman‐
tics are described in more detail in “Implement Move Semantics” on page 137.

remove_ctrl_ref_args() in Example 4-4 is an improved function that never copies s
on call. Since the function does not modify s, there is no reason to make a separate
copy of s. Instead, remove_ctrl_ref_args() takes a const reference to s as an argu‐
ment. This saves another allocation. Since allocation is expensive, it can be worth‐
while eliminating even one allocation.
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Example 4-4. remove_ctrl_ref_args(): argument copy eliminated

std::string remove_ctrl_ref_args(std::string const& s) {
    std::string result;
    result.reserve(s.length());
    for (int i=0; i<s.length(); ++i) {
        if (s[i] >= 0x20)
            result += s[i];
    }
    return result;
}

The result is a surprise. The timing test of remove_ctrl_ref_args() took 1.60 micro‐
seconds per call, 8% worse than remove_ctrl_reserve().

What’s going on here? Visual Studio 2010 copies string values on call, so this change
should save an allocation. Either that savings isn’t realized, or something else related
to the change of s from string to string reference must consume that savings.

Reference variables are implemented as pointers. So, everywhere s appears in
remove_ctrl_ref_args(), the program dereferences a pointer that it did not have to
dereference in remove_ctrl_reserve(). I hypothesize that this extra work might be
enough to account for the reduced performance.

Eliminate Pointer Dereference Using Iterators
The solution is to use iterators over the string, as in Example 4-5. String iterators are
simple pointers into the character buffer. That saves two dereference operations ver‐
sus the non-iterator code in the loop.

Example 4-5. remove_ctrl_ref_args_it(): iterator version of remove_ctrl_ref_args()

std::string remove_ctrl_ref_args_it(std::string const& s) {
    std::string result;
    result.reserve(s.length());
    for (auto it=s.begin(),end=s.end(); it != end; ++it) {
        if (*it >= 0x20)
            result += *it;
    }
    return result;
}

The timing test for remove_ctrl_ref_args_it() produced a satisfying result of 1.04
microseconds per call. It is definitely superior to the non-iterator version. But what
about making s a string reference? To find out if this optimization actually improved
anything, I coded an iterator version of remove_ctrl_reserve(). The timing test for
remove_ctrl_reserve_it() took 1.26 microseconds per call, down from 1.47 micro‐
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seconds. The string reference argument optimization definitely improved perfor‐
mance.

In fact, I coded iterator versions of all the remove_ctrl()-derived functions. Iterators
were a definite win in all cases versus the subscripting versions (however, in “Second
Attempt at Optimizing Strings” on page 80, we’ll see that this is not always the case).

remove_ctrl_ref_args_it() contains one other optimization of note. The value
s.end(), used to control the for loop, is cached on loop initialization. This saves
another 2n indirections, where n is the length of the argument string.

Eliminate Copying of Returned String Values
The original remove_ctrl() function returns its result by value. C++ copy-constructs
the result into the calling context, though the compiler is permitted to elide (that is,
simplify by removing) the copy construction if it can. If we want to be sure that there
is no copy, we have a couple of choices. One choice that works for all versions of C++
and all string implementations is to return the string as an out parameter. This is
actually what the compiler does when it elides a copy construction. An improved ver‐
sion of remove_ctrl_ref_args_it() appears in Example 4-6.

Example 4-6. remove_ctrl_ref_result_it(): copy of return value eliminated

void remove_ctrl_ref_result_it(
    std::string& result,
    std::string const& s) 
{
    result.clear();
    result.reserve(s.length());
    for (auto it=s.begin(),end=s.end(); it != end; ++it) {
        if (*it >= 0x20)
            result += *it;
    }
}

When a program calls remove_ctrl_ref_result_it(), a reference to some string
variable is passed into the formal argument result. If the string variable referenced
by result is empty, then the call to reserve() allocates storage for enough charac‐
ters. If the string variable has been used before—if the program called
remove_ctrl_ref_result_it() in a loop—its buffer may already be big enough, in
which case no new allocation takes place. When the function returns, the string vari‐
able in the caller holds the return value, with no copy required. The beautiful thing
about remove_ctrl_ref_result_it() is that in many cases, it eliminates every allo‐
cation.
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Measured performance of remove_ctrl_ref_result_it() is 1.02 microseconds per
call, about 2% faster than the previous version.

remove_ctrl_ref_result_it() is very efficient, but its interface is open to misuse in
a way that the original remove_ctrl() was not. A reference—even a const reference
—doesn’t behave exactly the same as a value. The following call will produce uninten‐
ded results, returning an empty string:

std::string foo("this is a string");
remove_ctrl_ref_result_it(foo, foo);

Use Character Arrays Instead of Strings
When a program requires the ultimate in performance, it is possible to bypass the
C++ standard library altogether and handcode the function using the C-style string
functions, as in Example 4-7. The C-style string functions are harder to use than
std::string, but the gain in performance can be impressive. To use the C-style
string functions, the programmer must choose either to manually allocate and free
character buffers, or to use static arrays dimensioned to worst-case sizes. Declaring a
bunch of static arrays is problematic if memory is at all constrained. However, there is
usually room to statically declare large temporary buffers in local storage (that is, on
the function call stack). These buffers are reclaimed at negligible runtime cost when
the function exits. Except in the most constrained embedded environments, it is no
problem to declare a worst-case buffer of 1,000 or even 10,000 characters on the
stack.

Example 4-7. remove_ctrl_cstrings(): coding on the bare metal

void remove_ctrl_cstrings(char* destp, char const* srcp, size_t size) {
    for (size_t i=0; i<size; ++i) {
        if (srcp[i] >= 0x20)
            *destp++ = srcp[i];
    }
    *destp = 0;
}

remove_ctrl_cstrings() took 0.15 microseconds per call in the timing test. This is 6
times faster than its predecessor, and an astonishing 170 times faster than the original
function. One reason for the improvement is the elimination of several function calls,
with a corresponding improvement in cache locality.

Excellent cache locality may, however, contribute to a simple performance measure‐
ment being misleading. In general, other operations between calls to
remove_ctrl_cstrings() flush the cache. But when it is called in a tight loop,
instructions and data stay in cache.
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Another factor affecting remove_ctrl_cstrings() is that it has a markedly different
interface to the original function. If called from many locations, changing all the calls
is a significant effort, and may be one optimization too many. Nonetheless,
remove_ctrl_cstrings() is an example of just how much performance can be
gained by the developer willing to completely recode a function and change its
interface.

Stop and Think
I think we might be going a bridge too far.

—Lt. General Frederick “Boy” Browning (1896–1965)

Comment to Field Marshal Montgomery on September 10, 1944, expressing his con‐
cerns about the Allied plan to capture the bridge at Arnhem. Browning’s concern was
prophetic, as the operation was a disaster.

As noted in the previous section, an optimization effort may arrive at a point where
simplicity or safety must be traded for additional performance gains.
remove_ctrl_ref_result_it() required a change in function signature that intro‐
duced a potential incorrect usage not possible with remove_ctrl(). For
remove_ctrl_cstrings(), the cost was manually managing the temporary storage.
For some teams, this may be a bridge too far.

Developers have differing opinions, sometimes very strong ones, about whether a
particular performance improvement justifies the added complexity of the interface
or increased need to review uses of the function. Developers who favor an optimiza‐
tion like returning a value in an out parameter might say that the dangerous use case
isn’t all that likely, and could be documented. Returning the string in an out parame‐
ter also leaves the function’s return value available for useful things like error codes.
Those who oppose this optimization might say there is nothing obvious to warn users
away from the dangerous use case, and a subtle bug is more trouble than the optimi‐
zation is worth. In the end, the team must answer the question, “How much do we
need this performance improvement?”

I can offer no guidance on exactly when an optimization effort has gone too far. It
depends on how important the performance improvement is. But developers should
note the transition and take a moment to stop and think.

C++ offers developers a range of choices between simple and safe code that is slow
and radically fast code that must be used carefully. Advocates of other languages may
call this a weakness, but for optimization, it is one of the greatest strengths of C++.
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Summary of First Optimization Attempt
Table 4-1 summarizes the results of the optimization effort for remove_ctrl(). These
results were obtained by pursuing one simple rule: remove memory allocations and
associated copy operations. The first optimization produced the most significant
speedup.

Many factors affect the absolute timings, including the processor, fundamental clock
rate, memory bus frequency, compiler, and optimizer. I’ve provided test results of
both debug and release (optimized) builds to demonstrate this point. While the
release build code is much faster than the debug code, improvement is visible in both
debug and release builds.

Table 4-1. Performance summary VS 2010, i7

Function Debug Δ Release Δ Release vs. debug
remove_ctrl() 967 μs  24.8 μs  3802%
remove_ctrl_mutating() 104 μs 834% 1.72 μs 1,341% 5923%
remove_crtl_reserve() 102 μs 142% 1.47 μs 17% 6853%
remove_ctrl_ref_args_it() 215 μs 9% 1.04 μs 21% 20559%
remove_ctrl_ref_result_it() 215 μs 0% 1.02 μs 2% 21012%
remove_ctrl_cstrings()     1 μs 9,698% 0.15 μs 601% 559%

The percentage of improvement appears far more dramatic in release builds. This is
probably an effect of Amdahl’s Law. In the debug build, function inlining is turned
off, which increases the cost of every function call and causes the fraction of run time
devoted to memory allocation to be lower.

Second Attempt at Optimizing Strings
There are other roads the developer can travel in the quest for better performance;
we’ll explore a few more options in this section.

Use a Better Algorithm
One option is to attempt to improve the algorithm. The original remove_ctrl() uses
a simple algorithm that copies one character at a time to the result string. This unfor‐
tunate choice produces the worst possible allocation behavior. Example 4-8 improves
on the original design by moving whole substrings to the result string. This change
has the effect of reducing the number of allocate-and-copy operations. Another opti‐
mization introduced in remove_ctrl_block() is caching the length of the argument
string to reduce the cost of the loop termination clause of the outer for loop.
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Example 4-8. remove_ctrl_block(): a faster algorithm

std::string remove_ctrl_block(std::string s) {
    std::string result;
    for (size_t b=0, i=b, e=s.length(); b < e; b = i+1) {
        for (i=b; i<e; ++i) {
            if (s[i] < 0x20) 
                break;
        }
        result = result + s.substr(b,i-b);
    }
    return result;
}

remove_ctrl_block() runs the timing test in 2.91 microseconds, about 7 times faster
than the original remove_ctrl().

This function in turn can be improved in the same way as before, by replacing the
concatenation with a mutating assignment (remove_ctrl_block_mutate(), 1.27
microseconds per call), but substr() still constructs a temporary string. Since the
function appends characters to result, the developer can use one of the overloads of
std::string’s append() member function to copy the substring without creating a
string temporary. The resulting function, remove_ctrl_block_append() (as shown in
Example 4-9), runs the timing test in 0.65 microseconds per call. This result handily
beats the best time of 1.02 microseconds per call for remove_ctrl_ref_result_it(),
and is 36 times better than the original remove_ctrl(). This is a concise demonstra‐
tion of the power of selecting a good algorithm.

Example 4-9. remove_ctrl_block_append(): a faster algorithm

std::string remove_ctrl_block_append(std::string s) {
    std::string result;
    result.reserve(s.length());
    for (size_t b=0,i=b; b < s.length(); b = i+1) {
        for (i=b; i<s.length(); ++i) {
            if (s[i] < 0x20) break;
        }
        result.append(s, b, i-b);
    }
    return result;
}

These results can in turn be improved by reserving storage in result and eliminating
the argument copy (remove_ctrl_block_args(), 0.55 microseconds per call), and by
removing the copy of the returned value (remove_ctrl_block_ret(), 0.51 microsec‐
onds per call).
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One thing that did not improve the results, at least at first, was recoding
remove_ctrl_block() using iterators. However, after both the argument and return
value had been made reference parameters, the iterator version went suddenly from
being 10 times as expensive to 20% less expensive, as shown in Table 4-2.

Table 4-2. Performance summary of second remove_ctrl algorithm

 Time per call Δ vs. previous
remove_ctrl() 24.8 μs  
remove_ctrl_block() 2.91 μs 751%
remove_ctrl_block_mutate() 1.27 μs 129%
remove_ctrl_block_append() 0.65 μs 95%
remove_ctrl_block_args() 0.55 μs 27%
remove_ctrl_block_ret() 0.51 μs 6%
remove_ctrl_block_ret_it() 0.43 μs 19%

Another way to improve performance is to mutate the argument string by removing
control characters from it using std::string’s mutating erase() member function.
Example 4-10 demonstrates this approach.

Example 4-10. remove_ctrl_erase(): mutating the string argument instead of building a
result string

std::string remove_ctrl_erase(std::string s) {
    for (size_t i = 0; i < s.length(); )
        if (s[i] < 0x20)
            s.erase(i,1);
        else ++i;
    return s;
}

The advantage of this algorithm is that, since s gets shorter, there is never any reallo‐
cation, except possibly for the returned value. The performance of this function is
excellent, completing the test in 0.81 microseconds per call, 30 times faster than the
original remove_ctrl(). A developer arriving at this excellent result on the first
attempt might be excused for declaring victory and retiring from the field of battle
without any further effort. Sometimes a different algorithm is easier to optimize or
inherently more efficient.

Use a Better Compiler
I ran the same timing tests using the Visual Studio 2013 compiler. Visual Studio 2013
implements move semantics, which should have made some of the functions consid‐
erably faster. However, the results were mixed. Running under the debugger, Visual
Studio 2013 was 5%–15% percent faster than Visual Studio 2010. Running from the
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command line, VS2013 was 5%–20% percent slower. I tried the Visual Studio 2015
release candidate, but it was slower yet. This may have been due to changes in the
container classes. A new compiler may improve performance, but it’s something the
developer must test, rather than taking it on faith.

Use a Better String Library
The definition of std::string was originally quite vague, to allow for a wide range of
implementations. The demands of efficiency and predictability eventually drove clari‐
fications to the C++ standard that eliminated most novel implementations. The
behavior defined for std::string is thus a compromise, having evolved out of com‐
peting design considerations over a long period of time:

• Like other standard library containers, std::string provides iterators to access
the individual characters of the string.

• Like C character strings, std::string provides an array-like indexing notation
using operator[] to access its elements. std::string also provides a mechanism
to obtain a pointer to a C-style null-terminated version of the string.

• std::string has a concatenation operator and value-returning functions that
give it value semantics, similar to BASIC strings.

• std::string provides a limited set of operations that some users find
constraining.

The desire to make std::string as efficient as C-style char arrays pushes the imple‐
mentation toward representing the string in contiguous memory. The C++ standard
requires that the iterators be random-access, and forbids copy-on-write semantics.
This makes it easier to define and to reason about what actions invalidate iterators
into a std::string, but it limits the scope for clever implementations.

Furthermore, the std::string implementation that comes with a commercial C++
compiler must be straightforward enough that it can be tested, to guarantee that it
produces standard-conforming behavior and acceptable efficiency in every conceiva‐
ble situation. The cost to the compiler vendor for making a mistake is high. This
pushes implementations toward simplicity.

The standard-defined behavior of std::string induces some weaknesses. Inserting a
single character in a million-character string causes the whole suffix of the string to
be copied, and perhaps reallocated. Similarly, all the value-returning substring opera‐
tions must allocate and copy their results. Some developers search for optimization
opportunities by lifting one or more of the previous constraints (iterators, indexing,
C-string access, value semantics, simplicity).
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Adopt a richer library for std::string
Sometimes using a better library means nothing more than providing additional
string functions. Here are a few of the many libraries that work with std::string:

Boost string library
The Boost string library provides functions for tokenizing, formatting, and more
exotic manipulations of std::string. It’s a treat for those who are deeply in love
with the standard library’s <algorithm> header.

C++ String Toolkit Library
Another choice is the C++ String Toolkit Library (StrTk). StrTk is particularly
good at parsing and tokenizing strings, and is compatible with std::string.

Use std::stringstream to avoid value semantics
C++ already contains several string implementations: the templatized, iterator-
accessed, variable-length character strings of std::string; the simple, iterator-based
std::vector<char>; and the older, C-style null-terminated character strings in fixed-
size arrays.

Although C-style character strings are tricky to use well, we’ve already seen an experi‐
ment that showed that replacing C++’s std::string with C-style character arrays
improved performance dramatically under the right conditions. Neither of these
implementations is perfect for every situation.

C++ contains yet another kind of string. std::stringstream does for strings what
std::ostream does for output files. The std::stringstream class encapsulates a
dynamically resizable buffer (in fact, usually a std::string) in a different way, as an
entity (see “Value Objects and Entity Objects” on page 112) to which data can be
appended. std::stringstream is an example of how putting a different API on top
of a similar implementation can encourage more efficient coding. Example 4-11 illus‐
trates its use.

Example 4-11. std::stringstream: like string, but an object

std::stringstream s;
for (int i=0; i<10; ++i) {
    s.clear();
    s << "The square of " << i << " is " << i*i << std::endl;
    log(s.str());
}

This snippet shows several optimal coding techniques. Since s is modified as an
entity, the long inserter expression doesn’t create any temporaries that must be alloca‐
ted and copied into. Another deliberate practice is that s is declared outside of the
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loop. In this way, the internal buffer inside s is reused. The first time through the loop
the buffer may have to be reallocated several times as characters are appended, but
subsequent iterations are unlikely to reallocate the buffer. By contrast, if s had been
declared inside the loop, an empty buffer would have been constructed each time
through the loop, and potentially reallocated as the insertion operator appended
characters.

If std::stringstream is implemented using a std::string, it can never truly out‐
perform std::string. Its advantage lies in preventing some of the programming
practices that lead to inefficiency.

Adopt a novel string implementation
A developer may find the whole string abstraction inadequate. One of the most
important C++ features is that abstractions like strings are not built into the language,
but instead provided as templates or function libraries. Alternate implementations
have access to the same language features as std::string, so performance may be
improved by a sufficiently clever implementer. Lifting one or more of the constraints
listed at the beginning of this section (iterators, indexing, C-string access, simplicity)
grants a custom string class access to optimizations denied to std::string.

Many clever string data structures have been proposed over time that promise to sig‐
nificantly reduce the cost of reallocating memory and copying string contents. This
may be a siren song, for several reasons:

• Any pretender to the throne of std::string must be both more expressive and
more efficient than std::string in a wide variety of situations. Most proposed
alternative implementations don’t come with good guarantees of increased gen‐
eral performance.

• Replacing every occurrence of std::string in a large program with some other
string is a significant undertaking, with no assurance that it will make a differ‐
ence to performance.

• While many alternative string concepts have been proposed, and several have
been implemented, it will take more than a few minutes of Googling to find a
string implementation as complete, well tested, and well understood as
std::string.

Replacing std::string may be more practical when considering a design than when
optimizing one. It may be possible for a big team with time and resources. But the
payoff is uncertain enough to make this optimization perhaps a bridge too far. Still,
for the brave and the desperate there is code out in the wild that might help:
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std::string_view

string_view solves some of the problems of std::string. It contains an
unowned pointer to string data and a length, so that it represents a substring of a
std::string or literal character string. Operations like substring and trim are
more efficient than the corresponding value-returning member functions of
std::string. string_view is on its way to appearing in C++14. Some compilers
have it now in std::experimental. string_view has mostly the same interface
as std::string.

The problem with string_view is that the pointer is unowned. The programmer
must ensure that the lifetime of any string_view is not longer than the lifetime
of the std::string it points into.

folly::fbstring

Folly is a whole library of code used by Facebook in its own servers. It includes a
very highly optimized direct replacement for std::string that implements a
nonallocated buffer to optimize short strings. fbstring’s designers claim measur‐
able performance improvements.

Because of its heritage, Folly is unusually likely to be robust and complete. Folly
is supported on Linux.

A Toolbox of String Classes
This article and code from the year 2000 describes a templatized string type with
the same interface as the SGI implementation of std::string. It provides a
fixed-maximum-size string and a variable-length string type. It is a tour de force
of template metaprogramming magic, which may make it hard for some people
to understand. For someone committed to designing a better string class, it is a
viable candidate.

“C++03 Expression Templates”
This is a 2005 paper presenting some template code to solve the specific problem
of concatenation. Expression templates override the + operator, to create an inter‐
mediate type that represents concatenation of two strings or a string and a string
expression symbolically. Expression templates defer allocation and copying to the
end of the expression performing one allocation when the expression template is
assigned to a string. Expression templates are compatible with std::string. The
existing code can improve performance significantly when a string expression is
a long list of concatenated substrings. The same concept could be extended to a
whole string library.

The Better String Library
This code archive contains a general-purpose string implementation that is dif‐
ferent from std::string but contains some powerful features. If many strings
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are constructed from parts of other strings, bstring allows one string to be
formed from an offset and length within another string. I worked with a propri‐
etary implementation of this idea that was very efficient. There is a C++ wrapper
class called CBString for the bstring library.

rope<T,alloc>

This is a string library suitable for making insertions and deletions in very long
strings. It’s not compatible with std::string.

Boost String Algorithms
This is a library of string algorithms to supplement the std::string member
functions. They are built around a find-and-replace concept.

Use a Better Allocator
Inside every std::string is a dynamically allocated array of char. std::string is a
specialization of a more general template that looks like this:

namespace std {
    template < class charT,
               class traits = char_traits<charT>,
               class Alloc = allocator<charT>
               > class basic_string; 
           
    typedef basic_string<char> string;
    ...
};

The third template parameter, Alloc, defines an allocator, a specialized interface to
the C++ memory manager. Alloc defaults to std::allocator, which calls ::opera
tor new() and ::operator delete(), the global C++ memory allocator functions.

The behavior of ::operator new() and ::operator delete(), and of allocator
objects, is covered in more detail in Chapter 13. For now, I’ll just say that ::operator
new() and ::operator delete() have a very complex and difficult job, allocating
storage for all the many kinds of dynamic variables. They have to work for big and
small objects, and for single- and multithreaded programs. Their design is a compro‐
mise to achieve such generality. Sometimes, a more specialized allocator can do a bet‐
ter job. Thus, Alloc can be specified as something other than the default to provide a
specialized allocator for std::string.

I coded an extremely simple allocator to demonstrate what kind of performance
improvement might be achievable. This allocator manages a few fixed-size blocks of
memory. I created a new typedef for a kind of string that uses this allocator. Then I
changed the original, very inefficient version of remove_ctrl() to use the special
strings, as shown in Example 4-12.
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Example 4-12. Original version of remove_ctrl() with simple fixed block allocator

typedef std::basic_string<
    char,
    std::char_traits<char>,
    block_allocator<char, 10>> fixed_block_string;

fixed_block_string remove_ctrl_fixed_block(std::string s) {
    fixed_block_string result;
    for (size_t i=0; i<s.length(); ++i) {
        if (s[i] >= 0x20)
            result = result + s[i];
    }
    return result;
}

The result was dramatic. remove_ctrl_fixed_block() ran the same test in 13,636
milliseconds, about 7.7 times faster than the original.

Changing allocators is not for the faint of heart. You can’t assign strings based on dif‐
ferent allocators to one another. The modified example shown here only works
because s[i] is a char, rather than a one-character std::string. You can copy the
contents of one string to another by converting it to a C string, for instance, by saying
result = s.c_str();.

Changing all the occurrences of std::string to fixed_block_string has a massive
effect on a code base. For this reason, if a team thinks they may fiddle with their
strings, creating a project-wide typedef early on in the design is a good idea:

typedef std::string MyProjString;

Then experiments involving a global change can be performed in one place. This will
still only work, though, if the new string has the same member functions as the one it
replaces. Differently allocated std::basic_strings have this property.

Eliminate String Conversion
Among the complexities of the modern world is that there is more than one kind of
character string. Generally, string functions only permit like kinds of string to be
compared, assigned, or used as operands or arguments, so the programmer must
convert from one kind of string to another. Any time conversion involves copying
characters or allocating dynamic memory is an opportunity to improve performance.

The library of conversion functions themselves can be tuned. More importantly, the
design of a large program can limit conversion.
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Conversion from C String to std::string
One common source of wasted computer cycles is unnecessary conversion from null-
terminated character strings to std::string. For instance:

std::string MyClass::Name() const {
    return "MyClass";
}

This function must convert the string constant MyClass to a std::string, allocating
storage and copying the characters into the std::string. C++ does this conversion
automatically because std::string has a constructor that takes a char* argument.

The conversion to std::string is unnecessary. std::string has a constructor that
accepts a char* argument, so the conversion will happen automatically when the
value returned by Name() is assigned to a string or passed to a function that takes a
string argument. The previous function could as easily have been written as follows:

char const* MyClass::Name() const {
    return "MyClass";
}

This delays conversion of the returned value to the point where it is actually used. At
the point of use, conversion is often not needed:

char const* p = myInstance->Name(); // no conversion
std::string s = myInstance->Name(); // conversion to std::string
std::cout << myInstance->Name();    // no conversion

What makes string conversion a big problem is that a big software system may have
multiple layers. If one layer takes a std::string and the layer below it takes a  char*,
there may be code to reverse the conversion to std::string:

void HighLevelFunc(std::string s) {
    LowLevelFunc(s.c_str());
}

Converting Between Character Encodings
Modern C++ programs have to deal with comparing (for instance) a literal C string
(ASCII, in signed bytes) to a UTF-8 (unsigned, variable bytes per character) string
from a web browser, or with converting output character strings from an XML parser
that produces UTF-16 word streams (with or without endian bytes) to UTF-8. The
number of possible combinations is daunting.

The best way to eliminate conversions is to pick a single format for all strings, and
store all strings in that format. You might want to provide specialized comparison
functions between your chosen format and C-style null-terminated strings, so they
don’t have to be converted. I like UTF-8 because it can represent all Unicode code
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points, is directly comparable (for equality) with C-style strings, and is produced by
most browsers.

In large and hastily written programs, you may find a string converted from an origi‐
nal format to a new format, and then back to its original format as it passes through
layers of the software. The fix for this is to rewrite member functions at the class
interfaces to take the same type of strings. Unfortunately, this task is like adding
const-correctness to a C++ program. The change tends to ripple through the entire
program in ways that make it difficult to control the scope of the change.

Summary
• Strings are expensive to use because they are dynamically allocated, they behave as

values in expressions, and their implementation requires a lot of copying.
• Treating strings as objects instead of values reduces the frequency of allocation and

copying.
• Reserving space in a string reduces the overhead of allocation.
• Passing a const reference to a string into a function is almost the same as passing

the value, but can be more efficient.
• Passing a result string out of a function as a reference reuses the actual argument’s

storage, which is potentially more efficient than allocating new storage.
• An optimization that only sometimes removes allocation overhead is still an optimi‐

zation.
• Sometimes a different algorithm is easier to optimize or inherently more efficient.
• The standard library class implementations are general-purpose and simple. They

are not necessarily high-performance, or optimal for any particular use.
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CHAPTER 5

Optimize Algorithms

Time heals what reason cannot.
—Seneca the Younger (c. 4 BC–65 AD)

If a program takes hours to run, when it needs to take seconds, the only optimization
likely to be successful is to select a more efficient algorithm. Most optimizations
improve performance by only a constant factor. Replacing an inefficient algorithm
with a better-performing one is the only sure ticket to an order-of-magnitude
improvement in performance.

Design of efficient algorithms is the topic of many whole computer science textbooks
and numerous doctoral dissertations. There are specialist computer scientists who
devote their careers to analysis of algorithms. There’s no way to cover the topic in a
single short chapter. Instead, this chapter looks briefly at the time cost of algorithms,
providing a guide to know when you’re in trouble.

I take a look at common searching and sorting algorithms, and present a toolkit for
optimizing searching and sorting in existing programs. In addition to picking an
algorithm that is optimal for unknown data, there are algorithms with exceptional
performance on data that is sorted or nearly sorted, or that has other special proper‐
ties.

Computer scientists study important algorithms and data structures because they are
examples of how to optimize code. I have collected some important optimization
techniques in the hope that the reader will come to recognize places where they can
be applied.
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Optimization War Story
Many programming problems have simple solutions that are infeasibly slow, and
more subtle published solutions that are relatively more efficient. A team’s best option
may be to seek an outside expert in algorithm analysis to determine whether an effi‐
cient solution to a particular problem may exist. Retaining such a consultant can be
money well spent.

I once was on a team developing functional board testers (including the Fluke 9010A
pictured in Chapter 2). Our board tester had a built-in RAM test for diagnosing man‐
ufacturing defects in the device under test. I once thought to examine the coverage of
this test by connecting the tester to a Commodore PET computer and running the
RAM test over its video memory, so that the test patterns were visible on the PET’s
built-in screen. I inserted faults into the RAM circuit by the crude but effective
method of jabbing a screwdriver between adjacent pins of the PET’s video RAM
chips. We were all quite surprised to learn that faults that visibly changed the patterns
written to RAM were often not detected by our test, which had been developed by
some very smart engineers. Furthermore, Moore’s Law was doubling the amount of
RAM we needed to test every 18 months. We needed a new RAM test algorithm that
was much faster than the existing test, and with demonstrably better fault coverage.

An exhaustive RAM test is infeasible, taking O(2n) accesses to memory (where n is
the number of RAM addresses—see “Time Cost of Algorithms” on page 92 for more
on the “big-O” notation). Published RAM test algorithms at that time were mostly
infeasibly slow O(n2) or O(n3) tests developed without much thought when memory
devices held only a few hundred words. Published tests that were theoretically sound
required 30 accesses to each cell to achieve basic fault coverage. I had an idea for a
much better test using pseudorandom sequences, but lacked the mathematical know-
how to demonstrate its soundness. We had amply demonstrated that intuition alone
did not guarantee success. We needed an algorithm expert.

A call to my old professors at the University of Washington led to a PhD candidate
named David Jacobson who was happy to trade his research assistant stipend for a
developer paycheck for a while. Our collaboration led to a best-in-class RAM test
requiring only five passes through memory, several other novel functional test algo‐
rithms, and half a dozen US patents.

Time Cost of Algorithms
The time cost of an algorithm is an abstract mathematical function describing how
rapidly the cost of the algorithm grows as a function of the size of its input. Many
factors affect the run time of a program on a specific computer. As a result, run time
is less than perfect as a way to talk about performance of an algorithm. Time cost
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abstracts away these details, leaving a simple relationship between input size and cost.
Algorithms can be classified into families with similar time costs, and the families can
be studied for common features. Time cost is well covered in any textbook on algo‐
rithms and data structures—I like The Algorithm Design Manual, Second Edition, by
Steven S. Skiena (Springer-Verlag)—so this section will be brief.

The time cost is customarily written in “big-O” notation, as O(f(n)), where n is some
significant aspect of the size of the input, and f(n) is a function describing how many
of some significant operations an algorithm performs to process an input of size n.
The function f(n) is typically simplified to show only its fastest-growing term, because
for large values of n, this term dominates the value of f(n).

Using searching and sorting algorithms as an example, if n is the number of items to
be searched through or sorted, f(n) is often the number of comparisons made
between two items to put the items into sorted order.

Here is a very rough guide to the time cost of some common algorithms, and the
implications of those costs to program run times:

O(1), or constant time
The fastest possible algorithms have constant time cost. That is, they have a fixed
cost that doesn’t depend on the size of the input at all. A constant-time algorithm
is like the Holy Grail: incredibly valuable if you find it, but you can search for
your whole life without achieving your quest. Beware, therefore, of strangers sell‐
ing constant-time algorithms. The constant of proportionality may be very high.
That is, the cost may be one operation, but it may be one hellaciously long opera‐
tion. In fact, it may be O(n) in disguise, or worse.

O(log2 n)
The time cost can be less than linear. For instance, a search algorithm that can
divide the input in half at each step takes O(log2 n) time. Algorithms with less
than linear time cost have a cost that increases more slowly than the input does.
They are thus efficient enough that there is often (but not always) no reason to
look for a faster algorithm; the code implementing the algorithm simply isn’t hot
enough to show up on a profiler’s list of expensive functions. Algorithms with
O(log2 n) time cost can be invoked many times in a program’s overall run without
fear of making the whole program infeasibly slow. Binary search is a frequently
occurring algorithm with O(log2 n) time cost.

O(n), or linear time 
If an algorithm’s time cost is O(n), the time taken by the algorithm is propor‐
tional to the size of its input. Such an algorithm is called a linear-time algorithm,
or just linear. A time cost of O(n) is typical of algorithms that scan their input
from one end to the other, as to find the least or greatest value in a list. A linear-
time algorithm grows more expensive at the same rate as its input. Such algo‐
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rithms are inexpensive enough that a program can scale to larger and larger
inputs without unexpectedly great demands on computational resources. How‐
ever, multiple linear-time algorithms can combine in ways that make their overall
run time O(n2) or worse, so they may be implicated if a program’s overall run time
is too great for large inputs.

O(n log2 n)
Algorithms can have a super-linear time cost. For instance, many sorting algo‐
rithms compare pairs of inputs, and divide the space to be sorted into two parts
at each step. These algorithms have time cost O(n log2 n). Algorithms that are
O(n log2 n) become relatively more costly as n increases, but the rate of growth is
so slow that these algorithms are generally considered tractable even for large
values of n. Still, you don’t want to invoke such an algorithm needlessly during a
program’s run.

O(n2), O(n3), etc.
Some algorithms, including less efficient sorting algorithms, must compare each
input value to every other value. These algorithms have time cost O(n2). The cost
of such algorithms grows so fast that it becomes quite worrisome for large values
of n. There are a number of problems that have simple solutions that are O(n2) or
O(n3), and more subtle solutions that are faster.

O(2n)
O(2n) algorithms grow expensive so rapidly that they can be considered only for
small values of n. Sometimes that is OK. Algorithms that require inspecting all
combinations of n inputs are O(2n). Scheduling and trip-planning problems like
the famous Traveling Salesman problem are O(2n). If the fundamental problem
an algorithm needs to solve is O(2n), the developer is faced with several unpalata‐
ble options: use a heuristic algorithm that doesn’t guarantee an optimal solution,
limit the solution to small values of n, or find some other way to add value that
doesn’t involve solving the problem at all.

Table 5-1 estimates how long algorithms of different time costs will take if each oper‐
ation on the n input values takes a single nanosecond. A more complete version of
this table can be found on page 38 of Skiena’s The Algorithm Design Manual.

Table 5-1. Runtime cost for an algorithm taking 1 ns per operation

 log2 n n nlog2 n n2 2n

10 < 1 μs < 1 μs < 1 μs < 1 μs 1 μs

20 < 1 μs < 1 μs < 1 μs < 1 μs 1 μ

30 < 1 μs < 1 μs < 1 μs < 1 μs 1 s
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 log2 n n nlog2 n n2 2n

40 < 1 μs < 1 μs < 1 μs 1.6 μs 18 min

50 < 1 μs < 1 μs < 1 μs 2.5 μs 1013 years

100 < 1 μs < 1 μs < 1 μs 10 μs ∞

1,000 < 1 μs 1 μs 10 μs 1 ms ∞

10,000 < 1 μs 10 μs 130 μs 100 ms ∞

100,000 < 1 μs 100 μs 2 ms 10 s ∞

1,000,000 < 1 μs 1 ms > 20 ms 17 min ∞

Best-Case, Average, and Worst-Case Time Cost
The conventional big-O notation assumes that an algorithm has the same running
time for any input. However, some algorithms are sensitive to properties of their
input, running faster for some sequences of inputs than for other sequences of the
same size. When considering what algorithm to use in performance-critical code, it is
important to know whether the algorithm has a bad worst case. We will see some
examples of this in “Time Cost of Sorting Algorithms” on page 99.

Some algorithms likewise have very fortunate best-case behavior, like a sort that takes
less time if the input is already sorted or nearly sorted. When the input is likely to
have useful properties like being mostly sorted, selecting an algorithm with especially
good best-case performance can improve the run time of a program.

Amortized Time Cost
Amortized time cost means time cost averaged over a large number of inputs. For
instance, inserting an item into a heap has O(log2 n) time cost. Building a heap one
item at a time is thus O(n log2 n). However, building a heap by the most efficient
method is O(n), which means that inserting each item by this method has amortized
O(1) time cost. The most efficient algorithm doesn’t insert items one at a time,
though. It processes all the items into successively larger subheaps using a divide-
and-conquer algorithm.

The significance of amortized time cost is that some individual operations are fast,
while others are slow. For instance, the amortized time cost to append a character to a
std::string is constant, but it involves a call to the memory manager some fraction
of the time. When the string is short, the memory manager may be called nearly
every time a character is appended. Only once the program has appended thousands
or millions of characters does this amortized cost become small.
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Other Costs
Sometimes an algorithm can be sped up by saving intermediate results. Such an algo‐
rithm thus has not only a cost in time, but also a cost in auxiliary storage. For
instance, the familiar recursive algorithm for binary tree traversal runs in linear time,
but also requires log2 n auxiliary storage locations on the stack during the recursion.
Algorithms that have large auxiliary space costs may not be suitable for constrained
environments.

There are algorithms that run faster if they are parallelized, but have a cost in the
number of processors running in parallel needed to obtain the theoretically promised
speedup. Algorithms requiring more than log2 n processors are usually not feasible on
general-purpose computers, which have a small, fixed number of processors. Such
algorithms may be possible using purpose-built hardware or graphics processors. I
wish this book had space to cover parallel algorithm design, but alas it does not.

Toolkit to Optimize Searching and Sorting
The toolkit for optimizing searches and sorts contains just three tools:

• Replace inferior algorithms having poor average-case big-O time costs with algo‐
rithms having better average-case time costs.

• Exploit additional knowledge of the data (for instance, knowledge that the data is
usually sorted or nearly sorted) to select algorithms having particularly good big-
O time costs on data with these properties, and avoid algorithms with particu‐
larly poor big-O behavior on data with these properties.

• Tweak the algorithm to improve its performance by a constant factor.

I explore the application of these three tools in Chapter 9.

Efficient Search Algorithms
The time costs of the most important algorithms for searching and sorting are pre‐
sented in every undergraduate computer science curriculum, and eagerly memorized
by all developers early in their college education. The problem with undergraduate
algorithms and data structures classes is that they are too brief. The instructor can
provide in-depth coverage of just a few algorithms to teach analysis, or shallow cover‐
age of more algorithms to provide memorable facts about time cost. The instructor is
probably also teaching how to program at the same time. As a result, students exit the
class proud of their new knowledge, and unaware that they have missed out on many
nuances. This incompleteness of knowledge leads to optimization opportunities even
when nominally optimal algorithms are in use.
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Time Cost of Searching Algorithms
How fast, in big-O terms, is the fastest method to look up a table entry? Hint: binary
search, at O(log2 n), is a useful benchmark, but it isn’t the fastest.

Right now some readers are saying, “Wait...WHAT?” They weren’t taught anything
other than linear search and binary search. But there are many search algorithms:

• Linear search, at O(n), is expensive, but extremely general. It can be used on an
unsorted table. It requires only that keys can be compared for equality, so it
works even if keys can’t be put into any kind of order. If the table is sorted, the
linear search can terminate before seeing all table elements. It’s still O(n), but on
average about twice as fast.
If it’s OK to mutate the table, a version of linear search that moves each search
result to the head of the table can perform very well in some situations. For
instance, the symbol table in a programming language compiler is searched every
time an identifier is used in an expression. There are so many expressions that
look like i = i + 1; that this optimization can make linear search reasonably
useful.

• Binary search, at O(log2 n), has good performance, but it’s not the best possible
search. Binary search requires input data that is sorted on the search key, and
keys that can be compared not only for equality, but for an ordering relation such
as less-than.
Binary search is the workhorse of the searching and sorting world. It is a divide-
and-conquer algorithm that repeatedly divides a sorted table in half by compar‐
ing the key to the middle element in the portion of the table being searched to
determine if the key comes before or after that element.

• Interpolation search divides the sorted table into two parts like binary search, but
uses extra knowledge about the keys to improve its partitioning guess. Interpola‐
tion search achieves a very respectable O(log log n) performance when the keys
are uniformly distributed. This improvement can be very noticeable if the table is
large or the cost of testing a table entry is significant (like when it’s on a rotating
disk). However, interpolation search is not the fastest possible search.

• It is possible to find a record in average O(1) time by hashing: converting the key
to an array index in a hash table. Hashing doesn’t work on just any list of key/
value pairs. It requires a specially constructed table. Hash table entries need only
be compared for equality. Hashing has worst-case performance of O(n), and may
require more hash table entries than there are records to search for. However,
when the table has fixed contents (like month names or programming language
keywords), these pathological cases can be eliminated.
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All Searches Are Equal When n Is Small
What is the  cost of searching in a table with a single entry? Does it make any differ‐
ence what search algorithm is used? Table 5-2 shows the cost of searching a sorted
table using the best possible versions of linear, binary, and hash-table search algo‐
rithms. The answer is that for small tables, all methods examine the same number of
entries. For a table of 100,000 entries, however, the dominating term of the time cost
function would rule, and things would look different.

Table 5-2. Table size versus average number of accesses to search

Table size Linear Binary Hash
1 1 1 1
2 1 2 1
4 2 3 1
8 4 4 1
16 8 5 1
26 13 6 1
32 16 6 1

Efficient Sort Algorithms
There is an amazing menagerie of sorting algorithms. Many have been proposed only
in the past 10 years or so. Many of the newer sorts are hybrids that improve best-case
or worst-case performance. If you completed your computer science education prior
to 2000, it is worth reviewing the literature. Wikipedia has an accessible summary of
sorting algorithms. Here are just a few fun facts not always covered in algorithms
classes, to prove that deeper knowledge has benefits:

• “Everyone knows” that an optimal sort runs in O(n log2 n) time, right? Wrong.
Wrong twice, in fact. Only sorts that work by comparing pairs of input values
have this behavior. Radix sorts (sorts that divide the input repeatedly into one of r
buckets) have time cost O(n logr n), where r is the radix, or number of sorting
buckets. This is considerably better than comparison sorts for large data sets.
Furthermore, when the sorting keys are taken from certain sets, like the consecu‐
tive integers from 1 to n, flashsort can sort the data in O(n) time.

• Quicksort, a frequently implemented and generally well-regarded algorithm, has
poor worst-case performance of O(n2). The worst case cannot reliably be avoi‐
ded, and naïve implementations often perform poorly.

• Some sorts, including insertion sort, have excellent (linear) performance if the
data is almost sorted, even if they aren’t all that good for random data. Other
sorts (such as the naïve quicksort just mentioned) have worst-case performance
on sorted data. If the data is usually sorted or almost sorted, knowledge of this
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additional property can be used to select a sort having good performance on sor‐
ted data.

Time Cost of Sorting Algorithms
Table 5-3 lists the time complexity of several sorts for base-case, average, and worst-
case input data. While most of these sorts have the same O(n log2 n) average perfor‐
mance, they differ in their best-case and worst-case performance, and in the amount
of extra space they consume.

Table 5-3. Time cost for some sorting algorithms

Sort Best case Average Worst case Space
required

Notes on best/worst case

Insertion sort n n2 n2 1 Best case is sorted or nearly sorted data

Quicksort n log2 n n log2 n n2 log2 n Worst case is sorted data and naïve (first/last) choice of pivot

Merge sort n log2 n n log2 n n log2 n 1  

Tree sort n log2 n n log2 n n log2 n n  

Heapsort n log2 n n log2 n n log2 n 1  

Timsort n n log2 n n log2 n n Best case is sorted data

Introsort n log2 n n log2 n n log2 n 1  

Replace Sorts Having Poor Worst-Case Performance
Quicksort is a very popular sort. Its internal overhead is quite low, and its average
performance is optimal for a sort based on comparing two keys. But quicksort has a
flaw. If you run quicksort on an array that is already sorted (or nearly sorted), and
you use the first or last element as the pivot, its performance is very poor. Sophistica‐
ted implementations of quicksort pick a pivot at random to overcome this weakness
most of the time, or spend many extra cycles to compute the median and use that as
the initial pivot. It is thus naïve to assume that quicksort will always have good per‐
formance. You must either know something about the input data—specifically, that it
is not already sorted—or know that the implementation of the algorithm chooses the
initial pivot carefully.

If you don’t know anything about the input data, mergesort, treesort, and heapsort all
provide a comfortable assurance that there is no pathological case that will cause per‐
formance to balloon to unacceptable levels.
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Exploit Known Properties of the Input Data
If you know that the input data is sorted or nearly sorted, the normally unacceptable
insertion sort has excellent O(n) performance on such data.

A relatively new hybrid sort called Timsort also has excellent O(n) performance if the
data is sorted or nearly sorted, and optimal O(n log 2 n) performance the rest of the
time. Timsort is now the standard sort in Python.

A recent sort called introsort is a hybrid of quicksort and heapsort. Introsort starts
doing a quicksort, but switches to a heapsort if unfortunate input data causes quick‐
sort’s recursion depth to become too great. Introsort guarantees a reasonable O(n log2

n) worst-case time, while taking advantage of quicksort’s efficient implementation to
modestly reduce average-case run time. Since C++11, introsort has been the prefer‐
red implementation of std::sort().

Another recently proposed sort called flashsort has excellent O(n) performance for
data drawn from a particular probability distribution. Flashsort is related to radix
sorting; data is sorted into buckets based on percentile in the probability distribution.
A simple case of flashsort occurs when the data items are uniformly distributed.

Optimization Patterns
Experienced optimizing developers don’t rely exclusively on dizzying intuitive leaps
to find opportunities to improve code performance. There are patterns that recur in
optimized code. Developers study algorithms and data structures partly because they
contain a library of ideas for improving performance.

This section gathers together a few general techniques for improving performance
that are so useful that they deserve specific mention. The reader may recognize some
of these patterns as the core of familiar data structures, C++ language features, or
hardware innovations:

Precomputation
Remove computation from the hot part of the program by performing it before
execution arrives at the hot code—earlier in the program, at link time, compile
time, or design time.

Lazy computation
Remove computation from some code paths by performing the computation
closer to the point where it is needed.

Batching
Perform computation on several items together rather than one item at a time.
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Caching
Reduce computation by saving and reusing the results of an expensive computa‐
tion rather than recomputing them.

Specialization
Reduce computation by removing generality that is not used.

Taking bigger bites
Reduce the cost of a repeated operation by acting on bigger groups of input at a
time.

Hinting
Reduce computation by providing a hint that might improve performance.

Optimizing the expected path
Test for inputs or events at run time in decreasing order of expected frequency.

Hashing
Compute a compact numerical summary (the hash) of a larger data structure
such as a variable-length character string. The hash can stand in for the data
structure in comparisons to improve performance.

Double-checking
Reduce computation by performing an inexpensive check, followed only if neces‐
sary by an expensive check.

Precomputation
Precomputation is a very general technique whose goal is to remove computation
from hot code by performing it earlier, before execution arrives at the hot spot. Dif‐
ferent variations move computation from the hot spot to a less-hot part of the code,
to link time, compile time, or even design time. In general, the earlier the computa‐
tion can be performed, the better.

Precomputation is only possible to the extent that the value to be computed does not
depend on the context. A computation such as this can be precomputed by the com‐
piler because it doesn’t depend on anything in the program:

int sec_per_day = 60 * 60 * 24;

A related computation like this one depends on variables in the program:

int sec_per_weekend = (date_end - date_beginning + 1) * 60 * 60 * 24;

The trick with precomputation is to either realize that (date_end - date_beginning
+ 1) may have an unchanging value in the program, so it can be replaced with 2, or
to factor out the part of the expression that can be precomputed.
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Here are some examples of precomputation:

• The C++ compiler automatically precomputes the value of constant expressions
using the compiler’s built-in rules of associativity and operator precedence. The
compiler precomputes the value of sec_per_day in the previous example with no
problem.

• A template function call with particular arguments is evaluated at compile time.
The compiler generates efficient code when the arguments are constants.

• The designer can observe, for example, that in the context of a particular pro‐
gram the concept of “weekend” is always two days, and precompute that constant
as he is writing the program.

Lazy Computation
The goal of lazy computation is to delay computation to a point closer to where the
computation is needed. There are several benefits to lazy computation. If the compu‐
tation is not needed on all execution paths (all branches of the if-then-else logic) in
a function, it is only performed on the paths that need the result. Examples include:

Two-part construction
Often information that is needed to construct an object is not available when the
instance could be statically constructed. Instead of constructing an object all at
once, the constructor contains minimal code to establish an empty object. Later,
the running program calls an initialization member function to finish construc‐
tion. Delaying initialization until additional data is available means the construc‐
ted object can often be an efficient, flat data structure (see “Flatten Data
Structures” on page 145).

In some cases, there is a cost to check whether a lazily computed value has been
computed yet. This cost is comparable to the cost of ensuring a pointer to a
dynamically constructed class is valid.

Copy-on-write
Instead of copying a dynamic member variable when an object is copied, the two
instances share a single copy of the dynamic variable. Copying is deferred until
either instance wants to modify the variable.

Batching
The goal of batching is to collect multiple work items and process them together.
Batching may be used to remove repeated function calls or other computation that
would occur if the items were processed one at a time. It may also be used because
there is a more efficient algorithm for processing all inputs together, to postpone
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computation to a time when more computational resources are available. For
instance:

• Buffered output is an example of batching in which output characters are
appended to a buffer until the buffer is full or the program reaches an end-of-line
or end-of-file character. The entire buffer is passed to an output routine, saving
the cost of calling the output routine once for each character.

• The optimal method for converting an unsorted array into a heap is an example
of batching to use a more efficient algorithm. The time cost of inserting n items
into a heap one by one is O(n log2 n). The cost of building the heap all at once is
O(n).

• A multithreaded task queue is an example of batching to use computing resour‐
ces efficiently.

• Saving or updating in the background is an example of batching.

Caching
Caching refers to any of several methods to reduce computation by saving and reus‐
ing the result of an expensive computation, rather than recomputing the result each
time it is needed. For example:

• The compiler caches the result of small repeated chunks of code, like the compu‐
tation needed to dereference an array element. It sees a statement like a[i][j] =
a[i][j] + c; and saves the array expression, producing code that looks more
like auto p = &a[i][j]; *p = *p + c;.

• Cache memory refers to special circuits in computers that make frequently
needed memory locations more rapidly accessible to the processor. Caching is a
very important concept in the design of computer hardware. There are many lev‐
els of caching in the hardware and software of an x86 PC.

• The length of a C-style character string must be computed each time it is needed
by counting the characters. std::string caches the string length rather than
computing it each time it is needed.

• A thread pool is a cache of expensive-to-create threads.
• Dynamic programming is an algorithmic technique in which a computation that

has a recurrence relation is sped up by computing subparts and caching the
result.
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Specialization
Specialization is the opposite of generalization. The goal of specialization is to elimi‐
nate parts of an expensive computation that are not required in a specific situation.

It may be possible to simplify an action or data structure by removing a feature that
makes it expensive, but that is not required in a given situation in question. This can
be accomplished by lifting a constraint from the problem, or adding a constraint to
the implementation—making the dynamic static, bounding the unbounded, and so
on. For example:

• The template function std::swap() has a default implementation that may copy
its arguments. However, the developer can provide a specialization that is more
efficient given knowledge of the internals of a data structure. (The C++11 version
of std::swap() uses move semantics to achieve an efficient result if the argu‐
ment type implements a move constructor.)

• std::string is dynamically resizable to hold variable-length character strings. It
provides many operations to manipulate strings. If it’s only necessary to compare
fixed strings, a C-style array or pointer to literal string and a comparison func‐
tion may have better performance.

Taking Bigger Bites
The aim of taking bigger bites is to reduce the number of iterations of a repeated
operation, cutting down on the overhead of repetition. Strategies include:

• Request large blocks of input from the operating system or send large blocks of
output to the operating system to reduce the overhead of calling into the kernel
for small blocks or individual items. The downside of taking bigger bytes, espe‐
cially when writing, is that more data may be lost if the program crashes. This
can be a problem, for instance, for log files.

• Move or clear buffers by word or longword instead of byte-by-byte. This optimi‐
zation only improves performance if the two ranges are aligned to the same-sized
boundaries.

• Compare strings by word or longword. This only works on a big-endian
machine, and not on the x86, which is little-endian (see “Memory Words Have a
Big End and a Little End” on page 20). Machine architecture–dependent hacks
like this one can be dangerous because they are nonportable.

• Perform more work when a thread wakes up. Check for multiple units of work to
process rather than relinquishing the processor after a single unit. This saves the
overhead of repeated thread wakeup.
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• Instead of performing a maintenance task each time through a loop, perform it
every 10th or every 100th time.

Hinting
In hinting, the cost of an operation is reduced by using a hint that, if provided, may
lead to reduced computation.

For instance, one overload of the insert() member function of std::map takes an
optional insertion point argument. An optimal hint can make insertion O(1). Other‐
wise, inserting in a map costs O(log2 n).

Optimizing the Expected Path
In if-then-else code with several else-if arms, if the tests are laid out in random
order, each time execution passes through the if-then-else block, about half the
tests will be computed. If there is one case that happens 95% of the time, and that test
is performed first, then 95% of the time only one test will be performed.

Hashing
In hashing, a large input data structure or long character string is summarized by an
algorithm as an integer, called the hash. The hashes of two inputs can be efficiently
compared to rule out equality of the inputs. If the hashes are different, the inputs are
definitely not the same. If the hashes are equal, the inputs are probably equal. Hash‐
ing can be used with double-checking to optimize a deterministic comparison for
equality. It is typical that the hash for an input is cached so that it need not be recom‐
puted.

Double-Checking
In double-checking, an inexpensive check is used to rule out some cases, followed if
necessary by an expensive check to rule out all other cases. For example:

• Double-checking is frequently used with caching. The cache is checked quickly
to see if the desired value is there, and if not the value is fetched or computed by
a more expensive process.

• Comparing two std::string instances for equality normally requires comparing
them character-by-character. However, a preliminary comparison of the lengths
of the two strings can quickly rule out equality.

• Double-checking may be used in hashing. The hashes of two inputs can be com‐
pared efficiently for equality; if the hashes are different, the inputs are not equal.
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Only if the hashes are the same is it necessary to compare the inputs
byte-by-byte.

Summary
• Beware of strangers selling constant-time algorithms. They may be O(n).
• Multiple efficient algorithms can be combined in ways that make their overall run

time O(n2) or worse.
• Binary search, at O(log2 n), isn’t the fastest search. Interpolation search is

O(log log n) and hashing is constant-time.
• For small tables with < 4 entries, all search algorithms examine about the same

number of entries.
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CHAPTER 6

Optimize Dynamically Allocated Variables

That’s where the money is.
—Bank robber Willie Sutton (1901–1980)

This quote was attributed to Sutton as the answer to a reporter’s 1952 question, “Why
do you rob banks?” Sutton later denied ever having said it.

Except for the use of less-than-optimal algorithms, the naïve use of dynamically allo‐
cated variables is the greatest performance killer in C++ programs. Improving a pro‐
gram’s use of dynamically allocated variables is so often “where the money is” that a
developer can be an effective optimizer knowing nothing other than how to reduce calls
into the memory manager.

C++ features that use dynamically allocated variables, like standard library contain‐
ers, smart pointers, and strings, make writing applications in C++ productive. But
there is a dark side to this expressive power. When performance matters, new is not
your friend.

Lest I start a panic, let me say that the goal in optimizing memory management is not
to live an ascetic life free of distraction from the many useful C++ features that use
dynamically allocated variables. Rather, the goal is to remove performance-robbing,
unneeded calls into the memory manager through skillful use of these same features.

My experience is that removing even one call into the memory manager from a loop
or frequently called function is enough to significantly boost performance, and there
are generally opportunities to remove many more than one call.

Before talking about how to optimize the use of dynamically allocated variables, this
chapter offers a review of how C++ thinks about variables. It also reviews the set of
tools in the dynamic memory API.
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C++ Variables Refresher
Every C++ variable (every variable of plain data type; every array, struct, or class
instance) has a fixed layout in memory, the size of which is known at compile time.
C++ allows a program to get the size in bytes of a variable and obtain a pointer to that
variable, but does not specify the bit-by-bit layout of variables. C++ rules allow the
developer to reason about the order and layout of member variables in structs. C++
also provides union types that overlay multiple variables onto the same block of
memory, but what the program sees when it looks at a union is implementation-
dependent.

Storage Duration of Variables
Every variable has a storage duration, or lifetime, that describes the period of time
during which the storage,  or memory bytes occupied by the variable, has a meaning‐
ful value. The cost to allocate memory for the variable depends on the storage dura‐
tion.

The C++ syntax for declaring variables can be confusing, due to the need to maintain
compatibility with C syntax while adding several new concepts. In C++, the storage
duration is not directly specified, but is inferred from the variable’s declaration:

Static storage duration 
Variables with static storage duration live in memory reserved by the compiler.
Each static variable occupies a fixed amount of memory at a fixed address deter‐
mined at compile time. The memory for static variables is reserved for the life of
the program. Each global static variable is constructed before execution enters
main() and destroyed after execution leaves main(). Static variables declared a
function scope are only constructed “before the first time execution enters a
function”, which can be as early as when global statics are constructed, or as late
as the first call to that function. C++ specifies an order of construction and
destruction for global static variables so that the developer can reason exactly
about their lifetimes, but the rules are so complex that they serve more as a warn‐
ing than a behavior to make use of.

Each static variable is known by a name, and may also be referred to by pointers
and references. The name that refers to a static variable, as well as pointers and
references to that variable, may be visible to code in the constructors and
destructors of other static variables before it has a meaningful value and after its
value is destroyed.

There is no runtime cost to create the storage for static variables. However, the
storage is not available for reuse. Static variables are thus appropriate for data
that will be used for the whole life of the program.
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Variables declared at namespace scope and variables declared static or extern
have static storage duration.

Thread-local storage duration 
Since C++11, a program can declare variables with thread-local storage duration.
Before C++11, some compilers and frameworks provided similar facilities in a
nonstandard manner.

Thread-local variables are constructed at thread entry and destroyed at thread
exit; their lifetime is the same as the lifetime of the thread. Each thread has its
own separate copy of these variables.

Thread-local variables can be more expensive to access than static variables,
depending on the operating system and compiler. In some systems, the thread-
local storage is allocated by the thread, so that the cost of accessing a thread-local
variable is a single indirection greater than that of accessing a static variable. In
others, thread-local variables must be accessed through a global table indexed by
the thread ID. Although this operation can be performed in constant time, it
requires a function call and some computation, making the cost of access consid‐
erably greater.

In C++11, variables declared with the thread_local storage class specifier key‐
word have thread-local storage duration.

Automatic storage duration 
Variables with automatic storage duration exist in memory reserved by the com‐
piler on the function call stack. Each automatic variable occupies a fixed amount
of memory at a fixed offset from the stack pointer that is determined at compile
time, but the absolute address of the automatic variable is not fixed until execu‐
tion enters the scope of the declaration.

Automatic variables exist during the time that execution is within the scope of
the surrounding code block delimited by curly braces. They are constructed at
the point where they are declared, and destroyed when execution leaves the sur‐
rounding scope.

Like static variables, automatic variables are known by name. Unlike static vari‐
ables, the name is visible only after the variable is constructed, and before it is
destroyed. References and pointers to automatic variables may exist after the
variable is destroyed, causing the chaos of undefined behavior if they are derefer‐
enced.

Like with static variables, there is no runtime cost to allocate the storage used by
automatic variables. Unlike with static variables, there is a limit to the total
amount of memory that can be occupied by automatic variables at any one time.
Exceeding this maximum value, via runaway recursion or very deeply nested
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function calls, causes a stack overflow and abrupt, irrevocable program termina‐
tion. Automatic variables are appropriate for objects used by the code that sur‐
rounds them.

A function’s formal argument variables have automatic storage duration. So do
variables declared within executable blocks and not otherwise marked.

Dynamic storage duration
Variables with dynamic storage duration live in memory requested by the run‐
ning program. The program calls into the memory manager, the collection of
C++ runtime system functions and data structures that administers a pool of
memory on behalf of the program. The program explicitly requests storage for
and constructs the dynamic variable in a new-expression (covered in more detail
in “New-Expressions Construct Dynamic Variables” on page 328), which may
occur at any point in the program. The program later explicitly destroys the vari‐
able and returns the variable’s memory to the memory manager in a delete-
expression  (see “Delete-Expressions Dispose of Dynamic Variables” on page
331). This can happen at any point in the program when the variable is no longer
needed.

Like with automatic variables, but unlike with static variables, the address of a
dynamic variable is determined at run time.

Unlike with static, thread-local, and automatic variables, the declaration syntax
for arrays is extended so that the highest dimension of a dynamic array variable
may be specified at run time by a (non-constant) expression. This is the only case
in C++ where the size of a variable is not fixed at compile time.

A dynamic variable does not have its own name. Instead, when it’s constructed,
the C++ memory manager returns a pointer to the dynamic variable. The pro‐
gram must assign this pointer to a variable so it can return the dynamic variable
to the memory manager before the last pointer to that variable is destroyed, or
risk running out of the memory used for creating dynamic variables. A modern
processor can exhaust gigabytes of memory in minutes if dynamic variables are
not returned properly.

Unlike static and thread-local variables, the number and type of dynamic vari‐
ables can change over time without any fixed limit to the amount of storage they
consume. Also, unlike with static and automatic variables, there is a significant
runtime cost to manage the memory used by dynamic variables.

Variables returned by new-expressions have dynamic storage duration.
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Ownership of Variables
Another important concept of C++ variables is ownership. The owner of a variable
determines when the variable is created and when it is destroyed. Sometimes the stor‐
age duration tells when the variable is created and destroyed, but ownership is a sepa‐
rate concept, and it is an important one for optimization of dynamic variables. Here
are some guidelines:

Global ownership 
Variables with static storage duration are owned by the program as a whole. They
are constructed before execution enters the main() function and destroyed after
the program returns from main().

Lexically scoped ownership 
Variables with automatic storage duration are owned by a lexical scope consisting
of a block of code surrounded by curly braces. This may be a function body; the
controlled statement block of an if, while, for, or do statement; a try or catch
clause; or a compound statement delimited only by curly braces. They are con‐
structed when execution enters the lexical scope, and destroyed when execution
passes out of the lexical scope.

The outermost lexical scope—the scope entered first and exited last—is the body
of main(). For all intents and purposes, an automatic variable declared in main()
has the same lifetime as a static variable.

Member ownership 
Member variables of classes and structs are owned by the class instance that con‐
tains them. They are constructed by the class constructor as an instance of the
class is constructed, and destroyed as the instance is destroyed.

Ownership of dynamic variables 
Dynamic variables have no predefined owner. Rather, the new-expression that
creates the dynamic variable returns a pointer, which must be explicitly managed
by the program. The dynamic variable must be returned to the memory manager
via a delete-expression to be destroyed before the last pointer to the dynamic vari‐
able is destroyed. The lifetime of the dynamic variable is thus completely pro‐
grammable—a powerful but dangerous tool. If a dynamic variable is not returned
to the memory manager through a delete-expression before the last pointer to it is
destroyed, the memory manager loses track of that variable for the rest of the
program’s run time.

Ownership of dynamic variables must be enforced by the developer and encoded
into the program logic. It is not controlled by the compiler or defined by C++.
Ownership of dynamic variables is important to optimization. Programs with
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strongly defined ownership can be made more efficient than programs where
ownership is diffuse.

Value Objects and Entity Objects
Some variables get their meaning in a program from their contents. They are called
value objects.  Other variables get their meaning from the role they play in a program.
These variables are called entities or entity objects.

C++ does not encode whether a particular variable behaves as a value or entity object.
The developer encodes the variable’s role into the program logic. C++ allows the
developer to define a copy constructor and an operator==() for any class. The role of
a variable determines whether the developer should define these operators. If the
developer does not take steps to forbid operations that don’t make sense, the compiler
will not complain.

Entity objects may be identified by their common properties:

Entities are unique
Some objects in a program conceptually have a unique identity. The mutex that
guards a specific critical region and a symbol table with many entries are exam‐
ples of objects with unique identities in a program.

Entities are mutable
A program can lock or unlock a mutex, but it is still the same mutex. A program
can add symbols to a symbol table, but it’s still the symbol table. You can start
your car and drive it to work, and it is still your car. Entities have a meaning as a
whole. Changing the state of an entity doesn’t change its fundamental meaning to
the program.

Entities are not copyable
Entities are not copied. Their nature comes from the way they are used, not from
their bits. You might copy all the bits of the system symbol table into another
data structure, but it would not be the system symbol table. The program would
still look for the system symbol table in the old place, and the copy would be
unused. If the program sometimes modified the copy instead of the original, the
symbol table would stop being valid. You might copy the bits of a mutex that
guarded a critical section, but locking the copy would not produce mutual exclu‐
sion. Mutual exclusion is a property that arises from two threads agreeing to sig‐
nal each other using a specific set of bits.

Entities are not comparable
The operation of comparing entities for equality does not make sense. Entities
are, by their nature, individuals. A comparison must always return false.
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Likewise, value objects have common properties that are the opposite of the proper‐
ties of entity objects:

Values are interchangeable and comparable
The integer 4 and the string "Hello, World!" are values. The expression 2 + 2
compares equal to the value 4, and not equal to the value 5. The value of the
expression string("Hello") + string("!") compares equal to the string
"Hello!", and not equal to "Hi". The meaning of a value comes from its bits, not
from its use in the program.

Values are immutable
There is no operation able to change a 4 into a 5, so that 2 + 2 = 5. You can
change an integer variable that holds a 4 so that it now holds a 5. That changes
the variable, which is an entity with a unique name. But that doesn’t change the
value 4.

Values are copyable
Copying a value makes sense. Two string variables can have the value "foo" and
the program is still correct.

Whether a variable is an entity object or a value object determines whether copying
and comparison for equality make sense. Entities should not be copied or compared.
Whether a class member variable is an entity or a value determines how the class
copy constructor should be written. Class instances may share ownership of an entity,
but cannot validly copy the entity. Understanding entities and value objects is impor‐
tant because variables that behave as entities are often structures with many dynami‐
cally allocated variables that would be expensive to copy if copying even made sense.

C++ Dynamic Variable API Refresher
C++ contains a robust toolkit for managing dynamic variables. Options range from
automation to fine control over memory management and the construction of
dynamically allocated C++ variables. Even experienced developers may have used
only the most basic of these tools. We’ll start with a quick look at those, before going
into depth on the features that bear particularly on optimization:

Pointers and references
Dynamic variables in C++ don’t have a name. They are accessed through a C-
style pointer or a reference variable. Pointers abstract hardware addresses to hide
the complexity and variability of computer architectures. Not every value a
pointer variable can hold corresponds to a usable memory location, but there is
nothing about the bits that tell the programmer that. One specific value called
nullptr in C++11 is guaranteed by the C++ standard never to point to a valid
memory location. The integer 0 stood in for nullptr prior to C++11; and is con‐
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1 A developer might go out of her way to cast a numerical machine address to a reference for the purpose of
initializing a reference variable. Although that might seem crazy, it could conceivably be useful in embedded
programming, where the architecture of the target computer is fixed and known. It is more efficient to use the
linker to set the address of an extern variable than to use the compiler to cast a numeric constant to a refer‐
ence or pointer. My advice is, “Look away, nothing to see here.”

vertible to nullptr in C++11, however, the all-zeros bit pattern in a pointer vari‐
able is not necessarily equal to nullptr. C-style pointers that are declared
without an initializer have no predefined value (for efficiency’s sake). Reference
variables cannot be declared without an initializer, so they always point to valid
locations.1

New- and delete-expressions  
Dynamic variables in C++ are created via a new-expression (see “New-
Expressions Construct Dynamic Variables” on page 328). A new-expression gets
the storage needed to hold the variable, constructs a variable of a specified type in
the storage, and returns a typed pointer to the newly constructed variable. The
new-expression for creating arrays is different from the new-expression for creat‐
ing a single instance, but both return the same type of pointer.

Dynamic variables are disposed of via a delete-expression (see “Delete-
Expressions Dispose of Dynamic Variables” on page 331). A delete-expression
destroys a variable and disposes of its storage. The delete-expression for dispos‐
ing of an array is different from the one for individual instances. Both operate on
a pointer of the same type, however, so you can’t tell from the pointer whether it
points to an array or a scalar. The developer must remember the kind of new-
expression used to create a dynamic variable and destroy it with a matching kind
of delete-expression, or chaos reigns. Undefined behavior results if a pointer-to-
array is deleted as a pointer-to-instance, or vice versa.

New-expressions and delete-expressions are baked into the syntax of the C++ lan‐
guage. Here are some brief examples of the basic kinds of new- and delete-
expressions that all developers are aware of:

{
    int n = 100;
    char* cp;           // cp has no particular value
    Book* bp = nullptr; // bp points to invalid address

//     ...

    cp = new char[n];   // cp points to new dynamic array
    bp = new Book("Optimized C++"); // new dynamic class instance

//     ...
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    char array[sizeof(Book)];
    Book* bp2 = new(array) Book("Moby Dick"); // placement new

//     ...

    delete[] cp;   // delete dynamic array before changing pointer
    cp = new char; // cp now points to a single dynamic char

//     ...

    delete bp;    // done using class instance
    delete cp;    // done using dynamically allocated char
    bp2->~Book(); // done using placed class instance
}
// delete dynamic variables before pointer goes out of scope

Memory management  functions 
New-expressions and delete-expressions call memory management functions from
the C++ standard library to allocate storage from and return storage to a pool
that the C++ standard calls the “free store.” These functions are overloads of oper
ator new(), operator new[]() for arrays, operator delete(), and operator
delete[]() for arrays. C++ also provides classic C-library memory management
functions such as malloc() and free(), which allocate and release untyped
blocks of storage.

Class constructors and destructors
C++ allows each class to define a constructor member function that is called to
establish an initial value when an instance of that class is created. Another mem‐
ber function, the destructor, is called whenever a class instance is destroyed.
Among other benefits, these special member functions provide a place to put
new- and delete-expressions so that any dynamic member variables are automati‐
cally managed with the class instance that contains them.

Smart pointers 
The C++ standard library provides “smart pointer” template classes that behave
like the raw pointer types, except they also delete the pointed-to variables when
they go out of scope. Smart pointers remember whether the allocated storage is
an array or a single instance, and call the correct delete-expression for the type of
the smart pointer. Smart pointers are explored further in the next section.

Allocator templates 
The C++ standard library provides allocator templates, which generalize new-
and delete-expressions for use with standard containers. Allocators are explored
further in “Provide Custom Standard Library Allocators” on page 343.
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Smart Pointers Automate Ownership of Dynamic Variables
Ownership of dynamic variables is not controlled by the compiler or defined by C++.
A program may declare a pointer variable in one place, assign a dynamic variable to
the pointer using a new-expression in another place, copy the pointer to another
pointer in a third place, and destroy the dynamic variable referenced by that second
pointer using a delete-expression in yet another place. However, a program that
behaves in this way can be hard to test and debug because ownership of the dynamic
variable is so diffuse. Ownership of dynamic variables is enforced by the developer
and encoded into the program logic. When ownership is diffuse, every line of the
program may potentially create a dynamic variable, add or remove references, or
destroy the variable. The developer must potentially trace all execution paths to
ensure the dynamic variables are always properly returned to the memory manager.

This complexity can be reduced through the use of programming idioms. One com‐
mon practice is to declare a pointer variable as a private member of some class. The
class constructor can set the pointer to nullptr, copy a pointer argument, or contain
a new-expression to create a dynamic variable. Because the pointer is a private mem‐
ber, any change to the pointer must happen within member functions of the class.
This limits the number of code lines that can affect the pointer, making coding and
debugging far easier. The class destructor can contain a delete-expression for the
dynamic variable. An instance of a class that behaves in this way is said to own the
dynamic variable.

A simple class may be designed with the single purpose of owning a dynamic vari‐
able. In addition to constructing and destroying the dynamic variable, the class also
implements operator->() and operator*(). Such a class is called a smart pointer,
because it mostly behaves like a C-style pointer, but also destroys the dynamic object
it points to when the smart pointer instance is destroyed.

C++ provides a smart pointer template class called std::unique_ptr<T> to maintain
ownership of a dynamic variable of type T. unique_ptr compiles to code that is com‐
parable in efficiency to handwritten code.

Automating ownership of dynamic variables
Smart pointers automate ownership of dynamic variables by coupling the lifetime of
the dynamic variable to the lifetime of the smart pointer that owns it. The dynamic
variable is properly destroyed and its memory is freed automatically, depending on
the declaration of the pointer:

• A smart pointer instance declared with automatic storage duration deletes the
dynamic variable it owns when execution passes out of the scope enclosing its
declaration, whether this happens by executing a break or continue statement,
returning from the function, or throwing an exception through the scope.
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• A smart pointer instance declared as a class member deletes the dynamic variable
it owns when the containing class is destroyed. In addition, because the rules for
class destruction cause each member to be destroyed after the class destructor
executes, it is not necessary to write explicit code in the destructor to delete the
dynamic variable. The smart pointer is deleted by the built-in machinery of C++.

• A smart pointer instance declared with thread-local storage duration deletes the
dynamic variable it owns when the thread terminates normally (but not, gener‐
ally, if the thread is terminated by the operating system).

• A smart pointer instance declared with static storage duration deletes the
dynamic variable it owns when the program ends.

Maintaining a single owner in general, and using std::unique_ptr to maintain own‐
ership in particular, makes it significantly easier to reason about whether a dynamic
variable points to valid storage, and whether it is properly returned to the memory
manager when it is no longer needed. There is little cost penalty for using
unique_ptr, so it should be the first choice for developers interested in optimization.

Shared ownership of dynamic variables is more expensive
C++ allows multiple pointers and references to a dynamic variable. Multiple pointers
may refer to a dynamic variable if several data structures point to the dynamic vari‐
able, or if a pointer to the dynamic variable is passed as a function argument, so that
one pointer is in the caller’s scope and another pointer is in the scope of the called
function. Multiple pointers to a dynamic variable exist briefly during assignment or
construction of an object intended to own a dynamic variable.

During any time that multiple pointers refer to a dynamic variable, the developer
must reason about which pointer is the owner. It is up to the developer not to explic‐
itly delete the dynamic variable through a nonowning pointer, dereference any
pointer after deleting the dynamic variable, or cause two owning pointers to refer to
the same object so that it is deleted twice. This analysis becomes particularly impor‐
tant when an error or exception occurs.

Sometimes ownership of a dynamic variable must be shared between two or more
pointers. Ownership must be shared when the lifetimes of two pointers to the vari‐
able overlap, but the lifetime of neither pointer fully contains the lifetime of the other.

When ownership must be shared, the C++ standard library template
std::shared_ptr<T> provides a smart pointer capable of managing shared owner‐
ship. Instances of shared_ptr contain a pointer to the dynamic variable, and another
pointer to a dynamic object containing a reference count. When a dynamic variable is
assigned to a shared_ptr, the assignment operator constructs the reference counter
object and sets the reference count to 1. When one shared_ptr is assigned to another,
the reference count is incremented. When a shared_ptr is destroyed, the destructor
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decrements the reference counter, and deletes the dynamic variable only if the refer‐
ence count is 0. Expensive atomic increment and decrement operations are per‐
formed on the reference count so that shared_ptr works in multithreaded programs.
std::shared_ptr is therefore considerably more expensive than either a C-style
pointer or std::unique_ptr.

It is up to the developer not to assign a C-style pointer (such as the pointer returned
by a new-expression) to multiple smart pointers, but only to assign from one smart
pointer to another. If the same C-style pointer is assigned to several smart pointers,
the pointer will be deleted several times, resulting in what the C++ standard inscruti‐
bly calls “undefined behavior.” This sounds obvious, but because a smart pointer can
be constructed from a plain old pointer, type conversion during argument passing
can silently cause this to happen.

std::auto_ptr versus container classes

A pre-C++11 smart pointer called std::auto_ptr<T> can also manage unshared
ownership of a dynamic variable. In many ways, auto_ptr behaves like unique_ptr.
However, auto_ptr does not implement move semantics (discussed in “Implement
Move Semantics” on page 137) and does not have a copy constructor.

Most standard library containers prior to C++11 copy-constructed their value type
into the container’s internal storage, so auto_ptr could not be used as the value type.
Prior to the introduction of unique_ptr, standard library containers had to be pro‐
grammed using C-style pointers, deep object copies, or shared_ptr. Each of these
solutions had problems. Native C-style pointers created risks of errors or memory
leaks, deep object copies were inefficient for large objects, and shared_ptr was inher‐
ently expensive. Some projects implemented special unsafe smart pointers for con‐
tainer classes whose copy constructor performed a move-like operation, such as using
std::swap() to transfer an owned pointer to the constructor. This let many, but not
all, container class member functions work as expected. It was efficient, but was
unsafe and difficult to debug.

Prior to C++11, it was common practice to use std::shared_ptr for the value type
in standard library container class instances. This practice produced correct and
debuggable code, but at the expense of shared_ptr’s inefficiency.

Dynamic Variables Have Runtime Cost
Because C++ is compiled to native machine code and directly executed by the com‐
puter, the cost of most C++ statements is at most a few memory accesses. However,
the cost of allocating memory for a dynamic variable is measured in thousands of
memory accesses. This cost is so high, on average, that eliminating even one call into
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the memory manager can noticeably improve the performance of a function, as
demonstrated repeatedly in Chapter 4.

Conceptually, a function for allocating memory searches a collection of free memory
blocks looking for a block able to satisfy the request. If the function finds a block the
right size, it removes the block from the collection and returns it. If the function finds
a block that is much bigger than the request, it can choose to split the block and
return a portion. Obviously, this general description leaves room for many imple‐
mentation choices.

If no free memory blocks are available to fill the request, the allocation function
makes an expensive call into the operating system kernel for an additional large
memory block from the system’s pool of available memory. The memory returned by
the kernel may or may not be cached in physical RAM (see “Memory Has Finite
Capacity” on page 20), perhaps resulting in even more delay the first time it is
accessed. Walking the list of free memory blocks is itself expensive. They are scattered
through memory and less likely to be in cache than are memory blocks currently visi‐
ble to the running program.

The collection of free memory blocks is a resource shared by all the threads of a pro‐
gram. Any changes to the free block collection must be thread-safe. If several threads
make frequent calls to allocate or free memory, they experience contention for the
memory manager as a resource, causing all but one thread to wait.

A C++ program must free allocated memory when the dynamic variable it contains is
no longer needed. Conceptually, a function to free memory puts the returned mem‐
ory block onto the free block collection. In real implementations, the behavior of the
free function is considerably more complex. Most implementations try to coalesce a
newly freed memory block with adjacent free blocks. This keeps the free memory col‐
lection from filling up with blocks too small to be useful. Calls to the memory freeing
function have the same issues of reduced cache performance and contention for
multithreaded access to the free blocks as do calls to allocate memory.

Reduce Use of Dynamic Variables
Dynamic variables are a robust solution to many problems. However, they are too
expensive to use for solving every problem. Statically created variables can often do
the work of dynamic variables.

Create Class Instances Statically
It is possible to create class instances dynamically. However, most class instances that
are not part of containers can and generally should be created statically (that is,
without using new). Sometimes class instances are created dynamically because the
developer does not realize there is another option. For instance, an inexperienced
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C++ developer who learned Java first might know that typical Java syntax for instanti‐
ating a class looks like this:

MyClass myInstance = new MyClass("hello", 123);

If the naïve user types the Java syntax into a C++ program, the C++ compiler encour‐
ages him to make myInstance a pointer, saying “cannot convert from ‘MyClass *' to
‘MyClass’.” The slightly more experienced developer might make myInstance a smart
pointer to avoid having to explicitly delete the dynamically created class instance, if
he is even aware that this is an issue:

MyClass* myInstance = new MyClass("hello", 123);

However, both solutions are wasteful. Instead, the class should usually be statically
constructed, like this:

MyClass myInstance("hello", 123);

or:

MyClass anotherMC = MyClass("hello", 123); // maybe less efficient

If myInstance is declared in a block of executable code, it has automatic storage dura‐
tion when declared in this way. It will be destroyed when execution leaves the block
containing this declaration. If the program needs myInstance to persist longer than
this, it can declare myInstance within an outer scope or a longer-lived object and pass
a pointer into functions that need to use myInstance. The declaration can be moved
to file scope if myInstance needs to live as long as the whole program.

Create class member variables statically
When member variables of a class are themselves class instances, these members can
be constructed statically when the containing class is constructed. This saves the cost
of allocating memory for the members.

Sometimes it seems like a class instance must be constructed dynamically because it is
a member of another class, and some resource needed to construct the member is not
available at the time the enclosing class is constructed. An alternative pattern is to
make the problem class (rather than a pointer to it) a member of the containing class,
and simply not to initialize the problem class fully when it is constructed. Create a
member function in the problem class to initialize the variable fully once resources
are available. Then insert a call to the initialization member function at the point
where a dynamic instance would have been instantiated using new. This common pat‐
tern is called two-part initialization.

There is no cost to two-part initialization. The member could not be used before the
point where it was constructed anyway. Any cost of checking whether the member
instance was fully initialized is the same as the cost to see whether the pointer to it
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was nullptr. An additional benefit of the method described here is that an initializa‐
tion member function can return error codes or other information, whereas a con‐
structor cannot.

Two-part initialization is especially useful when a class must do something during
initialization that is time-consuming, like reading a file, or that can fail, like request‐
ing a web page from the Internet. Providing a separate initialization function makes it
possible to do either of these kinds of initialization concurrently (see Chapter 12)
with other program activity, and makes it easier to repeat the second kind of initiali‐
zation in case of failure.

Use Static Data Structures
std::string, std::vector, std::map, and std::list are the containers most C++
developers use every day. Used carefully, they can be reasonably efficient. But they’re
not the only choices. std::string and std::vector reallocate their storage occasion‐
ally to grow as you add items to the container. std::map and std::list allocate a
new node for every added item. Sometimes, this is too expensive. We’ll explore alter‐
natives here.

Use std::array instead of std::vector

std::vector allows the program to define dynamically resizable arrays of any type. If
the size of the array, or the maximum size, is known at compile time, std::array
offers a similar interface, but with a fixed-size array and no calls into the memory
manager.

std::array is copy-constructible and offers standard library–style random-access
iterators and subscripting via operator[]. size() returns the fixed size of the array.

From an optimization standpoint, std::array is almost indistinguishable from C-
style arrays. From a programming standpoint, std::array has a comfortable similar‐
ity to the standard library containers.

Create large buffers on the stack
Chapter 4 demonstrated that inserting into a string can be expensive because of the
need to reallocate the string’s storage as it grows longer. If the developer knows the
maximum possible size the string can reach, or at least its maximum reasonable size,
it may be possible to use an oversized C-style array having automatic storage duration
as a temporary, mutate the string in the temporary, and then copy the result.

The design pattern is to call a function to create or mutate the data, which declares a
very large automatic array. The function copies the data from its argument to the
local array and performs insertions, deletions, or other permutations on the static
array.

Reduce Use of Dynamic Variables | 121



Although there is a limit to the total storage you can declare on the stack, this limit is
frequently very large. On desktop systems, for instance, unless the algorithm uses
very deep recursion, there is room on the stack for arrays of 10,000 characters.

A cautious developer worried about overflowing the local array can check the length
of the argument string or array, and default to a dynamically constructed array if the
argument is too big for the local array.

Why is all this copying any faster than using a dynamic data structure like
std::string? Partly, it’s because mutating operations often copy the input anyway.
Partly it’s because copying blocks of even a few thousand bytes is inexpensive on
desktop-class hardware, compared to the cost of allocating dynamic storage for inter‐
mediate results.

Create linked data structures statically
Linked data structures can be constructed as static initialized data. For instance, the
tree structure shown in Figure 6-1 can be reproduced statically.

Figure 6-1. Simple tree structure

In this particular example, the tree is a binary search tree, the nodes are laid out in an
array in breadth-first order, and the first element is the root:

struct treenode {
    char const* name;
    treenode* left;
    treenode* right;
} tree[] = {
    { "D", &tree[1], &tree[2] }
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    { "B", &tree[3], &tree[4] },
    { "F", &tree[5], nullptr  },
    { "A", nullptr,  nullptr  },
    { "C", nullptr,  nullptr  },
    { "E", nullptr,  nullptr  },
};

This works because the addresses of array elements are constant expressions. This
notation allows any linked structure to be defined, but the initializers are not very
mnemonic, so it’s easy to make a typing error when building such a structure.

Another way to statically create linked structures is to initialize a variable for each
element of the structure. This mechanism is very mnemonic, but has the disadvan‐
tage that forward references (like the one from fourth to first in the following
code) have to be specially declared. The most natural way to declare this structure
(first, second, third, fourth) would require extern declarations for all four variables.
It’s defined in reverse order so that most of the references are to already-declared
variables:

struct cyclenode {
    char const* name;
    cyclenode* next;
}
extern cyclenode first; // forward reference
cyclenode fourth = { "4", &first  );
cyclenode third  = { "3", &fourth };
cyclenode second = { "2", &third  };
cyclenode first  = { "1", &second };

Create binary trees in an array
Most developers learn about binary trees as an example of a linked data structure, in
which each node is a separate instance of a class that contains pointers to the left and
right child nodes. An unfortunate consequence of defining the tree data structure in
this way is that a class storing something as small as a single character requires
enough storage for two pointers as well, plus any overhead imposed by the dynamic
memory manager.

An alternative approach is to build a binary tree in an array. Instead of containing
explicit links to child nodes, the array indexes of a node’s children are computed from
the index of the node. If the index of a node is i, its two children are at index 2i and
2i+1. As an additional bonus, the parent of a node is at index i/2. Because these multi‐
plications and divisions can be implemented as left and right shifts, the computation
is inexpensive even on extremely modest embedded processors.

The nodes of a tree implemented in an array require a mechanism to determine
whether their left and right children are valid nodes in the tree or if they are the
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equivalent of null pointers. If the tree is left-balanced, a single integer retaining the
array index of the first invalid node suffices.

These properties—the ability to compute child and parent nodes, and the efficiency
of representation of a left-balanced tree—make a tree-in-an-array an efficient imple‐
mentation for heap data structures.

A tree-in-an-array representation may be less efficient for balanced binary trees than
a linked representation. An array of up to 2n positions may be required to hold a bal‐
anced binary tree of n nodes, depending on the balancing algorithm. Further, a bal‐
ancing operation requires copying nodes to different array locations, rather than
merely updating pointers. On smaller processors, and for larger node sizes, the copy
operation may be too expensive. But if the node size is smaller than three pointers,
the tree-in-an-array representation may still be a performance win.

Use a circular buffer instead of a deque

std::deque and std::list are so often used for a FIFO (first-in-first-out) buffer that
the standard library has a container adapter called std::queue.

A double-ended queue, or deque, may also be implemented over a circular buffer. A
circular buffer is an array data structure in which the front and back of the queue are
given by two array indexes, modulo the length of the array. A circular buffer has simi‐
lar properties to a deque, including constant-time push_back() and pop_front(),
and random-access iterators. However, a circular buffer does not require reallocation
as long as the consumer keeps up with the producer. The size of the circular buffer
does not determine how many inputs it can process, but instead determines how far
ahead the producer can get.

The difference between a circular buffer and a list or deque is the limit to the number
of items in the buffer made visible by the circular buffer. Specializing the general
queue data structure by exposing this constraint to the user makes a significantly
more efficient implementation possible.

Boost has a circular buffer implemented as a standard library container. There are
plenty of other implementations on the Web. A circular buffer can be designed with a
static buffer whose size is given by a template parameter, with an initial size requiring
a single allocation, or with a dynamically resizable buffer like std::vector. The per‐
formance of the circular buffer is similar to that of std::vector.

Use std::make_shared Instead of new
A shared pointer such as std::shared_ptr really contains two pointers. One points
to the object referred to by the pointer. The other points to a second dynamic variable
holding the reference count shared by all the std::shared_ptrs that refer to the
object. So, a statement like:
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std::shared_ptr<MyClass> p(new MyClass("hello", 123));

calls into the memory manager twice—once to create an instance of MyClass, and
once again to create the hidden reference count object.

The pre-C++11 way around the expense of allocating the reference counter is to add
an intrusive reference count as a base class of MyClass and create a custom smart
pointer that uses the intrusive reference count:

custom_shared_ptr<RCClass> p(new RCClass("Goodbye", 999));

The standard writers heard our pain, and invented a template function called
std::make_shared() that allocates a single block of storage to hold both the refer‐
ence count and an instance of MyClass. std::shared_ptr also has a deleter function
that knows which of the two ways the shared pointer was constructed. Now you know
why std::shared_ptr seems so complicated internally when you step through it in
the debugger.

make_shared() is pretty easy to use:

std::shared_ptr<MyClass> p = std::make_shared<MyClass>("hello", 123);

or the even simpler C++11-style declaration:

auto p = std::make_shared<MyClass>("hello", 123);

Don’t Share Ownership Unnecessarily
Multiple std::shared_ptr instances can share ownership of a dynamic variable.
shared_ptr is useful when the lifetimes of the various pointers overlap unpredictably,
but it is expensive. Incrementing and decrementing the reference count in a
shared_ptr is performed not with a simple increment instruction, but with an expen‐
sive atomic increment with a full memory fence (see “Atomic Operations on Shared
Variables” on page 301) so that shared_ptr works in multithreaded programs.

If the lifetime of one shared_ptr completely encloses the lifetime of another, the
expense of the second shared_ptr is unnecessary. The following code illustrates a
common situation:

void fiddle(std::shared_ptr<Foo> f);
   ...
shared_ptr<Foo> myFoo = make_shared<Foo>();
   ...
fiddle(myFoo);

myFoo owns a dynamic instance of Foo. When the program calls fiddle(), the call
creates a second link to the dynamic Foo instance, incrementing the shared_ptr’s ref‐
erence count. When fiddle() returns, the shared_ptr argument releases its owner‐
ship of the dynamic Foo instance. The caller still owns a pointer. The minimum cost
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of this is an unnecessary atomic increment and decrement, each with a full memory
fence. Across one function call, this extra cost is negligible. But as a programming
practice, making every function argument that passes a pointer-to-Foo a shared_ptr
across a whole program can result in significant cost.

Making the argument to fiddle() a plain pointer saves this cost:

void fiddle(Foo* f);
   ...
shared_ptr<Foo> myFoo = make_shared<Foo>();
   ...
fiddle(myFoo.get());

There is received wisdom that naked C-style pointers should never appear in a pro‐
gram except in the implementation of smart pointers, but another view is that plain
pointers are fine as long as they are understood to represent nonowning pointers. In a
team where developers feel really strongly that plain pointers are the devil’s play‐
things, the same result can be accomplished with references. Making a function argu‐
ment a Foo& sends two messages—that the caller is responsible to ensure the
reference remains valid for the duration of the call, and that the pointer is non-null:

void fiddle(Foo& f);
   ...
shared_ptr<Foo> myFoo = make_shared<Foo>();
   ...
if (myFoo)
    fiddle(*myFoo.get());

The dereferencing operator * converts the pointer-to-Foo returned by get() into a
reference to Foo. That is to say, it generates no code at all, just a note to the compiler.
References are a convention that means “unowned, non-null pointer.”

Use a “Master Pointer” to Own Dynamic Variables
std::shared_ptr is easy. It automates management of a dynamic variable. But as pre‐
viously noted, shared pointers are expensive. In many cases, they are unnecessary.

Very often, a single data structure owns a dynamic variable for its whole lifetime. Ref‐
erences or pointers to the dynamic variable may be passed to and returned by func‐
tions, assigned to variables, and so on, but none of these references outlive the
“master” reference.

If there is a master reference, it can be efficiently implemented using
std::unique_ptr. A naked C-style pointer or C++ reference can be used to refer to
the object during function calls. When this is done consistently, the use of naked
pointers and references documents that these are “unowned” pointers.

A faction of developers become very uncomfortable with any deviation from use of
std::shared_ptr. However, these same developers use iterators every day, not realiz‐
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ing perhaps that they behave as unowned pointers that can be made invalid. My expe‐
rience using master pointers in several large projects is that problems leading to
memory leaks or double frees do not happen in practice. When there is an obvious
owner, master pointers are a big optimization win. When in doubt, std::shared_ptr
is always available.

Reduce Reallocation of Dynamic Variables
Often the convenience of a dynamic variable is just too much to pass up.
std::string comes to mind. But that doesn’t excuse the developer from being care‐
ful. Techniques exist to reduce the number of allocations made when using standard
library containers. These techniques can be generalized even to the developer’s own
data structures.

Preallocate Dynamic Variables to Prevent Reallocation
As data is appended to a std::string or std::vector, its dynamically allocated
internal storage eventually becomes full. The next append operation causes the string
or vector to allocate a larger block of storage and copy the old contents to the new
storage. Both the call to the memory manager and the copy perform many memory
accesses and consume many instructions. Yes, it’s true that an append takes place in
O(1) time, but the constant of proportionality (how big the constant time is in milli‐
seconds) can be significant.

Both string and vector have a member function, reserve(size_t n), that tells the
string or vector to ensure there is sufficient space for at least n entries. If the size can
be computed or estimated, a call to reserve() keeps the string or vector’s internal
storage from needing to be reallocated as it grows to this limit:

std::string errmsg;
errmsg.reserve(100); // only one allocation for all this appending
errmsg += "Error 1234: variable ";
errmsg += varname;
errmsg += " was used before set. Undefined behavior.";

A call to reserve() acts as a hint to the string or vector. Unlike with allocating a
worst-case static buffer, the only penalty for too low a guess is the possibility of addi‐
tional reallocations. Even an extravagant overestimate for the expected size is not a
problem if the string or vector will be used briefly and then destroyed. The
shrink_to_fit() member function of std::string or std::vector can also be used
to return unused space to the memory manager after using reserve() to preallocate
a string or vector.

The standard library hash table type std::unordered_map (see “std::unordered_map
and std::unordered_multimap” on page 256) has a backbone array (a list of buckets)

Reduce Reallocation of Dynamic Variables | 127



containing links to the rest of the data structure. It also has a reserve() member
function. Unfortunately, std::deque, which also has a backbone array, lacks a
reserve() member function.

Developers designing their own data structures containing a backbone array would
do their users a favor by including a function like reserve() to preallocate this back‐
bone.

Create Dynamic Variables Outside of Loops
The following small loop has a big problem. It appends the lines of each file in
namelist to the std::string variable config, then extracts a small amount of data
from config. The problem is that config is created each time through the loop, and
each time through the loop it’s reallocated as it grows longer. Then, at the end of the
loop, config goes out of scope and is destroyed, returning its storage to the memory
manager:

for (auto& filename : namelist) {
    std::string config;
    ReadFileXML(filename, config);
    ProcessXML(config);
}

One way to make this loop more efficient is to move the declaration of config out‐
side the loop. Inside the loop, config is cleared. However, clear() does not free the
dynamically sized buffer inside config. It just sets the length of the contents to zero.
After the first time through the loop, config won’t be reallocated unless a subsequent
file is significantly larger than the first file:

std::string config;
for (auto& filename : namelist) {
    config.clear();
    ReadFileXML(filename, config);
    ProcessXML(config);
} 

A variation on this theme is to make config a class member variable. This latter
advice may smell to some developers like advocating the unclean practice of using
global variables. And in a sense it is. However, making dynamically allocated vari‐
ables long lived can have a dramatic impact on performance.

This trick works not just with std::string, but also with std::vector and any other
data structure that has a dynamically resizable backbone.
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Optimization War Story
I once wrote a multithreaded program in which each thread entered a class instance.
These threads each logged their activities. The logging functions originally defined a
local temporary string into which the log information was formatted. I discovered
that when there were more than half a dozen threads, each banging away at the mem‐
ory manager to create lines of logging information, contention for the memory man‐
ager became so great that performance fell precipitously. The solution was to make
the temporary string that held each log line a class member that was reused for each
logged line. Once the string had been used a few times, it became long enough that
reallocation was never required. Replicating this single trick through a large program
provided the largest performance boost of any change I made, allowing the program
(a telephony server) to scale easily to 10 times as many simultaneous calls.

Eliminate Unneeded Copying
In the classical Kernighan and Ritchie (K & R) definition of C, all the entities that
could be directly assigned were primitive types like char, int, float, and pointers,
which fit into a single machine register. Thus, any assignment statement like a = b;
was efficient, generating only one or two instructions to fetch the value of b and store
it into a. In C++, assignment of basic types like char, int, or float is just as efficient.

But there are simple-looking assignment statements that are not efficient in C++. If a
and b are instances of the class BigClass, the assignment a = b; calls a member
function of BigClass called the assignment operator. The assignment operator can be
as simple as copying the fields of b into a. But the point is that it may do absolutely
anything a C++ function can do. BigClass may have dozens of fields to copy. If Big
Class owns dynamic variables, these may be copied, resulting in calls to the memory
manager. If BigClass owns a std::map with a million entries, or even a char array
with a million characters, the cost of the assignment statement may be significant.

In C++, the initialized declaration Foo a = b; may invoke another member function
called the copy constructor if Foo names a class. The copy constructor and assignment
operator are closely related member functions that mostly do the same thing: copy
the fields of one class instance to another. And like with the assignment operator,
there is no upper limit to the cost of the copy constructor.

A developer scanning a hot piece of code for optimization opportunities must pay
special attention to assignments and declarations, because these are places where
expensive copying may lurk. In fact, copying may occur in any of the following
places:
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• Initialization (calls constructor)
• Assignment (calls assignment operator)
• Function arguments (each argument expression is move- or copy-constructed

into its formal argument)
• Function return (calls move or copy constructor, perhaps twice)
• Inserting items into a standard library container (items are move- or copy-

constructed)
• Inserting items into a vector (all items are move- or copy-constructed if the vec‐

tor is reallocated)

Scott Meyers, among many others, covers the topic of copy construction extensively
and well in his book Effective C++. The brief notes here are just an outline.

Disable Unwanted Copying in the Class Definition
Not every object in a program should be copied. For instance, objects that behave as
entities (see “Value Objects and Entity Objects” on page 112) must not be copied or
they lose their meaning.

Many objects that behave as entities have a considerable amount of state (a vector of
1,000 strings or a table of 1,000 symbols, for instance). A program that inadvertently
copies an entity into a function meant to examine the entity’s state may appear to
function correctly, but the runtime cost of the copy may be considerable.

If copying a class instance is expensive or undesirable, one expedient way to avoid
this expense is to forbid copying. Declaring the copy constructor and assignment
operator private prevents them being called. Since they can’t be called, no definition
is even necessary; the declaration alone is enough. For example:

// pre-C++11 way to disable copying
class BigClass {
private:
    BigClass(BigClass const&);
    BigClass& operator=(BigClass const&);
public:
    ...
};

In C++11, the delete keyword can be appended to a declaration of the copy con‐
structor and assignment operator to achieve the same result. It’s a good idea to make
deleted constructors public because the compiler provides a clearer error message in
this case:

// C++11 way to disable copying
class BigClass {
public:

130 | Chapter 6: Optimize Dynamically Allocated Variables



    BigClass(BigClass const&) = delete;
    BigClass& operator=(BigClass const&) = delete;
    ...
};

Any attempt to assign an instance of a class declared in this way—or pass it by value
to a function, or return it by value, or use it as the value of a standard library con‐
tainer class—will result in compile errors.

Still permitted is to assign or initialize variables with pointers or references to the
class, or pass and return references or pointers to the instance in functions. From an
optimization standpoint, assigning, passing, or returning a pointer or reference is far
more efficient, because the pointer or reference fits into a machine register.

Eliminate Copying on Function Call
I’ll start this section by detailing the overhead during a function call when a C++ pro‐
gram evaluates the arguments. Read carefully, because the consequences for optimi‐
zation are significant. When a program calls a function, each argument expression is
evaluated, and each formal argument is constructed, with the value of the corre‐
sponding argument expression as its initializer.

“Constructed” means that a constructor member function of the formal argument is
invoked. If the formal argument is a basic type like an int, double, or char*, the basic
type’s constructor is conceptual, not an actual function. The program just copies the
value into the formal argument’s storage.

If a formal argument is an instance of some class, however, one of the class’s copy
constructors is called to initialize the instance. In all but trivial cases, the copy con‐
structor is an actual function. Code is executed to call the function, and for whatever
the copy constructor does. If the argument class is a std::list with a million entries,
its copy constructor calls the memory manager a million times to create new entries.
If the argument is a list of maps of strings, that whole data structure may be copied,
node by node. For a very large and complex argument, the copy will probably take
long enough to attract the original developer’s attention. But if the argument only had
a few entries during testing, there’s a risk that the error will remain undiscovered until
the design is long entrenched and becomes an obstacle to scaling the program. Con‐
sider the following example:

int Sum(std::list<int> v) {
    int sum = 0;
    for (auto it : v)
        sum += *it;
    return sum;
}

When the function Sum() shown here is called, the actual argument is a list: for
instance, int total = Sum(MyList);. The formal argument v is also a list. v is con‐
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structed by finding a constructor that takes a reference to a list. This is the copy con‐
structor. The copy constructor for std::list makes a copy of each element of the
list. If MyList is always just a few elements long, the cost, while unecessary, is beara‐
ble. But the overhead can be burdensome as MyList scales. If it has 1,000 elements,
the memory manager is invoked 1,000 times. At the end of the function, the formal
argument v goes out of scope, and those 1,000 elements are returned to the free list
one by one.

To avoid this expense, formal arguments can be defined as types that have trivial copy
constructors. To pass class instances into a function, pointers or references have triv‐
ial constructors. In the previous example, v could be a std::list<int> const&.
Then, instead of copy-constructing an instance of the class, the reference is initialized
with a reference to the actual argument. The reference typically is implemented as a
pointer.

Passing a reference to a class instance can improve performance if copy-constructing
the instance would call into the memory manager to copy its internal data, as with
standard library containers, or when the class contains an array that must be copied,
or has many local variables. There is some cost to accessing the instance through a
reference: the pointer implementing the reference must be dereferenced each time the
instance is accessed. If the function is large, and the function body uses the value of
the argument many times, a point of diminishing returns may be reached where the
cost of continually dereferencing the reference outweighs the cost savings by avoiding
the copy. But for brief functions, passing arguments by reference is a win for all but
the smallest classes.

Reference arguments don’t behave exactly like value arguments. A reference argu‐
ment modified within the function modifies the referenced instance, while modifying
a value argument has no effect outside the function. Declaring reference arguments as
const prevents accidental modification.

Reference arguments can also introduce aliases, which can cause unanticipated
effects. That is, if a function signature is:

void func(Foo& a, Foo& b);

the call func(x,x); introduces an alias. If func() updates a, it will find that b also is
suddenly updated.

Eliminate Copying on Function Return
When a function returns a value, the value is copy-constructed into an unnamed
temporary of the type returned by the function. Copy construction is trivial for basic
types like long or double, or pointers, but when variables are classes, the copy con‐
structor is typically a real function call. The bigger and more complex the class is, the
more time-consuming its copy constructor is. Here is a simple example:
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std::vector<int> scalar_product(std::vector<int> const& v, int c) {
    std::vector<int> result;
    result.reserve(v.size());
    for (auto val : v)
        result.push_back(val * c);
    return result;
}

The cost of copy-constructing that already-constructed return value can be avoided
in some cases by returning a reference, as discussed in the previous section. Unfortu‐
nately, that trick doesn’t work if the value to be returned is computed within the func‐
tion and assigned to a variable with automatic storage duration. Such a variable goes
out of scope when the function returns, leaving a dangling reference to unknown
bytes off the end of the stack that will almost immediately be written over. Worse still,
computing a result within the function is a very common use case, so that most func‐
tions return values, not references.

As if the cost of copy-constructing into the return value wasn’t bad enough, the value
returned from a function is often assigned to a variable in the caller, as in auto res =
scalar_product(argarray, 10);. So, on top of the copy constructor called inside
the function, another copy constructor or assignment operator is invoked in the
caller.

This double copy construction was a tremendous performance killer in early C++
programs. Fortunately, the big-brained folks who brought us the C++ standard and
the many wonderful C++ compilers found a way to eliminate the extra copy con‐
structor. This optimization is variously called copy elision or return value optimization
(RVO). Developers may have heard of RVO, and may think it means they can return
objects by value without worrying about the cost. This is unfortunately not the case.
The conditions under which the compiler can perform RVO are very specific. The
function must return a locally constructed object. The compiler must be able to
determine that the same object is returned on all control paths. The object must have
the same type as the declared return type of the function. To a first order of approxi‐
mation, if a function is brief and has a single control path, the compiler is quite likely
to do RVO. If the function is larger, or the control path is branched, it’s harder for the
compiler to determine that RVO is possible. Compilers also vary in the quality of
their analysis.

There is a way to eliminate construction of a class instance inside the function, plus
both copy constructions (or the equivalent copy constructor followed by assignment
operator) that happen on returning from a function. It involves direct action by the
developer, so the result is deterministically better than hoping the compiler does RVO
in a given situation. Instead of returning a value using a return statement, the value
can be returned as an out parameter, a reference argument updated to the returned
value inside the function:
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void scalar_product(
    std::vector<int> const& v,
    int c,
    vector<int>& result) {
    result.clear();
    result.reserve(v.size());
    for (auto val : v)
        result.push_back(val * c);
}

Here, an out parameter named result has been added to the function’s argument list.
There are several advantages to this mechanism:

• The object is already constructed when the function is called. Sometimes the
object must be cleared or reinitialized, but this is unlikely ever to be more expen‐
sive than construction.

• The object updated inside the function need not be copied into an unnamed tem‐
porary in the return statement.

• Because the actual data is returned in an argument, the return type of the func‐
tion can be void, or the return value can be used for status or error information.

• Because the updated object is already bound to a name in the caller, it need not
be copied or assigned upon return from the function.

But wait, there’s more. Many data structures (strings, vectors, hash tables) have a
dynamically allocated backbone array that can often be reused if a function is called
more than once in a program. Sometimes the result of the function must be saved in
the caller, but this cost is never more than the cost of the copy constructor that would
be called if the function returned a class instance by value.

Are there any extra runtime costs to this mechanism, such as the cost of an extra
argument? Not really. What the compiler actually does with an instance-returning
function is convert it to a form with an extra argument, a reference to uninitialized
storage for the unnamed temporary returned by the function.

There’s one place in C++ where there’s no choice but to return objects by value: oper‐
ator functions. Developers writing matrix math functions who want to use the reada‐
ble operator syntax A = B * C; cannot use reference arguments, but must focus
instead on carefully implementing operator functions so that they can use RVO and
move semantics to maximal efficiency.

Copy Free Libraries
When a buffer, struct, or other data structure to be filled is a function argument, a
reference can be passed through several layers of library calls inexpensively. I have
heard libraries that implement this behavior described as “copy free” libraries. This
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pattern appears in many libraries of performance-critical functions. It’s worth
learning.

For example, the C++ standard library istream::read() member function has the
following signature:

istream& read(char* s, streamsize n);

This function reads up to n bytes into the storage pointed to by s. The buffer s is an
out parameter, so the read data doesn’t have to be copied into newly allocated storage.
Since s is an argument, istream::read() can use the returned value for something
else; in this case, returning its “this” pointer as a reference.

But istream::read() doesn’t actually fetch data from the operating system kernel
itself. It calls another function. While implementations differ, it may call the C library
function fread(), which has the following signature:

size_t fread(void* ptr, size_t size, size_t nmemb, FILE* stream);

fread() reads size*nmemb bytes of data and stores them in the storage pointed to by
ptr. The ptr argument of fread() is the same as the s argument of
istream::read().

But fread() isn’t the end of the calling chain. On Linux, fread() calls the standard
Unix function read(). On Windows, fread() calls the ReadFile() function from
Win32. These two functions have similar signatures:

ssize_t read(int fd, void *buf, size_t count);

BOOL ReadFile(HANDLE hFile, void* buf, DWORD n, DWORD* bytesread,
              OVERLAPPED* pOverlapped);

Both functions take a void* to the buffer to fill in, and a maximum number of bytes
to read. Although its type has been cast from char* to void* on its way down the
calling chain, the pointer refers to the same storage.

There is an alternative design aesthetic that says these structures and buffers should
be returned by value. They are created in the function, so they shouldn’t exist prior to
the function call. The function is “simpler” with one less argument. C++ allows the
developer to return structures by value, so this way must be the “natural” way in C++.
With the developers of Unix, Windows, C, and C++ all behind the copy-free style, I
am bewildered that there are supporters for this alternative aesthetic, which has a
high cost: that of copying the structure or buffer, not once, but several times as it
passes up the layers of a library. If the returned value has dynamic variables, the cost
may include calling the memory manager several times to make copies. An attempt to
allocate the structure once and return a pointer requires ownership of the pointer to
be transferred several times. RVO and move semantics only partially address these
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costs, and require careful attention from the developer to implement well. From the
standpoint of performance, a copy-free design is far more efficient.

Implement the “Copy on Write” Idiom
Copy on write (sometimes abbreviated COW) is a programming idiom used to copy
class instances containing expensive-to-copy dynamic variables efficiently. COW is a
well-known optimization with a long history. It has been used frequently over the
years, especially in the implementation of C++ character string classes. CString char‐
acter strings in Windows use COW. Some older implementations of std::string also
use COW. However, the C++11 standard forbids its use in implementing
std::string. COW is not always an optimization win, so it must be used judiciously,
despite its august tradition.

Normally, if an object that owns a dynamic variable is copied, a new copy must be
made of the dynamic variable. This is called a deep copy operation. An object that
contains nonowning pointers can get by with copying the pointers, rather than the
pointed-to variables. This is called a shallow copy.

The idea of copy on write is that two copies of an object are the same until one of
them is modified. So, until one instance or the other is modified, they can share
pointers to any expensive-to-copy parts. Copy on write initially performs a shallow
copy operation, and delays performing the deep copy until an element of the object is
mutated.

In a modern C++ implementation of COW, any class member that refers to a
dynamic variable is implemented using a shared-ownership smart pointer such as
std::shared_ptr. The class copy constructor copies the shared-ownership pointer,
delaying the creation of a new copy of the dynamic variable until any copy wants to
mutate the dynamic variable.

Any mutating operation in the class checks the reference count of the shared pointer
before proceeding. If the reference count is greater than 1, indicating shared owner‐
ship, the operation makes a new copy of the object, swaps the shared pointer member
with the shared pointer to the new copy, and releases the old copy, decrementing its
reference count. Now the mutating operation can proceed, knowing that the dynamic
variable is unshared.

It’s important to construct the dynamic variable in the COW class using
std::make_shared(). Otherwise, use of the shared pointer costs an extra trip to the
memory manager to get the reference count object. For many dynamic variables, this
is the same cost as simply copying the dynamic variable into new storage and assign‐
ing it to a (nonsharing) smart pointer. So, unless many copies are made, or mutating
operators are not usually called, the COW idiom may not buy anything.
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Slice Data Structures
Slicing is a programming idiom in which one variable refers to a portion of another.
For instance, the experimental string_view type proposed for C++17 refers to a sub‐
string of another character string, containing a char* pointer to the beginning of the
substring and a length that places the substring’s end within the string being referred
to.

Slices are small, easily copied objects, without the high cost of allocating storage for
and copying contents into a subarray or substring. If the sliced data structure is
owned by shared pointers, slices can be completely safe. But experience teaches that
slices are ephemeral. They typically serve their purpose briefly and then go out of
scope, before the sliced data structure can be deleted. string_view, for instance, uses
an unowned pointer into the strings.

Implement Move Semantics
With respect to optimization, the move semantics  added to C++11 are the biggest
thing to happen to C++ in, well, ever. Move semantics solve several recurring prob‐
lems from previous versions of C++. For example:

• An object is assigned to a variable, causing the internal contents of the object to
be copied at significant runtime expense, after which the original object is imme‐
diately destroyed. The effort of copying is wasted, because the contents of the
original object could have been reused.

• The developer wishes to assign an entity  (see “Value Objects and Entity Objects”
on page 112), such as an auto_ptr or resource handle, to a variable. The “copy”
operation in the assignment is undefined on such an object because it has a
unique identity.

Both these cases bite hard in dynamic containers such as std::vector, where the
internal storage of the container must be reallocated as the number of items in the
container grows. The first case makes reallocating a container more expensive than
necessary. The second case prevents entities like auto_ptr from being stored in con‐
tainers at all.

The problem arises because the copy operation  performed by copy constructors and
assignment operators works fine for basic types and unowned pointers, but doesn’t
make sense for entities. Objects with this type of member could be put in C-style
arrays, but not in dynamic containers like std::vector.

Prior to C++11, C++ offered no standard way to efficiently move the contents of a
variable to another variable, leaving nothing behind, for situations when the expense
of copy was not needed.
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Nonstandard Copy Semantics: A Painful Hack
When a variable behaves as an entity, making a copy is typically a one-way ticket to
undefined behavior land. It is good practice to disable the copy constructor and
assignment operator for such a variable. But containers like std::vector require
contained objects to be copied when the container is reallocated, so disabling copy
means you can’t use that type of object in a container.

For the desperate designer wanting to put entities into standard library containers
before the advent of move semantics, a workaround was to implement assignment in
a nonstandard way. For instance, a kind of smart pointer could be created that imple‐
mented assignment as shown in Example 6-1.

Example 6-1. Hacky smart pointer noncopying assignment

hacky_ptr& hacky_ptr::operator=(hacky_ptr& rhs) {
    if (*this != rhs) {
        this->ptr_ = rhs.ptr_;
        rhs.ptr_ = nullptr;
    }
    return *this;
}

This assignment operator compiles and runs. A statement such as q = p; transfers
ownership of the pointer to q, setting the pointer in p to nullptr. Ownership is pre‐
served by this definition. A pointer defined in this way works in std::vector:

Although the signature of the assignment operator offers a subtle hint that rhs is
modified, which is not usual for assignment, the assignment itself offers no clue to its
deviant behavior (see Example 6-2).

Example 6-2. hacky_ptr use causes surprises

hacky_ptr p, q;
p = new Foo;
q = p;
   ...
p->foo_func(); // surprise, dereferences nullptr

A new developer expecting this code to work will be disappointed, possibly after a
lengthy debugging session. Debasing the meaning of “copy” in this way is a coding
horror, difficult to justify even when it seems necessary.

std::swap(): The Poor Man’s Move Semantics
Another possible operation between two variables is “swap,” in which the two vari‐
ables exchange contents. Swap is well defined even when the variables are entities,
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because at the end of the operation, only one variable contains each entity. C++ pro‐
vides the template function std::swap() to exchange the contents of two variables:

 
std::vector<int> a(1000000,0);
   ...
std::vector<int> b; // b is empty
std::swap(v,w);     // now b has a million entries

The default instantiation of std::swap() prior to move semantics is equivalent to
this:

template <typename T> void std::swap(T& a, T& b) {
    T tmp = a; // make a new copy of a
    a = b;     // copy b to a, discarding a's old value
    b = tmp;   // copy temp to b, discarding b's old value
}

This default instantiation works only for objects for which the copy operation is
defined. It is also potentially inefficient: a’s original value is copied twice, and b’s orig‐
inal value is copied once. If type T contains dynamically allocated members, three
copies are made, and two are destroyed. This is more expensive than the conceptual
copy operation, which does only one copy and one delete.

The swap operation’s super power is that it can be applied recursively to the members
of a class. Instead of copying objects referred to by pointers, the pointers themselves
can be swapped. For classes that point to big, dynamically allocated data structures,
swap is far more efficient than copy. In practice, std::swap() can be specialized for
any desired class. Standard containers provide a swap() member function to swap
pointers to their dynamic members. The containers also specialize std::swap(), pro‐
ducing an efficient swap that does not call into the memory manager. User-defined
types may also provide a specialization for std::swap().

std::vector is not defined to use swap to copy its contents when its backbone array
grows, but a similar data structure could be defined to do so.

The problem with swap is that, while it is more efficient than copy for classes with
dynamic variables that require a deep copy, it is less efficient than copy for other
classes. “Swap” at least has a reasonable meaning for both owned pointers and simple
types, which makes it a step in the right direction.

Shared Ownership of Entities
An entity cannot be copied. However, a shared pointer to an entity can. Thus, while it
was not possible to create, for example, a std::vector<std::mutex> prior to move
semantics, one could define a std::vector<std::shared_ptr<std::mutex>>. Copy‐
ing a shared_ptr has a well-defined meaning: to make an additional reference to a
unique object.
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Of course, making a shared_ptr to an entity is a workaround. While it has the
advantage that it uses C++ standard library tools as they were intended to be used, it
is full of unnecessary complexity and runtime overhead.

The Moving Parts of Move Semantics
The standard writers realized they needed to enshrine the “move” operation as a fun‐
damental concept in C++. Move handles transfer of ownership. It is more efficient
than copy, and well defined for both values and entities. The result is called move
semantics. I’m going to hit the highlights of move semantics here, but there are a lot
of minutiae I can’t cover in this brief space. I recommend very highly having a look at
Scott Meyers’s Effective Modern C++; he spends 10 out of 42 total sections on move
semantics. Thomas Becker’s “C++ Rvalue References Explained” provides an accessi‐
ble introduction to move semantics on the Web for free, but there is more to know
than is covered here.

To facilitate move semantics, the C++ compiler was modified to recognize when a
variable exists only as a temporary. Such an instance has no name. For example, the
object returned by a function or resulting from a new-expression has no name. There
can be no other references to such an object. The object is available to initialize or be
assigned to a variable, or to be the argument to an expression or function call, but will
be destroyed at the next sequence point. Such an unnamed value is called an rvalue 
because it is similar to the result of an expression on the right side of an assignment
statement. An lvalue, by contrast, is a value that is named by a variable. In the state‐
ment y = 2*x + 1; the result of the expression 2*x + 1 is an rvalue; it is a tempo‐
rary value with no name. The variable on the left side of the equals sign is an lvalue,
and y is its name.

When an object is an rvalue, its contents can be plundered to become the value of an
lvalue. All that is required is that the rvalue remain in a valid state so its destructor
will behave correctly.

The C++ type system was extended so it can distinguish an rvalue from an lvalue on
function call. If T is any type, the declaration T&& is an rvalue reference to T—that is, a
reference to an rvalue of type T. The function overload resolution rules were exten‐
ded so that when an rvalue is an actual function argument, the rvalue reference over‐
load is preferred, and when an lvalue is an argument, the lvalue reference overload is
required.

The list of special member functions was extended to include a move constructor and
a move assignment operator. These functions are overloads of the copy constructor
and assignment operator that take an rvalue reference. If a class implements the move
constructor and move assignment operator, initializing or assigning an instance can
use efficient move semantics.
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2 The copy constructor and assignment operator are autogenerated even if a destructor is defined, although this
is deprecated as of C++11. The best practice is to explicitly delete the copy constructor and assignment opera‐
tor if they shouldn’t be defined.

Example 6-3 is a simple class containing a unique entity. The compiler autogenerates
move constructors and move assignment operators for simple classes. These move
operators perform a move operation for each member that defines a move operation,
and a copy for other members. This is the equivalent of performing
this->member = std::move(rhs.member) for each member.

Example 6-3. Class with move semantics

class Foo {
    std::unique_ptr<int> value_;
public:
    ...
    Foo(Foo&& rhs) {
        value_ = rhs.release();
    }

    Foo(Foo const& rhs) : value_(nullptr) {
        if (rhs.value_)
            value_ = std::make_unique<int*>(*rhs.value_);
    }
};

Actually, the compiler autogenerates the move constructor and move assignment
operator only in the simple case when the program does not specify a copy construc‐
tor, assignment operator, or destructor,2 and the move operator is not disabled in any
member or base class. This rule makes sense because the presence of definitions for
these special functions implies that something special (rather than memberwise
move) may be required.

If move constructor and move assignment are not provided by the developer or auto‐
generated by the compiler, the program may still compile. What happens is that the
compiler uses the less efficient copy constructor and copy assignment operator.
Because the rules for autogeneration are so complex, it’s good practice to explicitly
declare, default declare, or disable all the special functions (default constructor, copy
constructor, copy assignment operator, move constructor, move assignment operator,
and destructor) together, to make the developer’s intent clear.

Update Code to Use Move Semantics
Updating code to use move semantics can be done on a class-by-class basis. Here’s a
little checklist to help with the process:
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• Identify a problem that could benefit from move semantics. For instance, lots of
time being spent in copy constructors and memory management functions may
point to heavily used classes that would benefit from the addition of a move con‐
structor and move assignment operator.

• Update the C++ compiler (and standard library, if it doesn’t come with the com‐
piler) to a version that supports move semantics. Rerun performance tests after
updating, because this compiler change may significantly improve the perfor‐
mance of code using standard library components like strings and vectors,
changing the hot function leader board.

• Check third-party libraries to see whether there is a newer version that supports
move semantics. Move semantics in the compiler buy the developer nothing at all
if libraries are not also updated to use move semantics.

• Define a move constructor and move assignment operator for classes with identi‐
fied performance problems.

Subtleties of Move Semantics
I won’t say move semantics are a hack. This feature is too important, and the standard
writers really did do a great job of making it semantically similar to copy construc‐
tion. But I think it’s fair to say that move semantics are subtle. This is one of those
features of C++ that has to be used carefully, and with knowledge, to get anything out
of it.

Moving instances into std::vector
It’s not enough just to write a move constructor and move assignment operator if you
want your object efficiently moved when it’s in a std::vector. The developer must
declare the move constructor and move assignment operator noexcept. This is neces‐
sary because std::vector provides the strong exception safety guarantee: that an
exception occurring in a vector operation leaves the vector as it was before the opera‐
tion occurred. The copy constructor doesn’t alter the source object. The move con‐
structor destroys it. Any exception in the move constructor violates the strong
exception safety guarantee.

If the move constructor and move assignment operator are not declared noexcept,
std::vector uses the less efficient copy operations instead. There may be no warning
from the compiler that this has happened, and the code will still run correctly, if
slowly.

noexcept is a very strong promise. Making the noexcept promise means not calling
into the memory manager, or I/O, or any other functions that might throw an excep‐
tion. Or it means swallowing all exceptions, with no way to report that the program
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has done so. On Windows, it means that converting structured exceptions to C++
exceptions is fraught with risk, because violating the noexcept promise means the
sudden, irrevocable termination of the program. But it’s the price of efficiency.

Rvalue reference arguments are lvalues
When a function takes an rvalue reference as an argument, it uses the rvalue refer‐
ence to construct the formal argument. Because the formal argument has a name, it is
an lvalue, even though it was constructed from an rvalue reference.

Fortunately, the developer can explicitly cast an lvalue to an rvalue reference. The
standard library provides the nifty <utility> template function std::move() to do
this job, as shown in Example 6-4.

Example 6-4. Explicit move

std::string MoveExample(std::string&& s) {
    std::string tmp(std::move(s));
//  Watch out! s is now empty.
    return tmp;
}
   ...
std::string s1 = "hello";
std::string s2 = "everyone";
std::string s3 = MoveExample(s1 + s2);

In Example 6-4, the call to MoveExample(s1 + s2) causes s to be constructed from an
rvalue reference, meaning the actual argument is moved to s. The call to
std::move(s) creates an rvalue reference to s’s contents. Since this rvalue reference is
the return value of the function std::move(), it has no name. The rvalue reference
initializes tmp, calling std::string’s move constructor. At this point, s no longer
refers to the actual string argument to MoveExample(). It is probably the empty string.
When tmp is returned, conceptually what happens is the value of tmp is copied to the
anonymous return value, and then tmp is deleted. The value of MoveExample()’s
anonymous return value is copy-constructed into s3. However, what actually happens
in this case is that the compiler is able to perform RVO, so that the argument s is
actually moved directly into the storage of s3. RVO is generally more efficient than
moving.

Here is a move semantics–aware version of the std::swap() function template that
uses std::move():

template <typename T> void std::swap(T& a, T& b) {
{
  T tmp(std::move(a));
  a = std::move(b);
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  b = std::move(tmp);
}

This function performs three moves and no reallocations, provided T implements
move semantics. It falls back on copy otherwise.

Don’t return an rvalue reference
Another subtlety of move semantics is that functions should not normally be defined
as returning rvalue references. Returning an rvalue reference makes intuitive sense.
In a call like x = foo(y), returning an rvalue reference would produce an efficient
move of the returned value from the unnamed temporary to the assignment target x.

But in reality, returning an rvalue reference interferes with the return value optimiza‐
tion (see “Eliminate Copying on Function Return” on page 132), which allows the
compiler to eliminate the copy from the unnamed temporary to the target by passing
a reference to the target into the function in an implicit argument. Making the return
value an rvalue reference produces two move operations, while making the return
value a value produces a single move operation once the return value optimization is
accounted for.

So, neither the actual argument to the return statement nor the declared return type
of the function should be an rvalue reference if RVO is possible.

Moving bases and members
To implement move semantics for a class, you must implement move semantics for
all the bases and members too, as shown in Example 6-5. Otherwise, the bases and
members will be copied instead of moved.

Example 6-5. Moving bases and members

class Base {...};
class Derived : Base {
    ...
    std::unique_ptr<Foo> member_;
    Bar* barmember_;
};

Derived::Derived(Derived&& rhs)
  : Base(std::move(rhs)),
    member_(std::move(rhs.member_)),
    barmember_(nullptr) {

    std::swap(this->barmember_, rhs.barmember_);
}
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Example 6-5 shows a bit of the subtlety of writing a move constructor. Assuming
Base has a move constructor, it is invoked only if the lvalue rhs is cast to an rvalue
reference by calling std::move(). Likewise, std::unique_ptr’s move constructor is
only called if rhs.member_ is cast to an rvalue reference. For barmember_, which is a
plain old pointer, or for any object that does not define a move constructor,
std::swap() implements a move-like operation.

std::swap() may be troublesome when implementing the move assignment opera‐
tor. The problem is that this may refer to an object that already has allocated mem‐
ory. std::swap() doesn’t destroy the unneeded memory. It saves it into rhs, and the
memory isn’t reclaimed until rhs is destroyed. This is potentially a big deal if a mem‐
ber contains a million-character string or a million-entry table. In this case, it is bet‐
ter to explicitly copy the pointer barmember_, then delete it in rhs to keep the
destructor of rhs from freeing it:

void Derived::operator=(Derived&& rhs) {
    Base::operator=(std::move(rhs));
    delete(this->barmember_);
    this->barmember_ = rhs.barmember_;
    rhs.barmember_ = nullptr;
}

Flatten Data Structures
A data structure can be described as flat if its elements are stored together in a contig‐
uous piece of storage. Flat data structures have significant performance advantages
over data structures whose parts are linked together by pointers:

• Flat data structures require fewer expensive calls into the memory manager to
construct than data structures linked together by pointers. Some data structures
(list, deque, map, unordered_map) create many dynamic objects, and others (vec‐
tor) less so. As Chapter 10 repeatedly shows, even when similar operations have
the same big-O performance, flat data structures like std::vector and
std::array have a significant advantage.

• Flat data structures like array and vector take up less memory than node-based
data structures like list, map, and unordered_map, due to the cost of the link
pointers in the node-based structures. Compactness improves cache locality even
if the total number of bytes consumed is not an issue. Flat data structures have an
advantage in cache locality that makes them more efficient to traverse.

• Tricks like making vectors or maps of smart pointers that were required before
the arrival of move semantics in C++11 to store uncopyable objects are no longer
necessary. The significant runtime cost to allocate the smart pointers and the
pointed-to objects can now be eliminated.
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Summary
• Naïve use of dynamically allocated variables is the greatest performance killer in

C++ programs. When performance matters, new is not your friend.
• A developer can be an effective optimizer knowing nothing other than how to reduce

calls into the memory manager.
• A program can globally change how memory is allocated by providing a definition

of ::operator new() and ::operator delete().
• A program can globally change how memory is managed by replacing malloc()

and free().
• Smart pointers automate ownership of dynamic variables.
• Shared ownership of dynamic variables is more expensive.
• Create class instances statically.
• Create class members statically and use two-part initialization if needed.
• Use a master pointer to own dynamic variables, and unowned pointers instead of

sharing ownership.
• Create copy-free functions that pass data out in out parameters.
• Implement move semantics.
• Prefer flat data structures.
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CHAPTER 7

Optimize Hot Statements

The idea is there, locked inside, and all you have to do is remove the excess stone.
—Michelangelo di Lodovico Buonarroti Simoni (1475–1564), in response to the
question, “How do you create your masterpieces?”

Optimizing at the statement level can be modeled as a process of removing instruc‐
tions from the stream of execution, in a manner similar to how Michelangelo described
the process of sculpting his masterpieces. The problem with Michelangelo’s advice is
that it doesn’t address which part of the stone is excess, and which part is the master‐
piece.

The problem with optimizing at the statement level is that, aside from function calls,
no C++ statement consumes more than a handful of machine instructions. Focusing
on such small-scale optimizations doesn’t generally produce enough improvement to
make them worth the effort unless the developer can find factors that magnify the
cost of the statement, making it hot enough to be worth optimizing. These factors
include:

Loops
The cost of statements within a loop is multiplied by the number of times they
are repeated. Loops must be identified by the developer. The profiler may point
to a function containing a hot loop, but it won’t say which loop in the function is
hot. It may point to a function that is hot because it is called from inside one or
more loops, but it won’t say which call sites are hot. Since the profiler does not
point directly to the loop, the developer must inspect the code to find the loop,
using the profiler output as a source of clues.

Frequently called functions
The cost of the function is multiplied by the number of times the function is
called. A profiler points directly to hot functions.
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Idioms used throughout the program
This is a catch-all category of C++ statements and idioms for which less expen‐
sive alternatives exist. If these idioms are widely used within a program, changing
to less expensive idioms may improve overall performance.

Optimizing code at the statement level can produce significant performance improve‐
ments on the smaller, simpler processors that are embedded into instruments, appli‐
ances, peripherals, and toys, because instructions are fetched directly from memory
and executed one after another. However, desktop- and handset-class processors pro‐
vide so much instruction-level concurrency and caching that statement-level optimi‐
zation produces smaller returns than optimizing allocation or copying.

On programs designed for desktop-class computers, statement-level optimization
may thus only be appropriate for frequently called library functions, or the most
inner loops of programs like game graphics engines or programming language inter‐
preters that run flat-out all the time.

An issue with optimizing at the statement level is that the effectiveness of optimiza‐
tions can be compiler-dependent. Each compiler has one or more plans for how to
generate code for a particular C++ statement. A coding idiom that improves perfor‐
mance on one compiler may produce no result on another, or may even slow down
the code. A trick that improved performance when using GCC may not work with
Visual C++. More critically, it means that when a team upgrades to a new compiler
version, the new compiler may deoptimize their carefully tuned code. This is another
reason why statement-level optimization may be less fruitful than other kinds of per‐
formance improvement efforts.

Remove Code from Loops
A loop has two parts: a block of controlled statements that are executed repeatedly,
and a controlling clause that determines how many times the loop is repeated. The
general comments on removing computation from C++ statements apply to the con‐
trolled statements of a loop. With loops, the controlling clause offers extra opportuni‐
ties for optimization because it is, in a sense, overhead.

Consider the for loop in Example 7-1, which traverses a string, replacing space char‐
acters with asterisks.

Example 7-1. Unoptimized for loop

char s[] = "This string has many space (0x20) chars. ";
    ...

for (size_t i = 0; i < strlen(s); ++i)
    if (s[i] == ' ')
       s[i] = '*';
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1 Some readers react, “Aagghh! Why would anyone write such code? Don’t they know std::string has a
constant-time length() function?” Yet this sort of code is distressingly common in programs needing optimi‐
zation. I also wanted to make the example obvious, because I’m illustrating a point.

The test i < strlen(s) in the for loop is performed for each character in the string.1

The call to strlen() is expensive, traversing its string argument to count its charac‐
ters, turning this algorithm from O(n) to O(n2). This is an example of an inner loop
hidden in a library function (see “Estimate the Cost of Loops” on page 64).

Ten million iterations of this loop took 13.238 milliseconds when compiled with Vis‐
ual Studio 2010, and 11.467 milliseconds with Visual Studio 2015. The VS2015 meas‐
urement is 15% faster, signaling that the two compilers are generating somewhat
different code for this loop.

Cache the Loop End Value
The loop end value, the value returned by the expensive call to strlen(), can be pre‐
computed and cached in the loop entry code to improve performance. The modified
for loop looks like Example 7-2.

Example 7-2. for loop with cached end value

for (size_t i = 0, len = strlen(s); i < len; ++i)
    if (s[i] == ' ')
        s[i] = '*';

The effect of this change is dramatic, because strlen() is so costly. A test of the opti‐
mized code runs in 636 milliseconds with VS2010 and 541 milliseconds with VS2015
—nearly 20 times faster than the original. VS2015 is still outrunning VS2010, this
time by 17%.

Use More Efficient Loop Statements
This is the syntax for the C++ for loop:

for (init-expression ; condition ; continue-expression ) controlled-statement

Roughly speaking, this compiles into code that looks like this:

    initial-expression ;
L1: if ( ! condition ) goto L2;
    controlled-statement ;
    continue-expression ;
    goto L1;
L2:
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The for loop must jump twice: once if condition is false, and once more after evalu‐
ating the continue-expression. These jumps may slow down execution. C++ also
has a simpler loop form called the do loop that is less widely used. Its syntax is:

do controlled-statement while ( condition ) ;

Roughly speaking, this compiles into the following code:

L1: controlled-statement
    if ( condition ) goto L1;

So, a for loop can often be simplified into a do loop that may be faster. Example 7-3 is
the example string-scanning code as a do loop.

Example 7-3. for loop converted to do loop

size_t i = 0, len = strlen(s); // for loop init-expression
do {
    if (s[i] == ' ')
        s[i] = ' ';
    ++i;                       // for loop continue-expression
} while (i < len);             // for loop condition

With Visual Studio 2010, this was a performance win: it took 482 milliseconds to run
the test loop, a 12% improvement. With Visual Studio 2015, however, this change
performed significantly less well: 674 milliseconds on the test loop, or 25% slower
than the for loop.

Count Down Instead of Up
A variation on caching the end value is to count down instead of up, caching the end
value in the loop index variable. Many loops have one end condition that is less
expensive to evaluate than the other. For instance, in the loop in Example 7-3, one
end condition is a constant 0, while the other end is an expensive call to strlen().
Example 7-4 is the for loop of Example 7-1 reorganized to count down instead of up.

Example 7-4. Optimized loop counting down

for (int i = (int)strlen(s)-1; i >= 0; --i)
    if (s[i] == ' ')
        s[i] = '*';

Note that I changed the type of the induction variable i from size_t, which is
unsigned, to int, which is signed. The for loop’s termination clause is i >= 0. If i
was unsigned, it would be, by definition, greater than or equal to zero, and the loop
could not terminate. This is a very typical mistake when counting down to zero.
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The same timing test measured this loop at 619 milliseconds when compiled with
Visual Studio 2010, and 571 milliseconds for Visual Studio 2015. It’s not clear that
these results represent a significant change compared to the code in Example 7-2.

Remove Invariant Code from Loops
Example 7-2, where the loop end value is cached for efficient reuse, is an instance of
the more general technique of moving invariant code out of a loop. Code is invariant
with respect to a loop if it does not depend on the loop induction variable. For
instance, in the somewhat contrived loop in Example 7-5, the assignment statement
j = 100; and the subexpression j * x * x are loop-invariant.

Example 7-5. Loop with invariant code

int i,j,x,a[10];
   ...
for (i=0; i<10; ++i) {
    j = 100;
    a[i] = i + j * x * x;
}

The loop can be rewritten as shown in Example 7-6.

Example 7-6. Loop with invariant code moved out

int i,j,x,a[10];
   ...
j = 100;
int tmp = j * x * x;
for (i=0; i<10; ++i) {
    a[i] = i + tmp;
}

Modern compilers are good at finding bits of invariant code (like the ones shown
here) that are computed over and over, and moving the computations out of loops to
improve performance. A developer would not normally need to rewrite this loop
because the compiler already finds the invariant code and rewrites the loop.

When a statement inside a loop calls a function, the compiler may not be able to
determine if the value returned by the function depends on something in the loop.
The function may be complex, or the function’s body may be in another compilation
unit and not visible to the compiler. The developer must manually identify loop-
invariant function calls and remove them from loops.
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Remove Unneeded Function Calls from Loops
A function call can execute an arbitrarily large number of instructions. If the function
is loop-invariant, it’s plainly a good idea to pull it out of the loop to improve perfor‐
mance. In Example 7-1, reproduced here, the call to strlen() is loop-invariant and
can be pulled out of the loop:

char* s = "sample data with spaces";
    ...
for (size_t i = 0; i < strlen(s); ++i)
    if (s[i] == ' ')
        s[i] = '*'; // change ' ' to '*'

Example 7-7 shows what the revised loop might look like.

Example 7-7. Loop where strlen() is loop invariant

char* s = "sample data with spaces";
    ...
size_t end = strlen(s);
for (size_t i = 0; i < end; ++i)
    if (s[i] == ' ')
        s[i] = '*'; // change ' ' to '*'

In Example 7-8, the value returned by strlen() is not loop-invariant, because
removing a space character decreases the string length. The end condition cannot be
pulled out of this loop.

Example 7-8. Loop in which strlen() is not loop-invariant

char* s = "sample data with spaces";
size_t i;
    ...
for (i = 0; i < strlen(s); ++i)
    if (s[i] == ' ')
        strcpy(&s[i], &s[i+1]); // remove space
s[i] = '\0';

There is no simple rule for determining whether a function is loop-invariant in a par‐
ticular situation. Example 7-8 shows that a particular function can be loop-invariant
for one loop, but not invariant for another. This is a place where human judgment is a
superior tool to the compiler’s thorough but limited analysis. (The repeated call to
strlen() is not the only thing less than optimal about this function. Other optimiza‐
tions are left as an exercise.)

One kind of function that can always be pulled out of a loop is a pure function, a func‐
tion whose returned value depends only on the value of its arguments, and which has
no side effects. If such a function appears in a loop, and its argument is not modified
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in the loop, the function is loop-invariant and can be pulled out of the loop. In
Example 7-8, the function strlen() is a pure function. In the first loop, its argument
s is never modified by the loop, so the call to strlen() is loop-invariant. In the sec‐
ond loop, the call to strcpy() modifies s, so the call strlen(s) is not loop-invariant.

Here is another example involving the math functions sin() and cos(), which return
the mathematical sine and cosine of a value in radians. Many mathematical functions
are pure functions, so this situation arises frequently in numerical calculations. In
Example 7-9, a graphics rotation transformation is applied to a figure with 16 verti‐
ces. A timing test performing this transformation 100 million times took 7,502 milli‐
seconds with VS2010 and 6,864 milliseconds with VS2015, with the latter continuing
to show about a 15% speed advantage.

Example 7-9. rotate() with loop containing invariant pure functions

void rotate(std::vector<Point>& v, double theta) {
    for (size_t i = 0; i < v.size(); ++i) {
        double x = v[i].x_, y = v[i].y_;
        v[i].x_ = cos(theta)*x - sin(theta)*y;
        v[i].y_ = sin(theta)*x + cos(theta)*y;
    }
}

The functions sin(theta) and cos(theta) depend only on the function argument
theta. They don’t depend on the loop variable. They can be lifted out of the loop as
shown in Example 7-10.

Example 7-10. rotate_invariant() with invariant pure functions lifted out of the loop

void rotate_invariant(std::vector<Point>& v, double theta) {
    double sin_theta = sin(theta);
    double cos_theta = cos(theta);
    for (size_t i = 0; i < v.size(); ++i) {
        double x = v[i].x_, y = v[i].y_;
        v[i].x_ = cos_theta*x - sin_theta*y;
        v[i].y_ = sin_theta*x + cos_theta*y;
    }
}

The revised function runs the test loop about 3% faster, at 7,382 milliseconds
(VS2010) and 6,620 milliseconds (VS2015).

The savings are less dramatic on a PC than those made by lifting the call to strlen()
in the previous section, because the math functions generally operate on one or two
numbers held in registers and do not access memory like strlen() does. On a retro
PC from the 1990s or an embedded processor without floating-point instructions in
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hardware, the savings might be more dramatic because the computation of sines and
cosines is more expensive.

Sometimes, a function called within a loop does no work at all, or does work that is
not necessary. Such functions can, of course, be removed. It is easy to say, “Well, duh!
No competent developer would call a function that does no useful work!” Far harder
is to remember all the places where a function is called, and check them all when the
function’s behavior changes during the several-year lifetime of a project.

The following is an idiom that I have encountered repeatedly in my career:

UsefulTool subsystem;
InputHandler input_getter;
   ...
while (input_getter.more_work_available()) {
    subsystem.initialize();
    subsystem.process_work(input_getter.get_work());
}

In this recurring pattern, subsystem is repeatedly initialized for processing work, and
then asked to process the next unit of work. There may be something wrong with this
code that can only be determined by inspecting UsefulTool::initialize(). It may
be that initialize() need only be called before the first unit of work is processed, or
perhaps for the first unit of work and also after an error. Often process_work()
establishes on exit the same class invariant that initialize() does. Calling
initialize() each time through the loop just repeats the same code as
process_work(). If so, the call to initialize() can be lifted out of the loop:

UsefulTool subsystem;
InputHandler input_getter;
   ...
subsystem.initialize();
while (input_getter.more_work_available()) {
    subsystem.process_work(input_getter.get_work());
}

It is presumptuous to blame the developer who wrote the original code for being
sloppy. Sometimes the behavior of initialize() changes, moving code into
process_work(). Sometimes the project documentation is inadequate, or the sched‐
ule is rushed, or the purpose of the code of initialize() is unclear, and the devel‐
oper was just programming defensively. But I have found several times that
initialization that only needs to be done once is done every time work is processed.

If saving time is important enough, it is worth looking at each function call in a loop
to see whether that work is actually needed.
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Remove Hidden Function Calls from Loops
Normal function calls have a distinctive look, with a function name and list of argu‐
ment expressions in parentheses. C++ code can also call functions implicitly, without
this easy-to-spot syntax. This can happen when a variable of class type appears in any
of the following situations:

• Declaration of a class instance (calls constructor)
• Initialization of a class instance (calls constructor)
• Assignment to a class instance (calls assignment operator)
• Arithmetic expressions involving class instances (calls operator member func‐

tions)
• Scope exit (calls destructor of class instances declared in the scope)
• Function arguments (each argument expression is copy-constructed into its for‐

mal argument)
• Function return of a class instance (calls copy constructor, perhaps twice)
• Inserting items into a standard library container (items are move- or copy-

constructed)
• Inserting items into a vector (all items are move- or copy-constructed if the vec‐

tor is reallocated)

These function calls are hidden. They don’t have the familiar look of a function call
with a name and argument list; they look like assignments and declarations. It’s easy
to miss the fact that a function is being called. I’ve talked about these before, in “Elim‐
inate Unneeded Copying” on page 129.

Hidden function calls resulting from constructing a function’s formal arguments can
sometimes be eliminated if the function signature is changed to pass a reference or
pointer to the class instead of passing the actual argument by value. The benefit of
this was demonstrated for strings in “Eliminate Copying of String Arguments” on
page 75, and for any object that copies data in “Eliminate Copying on Function Call”
on page 131.

Hidden function calls resulting from copying out the function’s return value can be
removed if the function signature is changed so the class instance to be returned goes
into a reference or pointer argument used as an out parameter instead. The benefit of
this was demonstrated for strings in “Eliminate Copying of Returned String Values”
on page 77, and for any object that copies data in “Eliminate Copying on Function
Return” on page 132.

If an assignment or initialized declaration is loop-invariant, it can be lifted out of the
loop. Sometimes even if the variable needs to be set for each pass through the loop,
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you can lift the declaration out of the loop and perform a less expensive function on
each iteration of the loop. For example, std::string is a class that contains a dynam‐
ically allocated array of char. In the following code:

for (...) {
    std::string s("<p>");
    ...
    s += "</p>";
}

it is expensive to put the declaration of s in the for loop. At the closing brace of the
controlled block of statements, s’s destructor is called. The destructor frees s’s
dynamically allocated memory, so it must be reallocated the next time through the
loop. This code can be rewritten as follows:

std::string s;
for (...) {
    s.clear();
    s += "<p>";
    ...
    s += "</p>";
}

Now s’s destructor is not called until later. This not only saves the cost of a function
call each time through the loop but, as a side effect, the dynamic array inside s is
reused, possibly eliminating a hidden call to the memory manager when characters
are appended to s.

This behavior doesn’t apply only to strings, or only to classes that contain dynamic
memory. A class instance may contain a resource fetched from the operating system,
such as a window or file handle, or may do any expensive thing inside its constructors
and destructors.

Remove Expensive, Slow-Changing Calls from Loops
Some function calls are not invariant, but they might as well be. A good example is a
call to get the current time of day to use in a logging application. It takes a nontrivial
number of instructions to fetch the time of day from the operating system, and more
time to format the time as text. Example 7-11 is a function to format the current time
into a null-terminated character array.

Example 7-11. timetoa(): format the time into an array of char

# include <ctime>

char* timetoa(char *buf, size_t bufsz) {
    if (buf == 0 || bufsz < 9)
        return nullptr; // invalid arguments
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    time_t t  =  std::time(nullptr); // get time from O/S
    tm     tm = *std::localtime(&t); // break time into hours, minutes, seconds
    size_t sz = std::strftime(buf, bufsz, "%c", &tm); // format into buffer
    if (sz == 0) strcpy(buf, "XX:XX:XX"); // error
    return buf;
}

In an experimental test loop, timetoa() took about 700 nanoseconds to fetch the
time and format it. But this cost is significant. It is about twice as long as it takes to
append two text strings to a file. In the same test loop, the statement

out << "Fri Jan 01 00:00:00 2016"
    << " Test log line test log line test log line\n";

took only 372 nanoseconds, whereas the statement

out << timetoa(buf, sizeof(buf)) 
    << " Test log line test log line test log line\n";

took 1,042 nanoseconds.

Logging must be as efficient as possible, or else it slows down the program being log‐
ged. This is bad if it makes the program slower, but worse if that slowdown changes
the program’s behavior so that bugs disappear when logging is turned on. Getting the
current time dominates the cost of logging in this example.

The time of day changes very slowly compared to the instruction execution rate of a
modern computer. Apparently my program could log a million lines between time
ticks. Two consecutive calls to fetch the time of day are thus very likely to return the
same value. If several lines are to be logged at once, it doesn’t make sense to fetch the
time anew for each line.

I ran another test to simulate the behavior of logging when a program requests the
time once, and puts out a group of 10 lines using the same data. As expected, this test
printed lines in an average of 376 nanoseconds per line.

Push Loops Down into Functions to Reduce Call Overhead
If a program iterates through a string, array, or other data structure and calls a func‐
tion for each iteration, it may be possible to improve performance by a technique
called loop inversion. A loop calling a function is inverted by putting the loop inside
the function. This changes the function’s interface to reference the whole data struc‐
ture, rather than referencing a single entry. In this way, the cost of n–1 function calls
can be removed if the data structure contains n entries.

For a very simple example, imagine a library function that replaces nonprinting char‐
acters with a dot (“.”) character:

# include <ctype>
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void replace_nonprinting(char& c) {
    if (!isprint(c))
        c = '.';
}

To replace all the nonprinting characters in a string, a program calls replace_non
printing() in a loop:

for (unsigned i = 0, e = str.size(); i < e; ++i)
    replace_nonprinting(str[i]);

If the compiler cannot inline the call to the replace_nonprinting() function, it will
call the function 26 times if the preceding loop is given the string “Ring the carriage
bell\x07\x07!!” to process.

The library designer might add an overload of replace_nonprinting() to process a
whole string:

void replace_nonprinting(std::string& str) {
    for (unsigned i = 0, e = str.size(); i < e; ++i)
        if (!isprint(str[i]))
            c = '.';
}

The loop is now inside the function, eliminating n–1 calls to replace_nonprint
ing().

Note that the code implementing the behavior of replace_nonprinting() must be
duplicated in the new overload. It doesn’t work to just move the loop around. The
following version actually adds a function call to the previous total:

void replace_nonprinting(std::string& str) {
    for (unsigned i = 0, e = str.size(); i < e; ++i)
        replace_nonprinting(str[i]);
}

Do Some Actions Less Frequently
Here’s a motivating question: “A program’s main loop processes about 1,000 transac‐
tions per second. How frequently does it need to check for a command to terminate
the loop?”

Of course, the answer is, “It depends.” In fact, it depends on two things: how fast the
program needs to respond to the termination request, and how costly it is to check
for termination.

If the program needs to terminate within 1 second to achieve its responsiveness goal,
and it takes an average of 500 ± 100 milliseconds to stop after detecting that shut‐
down was commanded, it is necessary to check every 400 milliseconds (1,000 – (500
+ 100) = 400 milliseconds). Checking more often would be wasteful.
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2 When a real, mechanical key is depressed, it makes a connection that is at first intermittent. Taking an instan‐
taneous look at the connection state may show the key as not pressed when in fact it is still in that initial,
intermittent phase. “Debouncing” delays reporting a key as being pressed until the connection becomes con‐
tinuous; 50 milliseconds is a typical debouncing interval.

The other factor is the cost to check for termination. If the loop is a Windows mes‐
sage loop, and the termination command arrives as the WM_CLOSE Windows message,
there is no extra overhead for checking. The cost is built into dispatching the event. If
a signal handler causes a bool flag to be set, the cost of checking this flag each time
through the loop is tiny.

But what if the loop is on an embedded device where a key press must be polled for,
and the key has to be debounced2 for 50 milliseconds? Testing each time through the
loop will add the 50-millisecond key polling cost to the cost of each transaction,
dropping the transaction rate from 1,000 per second to 1

0 . 051 ≈ 20 transactions per
second. Ouch!

If the program instead polls only at 400-millisecond intervals, the effect on the loop is
less dramatic. The math here is a bit tedious, but let’s go through it. Transactions take
about 1 millisecond (1,000 transactions per second). To complete a 50-millisecond
poll every 400 milliseconds, the poll must be started every 350 milliseconds, or 2.5
times per 1,000 milliseconds. That results in a transaction rate of 1,000 – (2.5 * 50) =
875 transactions per second.

Example 7-12 shows code to check for such a key press.

Example 7-12. Check for events occasionally

void main_loop(Event evt) {
    static unsigned counter = 1;
    if ((counter % 350) == 0)
        if (poll_for_exit())
            exit_program(); // noreturn
    ++counter;

    switch (evt) {
        ...
    }
}

Execution enters main_loop() every millisecond (assuming events occur every milli‐
second). Every time through the loop, counter is incremented. When it reaches 350,
the program calls poll_for_exit(), which takes 50 milliseconds. If the exit key is
detected in poll_for_exit(), the code calls exit_program(), which takes 400–600
milliseconds to shut things down.
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This casual polling method illustrates how to take bigger bites of computation
between polling. It is, however, fraught with assumptions:

• It assumes that events happen every millisecond, and not sometimes every 2 or
every 5 milliseconds, and that the event rate doesn’t slow down if there is no
work.

• It assumes that polling always takes exactly 50 milliseconds.
• It assumes that a debugger will never get control so that no events are processed

for half a minute while the developer inspects some variables.

A more careful approach is to measure the elapsed time from event to event, and
from beginning to end of poll_for_exit().

A developer wishing to achieve the full 1,000 transactions per second under the con‐
straints listed here must find some source of true concurrency to separate polling the
keyboard from the main loop. This is typically implemented via interrupts, multiple
cores, or a hardware keyboard scanner.

What About Everything Else?
There are many sources on the Internet of low-level optimization techniques involv‐
ing loops. For instance, some sources note that ++i is generally faster than i++
because no intermediate value need be saved and returned. Some sources recommend
loop unrolling, to reduce the total number of times the loop test and increment code
is executed.

The problem with these recommendations is that they don’t always make any differ‐
ence at all. You may spend the time to do an experiment and observe no improve‐
ment. The recommendations may be based on conjecture not informed by
experiment, or may apply only to a particular compiler at a particular date. They may
come from a compiler design textbook, describing optimizations that the C++ com‐
piler is already programmed to do. Thirty years on, modern C++ compilers are very
good at finding code to move out of loops. In fact, the compiler is better at it than
most programmers. This is why such optimizations are so often frustratingly ineffec‐
tive, and thus why this section isn’t longer.

Remove Code from Functions
Functions, like loops, consist of two parts: a block of code that is the body of the func‐
tion, and the head of the function consisting of the argument list and return type.
Like with loops, these two parts can be separately optimized.

Although the cost of executing the function’s body can be arbitrarily large, the cost of
calling the function, like the cost of most C++ statements, is minuscule. But when the
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function is called many times, that cost is multiplied and can become significant, so
that reducing this cost becomes important.

Cost of Function Calls
Functions are the oldest and most important abstraction in programming. The pro‐
grammer defines a function once, then calls its name from many locations in the
code. For each call, the computer saves its place in the executing code, transfers con‐
trol to the function body, then returns to the next statement after the function call,
effectively inserting the function’s body into the stream of instruction execution.

This notational convenience does not come for free. Each time a program calls a
function, something like the following happens (depending of course on processor
architecture and optimizer settings):

1. The executing code pushes a new frame onto the call stack to hold the function’s
arguments and local variables.

2. Each argument expression is evaluated and copied into the stack frame.
3. The execution address is copied into the stack frame to form the return address.
4. The executing code updates the execution address to the first statement of the

function body (instead of the next statement after the function call).
5. The instructions in the function body execute.
6. The return address is copied from the stack frame into the instruction address,

transferring control to the statement after the function call.
7. The stack frame is popped off the stack.

There is some good news about the cost of functions. A program with functions is
generally more compact than the same program with large functions expanded
inline. This improves cache and virtual memory performance. Still, all other things
being equal, making frequently called functions more efficient can be an effective
optimization.

Basic cost of function calls
There are a number of details that can slow down function calls in C++, and which
therefore form the basis for optimization of function calls:

Function arguments
Beyond the cost of evaluating the argument expressions, there is a cost to copy
each argument value onto the stack in memory. The first few arguments may be
passed efficiently in registers if they are small, but if there are many arguments, at
least some are passed via the stack.
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Member function calls (versus function calls)
Every member function call has an extra hidden argument: a pointer to the “this”
class instance through which the member function is invoked, that must be writ‐
ten to memory on the call stack or saved in a register.

Call and return
These add nothing to the useful work of the program. They are pure overhead
that would not exist if the function call was replaced by the function body.
Indeed, many compilers attempt to put the function body inline if the function is
small, and if the function definition is available at the point of the function call. If
the function cannot be inlined, there are several costs.

Calling the function requires the execution address to be written to the stack
frame in memory to form the return address.

Function return requires the execution address to be read from the stack and
loaded into the execution pointer. At the call and again at the return, execution
continues at a nonconsecutive memory address. As noted in “Making Decisions
Is Hard for Computers” on page 22, the computer executes consecutive instruc‐
tions very efficiently. However when execution transfers to a nonconsecutive
location, there is a good chance of a pipeline stall and/or a cache miss.

Cost of virtual functions
In C++, the program can define any member function virtual. Derived classes can
define a member function with the same signature that overrides the base class’s vir‐
tual member function, providing a new function body to be used when the virtual
function is called on an instance of the derived class, even if called from a pointer or
reference to the base class’s type. The program selects what function to call when it
dereferences the class instance. The particular override invoked is thus determined at
run time by the actual type of the class instance.

Each instance of a class with virtual member functions contains an unnamed pointer
to a table, called the vtable, which points to the body associated with each virtual
function signature visible in that class. The vtable pointer is generally made the first
field of the class instance to make dereferencing it less expensive.

Since a virtual function call selects one of several function bodies, the code to call a
virtual function dereferences the pointer to the class instance to get a pointer to the
vtable. The code indexes into the vtable (that is, the code adds a small integer offset to
the vtable, and dereferences that address) to get the virtual function’s execution
address. There are thus two extra nonsequential memory loads for every virtual func‐
tion call, each with increased probability of a cache miss and execution pipeline stall.
Another issue with virtual functions is that it is difficult for the compiler to inline
them. The compiler can do so only if it has access both to the function body and to
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the code that constructs the instance (so it can tell which virtual function body to
call).

Member function calls in derived classes
When one class is derived from another, member functions of the derived class may
have to do extra work:

Virtual member functions defined in a derived class
If the most base class (the class at the root of the derivation hierarchy) has no
virtual member functions, the code must add an offset to the “this” class instance
pointer to get to the vtable of the derived class, then index into the vtable to get
the function execution address. This code contains more instruction bytes, and
the instructions are often slower because of the extra arithmetic they do. This
cost is significant on small embedded processors, but on desktop-class processors
instruction-level concurrency hides most of the cost of the extra arithmetic.

Member function calls defined in a derived class with multiple inheritance
The code must add an offset to the “this” class instance pointer to form the class
instance pointer to a multiply inherited class. This cost is significant on small
embedded processors, but on desktop-class processors instruction-level concur‐
rency hides most of the cost of the extra arithmetic.

Virtual member function calls defined in a derived class with multiple inheritance
As for virtual member function calls in a derived class, if the most base class has
no virtual member functions, the code must add an offset to the “this” class
instance pointer to get to the vtable of the derived class, then index into the vta‐
ble to get the function execution address. The code must also add a potentially
different offset to the “this” class instance pointer to form the class instance
pointer of the derived class. This cost is significant on small embedded process‐
ors, but on desktop-class processors instruction-level concurrency hides most of
the cost of the extra arithmetic.

Virtual multiple inheritance
The code must dereference a table in the class instance to determine the offset to
add to the class instance pointer to form the instance pointer of a virtually multi‐
ply inherited class. There is additional overhead, as described previously, if the
called function is virtual.

Cost of pointers to functions
C++ provides function pointers so that code can explicitly choose at run time which
of several function bodies is executed as a result of a function call through the func‐
tion pointer. These mechanisms have additional costs beyond the basic cost of
function call and return:
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Function pointers (pointers to free functions and static member functions)
C++ allows a program to define variables that are pointers to functions. Function
pointers permit the programmer to explicitly choose any free function with a
specific signature, consisting of its list of argument types and return type, to be
called at run time when the function pointer is dereferenced. The program selects
what function to call through the function pointer explicitly, by assigning a func‐
tion to the function pointer.

The code must dereference a pointer to get the execution address of the function.
It is also unlikely that the compiler can inline these functions.

Member function pointers
Member function pointer declarations identify both the function signature and
the class in the context of which the call is interpreted. The program selects what
function to call through the member function pointer explicitly, by assigning a
function to the function pointer.

A member function pointer may have any of several representations. It must be
general enough to call any member function under any of the complex circum‐
stances listed previously. It is not unreasonable to assume worst-case perfor‐
mance for a member function pointer.

Summary of function call costs
A C-style void function call with no arguments is thus the cheapest, having no cost if
it can be inlined, and only two memory accesses plus the cost of two nonlocal trans‐
fers of execution otherwise.

A virtual function call belonging to a derived class whose base class has no virtual
functions, contained in a class having virtual multiple inheritance, is a worst-case sce‐
nario. Fortunately, it is extremely rare. The code must dereference a table in the class
instance to determine the offset to add to the class instance pointer, form the instance
pointer of the virtually multiply inherited function’s instance, then dereference the
instance to get the vtable, then index into the vtable to get the function execution
address.

At this point, the reader may either be shocked that a function call can be so expen‐
sive, or amazed at how efficiently C++ implements very complex features. Both
thoughts are appropriate. The point to understand is that there are costs to calling
functions, and thus opportunities for optimization. The bad news here is that remov‐
ing one nonsequential memory access is not much of an improvement unless the
function is very frequently called. The good news is that a profiler will point directly
to the most frequently called functions, allowing the developer to quickly home in on
the best targets for attention.
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Declare Brief Functions Inline
An effective way to remove function call overhead is to inline the function. To inline
a function, the compiler must have access to the function definition at the point of
the call to be inlined. Functions whose bodies appear inside the body of a class defini‐
tion are implicitly declared inline. Functions defined outside the class definition may
also be explicitly declared inline by declaring them with storage class inline. Addi‐
tionally, the compiler may choose on its own to inline short functions when their def‐
initions appear before their first use in a particular compilation unit. Although the
C++ standard says that the inline keyword is only a “hint” to the compiler, compil‐
ers must be good at inlining in order to be commercially successful.

When the compiler inlines a function, it has additional opportunities to improve the
code, beyond removing the call and return statements. Some arithmetic may be per‐
formed at compile time. Some branches may be eliminated because the compiler
determines they cannot be taken when arguments have particular values. Inlining is
thus a means of removing redundant computation to improve performance, by per‐
forming the computation at compile time.

Function inlining is probably the most powerful code optimization. In fact, the differ‐
ence in performance of the “debug” versus “release” builds in Visual Studio (or the -d
versus -O flags in GCC), comes mostly because by default, debug builds turn off func‐
tion inlining.

Define Functions Before First Use
Defining a function (providing the function body) above the point of the first call to
the function gives the compiler a chance to optimize the function call. The compiler
can choose on its own to inline a function call if it has the function definition avail‐
able when it compiles a call to that function. This even works with virtual functions,
if the compiler can see both the function body and the code that instantiates the class
variable, pointer, or reference through which the virtual function is called.

Eliminate Unused Polymorphism
In C++, virtual member functions are frequently used to implement runtime poly‐
morphism. Polymorphism allows a member function to do one of several different
but semantically related things, depending on the object on which the member func‐
tion is called.

To implement polymorphic behavior, a base class defines a virtual member function.
Any derived classes can choose to override the behavior of the base class function
with behavior specialized to that derived class. The various implementations are all
related by a semantic concept that must be implemented differently for each
derivation.
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A classic example of polymorphism is the Draw() function defined in a hierarchy of
classes derived from DrawableObject, representing graphical objects to draw on the
screen. When a program calls drawObjPtr->Draw(), the implementation of Draw() is
selected by dereferencing the virtual function table in the instance pointed to by
drawObjPtr. The selected implementation of Draw() makes a triangle when the class
instance is an instance of Triangle, a box when it is an instance of Rectangle, and so
forth. The program declares DrawableObject::Draw() virtual, so that the proper
derived class’s Draw() member is called. When the program must select among sev‐
eral implementations at run time, the virtual function table is a very fast mechanism,
despite its overhead of two additional memory loads and their associated pipeline
stalls.

Still, polymorphism can occasionally cause unnecessary overhead. A class may have
originally been designed to facilitate a hierarchy of derived classes that is never imple‐
mented, or a function may have been declared virtual in the expectation of poly‐
morphic behavior that was never implemented. In the preceding example, all the
drawable objects might end up being implemented as a list of points that are connec‐
ted in order, so that the base class version of Draw() is always used. Removing the
virtual specifier on the DrawableObject declaration of Draw() when there are no
overrides speeds up all calls to Draw().

Stop and Think
There is tension between the designer’s wish to say that DrawableObject can be the
root of a set of DrawableObject-derived classes, and the optimizing developer’s wish
to improve performance because the Draw() member function has no overrides. Pre‐
sumably the Draw() member function has been fingered by some experiment as being
costly. If so, the designer will probably bow out. It’s easy to put the virtual specifier
back in later if needed. The wisest optimizing developers know better than to weaken
the design without good reason, and don’t go chasing every virtual function in a pro‐
gram with scalpel in hand.

Discard Unused Interfaces
In C++, virtual member functions can be used to implement interfaces. An interface
is a declaration of a common set of functions that together describe the intended
behavior of an object, and which may be implemented in different ways under differ‐
ent circumstances. A base class defines the interface by declaring a set of pure virtual
functions (functions with declarations, but no function body). Because pure virtual
functions have no body, C++ prevents the interface base class from being instanti‐
ated. Derived classes implement the interface by providing overrides (definitions) for
all the pure virtual functions in the interface base class. An advantage of the interface
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idiom in C++ is that the derived class must implement all the functions declared in
the interface, or the compiler will not allow the program to create instances of the
derived class.

For example, a developer may use an interface class to isolate operating system
dependencies, particularly if the design foresees implementing the program for sev‐
eral operating systems. A class for reading and writing files might be defined by the
interface class File that follows. File is called an abstract base class because it cannot
be instantiated:

// file.h - interface
class File {
public:
    virtual ~File() {}
    virtual bool Open(Path& p) = 0;
    virtual bool Close() = 0;
    virtual int GetChar() = 0;
    virtual unsigned GetErrorCode() = 0;
};

Somewhere else in the code, a derived class WindowsFile is defined, supplying over‐
rides that implement these functions on the Windows operating system. The C++11
keyword override is optional, and tells the compiler that this declaration is meant to
override a virtual function declaration in a base class. When override is specified, if
there is no virtual function declaration in the base class, the compiler issues a warn‐
ing message:

// Windowsfile.h - interface

# include "File.h"
class WindowsFile : public File { // C++11-style declaration
public:
    ~File() {}
    bool Open(Path& p) override;
    bool Close() override;
    int GetChar() override;
    unsigned GetErrorCode() override;
};

In addition to the header file, there is also a windowsfile.cpp file containing the imple‐
mentations of the override functions for the Windows implementation:

// windowsfile.cpp - windows implementation
# include "WindowsFile.h"
bool WindowsFile::Open(Path& p) {
    ...
}
bool WindowsFile::Close() {
    ...
}
...
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Sometimes a program defines an interface, but only provides a single implementa‐
tion. In this case, the cost of the virtual function calls (particularly the frequently used
call to GetChar()) may be saved by eliminating the interface, removing the virtual
keyword from the class definition in file.h, and providing implementations for the
File’s member functions.

Stop and Think
As in the previous section, there is tension between the designer’s wish to clearly
define an interface (which is a Good Thing) and the optimizing developer’s desire to
improve performance (which also matters if GetChar() has been flagged by the pro‐
filer as a hot function). When the program is mature, it may be easier to judge
whether there will likely ever be another implementation. This knowledge can illumi‐
nate the choice to optimize or retain the original design. The optimizing developer, if
she is not the architect who originally defined the interface, must be prepared for
push-back when she proposes this change. She would be well advised to have perfor‐
mance numbers to hand to justify the change.

Select interface implementation at link time
Virtual functions permit a running program to choose among several implementa‐
tions. Interfaces allow a designer to specify what functions must be coded during
development to make an object useful. The problem with implementing the interface
idiom using C++ virtual functions is that virtual functions provide a runtime solution
with runtime cost to a design-time problem.

In the previous section, an interface called File was defined to isolate operating sys‐
tem dependency. The interface was implemented in the derived class WindowsFile. If
the program is ported to Linux, the source code may eventually include a LinuxFile
derivation of the File interface, but WindowsFile and LinuxFile can never be instan‐
tiated in the same program. Each makes low-level calls that are only implemented on
one operating system. The overhead of the virtual function call is unneeded. Further,
if a program reads large files, File::GetChar() may be hot enough to optimize.

The developer can use the linker to select among several implementations if the deci‐
sion doesn’t have to be made at run time. Instead of declaring a C++ interface, the
header file declares (but does not implement) the member functions directly, in much
the same way as if they were standard library functions:

// file.h - interface
class File {
public:
    File();
    bool Open(Path& p);
    bool Close();
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    int GetChar();
    unsigned GetErrorCode();
};

A file called windowsfile.cpp contains the Windows implementation:

// windowsfile.cpp - Windows implementation
# include "File.h"

bool File::Open(Path& p) {
   ...
}

bool File::Close() {
   ...
}
...

A similar file called linuxfile.cpp contains the Linux implementation. The Visual Stu‐
dio project file references windowsfile.cpp. The Linux makefile references linux‐
file.cpp. The decision is implemented by the list of arguments handed to the linker.
Now the call to GetChar() will be as efficient as a function call can be. (Note that
there are other approaches to optimizing a call like GetChar(), including loop inver‐
sion, described in “Push Loops Down into Functions to Reduce Call Overhead” on
page 157.)

Selecting the implementation at link time has the advantage of being very general. Its
disadvantage is that part of the decision is in the .cpp files, and part is in the makefile
or project file.

Select interface implementation at compile time

In the previous section, an implementation of the File abstraction was selected by
the linker. This was possible because the implementation of File depended on the
operating system. A particular program executable can run on only one operating
system, so the decision didn’t have to be made at run time.

If a different compiler is used for the two different implementations of File (say, Vis‐
ual Studio for the Windows version and GCC for the Linux version), the implementa‐
tion can be selected at compile time using #ifdef. The header file remains the same.
This time there is a single file called file.cpp, and the preprocessor selects the imple‐
mentation:

// file.cpp - implementation
# include "File.h"
# ifdef _WIN32
    bool File::Open(Path& p) {
       ...
    }
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    bool File::Close() {
       ...
    }
   ...
# else // Linux
    bool File::Open(Path& p) {
       ...
    }

    bool File::Close() {
       ...
    }
   ...
# endif

This solution requires a preprocessor macro that can be used to select the desired
implementation. Some developers like this solution because more of the decision
making is visible in the .cpp file. Others find it messy and un-object-oriented to have
both implementations in the same file.

Select Implementation at Compile Time with Templates
C++ template specializations are another means of selecting implementation at com‐
pile time. Templates allow the developer to create a family of classes with a common
interface, but behavior that depends on a type parameter to the template. Template
parameters may be any type—class types that provide their own set of member func‐
tions, or basic types that provide their built-in set of operators. There are thus two
interfaces: the public members of the template class, and the interface defined by the
operators and functions invoked on the template parameters. Interfaces defined in
abstract base classes are very strict, requiring the derived class to implement all func‐
tions in the abstract base class. Interfaces defined by templates are less strict. Only
functions in the parameters that are actually invoked by a particular use of a template
need be defined.

This property of templates is a two-edged sword: the compiler doesn’t give an error
message right away if the developer forgets to implement an interface function in a
particular template specialization, but the developer can also choose not to imple‐
ment functions that are inconvenient if they aren’t used in a given context.

From an optimization standpoint, the most important difference between polymor‐
phic class hierarchies and template instances is that generally the whole template is
available at compile time. In most use cases, C++ inlines template function calls,
improving performance in several ways (as noted in “Declare Brief Functions Inline”
on page 165).
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Template programming provides powerful optimizations. For the developer not
familiar with templates, it is worth the considerable mental effort required to learn to
use this C++ feature effectively.

Eliminate Uses of the PIMPL Idiom
PIMPL, short for “Pointer to IMPLementation,” is a coding idiom used as a compila‐
tion firewall, a mechanism to prevent a change in one header file from triggering
recompilation of many source files. During the adolescence of C++ in the 1990s, use
of the PIMPL idiom was justifiable because the compilation time for a large program
might be measured in hours. Here’s how PIMPL works.

Imagine a widely used class called BigClass (declared in Example 7-13) that has
some inline functions and is implemented using classes Foo, Bar, and Baz. Normally,
any change to bigclass.h, foo.h, bar.h, or baz.h, even if the change only amounted to a
single character in a comment, would trigger recompilation of the many files that
included bigclass.h.

Example 7-13. bigclass.h before implementing the PIMPL idiom

# include "foo.h"
# include "bar.h"
# include "baz.h"
class BigClass {
public:
    BigClass();
    void f1(int a) { ... }
    void f2(float f) { ... }
    Foo foo_;
    Bar bar_;
    Baz baz_;
};

To implement PIMPL, the developer defines a new class, called Impl in this example.
bigclass.h is changed as follows, shown in Example 7-14.

Example 7-14. bigclass.h after implementing the PIMPL idiom

class Impl;
class BigClass {
public:
    BigClass();
    void f1(int a);
    char f2(float f);
    Impl* impl;
};

Remove Code from Functions | 171



C++ permits a pointer to be declared that points to an incomplete type—that is, to an
object for which there is no definition yet. In this case, Impl is an incomplete type.
This works because all pointers are the same size, so the compiler knows how to
reserve storage for the pointer. After implementing PIMPL, BigClass’s externally
visible definition does not depend on foo.h, bar.h, or baz.h. The complete definition
of Impl is inside bigclass.cpp (Example 7-15).

Example 7-15. bigclass.cpp, containing the definition of Impl

# include "foo.h"
# include "bar.h"
# include "baz.h"
# include "bigclass.h"

class Impl {
    void g1(int a);
    void g2(float f);
    Foo foo_;
    Bar bar_;
    Baz baz_;
};

void Impl::g1(int a) {
  ...
}

char Impl::g2(float f) {
  ...
}

void BigClass::BigClass() {
    impl_ = new Impl;
}

void BigClass::f1(int a) {
    impl_ -> g1(a);
}

char BigClass::f2(float f) {
    return impl_ -> g2(f)
}

At compile time, after implementing PIMPL, changes to foo.h, bar.h, or baz.h, or the
implementation of Impl cause bigclass.cpp to be recompiled, but bigclass.h is
unchanged, limiting the scope of the recompilation.

At run time, the story is different. PIMPL adds nothing to the program except delay.
Member functions of BigClass that might have been inlined now  require a member
function call. Furthermore, each member function now calls a member function of
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Impl. Projects that use PIMPL often use it in many places, creating many layers of
nested function calls. Furthermore, debugging is tedious due to the extra layers of
function calls.

In 2016, there is little need to use PIMPL. Compilation times are maybe 1% of the
times experienced in the 1990s. Furthermore, even in the ’90s, for PIMPL to be neces‐
sary, BigClass had to be a big class depending on many header files. Such classes vio‐
late many rules of object-oriented programming. Breaking BigClass up to provide
more focused interfaces might be just as effective as implementing PIMPL.

Eliminate Calls into DLLs
Calls into dynamic link libraries (DLLs) on Windows are made through a function
pointer that is either explicitly set in the program if the DLL is loaded on demand, or
implicitly set if the DLL is automatically loaded at startup. Linux has dynamic libra‐
ries too, with the same implementation.

Some DLL calls are necessary. For instance, an application may implement a third-
party plug-in library. Other reasons to use DLLs are less clear-cut. For instance, one
reason DLLs have been used is to provide the ability to patch bugs by replacing just a
DLL. Experience has demonstrated that bug fixes are generally produced in batches,
covering many areas of the program at once. This limits the chance that a single DLL
will contain all the fixes, spoiling this use for DLLs.

Changing DLLs into object code libraries and linking the libraries into a single exe‐
cutable is another way to improve function call performance.

Use Static Member Functions Instead of Member Functions
Every call to a member function has an additional, implicit argument: a “this” pointer
to the class instance whose member is being called. Class member data is accessed via
an offset from the “this” pointer. Virtual member functions must dereference the
“this” pointer to get the vtable pointer.

Sometimes a member function depends only on its arguments, doesn’t access any
member data, and doesn’t call any virtual member functions. In this case, the “this”
pointer serves no purpose.

Such member functions should be declared static. Static member functions don’t
have to evaluate an implicit “this” pointer. They can be referred to with regular func‐
tion pointers instead of more expensive member function pointers (see “Cost of
pointers to functions” on page 163).
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Move Virtual Destructor to Base Class
The destructor of any class that will have derived classes should be declared virtual.
This is necessary so that if a delete-expression references a pointer to the base class,
both the derived class destructor and the base class destructor will be called.

There is another reason to provide some virtual function declaration in the most base
class of any hierarchy: to ensure that a vtable pointer will be included in the base
class.

The base class has a special position in a class hierarchy. If the base class has virtual
member function declarations, the vtable pointer will be at offset zero in any class
instance derived from this base class. If the base class declares member variables and
doesn’t declare any virtual member functions, but some derived class does declare
virtual member functions, every virtual member function call will have to add an off‐
set to the “this” pointer to obtain the address of the vtable pointer. Ensuring that at
least one member function in the base class is virtual forces the vtable to appear at
offset zero, which generates more efficient code.

The destructor is an excellent candidate to be that function. It must be virtual anyway
if the base class will have derived classes. The destructor is called only once during
the life of a class instance, so the cost of making it virtual is minimal except for very
small classes that are constructed and destroyed at a high rate in the program (and
rarely are these small classes used to derive subclasses).

This may seem like such a rare case that it doesn’t deserve mention, but I have worked
on several projects where important class hierarchies had a base class containing an
intrusive reference count, transaction ID, or some such variable. This base class had
little knowledge about what classes might be derived from it. Usually the first deriva‐
tion in the hierarchy was an abstract base class declaring a bunch of virtual member
functions. One thing the base class did know was that instances would eventually be
destroyed.

Optimize Expressions
Below the statement level, at the level of arithmetic expressions involving basic data
types (integers, floats, pointers), there is a final opportunity to optimize. If a very hot
function consists of a single expression, it may be the only opportunity.

Stop and Think
Modern compilers are very good at optimizing expressions involving basic data types.
They are so good that they range from amazing all the way up to provably optimal.
But they are not very brave. They will optimize expressions only when they can prove
that the optimization does not change the behavior of the program.
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Developers are smarter than compilers, though far less meticulous. Developers can
code optimizations in situations where the compiler cannot determine that an opti‐
mization is safe, because developers can reason about the design and the intent of
functions defined in other code modules not visible to the compiler.

It is in these relatively rare cases that developers can do better than compilers.

Optimizing expressions can have a significant effect on smaller processors that exe‐
cute instructions one at a time. On desktop-class processors with multistage pipe‐
lines, the performance improvement is detectable, but not great. This is not the place
to hunt for big game in the optimization jungle. Go here only on those rare occasions
when you must squeeze the final iota of performance out of some red-hot inner loop
or function.

Simplify Expressions
C++ evaluates expressions in strict order by the precedence and associativity of their
operators. The expression a*b+a*c is evaluated as if written ((a*b)+(a*c)) because
the precedence rules in C++ make multiplication higher priority than addition. The
C++ compiler never uses the distributive law to recode this expression to a more effi‐
cient form like a*(b+c). The expression a+b+c is evaluated as if written ((a+b)+c),
because the + operator associates to the left. The compiler never rewrites the expres‐
sion to (a+(b+c)) even though that is equivalent in the math of integers and real
numbers.

The reason C++ leaves its hands off expressions is because the modular arithmetic of
the C++ int type isn’t exactly like the mathematics of integers, and the approximate
arithmetic of the C++ float type is not exactly like real math. C++ must give the pro‐
grammer power to specify his intention precisely, or the compiler will reorder expres‐
sions in ways that cause overflows of various kinds. That means the developer is
responsible for writing expressions in a form that uses the fewest possible operators.

Horner’s rule for evaluating polynomials exemplifies how powerful rewriting expres‐
sions to a more efficient form can be as an optimization. Although most C++ devel‐
opers don’t evaluate polynomials every day, we are all familiar with them.

The polynomial y = ax3 + bx2 + cx + d could be written in C++ as:

y = a*x*x*x + b*x*x + c*x + d;

This statement performs six multiplies and three adds. Horner’s rule uses a repeated
application of the distributive law to rewrite this statement as:

y = (((a*x + b)*x) + c)*x + d;
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The optimized statement performs three multiplies and three adds. In general, Horn‐
er’s rule simplifies an expression from n(n–1) multiplies to n, where n is the degree of
the polynomial.

a / b * c: A Cautionary Tale
The reason C++ does not reorder arithmetic expressions itself is because it’s danger‐
ous. Numerical analysis is another subject that produces whole books. This is a single
example of what can go wrong.

The C++ compiler will evaluate the expression a / b * c as if it was parenthesized
((a / b) * c). But there’s a problem with this expression. If a, b, and c are integral
types, the result of a / b is not exact. Thus, if a = 2, b = 3, and c = 10, a / b * c is
2 / 3 * 10 = 0, when we really want it to be 6. The problem is that the inexactness in
a / b is multiplied by c, producing a very incorrect result. A developer with good
math skills might rearrange this expression as c * a / b, which the compiler will
evaluate as if parenthesized ((c * a) / b). Then 2 * 10 / 3 = 6.

Problem solved, right? Well actually, no. If you do the multiplication first, there is a
danger of overflow. If a = 86,400 (the number of seconds in a day), b = 90,000 (a con‐
stant used in video sampling), and c = 1,000,000 (the number of microseconds in a
second), the expression c * a overflows a 32-bit unsigned. The original expression,
while having a significant error, is less wrong than the revised one.

The developer is solely responsible for knowing that the expression as written, with
arguments having the expected magnitudes, will produce a correct result. The com‐
piler cannot help with this task, which is why it leaves expressions alone.

Group Constants Together
One thing the compiler can do is evaluate constant expressions. Faced with an expres‐
sion like

seconds = 24 * 60 * 60 * days;

or

seconds = days * (24 * 60 * 60);

the compiler can evaluate the constant part of the expression to produce something
equivalent to

seconds = 86400 * days;

But if the programmer writes

seconds = 24 * days * 60 * 60;

the compiler is obliged to perform the multiplications at run time.

176 | Chapter 7: Optimize Hot Statements



Always group constant expressions together with parentheses, or put them on the left
side of the expression, or better yet, separate them out into the initializer of a const
variable or put them in a constexpr function if your compiler supports this C++11
feature. This allows the compiler to efficiently evaluate the constant expression at
compile time.

Use Less-Expensive Operators
Some arithmetic operations are less expensive to compute than others. For instance,
all but the smallest processors in use today can perform a shift or addition in one
internal clock cycle. A few specialized digital signal processor chips have single-cycle
multipliers, but for PCs, multiplication is an iterated computation similar to the deci‐
mal multiplication procedure taught to schoolchildren. Division is a more complex
iterated procedure. This hierarchy of costs provides opportunities for optimization.

For instance, the integer expression x*4 can be recoded more efficiently as x<<2. Any
half-decent compiler already performs this reduction in strength optimization. But
what if the expression is x*y or x*func()? In many cases, the compiler cannot deter‐
mine that y or func() always produces a value that is a power of two. This is where
the programmer’s knowledge and skill beats the compiler. If one argument or the
other can be modified to provide the exponent rather than the power of two value,
the developer can rewrite the expression to use shift instead of multiplication.

Another possible optimization is to rewrite a multiplication into a sequence of shifts
and adds. For instance, the integer expression x*9 can be rewritten as x*8+x*1, which
in turn can be rewritten as (x<<3)+x. This optimization is most effective when the
constant operand does not contain many set bits, because each set bit expands to a
shift-and-add term. It’s effective on desktop- or handset-class processors that have
instruction caches and pipelined execution units, and on very small processors where
long multiplication is a subroutine call. Like all optimizations, this one should be tes‐
ted to be sure it improves performance on a particular processor, but it is generally a
win.

Use Integer Arithmetic Instead of Floating Arithmetic
Floating-point arithmetic is expensive. Floating-point numbers have a complex inter‐
nal representation with a normalized integer mantissa, a separate exponent, and two
signs. The hardware that implements the floating-point unit on a PC may occupy as
much as 20% of the die area. Some multicore processors share a single floating-point
arithmetic unit but have multiple integer arithmetic units per core.

Integer results can be computed at least 10 times faster than equivalent floating-point
results, even on processors with hardware floating-point arithmetic units, and even
when results of integer division are rounded instead of truncated. On small process‐
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ors where floating-point math is implemented via a function library, integer math is
many times faster. And yet, it is very typical to find developers using floating point
for things as simple as rounded division.

Example 7-16 is the way most code I’ve encountered produces a rounded quotient. It
converts the integral arguments to floating point, performs the division, and rounds
the result.

Example 7-16. Integer rounding with floating point

unsigned q = (unsigned)round((double)n / (double)d));

A test loop that repeats this operation 100 million times took 3,125 milliseconds on
my PC.

To obtain a rounded integral quotient, it is necessary to look at the remainder from
division. The value of the remainder ranges from 0 to d–1, where d is the denomina‐
tor. If the remainder is greater than or equal to half the denominator, the quotient
should be rounded up to the next integer. The formula for signed integers is only a bit
more complex.

C++ provides a function ldiv() from the C runtime library, which produces a struc‐
ture containing both the quotient and remainder. Example 7-17 is a function to
round a division result using ldiv().

Example 7-17. Rounding integer division using ldiv()

inline unsigned div0(unsigned n, unsigned d) {
    auto r = ldiv(n, d);
    return (r.rem >= (d >> 1)) ? r.quot + 1 : r.quot;
}

This function isn’t perfect. ldiv() expects int arguments, and complains about a
signed/unsigned mismatch. It produces a correct result if both arguments are positive
when regarded as ints. div0() runs the test loop in 435 milliseconds, a satisfying 6
times faster than the floating-point version.

Example 7-18 is a function to compute the rounded quotient of two unsigned argu‐
ments.

Example 7-18. Rounding integer division

inline unsigned div1(unsigned n, unsigned d) {
    unsigned q = n / d;
    unsigned r = n % d;
    return r >= (d >> 1) ? q + 1 : q;
}
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div1() computes the quotient and remainder. (d >> 1) is an efficient, reduced-
strength form of d/2, which is half the denominator d. If the remainder is greater
than or equal to half the denominator, the quotient is rounded up. Key to the success
of this function is an optimization performed by the compiler. The x86 machine
instruction that divides two integers produces both a quotient and a remainder. The
Visual C++ compiler is smart enough to invoke this instruction only once when this
code is executed. The same test, calling this function instead of using floating-point
math, took 135 milliseconds. This is a rewarding 22 times faster.

Example 7-19 is another way to round an unsigned that is even faster, though at a
price.

Example 7-19. Rounding integer division

inline unsigned div2(unsigned n, unsigned d) {
    return (n + (d >> 1)) / d;
}

div2() adds half the denominator d to the numerator n before dividing. div2()’s
weakness is that for large numerators, n + (d >> 1) may overflow. If the developer is
aware of the general magnitude of the arguments, div2() is very fast, at 102 millisec‐
onds in the test loop (30 times faster than the floating-point version that is so com‐
mon).

Double May Be Faster than Float
On my i7 PC running Visual C++, double floating-point computations were faster
than float floating-point computations. First I present the result, then I will specu‐
late about why this may occur.

The following code iteratively computes the distance traveled by a falling body, a typi‐
cal floating-point computation:

float d, t, a = -9.8f, v0 = 0.0f, d0 = 100.0f;
for (t = 0.0; t < 3.01f; t += 0.1f) {
    d = a*t*t + v0*t + d0;

Ten million iterations of this loop consumed 1,889 milliseconds.

The same routine coded to use double variables and constants looks like this:

double d, t, a = -9.8, v0 = 0.0, d0 = 100.0;
for (t = 0.0; t < 3.01; t += 0.1) {
    d = a*t*t + v0*t + d0;

Ten million iterations of this version took only 989 milliseconds, making the double
version almost twice as fast.

Optimize Expressions | 179



Why does this happen? Visual C++ generates floating-point instructions that refer‐
ence the old “x87 FPU coprocessor” register stack. In this scheme, all floating-point
computations are performed in a single 80-bit format. Single-precision float and
double-precision double values are lengthened when they are moved into the FPU
registers. The conversion for float may take more time than the conversion for
double.

There are many ways to compile floating-point operations. On the x86 platform,
using the SSE registers allows computation to be done directly in four different sizes.
A compiler that used SSE instructions might behave differently, as might a compiler
for a non-x86 processor.

Replace Iterative Computations with Closed Forms
What is it about C++ and bit-twiddling? Does the rich collection of arithmetic and
bit-logical operators in C++ just facilitate moving bits around, or did the need to get
bits of information into and out of device registers and network packets mold C++
into the language it is today?

Many occasions arise to count the number of set bits, find the most significant bit,
determine the parity of bits in a word, determine whether the bits in a word represent
a power of two, and so on. Most of these problems have simple O(n) solutions involv‐
ing iterating through the n bits of the word. There may be more complex iterative sol‐
utions with better performance. But for some problems, there are faster and more
compact closed-form solutions: constant-time computations that produce a solution
without the need for iteration.

For example, there is a simple iterative algorithm to determine whether an integer
value is a power of two. All such values have a single bit set, so counting the number
of set bits is one solution. A simple implementation of this algorithm might look like
Example 7-20.

Example 7-20. Iterative test of whether an integer is a power of 2

inline bool is_power_2_iterative(unsigned n) {
    for (unsigned one_bits = 0; n != 0; n >>= 1)
        if ((n & 1) == 1)
            if (one_bits != 0)
                return false;
            else
                one_bits += 1;
    return true;
}

A test loop of this algorithm took 549 milliseconds.
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3 Beeler, Michael, Gosper, R. William, and Schroeppel, Rich, “HAKMEM,” Memo 239, Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 1972.

This problem also has a closed-form solution. If x is the nth power of two, it has a
single set bit in the nth position (counting from zero for the least significant bit). Then
x–1 is a bitmask with set bits in positions n–1,...,0, and x & (x–1) equals zero. If x is
not a power of two, it has some additional bits set, x–1 zeros out only the least signifi‐
cant set bit, and x & (x–1) does not equal zero.

A function to determine whether x is a power of two using the closed form looks like
Example 7-21.

Example 7-21. Closed-form test of whether an integer is a power of 2

inline bool is_power_2_closed(unsigned n) {
    return ((n != 0) && !(n & (n - 1)));
}

The same test loop using this revised function runs in 238 milliseconds, 2.3 times as
fast. There are even faster ways. Rick Regan has an excellent web page that explores
10 ways, with timing measurements.

Get a Copy of Hacker’s Delight
The preceding section contains some advice on efficient bit-twiddling, but it’s only a
sample to get you interested. There are hundreds of little tricks to improve arithmetic
performance.

There is a book that should be in the library of every developer with an interest in
optimizing at the expression level: Hacker’s Delight by Henry S. Warren, Jr. (Addison-
Wesley Professional), now in its second edition. If you have the slightest interest in
efficient expressions, reading Hacker’s Delight is like opening your first Lego kit or
building your first electronic circuit from discrete components. Warren also main‐
tains a website for Hacker’s Delight, with even more interesting links and discussions.

For a free taste of the Hacker’s Delight drug, you can peruse MIT Artificial Intelligence
Laboratory Memo 239, affectionately known as HAKMEM,3 on the Web. HAKMEM
is the conceptual ancestor of Hacker’s Delight, chock-full of bit-twiddling hacks collec‐
ted at a time when the fastest processors were 10,000 times slower than your phone.

Optimize Control Flow Idioms
As noted in “Making Decisions Is Hard for Computers” on page 22, computation is
faster than flow of control, due to pipeline stalls that occur in the processor when the
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instruction pointer must be updated to a nonconsecutive address. The C++ compiler
tries hard to reduce the number of instruction pointer updates. It pays to be aware of
what the compiler is doing in order to write the fastest code possible.

Use switch Instead of if-elseif-else
The flow of control in an if-else if-else statement is linear: evaluate the if condi‐
tion, and if true, execute the first controlled block. Otherwise evaluate each else if
condition, and execute the controlled block for the first one that evaluates to true.
Testing a variable for each of n values, takes an if-then-else if sequence with n
controlled blocks. If all possible cases are about equally likely, the if-then-else if
sequence makes O(n) comparisons. When this code is executed very frequently, as for
event or instruction dispatch code, the cost adds up significantly.

The switch statement will also test a variable for each of n values, but the form of the
switch statement, which compares the switch value against a series of constants, lets
the compiler perform a number of useful optimizations.

In a frequently occurring case, when the constants to be tested against are taken from
a set of sequential or nearly sequential values, the switch statement compiles into a
jump table indexed by the test value or an expression derived from the test value. The
switch statement performs a single indexing operation and jumps to the address in
the table. The cost of the comparison is O(1), no matter how many cases appear. The
cases don’t have to be presented in sequential order; the compiler can sort the jump
table.

When the constants form a sequence with large gaps, a jump table becomes unma‐
nageably large. The compiler may still sort the tested constants and emit code that
performs a binary search. For a switch statement comparing against n values, the
worst-case cost of this search is O(log2 n). In any case, the compiler never emits code
for a switch statement that is slower than an equivalent if-then statement.

Sometimes a single branch of the if-elseif-else logic is very probable. In this case, the
amortized performance of an if statement may approach a constant if the very prob‐
able case is tested first.

Use Virtual Functions Instead of switch or if
Before C++, if developers wanted to introduce polymorphic behavior in a program,
they might have coded a struct or union type with a discriminator variable that told
what the particular struct or union represented. The program would have been full
of code that looked like this:

if (p->animalType == TIGER) {
    tiger_pounce(p->tiger);
}
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else if (p->animalType == RABBIT) {
    rabit_hop(p->rabbit);
}
else if (...)

Most experienced developers know this antipattern is the poster child for object-
oriented programming. But it takes a while for the object-oriented mindset to
become ingrained in novice developers. I have seen lots of production C++ code con‐
taining halfway-objectified code like this:

Animal::move() {
    if (this->animalType == TIGER) {
        pounce();
    }
    else if (this->animalType == RABBIT) {
        hop();
    }
    else if (...)
...
}

From an optimization standpoint, the problem with this code is the use of a block of
if statements to discriminate the derived type of the object. C++ classes already con‐
tain a mechanism to do this: virtual member functions, and the vtable pointer as dis‐
criminator.

A virtual function call indexes into the vtable to get the address of the virtual function
body. It’s a constant-time operation, always. Thus, a virtual move() member function
in the base class is overridden in derived classes representing each animal with the
code for pounce, hop, swim, and so on.

Use No-Cost Exception Handling
Exception handling is one of those optimizations best applied at design time. The
design of an error propagation method ripples through every line of a program, so
retrofitting a program for exception handling may be too expensive. That said, use of
exception handling leads to programs that are faster when they execute normally, and
better behaved when they fail.

Some C++ developers regard the C++ exception handling facility with suspicion.
There is received wisdom that exception handling makes programs larger and slower,
and that turning exception handling off via a compiler switch is thus an optimization.

The truth is more complex. It is true that if a program doesn’t use exception handling,
turning it off via a compiler switch will make the program smaller, and maybe a bit
faster. Jeff Preshing measured the cost at between 1.4% and 4% in a blog entry. But it
isn’t clear exactly how well the resulting program will work. All the containers in the
C++ standard library use new expressions that throw exceptions. Many other libra‐
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ries, including stream I/O and the concurrency libraries covered in this book (see
Chapter 12) throw exceptions. The dynamic_cast operator throws exceptions. With
exception handling turned off, it isn’t clear what happens when the program encoun‐
ters a situation where it would throw an exception.

If the program doesn’t throw exceptions, it may completely ignore error codes. In this
case, the developer gets what she deserves. Otherwise, the program must patiently,
carefully pass error codes up through its many layers of function calls, translating
error codes from one code set to another at library boundaries and freeing resources
as it goes. It must do this whether each operation succeeds or fails.

With exceptions, some of the cost of handling errors is moved from the happy path of
normal program execution to the error path. In addition, the compiler automatically
reclaims resources by invoking the destructors of all automatic variables on the path
between the exception throw and the try/catch block that handles the exception.
This simplifies the logic of the program’s happy path, with consequent performance
gains.

In the early days of C++, each stack frame contained an exception context: a pointer
to the list of objects that had been constructed, and thus must be destroyed if an
exception was thrown through the stack frame. This context was updated dynami‐
cally as the program executed. This was undesirable because it put runtime cost in the
happy path; this may be the source of the legend of the high cost of exception han‐
dling. A newer implementation maps the objects that need to be destroyed to a range
of instruction pointer values. This mechanism has no runtime cost unless an excep‐
tion is thrown, so exceptions are very inexpensive. Visual Studio uses this newer no-
cost mechanism for 64-bit builds, and the older mechanism for 32-bit builds. The
mechanism is selectable by a compiler switch in Clang.

Don’t use exception specifications
Exception specifications decorate function declarations, saying what exceptions the
function may throw. A function with no exception specification may throw excep‐
tions without penalty. A function with an exception specification may throw only the
exceptions listed in the specification. If it throws any other exception, the program is
unconditionally and immediately stopped by a call to terminate().

There are two problems with exception specifications. One problem is that it is diffi‐
cult for the developer to know what exceptions may be thrown by a called function,
especially one in an unfamiliar library. This makes programs using exception specifi‐
cations brittle and likely to fail suddenly.

The second problem is that exception specifications negatively affect performance.
Thrown exceptions must be checked, as if every function call with an exception speci‐
fication entered a new try/catch block.
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Traditional exception specifications were deprecated as of C++11.

C++11 introduced a new exception specification called noexcept. Declare a function
noexcept tells the compiler that the function cannot possibly throw any exception. If
the function does throw one, terminate() is called just as in the throw() specifica‐
tion. The difference is that the compiler requires certain move constructors and move
assignment statements to be declared noexcept to implement move semantics (dis‐
cussed in “Implement Move Semantics” on page 137). The noexcept specification on
these functions serves as a declaration that move semantics are more important than
the strong exception safety guarantee for certain objects. It’s very obscure, I know.

Summary
• Optimizing at the statement level doesn’t provide enough improvement to make it

worthwhile unless there are factors that magnify the cost of the statement.
• The cost of statements in loops is magnified by the number of iterations of the loops.
• The cost of statements in functions is magnified by the number of times the func‐

tions are called.
• The cost of a frequently used idiom is magnified by the number of times the idiom is

used.
• Some C++ statements (assignment, initialization, function argument evaluation)

contain hidden function calls.
• Function calls into the operating system are expensive.
• An effective way to remove function call overhead is to inline the function.
• There is currently little need for the PIMPL idiom. Compile times today are maybe

1% of what they were when PIMPL was invented.
• double arithmetic may be faster than float arithmetic.
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CHAPTER 8

Use Better Libraries

A great library is one nobody notices because it is always there, and always has what
people need.

—Vicki Myron, author of Dewey, the Small Town Library Cat, and librarian of the
town of Spencer, Iowa

Libraries are an area of focus in the optimization process. Libraries provide the prim‐
itives from which programs are built up. Library functions and classes are often used
at the bottom of nested loops, and are thus often hot. Libraries provided by the com‐
piler or operating system command attention to see that they are used efficiently.
Project-specific libraries deserve careful design to ensure that they can be used effi‐
ciently.

This chapter discusses issues in the use of the C++ standard library, then examines
issues in the design of custom libraries that bear on optimization.

Most of Optimized C++ is about tweaking functions to improve performance. This
chapter offers instead advice for designers who need to achieve high performance in
their initial design, based on my personal experience. Although I introduce this dis‐
cussion in the context of library design, this section is also a checklist of how good
C++ design techniques contribute to good performance.

Optimize Standard Library Use
C++ provides a compact standard library for the following general uses:

• Determining implementation-dependent behavior, like the largest and smallest
values of each numeric type.

• Functions that might not best be written in C++, like strcpy() and memmove().
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• Easy to use but fussy to write and validate portable transcendental math func‐
tions like sine and cosine, log and power, random numbers, and so on.

• Portable, general data structures like strings, lists, and tables that do not depend
on the operating system except for memory allocation.

• Portable, general algorithms for searching, sorting, and transforming data.
• Functions that connect to basic services of the operating system in an operating

system–independent way, to perform tasks like memory allocation, threading,
timekeeping, and stream I/O. This includes a library of functions inherited from
the C programming language for compatibility.

Much of the C++ standard library consists of template classes and functions that pro‐
duce extremely efficient code.

Philosophy of the C++ Standard Library
In keeping with its mission as a systems programming language, C++ provides a
somewhat Spartan standard library. The standard library is meant to be simple, gen‐
eral, and fast. Philosophically, functions and classes enter the C++ standard library
either because they cannot be provided any other way, or because they promote very
wide reuse across multiple operating systems.

Advantages of the C++ approach include that C++ programs can run on hardware
that provides no operating system at all, and that programmers can choose a special‐
ist library tailored to the features of a particular operating system when that is appro‐
priate, or use a cross-platform library when platform independence is the goal.

By contrast, some programming languages, including C# and Java, provide extensive
standard libraries that include windowing user interface frameworks, web servers,
socket networking, and other large subsystems. An advantage of the all-inclusive
approach is that developers need only learn one set of libraries to be effective on any
supported platform. But such libraries impose many requirements on the operating
systems on which they can be made to run (sometimes deliberately). The libraries
provided with a programming language also come to represent a least common
denominator, less powerful than the native windowing system or networking capabil‐
ities of any specific operating system. They can thus be somewhat limiting to pro‐
grammers accustomed to the native capabilities of a specific OS.

Issues in Use of the C++ Standard Library
While the following discussion is tailored to the C++ standard library, it applies
equally to the standard Linux libraries, the POSIX library, or any other widely used
cross-platform library. Usage issues include the following:
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Standard library implementations have bugs
Although bugs are an inevitable part of software development, even experienced
developers may not have encountered bugs in standard library code. They may
thus have come to believe that the various implementations of the standard
library are rock solid. I am sorry to burst this happy bubble. In writing this book,
I came across several standard library bugs.

Classic “Hello, World!” programs are quite likely to work as expected. However,
optimization takes the developer into the dark corners and back alleys of the
standard library, where bugs are most likely to lurk. The optimizing developer
must be ready for occasional disappointment when a promising optimization
cannot be implemented, or when an optimization that works on one compiler
produces an error message on another.

How can it happen that 30-year-old code still contains bugs, the reader may ask?
For one thing, the standard library has been evolving for all that time. The defini‐
tion of the library and the code that implements it has always been a work in pro‐
gress. It’s not 30-year-old code. The standard library is maintained separately
from the compiler, which also has bugs. For GCC, the library maintainers are
volunteers. For Microsoft’s Visual C++, the standard library is a purchased third-
party component that has its own release schedule that differs from both the Vis‐
ual C++ release cycle and the C++ standard release cycle. Changing requirements
of the standard, diffuse responsibility, schedule issues, and the complexity of the
standard library all take their inevitable toll on quality. What is actually more
interesting is that there are so few bugs in the standard library implementations.

Standard library implementations may not conform to the C++ standard
There is probably no such thing as a “standard-conforming implementation.” In the
real world, compiler vendors consider their tools to be shippable if they provide a
reasonably large subset of the relevant C++ standard, including its most impor‐
tant features.

As for libraries, these are released on a different schedule from that of the com‐
piler, and the compiler is released on a different schedule from that of the C++
standard. A standard library implementation may either lead or trail the standard
conformance of the compiler. Different parts of the library my lead or trail to dif‐
ferent extents. For developers interested in optimization, changes in the C++
standard, such as the change in optimal insertion points for new map entries (see
“Inserting and Deleting in std::map” on page 252), mean that the behavior of
some functions may surprise the user, since there is no way to document or to
determine the version of the standard to which a particular library conforms.

Some libraries are limited by the compiler. For instance, a library cannot imple‐
ment move semantics until the compiler supports this feature. Imperfect com‐
piler support may lead to limitations in the standard library classes that can be
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shipped with the compiler. Sometimes, attempting to use a feature gives a com‐
piler error, and it is impossible for a developer to determine whether it is the
compiler or the standard library implementation that is broken.

The optimizing developer who is very familiar with the standard may thus be dis‐
appointed when an infrequently used feature turns out to be unimplemented by
the compiler he is using.

Performance is not the most important thing to standard library developers
Although performance is important to C++ developers, it is not necessarily the
most important factor to the developers of the standard library. Coverage is
important, especially if it permits them to check a box on the latest C++ stand‐
ard’s list of features. Simplicity and maintainability are important, because the
library is long-lived. Portability is important if the library implementation must
support multiple compilers. Performance may sometimes take a back seat to any
of these other important factors.

The path from the standard library function call to the related native function
may be long and winding. I once traced an fopen() call through half a dozen lay‐
ers of functions dedicated to argument translation before it arrived at the Win‐
dows OpenFile() call that ultimately asked the operating system to open the file.
The goal appeared to have been minimizing the number of lines of code, but the
many layers of function call could not have helped with performance.

Library implementations may frustrate optimization attempts
The Linux AIO library (not a standard C++ library, but very useful to the opti‐
mizing developer) was intended to provide a very efficient, asynchronous, copy-
free interface for reading files. The problem was that AIO required a particular
kernel version. Until a reasonably large fraction of Linux distros implemented the
kernel update, AIO was coded in terms of older, slower I/O calls. The developer
could write AIO calls but not get AIO performance.

Not all parts of the C++ standard library are equally useful
Some C++ features, like the elaborate exception hierarchy, vector<bool>, and
standard library Allocators, were added to the standard before being wrung out
in use. These features actually make coding harder instead of easier. Fortunately,
the standard committee seems to have gotten over its earlier enthusiasm for
untested new features. Proposed library features now gestate in the Boost library
for several years before being taken up by the standard committee.

The standard library is not as efficient as the best native functions
The standard library does not provide features available on some operating sys‐
tems, such as asynchronous file I/O. The optimizing developer can only go so far
with the standard library. To obtain the final iota of performance, she must
descend to native calls, sacrificing portability on the altar of the gods of speed.

190 | Chapter 8: Use Better Libraries

http://www.boost.org


Optimize Existing Libraries
Optimizing an existing library is like clearing a minefield. It may be possible. It may
be necessary. But it is a difficult job that requires patience and attention to detail, or
boom!

The easiest kind of library to optimize is well designed, with good separation of con‐
cerns and good test cases. Unfortunately, this kind of library is already probably opti‐
mized. The reality is that if you are asked to optimize a library, it is probably a mess of
functionality squeezed into functions or classes that do too much or too little.

Making changes to a library introduces the risk that some other program relies on
unintended or undocumented behavior of the existing implementation. While mak‐
ing a function run faster is not itself likely to cause problems, some accompanying
change in behavior may be more of a problem.

Making changes to an open source library introduces potential incompatibility
between your project’s version and the main repository. This becomes a problem
when the open source library is next revised to fix bugs or add functionality. Either
your changes must manually be propagated to the changed library, or your changes
are lost in the upgrade, or your modified library becomes fixed in time and does not
get the advantage of changes made by other contributors. It is thus a good idea, when
picking open source libraries, to be sure the community is welcoming of your
changes, or that the library is very mature and stable.

Still, it’s not completely hopeless. The following sections cover some rules for attack‐
ing existing libraries.

Change as Little as Possible
The best advice for library optimizers is to change as little as possible. Don’t add or
remove functionality from classes or functions, or change function signatures. These
kinds of changes are almost guaranteed to break compatibility between the modified
library and programs that use it.

Another reason to make the fewest changes possible is to limit the part of the library
code that must be understood.

Optimization War Story
I once worked for a company that sold and supported an industrial-strength version
of OpenSSH, which is based on a program developed in 1995 by Tatu Ylönen, a
researcher at the Helsinki University of Technology, for personal use. Being new to
the open source world, I noted that the code had not been written by a highly
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experienced developer, and was thus not as tidy as it could have been. I made some
significant changes, to make the code more easily maintained. Or so I thought at first.

Wonderful though my personal code stylings may have been, I found out they could
never be deployed.

In retrospect, the reason should have been obvious. My changes made our code differ
too much from the open source variant. We relied on the community for important,
security-related bug fixes that were automatic on unmodified code, but time-
consuming to reimplement on my heavily modified code. While I might have pro‐
posed these changes for inclusion in the open source version, the security community
is extremely conservative about changes, and rightly so.

I needed to change only code that affected security improvements requested by our
users, and then to the minimum extent possible. Refactoring was never even an
option with this code, badly as it seemed to cry out for it.

Add Functions Rather than Change Functionality
One bright spot in the gloomy world of optimizing libraries is that new functions and
classes can be added to a library in relative safety. There is of course a risk that a
future version of the library will define a class or function with the same name as one
of your additions, but that risk is controllable by choice of names, and sometimes
reparable with macros.

Here are some reasonably safe upgrades that may improve the performance of exist‐
ing libraries:

• Add functions that move loops down into the library, reflecting idioms of use in
your code.

• Implement move semantics in older libraries by adding function overloads that
take rvalue references. (See “Implement Move Semantics” on page 137 for more
details on move semantics.)

Design Optimized Libraries
Faced with a badly designed library, there’s little the optimizing developer can do.
Faced with a blank screen, the optimizing developer has more latitude to use best
practices and avoid pitfalls.

Some of the items in this checklist are aspirational goals. That is, this section offers no
specific advice on how to achieve each goal in a particular library, but only notes that
the best and most useful libraries tend to embody these virtues. If a particular library
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design is straying away from these aspirational goals, a review of the design is appro‐
priate.

Code in Haste, Repent at Leisure
Marry in haste, repent at leisure.

—Samuel Johnson (1709–1784), English lexicographer, essayist, and poet

Stability of interface is a core deliverable of a library. A library designed in a rush, or a
bunch of independently written functions pulled together into a library, will not
match in call and return conventions, allocation behavior, or efficiency. The pressure
to make a casually built library consistent will arise almost immediately. However, the
time required to fix all functions in the library may prevent developers from acting to
fill this need.

Designing an optimized library is like designing other C++ code, only the stakes are
higher. Libraries, by definition, are meant for broad use. Any imperfections in the
design, implementation, or performance of a library are shared among all its users.
Casual coding practices, which can be tolerated in noncritical code, are more prob‐
lematical when developing libraries. Old-school development methods, including up-
front specification and design, documentation, and module tests, find their uses in
development of critical code like libraries.

Optimization Pro Tip: Test Cases Are Critical
Test cases are important for any software. They help verify the correctness of the orig‐
inal design, and help reduce the chance that changes made during optimization will
affect a program’s correctness. It should not be surprising that they assume an even
greater importance in library code, where the stakes are higher.

Test cases help identify dependencies and couplings during the design of a library.
The functions of well-designed libraries can be tested in isolation. If many objects
must be instantiated before testing a target function, it is a signal to the designer that
there is too much coupling between the components of the library.

Test cases help the library designer practice use of the library. Without this practice,
it’s far too easy for even experienced designers to leave out important interface func‐
tions. Test cases help the library designer identify rough edges in the design at an
early stage, when breaking changes to the library interface are not painful. Using the
library helps the designer to identify idioms of use, so that these are encoded in the
library design, resulting in more efficient function interfaces.

Test cases make good targets for timing tests. Timing tests ensure that any proposed
optimizations actually improve performance. Timing tests themselves can be added to
the other test cases to ensure that changes do not rob performance.
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Parsimony Is a Virtue in Library Design
For those few readers who don’t use this word in their daily lives, Merriam-Webster
online defines parsimony as the quality of being careful with money or resources; econ‐
omy in the use of means to an end. Readers may know this as the KISS (keep it simple,
stupid) principle. Parsimony means a library is focused on a particular task and con‐
tains the minimum amount of machinery needed to perform that task.

For instance, it is more parsimonious for a library function to accept a valid
std::istream reference argument from which to read data than to open a file named
by a filename argument; handling operating system–dependent filename semantics
and I/O errors is not core to a data processing library. See “Create a Parsimonious
Function Signature” on page 267 for an example of this. Accepting a pointer to a
memory buffer is more parsimonious than allocating storage to return; it means the
library doesn’t have to handle out-of-memory exceptions. See “Copy Free Libraries”
on page 134 for an example. Parsimony is the ultimate result of consistently applying
good C++ development principles like the single responsibility principle and the
interface-segregation principle of SOLID design.

Parsimonious libraries are simple. They contain free functions or simple classes that
are complete as they stand. They can be learned and understood one piece at a time.
This is the way most programmers learn the C++ standard library, a big library that is
nevertheless parsimonious.

Make Memory Allocation Decisions Outside the Library
This is a specific instance of the parsimony rule. Since memory allocation is so expen‐
sive, push allocation decisions out of the library if possible. For instance, fill in a
buffer given as an argument to a library function, rather than returning a buffer allo‐
cated by the library function.

Pushing allocation decisions out of library functions allows the caller to implement
the optimizations described in Chapter 6, reusing memory where possible instead of
allocating new storage for each call.

Pushing allocation out of the library also reduces the number of times a buffer of data
may need to be copied as it is passed from function to function.

If necessary, make memory allocation decisions in derived classes, so that the base
class keeps only a pointer to the allocated memory. This way, new classes can be
derived that allocate memory in different ways.

Requiring memory to be allocated outside of the library affects function signatures
(for instance, passing in a pointer to a buffer versus returning an allocated buffer). It
is important to make this decision at the time the library is designed. Trying to
change the library once functions are in use will definitely cause breaking changes.
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When in Doubt, Code Libraries for Speed
In Chapter 1, I quoted Don Knuth’s admonition, “Premature optimization is the root
of all evil.” I suggested this was too dogmatic. But in library design, this advice is
especially dangerous.

Good performance is particularly important for a library class or function. The
library designer cannot predict when the library may be used in a context in which
performance matters. Improving performance after the fact can be difficult or impos‐
sible, especially if it involves changes to function signatures or behavior. Even a
library used within a single enterprise may be invoked from many programs. If the
library is widely disseminated, as with open source projects, there is no way to update
or even discover all users. Any change becomes a breaking change.

Functions Are Easier to Optimize than Frameworks
There are two kinds of libraries: function libraries and frameworks. A framework is a
conceptually large class that implements a complete program skeleton: a windowing
application or a web server, for instance. You decorate the framework with small
functions that customize it, to be your specific windowing application or your partic‐
ular web server.

The second kind of library is a collection of functions and classes that are compo‐
nents that together can be used to implement a program: parsing URIs for a web
server or drawing text on a window, for instance.

Both kinds of libraries can embody powerful functionality and enhance productivity.
A given set of capabilities can be packaged either as functions (as in Windows SDK)
or as a framework (as in Windows MFC, for example). However, from an optimizer’s
standpoint, function libraries are easier to work with than frameworks.

Functions have the advantage that they can be tested and their performance tuned in
isolation. Invoking a framework turns on all its machinery at once, making it harder
to isolate and test a change. Frameworks violate the separation of concerns or single
responsibility rule. That makes them hard to optimize.

Functions can be used in focused ways within a larger application: a drawing subrou‐
tine here, a URI parser there. Only as much functionality as needed is linked from the
library. Frameworks contain “god functions” (see “Beware of ‘God Functions’” on
page 198) that themselves link in many parts of the framework. This can bloat the
executable with code that is not actually ever used.

Well-designed functions make few assumptions about the environment in which they
run. By contrast, a framework is based on a big, general model of what the developer
wants to do. Inefficiency results any time there is a mismatch between the model and
the developer’s actual needs.
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Flatten Inheritance Hierarchies
Most abstractions require no more than three layers of class derivation: a base class with
common functions, one or more derivations to implement polymorphism, and per‐
haps a mixin layer of multiple inheritance for really complex cases. For specific cases,
a developer’s judgment must prevail. However, inheritance hierarchies much deeper
than this are a sign that the abstraction represented by the class hierarchy is not
clearly thought out, introducing complexity that leads to lower performance.

From an optimization standpoint, the deeper the inheritance hierarchy, the greater
the chance to introduce extra computation when a member function is called (see
“Cost of Function Calls” on page 161). The constructors and destructors in classes
with many layers of parents must traverse that whole long chain to do their jobs.
Although these functions are not usually called frequently, they still pose a potential
risk of introducing expensive calls into performance-critical operations.

Flatten Calling Chains
As with derived classes, the implementations of most abstractions require no more than
three nested function calls: a free function or member function implementing strategy,
calling a member function of some class, calling some public or private member
function implementing the abstraction or accessing data.

If the data is being accessed in a nested abstraction implemented using a contained
class instance, that may result in as much as three more layers. This analysis proceeds
recursively down chains of nested abstractions. A library that is cleanly decomposed
does not contain long chains of nested abstractions. These add overhead in the form
of calls and returns.

Flatten Layered Designs
Sometimes one abstraction must be implemented in terms of another abstraction,
creating a layered design. As noted previously, this can be carried to extremes that
affect performance.

But other times, a single abstraction is reimplemented in a layered fashion. This may
be done for several reasons:

• To implement a layer using the façade pattern that changes calling conventions:
perhaps switching from project-specific to operating system–specific codes in
arguments, switching from text-string to numeric codes in arguments, or insert‐
ing project-specific error handling

• To implement an abstraction in terms of a closely related abstraction for which
library code already exists
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• To implement a transition between error-returning function calls and exception-
throwing function calls

• To implement the PIMPL idiom (see “Eliminate Uses of the PIMPL Idiom” on
page 171)

• To call into a DLL or plug-in

The designer’s judgment must rule in each situation, because there are excellent rea‐
sons for doing most of these things. However, each layer transition is an extra func‐
tion call and return that saps the performance of every call. The designer must review
layer transitions to see if they are necessary, or whether two or more layers can be
compressed into one. Here are a few thoughts to guide code review:

• Many instances of the façade pattern in a single project may signal overdesign.
• One sign that a design is too layered is if a given layer occurs more than once, as

in an error-returning layer calling an exception-handling layer, which then calls
an error-returning layer.

• Nested instances of PIMPL are difficult to justify in terms of PIMPL’s original
purpose of providing a recompilation firewall. Most subsystems are simply not
big enough to require nested PIMPLs (see “Eliminate Uses of the PIMPL Idiom”
on page 171).

• Project-specific DLLs are often proposed for encapsulating bug fixes. Few
projects ever realize this utility, as bug fixes tend to be released in batches that
cross DLL boundaries.

Eliminating layers is a task that can be done only at design time. At design time, there
is a business need for the library. Once the library is complete, no matter how flawed
it is, the cost of any change must be weighed against the benefit. Experience teaches
that no manager will welcome your request to spend a couple of sprints fixing up the
library, unless there is a gun to their head.

Avoid Dynamic Lookup
Big programs contain big configuration profiles or long lists of registry entries. Com‐
plex data files such as audio or video streams contain optional metadata describing
the data. When there are just a few metadata items, it’s easy to define a struct or class
to contain them. When there get to be dozens or hundreds, many designers are
tempted to think of a lookup table design in which each metadata item can be looked
up, given a key string. When the profiles are written in JSON or XML, the temptation
grows, because there are libraries for dynamically finding items in JSON or XML
files. Some programming languages, such as Objective-C, come with system libraries
that work this way. However, dynamically searching a symbol table is a performance
killer, for several reason:
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• Dynamic lookup is inherently inefficient. Some libraries that find JSON or XML
items have O(n) performance with respect to the size of the file per lookup. Table-
based lookup may be O(log2n). By contrast, fetching a data item from a struct is
O(1) and the constant of proportionality is tiny.

• The library designer may not know all the ways the metadata will be accessed. If
an initialization profile is only read once at startup, the cost is probably insignifi‐
cant. But many kinds of metadata must be read repeatedly during processing, and
may change between units of work. While premature optimization may be the
root of all evil, a library interface that searches for a key string can never be made
faster than the search in the underlying key/value table without a change that
breaks existing implementations. Apparently evil has more than one root!

• Once a lookup table–based design is in place, the next question that arises is one
of consistency. Does the table contain all the metadata needed for a given trans‐
formation? Do command-line argument sets that must appear together actually
appear? Although a table-based repository can be checked for consistency, it is an
expensive runtime operation involving code and multiple expensive searches.
Accessing the data in a simple struct is vastly faster than multiple table lookups.

• A struct-based repository is self-documenting in the sense that all possible meta‐
data items are immediately visible. By contrast, a symbol table is just a big opa‐
que bag of named values. A team using such a repository might choose to
carefully document the metadata present at each stage in the program’s execu‐
tion. But such discipline is rare, in my experience. The alternative is to write end‐
less code that attempts to regenerate missing metadata, never knowing whether
the code will ever be called, and thus if it is correct.

Beware of ‘God Functions’
A “god function” is a function implementing high-level strategy that, when used in a
program, causes the linker to add many more library functions to the executable file.
Increasing the size of the executable exhausts physical memory in embedded systems
and increases virtual memory paging in desktop-class computers.

Many existing libraries have god functions that are expensive to use. Good libraries
eliminate these functions by design. They are inevitable in libraries designed as
frameworks.

Optimization War Story
This is a parable I call printf() is not your friend.

“Hello, World” is about the simplest possible C++ (or C) program:
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# include <stdio.h>
int main(int, char**) {
    printf("Hello, World!\n");
    return 0;
}

How many executable bytes should this program contain? If you guessed “around 50
or 100 bytes,” you’re wrong by two orders of magnitude. This program was over 8 KB
on an embedded controller I once programmed. And that’s just code, not symbol
tables, loader information, or anything else.

Here is another program that does the same thing:

# include <stdio.h>
int main(int, char**) {
    puts("Hello, World!");
    return 0;
}

This program is virtually the same, differing only in the use of puts() to output the
string instead of printf(). But the second program occupies around 100 bytes. What
causes the difference in size?

printf() is the culprit. printf() can print each particular type in three or four for‐
mats. It can interpret a format string to read a variable number of arguments.
printf() is a big function on its own, but what really makes it big is that it pulls in
standard library functions that format each basic type. On my embedded controller, it
was even worse because the processor did not implement floating-point arithmetic in
hardware; an extensive library of functions was used instead. printf() is in fact the
poster child for the god function—a function that does so much that it sucks in huge
swaths of the C runtime library.

On the other hand, puts() just puts one string on the standard output. It is internally
quite simple, and furthermore, it doesn’t cause half the standard library to be
linked in.

Summary
• Functions and classes enter the C++ standard library either because they cannot be

provided any other way, or because they promote very wide reuse across multiple
operating systems.

• Standard library implementations have bugs.
• There is no such thing as a “standard-conforming implementation.”
• The standard library is not as efficient as the best native functions.
• When updating a library, change as little as possible.
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• Stability of interface is a core deliverable of a library.
• Test cases are critical for optimizing a library.
• Designing a library is like designing other C++ code, only the stakes are higher.
• Most abstractions require no more than three layers of class derivation.
• The implementations of most abstractions require no more than three nested func‐

tion calls.
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CHAPTER 9

Optimize Searching and Sorting

There’s a way to do it better—find it.
—Thomas A. Edison (1847–1931), American inventor and optimizer

C++ programs do a lot of searching. From programming language compilers to web
browsers, from list controls to databases, many repeated activities have a search at the
bottom of some inner loop. Searching comes up frequently on lists of hot functions in
my experience. It is thus worthwhile to devote special attention to searching effi‐
ciently.

This chapter looks at searching in tables through the optimizer’s eye. I use searching
as an example of a general process that a developer can use to approach the optimiza‐
tion task, by breaking down an existing solution into its component algorithms and
data structures, then looking at each of these for opportunities to improve perfor‐
mance. I also evaluate some specific search methods to demonstrate the optimization
process.

Most C++ developers know that the standard library container std::map can be used
for looking up values that are associated with an index number or alphanumeric key
string. Such associations are called key/value tables. They create a map from keys to
values, hence the name of the container. Developers who know std::map remember
that its performance is good in a big-O sense. This chapter explores ways to optimize
the basic map-based search.

Fewer developers know that the C++ standard library’s <algorithm> header contains
several iterator-based algorithms that can search sequence containers. These algo‐
rithms don’t all have the same big-O efficiency, even under optimal conditions. The
best algorithm for each situation isn’t obvious, and the advice on the Internet doesn’t
always point to the optimal method. Searching for the best search algorithm is pre‐
sented as another example of the optimization process.
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1 Such a table might not meet the needs of Arabic- or Chinese-speaking developers. Meeting these needs is
another subject about which whole books are written. It is my expectation that developers using wide charac‐
ter sets have already solved these problems. Some English-speaking developers still find them mysterious and
distracting, so I am wishing that complexity away in this example.

Even developers who know their way around the standard library algorithms may not
yet have heard that hash-table based containers have been added to C++11 (and have
been available in Boost for years). These unordered associative containers achieve
excellent, average constant-time lookup efficiency, but they are not a panacea.

Key/Value Tables Using std::map and std::string
As an example, this section explores the performance of searching and sorting a very
common kind of key/value table. The table’s key type is a string of ASCII characters
that can be initialized by a C++ string literal or held in a std::string.1 This kind of
table is typical of tables used to parse initialization profiles, command lines, XML
files, database tables, and other applications requiring a limited set of keys. The table’s
value type can be as simple as an integer, or arbitrarily complex. The value type
doesn’t affect search performance, except that a really big value might reduce cache
performance. In my experience, simple value types dominate anyway, so this table’s
value is a simple unsigned.

It’s easy to build a table that maps std::string names to values using std::map. The
table may be defined simply:

# include <string>
# include <map>
std::map<std::string, unsigned> table;

Developers using a C++11 compiler can use the list initializer syntax shown here to
easily populate the table with entries:

std::map<std::string, unsigned> const table {
    { "alpha",   1 },   { "bravo",   2 },  
    { "charlie", 3 },   { "delta",   4 },
    { "echo",    5 },   { "foxtrot", 6 },  
    { "golf",    7 },   { "hotel",   8 },
    { "india",   9 },   { "juliet", 10 },  
    { "kilo",   11 },   { "lima",   12 },
    { "mike",   13 },   { "november",14 }, 
    { "oscar",  15 },   { "papa",   16 },
    { "quebec", 17 },   { "romeo",  18 },
    { "sierra", 19 },   { "tango",  20 },
    { "uniform",21 },   { "victor", 22 },
    { "whiskey",23 },   { "x-ray",  24 },
    { "yankee", 25 },   { "zulu",   26 }
};
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Otherwise, the developer must write code like the following to insert each element:

table["alpha"] = 1;
table["bravo"] = 2;
...
table["zulu"] = 26;

Values may be retrieved or tested simply:

unsigned val = table["echo"];
...
std::string key = "diamond";
if (table.find(key) != table.end())
    std::cout << "table contains " << key << std::endl;

Creating tables with std::map is an example of how the C++ standard library pro‐
vides powerful abstractions that achieve reasonable big-O performance with minimal
thought and typing effort. It’s an instance of a general property of C++ mentioned in
Chapter 1:

The mix of features in C++ provides a continuum of implementation choices rang‐
ing from hands-off automation and expressiveness on one hand, to increasingly fine
control over performance on the other hand. It is this degree of choice that makes it
possible to tune C++ programs to meet requirements for performance.

Toolkit to Improve Search Performance
But what if a profiling run fingers a function containing a table lookup as one of the
hottest functions in a program? For instance:

void HotFunction(std::string const& key) {
    ...
    auto it = table.find(key);
    if (it == table.end()) {
    //  activity when table item not found
        ...
    }
    else {
    //  activity when table item is found
        ...
    }
    ...
}

Can the developer do better than the simplest implementation? How do we find out?

An experienced developer’s eye may of course immediately spot inefficiencies that
can be tackled. He may know that an algorithm is suboptimal, or that a better data
structure exists. I sometimes operate in this way, though the path is fraught with risk.
It is better for the developer interested in optimization to proceed methodically:
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• Measure performance of the existing implementation to obtain a baseline for
comparison.

• Identify the abstract activity to be optimized.
• Decompose the activity to be optimized into its component algorithms and data

structures.
• Change or replace algorithms and data structures that may not be optimal, and

perform experiments to determine if the changes are effective.

If the activity being optimized is viewed as an abstraction, the optimization task is
picking the abstraction’s baseline implementation apart into its pieces and building up
a more specialized abstraction with better performance.

I like to do this process on a whiteboard if possible, or in a text editor, or in an engi‐
neering notebook. The process is iterative. The longer you spend pulling the problem
apart, the more parts you discover. There are enough parts in most activities worth
optimizing that human beings cannot reliably remember them all if they try to hold the
whole thing in their heads. Paper has a better memory, and a whiteboard or text editor
is even better because it allows thoughts to be easily added and erased.

Make a Baseline Measurement
As mentioned in “Measure Baseline Performance and Set Goals” on page 35, it is
important to measure the performance of the unoptimized code, to get a baseline
measurement against which to test possible optimizations.

I wrote a test that looks up all 26 values in the table introduced in “Key/Value Tables
Using std::map and std::string” on page 202, and also 27 values not in the table. I
repeated these 53 lookups a million times to get a measurable duration. For maps of
strings, this test ran for about 2,310 milliseconds.

Identify the Activity to Be Optimized
The next step is to identify the activity to be optimized, so that the activity can be
decomposed into pieces that can more easily be searched for candidate optimizations.

The idea of “the activity to be optimized” is a matter of judgment on the developer’s
part. But there are a couple of clues. In this case, the developer can see that the base‐
line implementation is a std::map with std::string keys. A look at the hot code
reveals a call to std::map::find(), a function that returns an iterator to the found
entry, or to end(). Although std::map supports lookup, insertion, deletion, and itera‐
tion, the hot function is only doing a lookup. It may be necessary to look at other
places in the code to see if other operations are performed on the table. Identifying
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where the table is constructed and destroyed is particularly interesting, because these
activities may be time-consuming.

In this case, the activity to be optimized is reasonably obvious: looking up values in a
key/value table implemented as a map with string keys. It is important to abstract
from the baseline solution, however. The developer must not limit their investigation
to only tables built from std::map and std::string.

There is a technique called “thinking backward and forward” for abstracting from a
baseline implementation to a problem statement. The technique for thinking back‐
ward is to ask, “Why?” Why does the baseline implementation use a std::map, and
not some other data structure? The answer is reasonably obvious: std::map facilitates
looking up a value given a key. Why does the baseline implementation use
std::string, as opposed to int or pointer-to-Foo? The answer is that the keys are
strings of ASCII text. This analysis leads the developer to write a more abstract prob‐
lem statement, looking up values in a key/value table with text keys. Notice the words
map and string do not appear in this statement. This is a deliberate attempt to free the
problem description from its baseline implementation.

Decompose the Activity to Be Optimized
The next step is to decompose the activity to be optimized into its component algo‐
rithms and data structures. The baseline solution (a map with string keys) can again
be used as an example of the algorithms and data structures comprising the activity.
However, the baseline solution represents one specific implementation of the activity,
and the optimizing developer is seeking other possible implementations. That is why
it is important to describe the algorithms and data structures in a general way that
doesn’t restrict thinking to the existing solution.

The activity to be optimized is looking up values in a key/value table with text keys.
Decomposing this statement into its component algorithms and data structures and
checking the result against the baseline implementation produces this list:

1. The table, a data structure containing the keys and associated values
2. The key, a data structure that contains text
3. An algorithm to compare keys
4. An algorithm to search the table data structure to see if a specific key is present,

and if so get the associated value
5. An algorithm to construct the table, or insert keys into the table

How did I know I needed these parts? Mostly it came from looking at the definition
of the baseline solution’s data structure, std::map:
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1. In the baseline solution, the table is a std::map.
2. In the baseline solution, the keys are instances of std::string.
3. Partly this is logic, but also std::map’s template definition provides a defaultable

parameter for specifying a key comparison function.
4. The hot function contains a call to std::map::find() rather than using

operator[].
5. This comes from knowledge that the map must be constructed and destroyed.

General knowledge about std::map informs me that it is implemented as a bal‐
anced binary tree. The map is thus a linked data structure that must be construc‐
ted node by node, so there must be an insertion algorithm.

The last item, the algorithm for (and thus the time cost of) building and destroying
tables, is often overlooked. This cost can be significant. Even if the cost is small com‐
pared to the time consumed doing table lookups, if the table has static storage dura‐
tion (see “Storage Duration of Variables” on page 108) the initialization cost may be
added to all other initialization taking place at startup (see “Remove Code from
Startup and Shutdown” on page 313). The program becomes unresponsive if there
are too many initializations. If the table has automatic storage duration, it may be ini‐
tialized multiple times during the program run, making the startup cost more signifi‐
cant. Luckily, there are key/value table implementations with low or no cost to create
and destroy.

Change or Replace Algorithms and Data Structures
In this step, the developer can think forward, asking, “How?” How, and in what dif‐
ferent ways, can the program look up values in a key/value table with text keys? The
developer looks for algorithms in the baseline solution that are less than optimal, and
looks for costly behaviors provided by the data structures that are not necessary for
the particular activity being optimized, and can thus be removed or simplified. Then
the developer performs experiments to see whether any changes improve perfor‐
mance.

The activity to be optimized offers the following opportunities:

• The table data structure may be changed or made more efficient. Some choices of
table data structure constrain the choice of search and insertion algorithm.
Choice of table data structure may also affect performance if the data structure
contains dynamic variables that require calls to the memory manager.

• The key data structure may be changed or made more efficient.
• The comparison algorithm may be changed or made more efficient.
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• The search algorithm may be changed or made more efficient, though it may be
constrained by the choice of table data structure.

• The insertion algorithm, and also when and how to construct and destroy the
data structure, may be changed or made more efficient.

Here are some observations that are relevant:

• std::map is implemented as a balanced binary tree. The search algorithm in a
balanced binary tree is O(log2 n). The biggest performance gain would likely
result if std::map could be replaced by a data structure that facilitates lookup at a
lower time cost.

• A quick look at the definition of std::map shows that the operations defined on
maps are inserting items into the map, looking up items in the map, deleting
items from the map, and traversing the items in the map. To facilitate this dyna‐
mism, std::map is a node-based data structure. The consequence is that
std::map frequently calls into the memory manager during construction, and
has poor cache locality. In the activity to be optimized, items are only inserted
into the table during its construction, and never deleted until the table is. A less
dynamic data structure might improve performance by invoking the allocator
less, and having better cache locality.

• The functionality actually needed for a key data structure is to contain the char‐
acters, and to compare two keys. std::string does a bunch of additional stuff
beyond what is needed for a table key. Strings maintain a dynamically allocated
buffer so they can be modified and be made longer or shorter, but the key/value
table does not modify keys. Furthermore, looking up a literal string causes an
expensive conversion to std::string that might not be necessary if the keys
were stored differently.

• std::string instances are designed to act as values. std::string defines all six
comparison operators so that strings can be compared for equality or put into
order. std::map is designed to work by default with value-like key types that
implement the comparison operators. A data structure that does not define its
own comparison operator can be used with std::map, by providing a comparison
function as a template argument.

• The C++11-style list initialization shown previously for maps with string keys
resembles a C-style static aggregate initializer, but it is not one. The initializer
invokes executable code that invokes the memory allocator to create a
std::string from each string literal, then calls insert() to add each item into
the map, which invokes the allocator again to allocate a new node in the map’s
balanced tree data structure. The advantage of this initializer is that the resulting
table is const. However, the runtime cost is about the same as that of building up
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a map the pre-C++11 way, by inserting one value at a time. A data structure that
could be constructed using a real C-style aggregate initializer would have zero
runtime cost to construct and destroy.

Using the Optimization Process on Custom Abstractions
In the case of maps with string keys, the developer is fortunate. Many things about
std::map can be programmed. The key type can be set. The key type’s comparison
algorithm can be modified. The way the map allocates nodes can be programmed.
Furthermore, there are options beyond std::map that allow the data structure and
search algorithm to be improved, all within the C++ standard library. This, in a nut‐
shell, is why C++ can be tuned for performance so effectively. The next few sections
take the reader through this process.

The deliberate process outlined here can be used to optimize non–standard library
abstractions too, but it may require more work. std::map and std::string are well-
defined and well-documented data structures. Excellent resources on the Web reveal
what operations they support, and how they are implemented. For a custom-built
abstraction, if the abstraction was designed thoughtfully, its header file tells the devel‐
oper what operations are provided. Comments or well-designed code tells what algo‐
rithm is in use, and how frequently the memory manager is called.

If the code is a mess, or if the interface is poorly designed and the code is spread
across many files, then I have bad news and good news. The bad news is that the opti‐
mization process outlined here offers no specific help for the developer. All I have are
platitudes, like “You knew the job was dangerous when you took it,” and “That’s why
you make the big bucks.” The good news is that the more horrible the code is, the
more likely it contains opportunities for optimization that will reward the developer
for wading in.

Optimize Search Using std::map
The optimizing developer can improve performance by changing the data structure
representing keys, and therefore the algorithm for comparing keys, while leaving the
table data structure alone.

Use Fixed-Size Character Array Keys with std::map
As noted in Chapter 4, a developer may want to avoid the costs of using std::string
keys in a really hot key/value table. Allocation dominates the cost of creating the
table. The developer can cut this cost in half by using a key type that does not dynam‐
ically allocate storage. Furthermore, if the table uses std::string keys, and the devel‐
oper wants to look up entries given by C-style string literals, as in
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unsigned val = table["zulu"];

every lookup converts the char* string literal to a std::string, costing the allocation
of more memory that is then immediately destroyed.

If the maximum size of a key is not too long, one solution is to make the key type
some class type that contains a char array big enough to hold the biggest key. It isn’t
possible to use an array directly, like this:

std::map<char[10],unsigned> table

because C++ arrays don’t have built-in comparison operators.

Here is the definition of a simple fixed-size character array template class called
charbuf:

template <unsigned N=10, typename T=char> struct charbuf {
    charbuf();
    charbuf(charbuf const& cb);
    charbuf(T const* p);
    charbuf& operator=(charbuf const& rhs);
    charbuf& operator=(T const* rhs);

    bool operator==(charbuf const& that) const;
    bool operator<(charbuf const& that) const;

private:
    T data_[N];
};

charbuf is extremely simple. It can be initialized with or assigned a C-style null-
terminated string. It can be compared to another charbuf. Because the constructor
charbuf(T const*) is not explicit, it can also be compared to a null-terminated
string by type conversion. Its size is fixed at compile time. It does not use dynamic
memory at all.

Out of the box, C++ does not know how to compare two class instances or put them
in order. The developer must define any relational operators she intends to use. The
C++ standard library generally uses only operator== and operator<. The other four
operators can be synthesized from these two. The operators may be defined as free
functions:

template <unsigned N=10, typename T=char>
    bool operator<(charbuf<N,T> const& cb1, charbuf<N,T> const& cb2);

But it is easier and better C++ style to define an operator< inside charbuf, where it
has access to charbuf’s implementation.

charbuf requires the programmer to think. It can handle only strings that fit in its
fixed-size internal buffer, counting the trailing zero byte. It is therefore not guaran‐
teed to be safe, like std::string. Verifying that all potential keys fit in the charbuf is
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an example of pushing computation out of run time all the way to design time. It is
also an example of a safety compromise that may be required to improve perfor‐
mance. Only an individual design team has the perspective to say whether the bene‐
fits outweigh the risks. Pundits making blanket assertions are not credible.

I ran the same test of 53 names a million times using a std::map with charbuf keys.
The test ran in 1,331 milliseconds. This is about twice as fast as the version using
std::string.

Use C-Style String Keys with std::map
Sometimes the program has access to long-lived C-style null-terminated character
strings, whose char* pointers can be used for the keys in a std::map. For instance,
the table may be constructed using C++ string literals. The program can avoid the
cost of constructing and destroying std::string instances by using the char*s
directly.

There is a problem with using char* as the key type, though. std::map puts key/value
pairs into its internal data structure using an ordering relation on the key type. By
default, this relation evaluates the expression key1 < key2. std::string defines an
operator< to compare the character strings. char* also defines an operator<, but the
operator compares the pointers, not the pointed-to strings.

std::map allows the developer to solve this problem by providing a nondefault com‐
parison algorithm. This is an example of the fine control that C++ offers over the
behavior of its standard containers. The comparison algorithm is provided by the
third template parameter of std::map. The default value for the comparison algo‐
rithm is the function object std::less<Key>. std::less defines a member function,
bool operator()(Key const& k1, Key const& k2), which compares two keys by
returning the result of the expression key1 < key2.

The program could in principle specialize std::less for char*. However, this spe‐
cialization would be visible for at least the whole file, possibly causing unexpected
behavior of some other part of the program.

Instead of a function object, the program can provide a C-style free function to per‐
form the comparison, as shown in Example 9-1. The function’s signature becomes the
third argument to the map declaration, and the map is initialized with a pointer to the
function.

Example 9-1. Map with C-style char* keys, free function as comparison function

bool less_free(char const* p1, char const* p2) {
    return strcmp(p1,p2)<0;
}
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   ...

std::map<char const*,
         unsigned,
         bool(*)(char const*,char const*)> table(less_free);

A test using this variation ran for 1,450 milliseconds, a significant improvement over
the version using std::string keys.

The program could also create a new function object to encapsulate the comparison.
In Example 9-2, less_for_c_strings is the name of a class type, so it serves as the
type argument, and no pointer is needed.

Example 9-2. Map with char* keys, function object as comparison function

struct less_for_c_strings {
    bool operator()(char const* p1, char const* p2) {
        return strcmp(p1,p2)<0;
    }
};

   ...

std::map<char const*,
         unsigned,
         less_for_c_strings> table;

This variation ran the test in 820 milliseconds. This is almost three times as fast as the
original version, and nearly twice as fast as the char*-and-free-function version.

In C++11, another way to provide a char* comparison function for std::map is to
define a lambda and pass it to the map constructor. Lambdas are convenient because
they can be defined locally and have compact syntax. This approach is illustrated in
Example 9-3.

Example 9-3. Map with char* keys, lambda as comparison function

auto comp = [](char const* p1, char const* p2) {
    return strcmp(p1,p2)<0;
};
std::map<char const*,
         unsigned,
         decltype(comp)> table(comp);

Note in this example the use of the C++11 decltype keyword. The third argument to
the map is a type. The name comp is a variable, and decltype(comp) is the type of that
variable. The type of a lambda doesn’t have a name, and each lambda’s type is unique,
so decltype is the only way to get the lambda’s type.
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In the preceding example, the lambda behaves like a function object containing an
operator(), so this mechanism has the same measured performance as the previous
one, although the lambda must be passed as a constructor argument to the map.

The best time for the null-terminated string table was about three times faster than
the original string version, and 55% faster than the fixed-size array version.

C++ Versus the Visual Studio Compiler
Visual Studio 2010 and Visual Studio 2015 compiled Example 9-3 correctly, but Vis‐
ual Studio 2012 and 2013 produced an error message due to a reported bug in Visual
Studio’s standard library implementation.

It is an interesting C++ factoid that a lambda with no capture can decay to a function
pointer. For users who really like lambda syntax, it is possible to use a lambda even on
the Visual Studio 2012 and 2013 compilers. As the third constructor argument to the
map, use the signature of the function pointer to which the lambda decays:

auto comp = [](char const* p1, char const* p2) {
    return strcmp(p1, p2)<0;
};
std::map<char const*,
         unsigned,
         bool(*)(char const*, char const*)> kvmap(comp);

In this case, the performance becomes that of std::map with a free function pointer,
which is slower than its performance with a function object.

As the evolving C++ standard gradually teaches C++ compilers to do more and more
type deduction, lambdas are going to become more interesting. As of early 2016,
however, there is not much to recommend them over function objects.

Using Map’s Cousin std::set When the Key Is in the Value
Some programmers find it natural to define a data structure containing both a key
and other data serving as the key’s value. Indeed, std::map internally declares a struct
that combines the key and value as if it was defined as follows:

template <typename KeyType, typename ValueType> struct value_type {
    KeyType const first;
    ValueType second;
// ... constructors and assignment operators
};

If the program defines such a data structure, it can’t be used directly in a std::map.
std::map demands that the key and value be defined separately for pragmatic rea‐
sons. The key must be constant, because changing the key could make the whole map
data structure invalid. Also, specifying the key lets the map know how to access it.

212 | Chapter 9: Optimize Searching and Sorting



std::map has a cousin, std::set, that facilitates the use of data structures containing
their own keys. This type uses a comparison function that, by default, compares two
whole elements using std::less. Thus, to use std::set and a user-defined struct
that contains its own key, the developer must specialize std::less for the user-
defined struct, specify operator< for the user-defined struct, or provide a nondefault
comparison object. There is nothing to recommend any of these methods over the
other. It is a style preference.

I mention this now because when I describe using a sequence container for a key/
value table, it will also be necessary either to define a comparison operator for the
item data structure or to specify a comparison function when the search algorithm is
invoked.

Optimize Search Using the <algorithm> Header
In the previous section, I explored improving performance by changing the data
structure representing keys, and therefore the algorithm for comparing keys. In this
section, I explore changes to the search algorithm and table data structure.

In addition to data structures like std::string and std::map, the C++ standard
library provides a collection of algorithms, including algorithms for searching and
sorting. Standard library algorithms take iterators as arguments. Iterators abstract the
behavior of pointers, separating the traversal of values from the data structure that
contains those values. Standard library algorithms are specified in terms of the
abstract behavior of their iterator arguments, rather than in terms of some concrete
data structure. Iterator-based algorithms can be applied within many kinds of data
structures, as long as the iterators over these data structures have the required prop‐
erties.

The standard library search algorithms take two iterators: one pointing to the begin‐
ning of the sequence of items to be searched, and one to the end (the item just past
the last item) of the sequence to be searched. All take a key to be searched for, and
optionally take a comparison function. The algorithms differ in what they return, and
whether the comparison function must define an ordering relationship among the
keys or just an equality test.

The part of the data structure to be searched can be described as the range [first, last),
where the square bracket to the left of first means that first is included in the interval,
and the close parenthesis after last means that last is not included. The range notation
sees much use in descriptions of standard library algorithms.

Some iterator-based search methods implement divide-and-conquer algorithms.
These algorithms rely on a particular property of some iterators—the ability to com‐
pute the distance, or number of elements, between two iterators—and in this way ach‐
ieve their better-than-linear big-O behavior. The distance between two iterators can
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always be computed by incrementing one iterator until it compares equal to the sec‐
ond, but this results in a time cost of O(n) to compute the distance. A special prop‐
erty of random-access iterators is that the distance can be computed in constant time.

The sequence containers that provide random-access iterators are C-style arrays,
std::string, std::vector, and std::deque. Divide-and-conquer algorithms can be
applied to std::list, but their time cost will be O(n), not O(log2 n), because of the
higher cost to compute the distance on bidirectional iterators.

The names string and map are evocative of their function, and may lead the novice
user directly to a solution using these data types. Unfortunately, not all algorithms for
iterator-based search have very evocative names. They are also very general, so that
choosing the right one makes a considerable difference in performance, although
they have the same big-O time cost.

Key/Value Table for Search in Sequence Containers
There are several reasons to choose a sequence container implementation for a key/
value table over using std::map or its cousin std::set. Sequence containers con‐
sume less memory than maps. They can also be less expensive to set up. One very
useful property of standard library algorithms is that they can iterate over ordinary
arrays of any type. They can thus perform efficient lookups in statically initialized
arrays of structs. This eliminates all costs of setting up and destroying the tables. Fur‐
thermore, coding standards, such as MISRA C++, forbid or limit the use of dynami‐
cally allocated data structures. It is reassuring to have an efficient solution for
searching in these environments.

The examples in this section make use of the following struct definition:

struct kv { // (key,value) pairs
    char const* key;
    unsigned    value;  //  can be anything
};

A static array of these key/value pairs is defined as follows:

kv names[] = {// in alphabetical order
    { "alpha",   1 },   { "bravo",    2 },  
    { "charlie", 3 },   { "delta",    4 },
    { "echo",    5 },   { "foxtrot",  6 },  
    { "golf",    7 },   { "hotel",    8 },
    { "india",   9 },   { "juliet",  10 },  
    { "kilo",   11 },   { "lima",    12 },
    { "mike",   13 },   { "november",14 }, 
    { "oscar",  15 },   { "papa",    16 },
    { "quebec", 17 },   { "romeo",   18 },
    { "sierra", 19 },   { "tango",   20 },
    { "uniform",21 },   { "victor",  22 },
    { "whiskey",23 },   { "x-ray",   24 },
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    { "yankee", 25 },   { "zulu",    26 }
};

The initializer for the names array is a static aggregate initializer. The C++ compiler
creates initialized data for C-style structs at compile time. There is zero runtime cost
to create such arrays.

The various algorithms are evaluated by searching in this small table for each of its 26
keys, and for 27 invalid strings chosen to fall between the values in the table. The 53
searches are then repeated a million times. This is the same test performed for
std::map-based containers in the previous section.

Standard library container classes provide member functions begin() and end() so
the program can obtain an iterator range to search. C-style arrays are more primitive,
and offer no such functions. However, a little template magic provides typesafe tem‐
plate functions for this purpose. Since they take an array type as an argument, the
array does not decay to a pointer as it normally would:

//  get size and begin/end from a C-style array
template <typename T, int N> size_t size(T (&a)[N]) {
    return N;
}
template <typename T, int N> T* begin(T (&a)[N]) {
    return &a[0];
}
template <typename T, int N> T* end(T (&a)[N]) {
    return &a[N];
}

In C++11, more sophisticated definitions for begin() and end() using the same tem‐
plate magic can be found in the namespace std in the <iterator> header. This
header is included any time a standard library container class header is included. Vis‐
ual Studio 2010 provides these definitions in anticipation of the standard. Unfortu‐
nately, size() is not scheduled for standardization until C++14, and it does not
appear in Visual Studio 2010, though a simple equivalent is easy enough to provide.

std::find(): Obvious Name, O(n) Time Cost
The standard library <algorithm> header defines a template function find() as fol‐
lows:

template <class It, class T> It find(It first, It last, const T& key)

The find() algorithm is a simple linear search. Linear search is the most general kind
of search. It doesn’t require the searched data to be ordered in any way. It only
requires the keys to be comparable for equality.

find() returns an iterator to the first entry in a sequence container that compares
equal to key. The iterator arguments first and last delimit the range to be searched,
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with last pointing to the first element after the end of the data to be searched. The
types of first and last, given by the template parameter It, depend on the kind of
data structure to be traversed by find(). An example is given in Example 9-4.

Example 9-4. Linear search using std::find()

kv* result=std::find(std::begin(names), std::end(names), key);

In this invocation, names is the name of the array to be searched. key is a value to be
compared to each kv entry. To do the comparison, a specific function comparing keys
must be defined in the scope where find() is instantiated. This function tells
std::find() everything it needs to know to do the comparison. C++ allows the
equality operator bool operator==(v1,v2) to be overloaded for values of arbitrary
pairs of types. If key is a pointer to char, the required function is:

bool operator==(kv const& n1, char const* key) {
    return strcmp(n1.key, key) == 0;
}

A timing experiment using std::find() and a set of keys both in and not in the sam‐
ple 26-element table took 1,425 milliseconds.

A variation of find() called find_if() takes the comparison function as a fourth
argument. Instead of defining operator==() in the scope of find(), the developer
can write it as a lambda. The lambda takes a single argument, the table element being
compared against. So, the lambda must capture the key value from the environment.

std::binary_search(): Does Not Return Values
Binary search is a divide-and-conquer strategy that is so generally useful that the C++
standard library provides several different algorithms that use it. But for some reason,
the evocative name binary_search was used for an algorithm that is not particularly
useful for looking up values.

The standard library algorithm binary_search() returns a bool indicating whether a
key is in a sorted table. Strangely enough, there is no related function to return the
matching table element. Thus, neither of the two most obvious names, find and
binary_search, provide the solution we are seeking.

If the program just wants to know if an item is in the table, instead of finding its
value, std::binary_search() performed the timing test in 972 milliseconds.

Binary Search Using std::equal_range()
If the sequence container is sorted, the developer can piece together an efficient
searching function from the bits and pieces provided by the C++ standard library.
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Unfortunately, these pieces have names that don’t evoke the obvious notion of a
binary search.

The C++ standard library’s <algorithm> header contains the template function
std::equal_range(), defined as:

template <class ForwardIt, class T>
    std::pair<ForwardIt,ForwardIt>
        equal_range(ForwardIt first, ForwardIt last, const T& value);

equal_range() returns a pair of iterators delimiting a subsequence of the sorted
sequence [first, last) that contains entries equal to value. If no entries are equal
to value, equal_range() returns a pair of iterators that point to the same value, indi‐
cating an empty range. If the returned iterators are unequal, there is at least one entry
that matched key. By construction, in the example problem there can be no more
than one match, and the first iterator points to it. Example 9-5 sets result to the
matching table entry, or to the end of the table.

Example 9-5. Binary search using std::equal_range()

auto res = std::equal_range(std::begin(names),
                            std::end(names),
                            key);
kv* result = (res.first == res.second)
           ? std::end(names)
           : res.first;

An experiment to test the performance of equal_range() on the sample table ran for
1,810 milliseconds. This is actually worse than the linear search for the same-sized
table, which is pretty shocking. However, we’ll see that equal_range() was not the
best choice for a binary search function.

Binary Search Using std::lower_bound()
Although equal_range() promises O(log2 n) time cost, it actually contains more
machinery than is necessary for table lookup. A possible implementation of
equal_range() might look like this:

template <class It, class T>
    std::pair<It,It>
        equal_range(It first, It last, const T& value) {
    return std::make_pair(std::lower_bound(first, last, value),
                          std::upper_bound(first, last, value));
}

upper_bound() makes a second divide-and-conquer pass through the table to find
the end of the returned range, because equal_range() is general enough to work
with sorted sequences containing more than one value with the same key. But by con‐

Optimize Search Using the <algorithm> Header | 217



struction, in the example table the range will always contain either one entry or none.
The search can be performed using lower_bound() and one additional comparison,
as shown in Example 9-6.

Example 9-6. Binary search using std::lower_bound()

kv* result = std::lower_bound(std::begin(names),
                              std::end(names),
                              key);
if (result != std::end(names) && key < *result.key)
    result = std::end(names);

In this example, std::lower_bound() returns an iterator to the first entry in the table
whose key is not less than key. This iterator points to the end of the table if all the
entries are less than key. It may point to an entry that is greater than key. The final if
statement sets result to the end of the table if either of these conditions is true.
Otherwise, result points to the entry whose key is equal to key.

A version of the experiment using this search took 973 milliseconds, which is a satis‐
fying 86% faster than std::equal_range(). This is to be expected because it is doing
about half the work.

A search using std::lower_bound has performance that is competitive with the best
implementation using std::map, and has the additional advantage of zero cost to
construct or destroy the static table. The function std::binary_search() also runs
the experiment in 973 milliseconds, albeit with only the Boolean result. It seems as if
this is as far as we can go using the C++ standard library algorithms.

Handcoded Binary Search
It is possible to handcode a binary search taking the same arguments as the standard
library functions. The standard library algorithms all use a single ordering function,
operator<(), so that only the minimum interface need be provided. Because these
functions eventually have to determine if a key matches an entry, they do an extra
comparison at the end, noting that a == b can be defined as !(a < b) && !(b < a).

The original table occupies a range of consecutive values denoted as [start, end). At
each step in the search, the function (shown in Example 9-7) computes the midpoint
of the range and compares key against the entry at the midpoint. This effectively par‐
titions the range into two halves, [start, mid+1) and [mid+1, stop).

Example 9-7. Handcoded binary search using “<” for comparison

kv* find_binary_lessthan(kv* start, kv* end, char const* key) {
    kv* stop = end;
    while (start < stop) {

218 | Chapter 9: Optimize Searching and Sorting



        auto mid = start + (stop-start)/2;
        if (*mid < key) {// search right half [mid+1,stop)
            start = mid + 1;
        }
        else {// search left half [start,mid)
            stop = mid;
        }
    }
    return (start == end || key < *start) ? end : start;
}

A timing run for this binary search took 968 milliseconds. This is approximately the
same as the earlier version based on std::lower_bound().

Handcoded Binary Search using strcmp()
It is possible to peel the onion yet further, noting that operator<() is defined in
terms of strcmp(). Like operator<(), strcmp() compares two keys. But strcmp()
produces more information: an int result that is less than, equal to, or greater than
zero, as the first key is less than, equal to, or greater than the second key. The result‐
ing code, as shown in Example 9-8, looks like what you might write in C.

During each iteration of the while loop, the sequence to search is given by the inter‐
val [start,stop). At each step mid is set to the midpoint of the sequence to be searched.
The value returned by strcmp() divides the sequence into three parts instead of two:
[start,mid), [mid,mid+1), and [mid+1,stop). If mid->key is greater than key, we know
that key must be in the left part of the sequence, before mid. If mid->key is less than
key, key must be in the right part of the sequence beginning with mid+1. Otherwise,
mid->key equals key, and the loop terminates. The if/else logic does the more fre‐
quently occurring comparisons first to improve performance.

Example 9-8. Handcoded binary search using strcmp()

kv* find_binary_3(kv* start, kv* end, char const* key) {
    auto stop = end;
    while (start < stop) {
        auto mid = start + (stop-start)/2;
        auto rc = strcmp(mid->key, key);
        if (rc > 0) {
            stop = mid;
        }
        else if (rc < 0) {
            start = mid + 1;
        }
        else {
            return mid;
        }
    }
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    return end;
}

A timing run for this version of the binary search took 771 milliseconds. This is
nearly 26% faster than the best standard library–based search.

Optimize Search in Hashed Key/Value Tables
The previous section examined changes to the algorithm for a particular table data
structure that was very efficient to set up. In this section, I examine another table data
structure and algorithm: that of hash tables.

The idea of a hash table is that the key, whatever its type, can be fed to a hash function
that reduces the key to an integer hash. The hash in turn becomes an array index that
leads directly to a table entry. If the table entry then matches the key, the search is a
success. If the hash always leads directly to the table entry, the hash table allows access
in constant time. The only cost is the cost of producing the hash. Like linear search,
hashing does not assume any ordering relationship among the keys, but requires only
a means to compare keys for equality.

The complicated part of implementing a hash table is finding an efficient hash func‐
tion. A 10-letter string contains many more bits than a 32-bit integer. More than one
string can thus hash to the same table index. Some mechanism must be provided to
resolve such collisions. Each entry in the hash table might be the head of a list of
entries that hash to that index. Alternately, adjacent indexes might be searched for the
matching entry until an empty index is found.

Another problem is that the hash function may not produce a particular index for
any of the valid keys in the table, leaving an unused location in the hash table. This
makes a hash table potentially larger than a sorted array of the same entries.

A poor hash function or an unlucky set of keys can cause many keys to hash to the
same index. Then the performance of the hash table degrades to O(n), making it no
better than a linear search.

A good hash function produces array indexes that are not highly correlated to the bits
of the key. Random number generators and cryptographic encoders are good for this
goal. But if the hash function is costly to compute, there may be no advantage over a
binary search unless the table is very large.

Hunting better hash functions has been a pastime of computer scientists for many
years. A Q&A on Stack Exchange provides performance data and reference links for
several popular hash functions. The developer tuning hash table code should be
aware that these waters have been heavily fished. There are no big performance
improvements to be found here.
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C++ defines a standard hash function object called std::hash. std::hash is a tem‐
plate with specializations for integers, floating-point data, pointers, and std::string.
The unspecialized definition of std::hash, which is also used for pointers, converts
the hashed type to a size_t, and then randomizes the bits of this value.

Hashing with a std::unordered_map
In C++11, the standard header <unordered_map> provides a hash table. Visual Studio
2010 anticipated the standard and provided this header as well. std::unordered_map
can’t be used with the handcoded static table used in previous examples, though. The
entries must be inserted into the hash table, adding cost at startup. The code for creat‐
ing a hash table using std::unordered_map and inserting entries is shown in
Example 9-9.

Example 9-9. Initializing a hash table

std::unordered_map<std::string, unsigned> table;
for (auto it = names; it != names+namesize; ++it)
    table[it->key] = it->value;

The default hash function used by std::unordered_map is the template function
object std::hash. This template has a specialization for std::string, so no hash
function need be explicitly provided.

After entries are installed in the table, a lookup can be performed:

auto it = table.find(key);

it is an iterator to the table that points either to a valid entry or to table.end().

std::unordered_map with std::string keys uses all the default values of the map’s
template to achieve simplicity and reasonable performance. An experiment to meas‐
ure the performance of std::unordered_map took 1,725 milliseconds, not counting
time to construct the table. This is 56% faster than std::map with string keys, but
hardly a world-beating result. Given the hype about hashing being a performance
win, this result was surprising and disappointing.

Hashing with Fixed Character Array Keys
A version of the simple fixed character array template class charbuf from section
“Use Fixed-Size Character Array Keys with std::map” on page 208 can be used with
hash tables. The following template extends charbuf with a means to hash the char‐
acter string and an operator== for comparing keys if there is a collision:

template <unsigned N=10, typename T=char> struct charbuf {
    charbuf();
    charbuf(charbuf const& cb);
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    charbuf(T const* p);
    charbuf& operator=(charbuf const& rhs);
    charbuf& operator=(T const* rhs);

    operator size_t() const;

    bool operator==(charbuf const& that) const;
    bool operator<(charbuf const& that) const;
private:
    T data_[N];
};

The hash function is operator size_t(). This is a little unintuitive, and also a little
unclean. It happens that the default specialization for std::hash() casts the argu‐
ment to a size_t. For pointers, this normally just casts the bits of the pointer, but
with a charbuf& what happens is that charbuf::operator size_t() is called, return‐
ing the hash as a size_t. Of course, with operator size_t() hijacked for this use, it
isn’t available to return the size of a charbuf. The expression sizeof(charbuf) will
return very misleading data. The declaration of a hash table using charbuf looks like
this:

std::unordered_map<charbuf<>, unsigned> table;

Performance of this hash table was disappointing. It ran the test of 53 keywords in
2,277 milliseconds, worse even than the hash table or a map with std::string.

Hashing with Null-Terminated String Keys
These things must be done caaaaarefully, or it hurts the spell.

—The Wicked Witch of the West (Margaret Hamilton), The Wizard of Oz, 1939,
musing about how to remove the ruby slippers from Dorothy’s feet

If the hash table can be initialized with long-lived null-terminated strings, such as
C++ string literals, a hash-based key/value table can be constructed with pointers to
these strings. There is performance gold to be mined by making std::unordered_map
work with char* keys. But it isn’t trivial.

The full definition of std::unordered_map is:

template<
    typename Key,
    typename Value,
    typename Hash = std::hash<Key>,
    typename KeyEqual = std::equal_to<Key>,
    typename Allocator = std::allocator<std::pair<const Key, Value>>
> class unordered_map;

Hash is a function object or function pointer type declaration for the function that
hashes a Key. KeyEqual is a function object or function pointer type declaration for
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the function that compares two instances of Key for equality to resolve hash colli‐
sions.

When Key is a pointer, Hash is well defined. The program compiles without errors. It
may even appear to run. (My initial tests ran, producing an excellent test run time
and a false sense of accomplishment.) But the program is not correct. What happens
is that std::hash produces a hash of the pointer values, rather than a hash of the
pointed-to strings. If, for instance, a test program loads the table from an array of
strings, then tests that each string can be found, the pointers to the test keys are the
same as the pointers to the keys that initialized the table, and it appears to work. Test
the table with a duplicate string taken from user input, however, and the test claims
that the string is not in the table because the pointer to the test string is not the same
as the pointer to the key that initialized the table.

This problem can be solved by providing a nondefault hash function in place of the
default value for the third argument to the template. Just as for a map, this hash func‐
tion can be a function object, lambda declaration, or free function pointer:

struct hash_c_string {
    void hash_combine(size_t& seed, T const& v) {
        seed ^= v + 0x9e3779b9 + (seed << 6) + (seed >> 2);
    }

    std::size_t operator() (char const* p) const {
        size_t hash = 0;
        for (; *p; ++p)
            hash_combine(hash, *p);
        return hash;
    }
};

// this solution is incomplete -- see below
std::unordered_map<char const*, unsigned, hash_c_string> table;

I have taken the hash function from Boost. It is in standard library implementations if
they conform to C++14 or later. Alas, Visual Studio 2010 did not provide this func‐
tion.

Careful testing reveals that this declaration is still not correct, although it compiles
without error and produces a program that may work for some small tables. The
problem is with KeyEqual, the fourth argument of the std::unordered_map template.
The default value of this argument is std::equal_to, a function object that applies
operator== to its two operands. operator== is defined for pointers, but it compares
the pointers for their order in the computer’s memory space, rather than the pointed-
to strings.

The solution, of course, is another nondefault function object for the KeyEqual tem‐
plate parameter. The complete solution is shown in Example 9-10.
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Example 9-10. std::unordered_map with null-terminated string keys

struct hash_c_string {
    void hash_combine(size_t& seed, T const& v) {
        seed ^= v + 0x9e3779b9 + (seed << 6) + (seed >> 2);
    }

    std::size_t operator() (char const* p) const {
        size_t hash = 0;
        for (; *p; ++p)
            hash_combine(hash, *p);
        return hash;
    }
};

struct comp_c_string {
    bool operator()(char const* p1, char const* p2) const {
        return strcmp(p1,p2) == 0;
    }
};

std::unordered_map<
    char const*,
    unsigned,
    hash_c_string,
    comp_c_string
> table;

This version of the key/value table, using std::unordered_map and char* keys, ran
the test in 993 milliseconds. This is 73% faster than the hash table based on
std::string. But it’s a paultry 9% faster than the best implementation based on
std::map and char* keys. And it is slower than the binary-search algorithm on a
simple static array of key/value entries using std::lower_bound. This is not what
years of hype led me to expect. (In “std::unordered_map and std::unordered_multi‐
map” on page 256, we’ll see that larger hash tables have a greater advantage over
binary search–based search algorithms.)

Hashing with a Custom Hash Table
A hash function for use with unknown keys must be very general. If the keys are
known in advance, as they are in the example table, a very simple hash function may
suffice.

A hash that creates a table in which there are no collisions for a given set of keys is
called a perfect hash. A hash that creates a table with no unused spaces is called a
minimal hash. The Holy Grail of hash functions is a minimal perfect hash, creating a
table with no collisions and no empty spaces. Perfect hashes for reasonably short sets
of keywords are easy to create, and perfect minimal hashes are only a little more diffi‐
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cult. The first letter (or first couple of letters), the sum of the letters, and the length of
the key are all example hash functions that might be tried.

In the example table for this section, the 26 valid entries each begin with a different
letter and they are sorted, so a hash based on the first letter is a perfect minimal hash.
It doesn’t matter what invalid keys hash to. They are compared against the valid key at
their hash, and the comparison fails.

Example 9-11 shows a very simple custom hash table implemented to resemble
std::unordered_map.

Example 9-11. Minimal perfect hash table based on the example table

unsigned hash(char const* key) {
    if (key[0] < 'a' || key[0] > 'z')
        return 0;
    return (key[0]-'a');
}

kv* find_hash(kv* first, kv* last, char const* key) {
    unsigned i = hash(key);
    return strcmp(first[i].key, key) ? last : first + i;
}

hash() maps the first letter of key to one of the 26 table entries, hence the mod 26.
This is defensive programming to prevent accessing undefined storage in case the key
was something like “@#$%”.

An experiment to test find_hash() ran in 253 milliseconds. This result is stunning.

Although the simple hash function that worked for the sample table was particularly
fortunate, the table was not contrived to achieve this result. There is often a simple
function that is a minimal perfect hash. There are papers on the Internet discussing
various methods to automatically generate perfect minimal hash functions for small
keyword sets. The GNU Project (among others) has built a command-line tool called
gperf for producing a perfect hash function that is often also minimal.

Stepanov’s Abstraction Penalty
The experiment I used for searches looked up all 26 valid table entries and 27 invalid
table entries. This creates a kind of average performance. Linear search looked rela‐
tively better on tests consisting only of keys in the table, because linear search termi‐
nates as soon as it finds a matching entry. Binary searches make about the same
number of comparisons whether they find the key in the table or not.

Table 9-1 summarizes the results of the search experiments.
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Table 9-1. Summary of search performance experiments

 VS2010 release, i7,
1m iterations

% improvement
vs. previous

% improvement
vs. category

map<string> 2,307 ms   
map<char*> free function 1,453 ms 59% 59%
map<char*> function object 820 ms 77% 181%
map<char*> lambda 820 ms 0% 181%
std::find() 1,425 ms   
std::equal_range() 1,806 ms   
std::lower_bound 973 ms 53% 86%
find_binary_3way() 771 ms 26% 134%
std::unordered_map() 509 ms   
find_hash() 195 ms 161% 161%

As expected, binary search was faster than linear search, and hashing was faster than
binary search.

The C++ standard library provides a bunch of ready-to-use, debugged algorithms
and data structures that are useful in many situations. The standard defines their
worst-case time cost in big-O terms to demonstrate that they are widely applicable.

But there is a cost for using the extremely powerful and general-purpose machinery
of the standard library. Even when a standard library algorithm with good perfor‐
mance exists, it is often not competitive with the best handcoded algorithm. This may
be due to weaknesses in the template code or weaknesses in the compiler design, or
just because the standard library code has to work for very general situations (like
using only operator<() and not strcmp()). This cost may persuade the developer to
code really important searches by hand.

The gap in performance between standard algorithms and good, handcoded algo‐
rithms is called Stepanov’s Abstraction Penalty, after Alexander Stepanov, who
designed the original standard library algorithms and container classes, at a time
when no compiler existed that could compile them. Stepanov’s Abstraction Penalty is
the inevitable cost of providing a universal solution versus a custom-coded one. Ste‐
panov’s Abstraction Penalty is a toll for using highly productive tools like the C++ stan‐
dard library algorithms. It’s not a bad thing, but it’s a thing developers need to keep in
mind when they need to go really fast.

Optimize Sorting with the C++ Standard Library
A sequence container must be sorted before it can be searched efficiently using a
divide-and-conquer algorithm. The C++ standard library provides two standard
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algorithms, std::sort() and std::stable_sort(), that can sort sequence containers
efficiently.

Although the standard does not specify which sorting algorithm is used, it was writ‐
ten so that std::sort could be implemented using some variation of quicksort, and
std::stable_sort could be implemented using merge sort. C++03 requires
std::sort to have average performance that is O(n log2 n). Implementations con‐
forming to C++03 generally implemented std::sort using quicksort, usually with
some median-picking trick to reduce the chance of quicksort’s O(n2) worst-case.
C++11 requires the worst-case performance to be O(n log2 n). Implementations con‐
forming to C++11 are generally hybrid sorts such as Timsort or introsort.

std::stable_sort is usually a variant of merge sort. The standard’s peculiar wording
is that std::stable_sort runs in O(n log2 n) time if sufficient additional memory
can be allocated, but otherwise runs in O(n (log2 n)2) time. A typical implementation
is to use merge sort if the recursion depth is not too great, and heapsort if it is.

The value of a stable sort is that a program can sort a range of records by each of
several criteria (like first name, and then last name) and get records sorted by the sec‐
ond criterion, then by the first criterion within the second (like last name, and then
first name within last name). Only stable sorts provide this property. This additional
property justifies having two sorts.

Table 9-2 reports the results of an experiment in which I sorted 100,000 randomly
generated key/value records stored in a std::vector. An interesting result is that
std::stable_sort() actually performed better than std::sort(). I also tested sort‐
ing an already-sorted table. I examine sorting in different data structures in Chap‐
ter 10.

Table 9-2. Summary of sort performance experiments

std::vector, 100k items, VS2010 release, i7 Time
std::sort() vector 18.61 ms
std::sort() sorted vector 3.77 ms
std::stable_sort() 16.08 ms
std::stable_sort() sorted 5.01 ms

The sequence container std::list provides only bidirectional iterators. On a list,
therefore, std::sort() would run in O(n2) time. std::list provides a sort() mem‐
ber function that is O(n log2 n).

The ordered associative containers maintain their data in sorted order, so it isn’t nec‐
essary to sort them. The unordered associative containers maintain their data in a
particular order that is not meaningful to users. They cannot be sorted.
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The C++ standard library <algorithm> header contains pieces of the various sort
algorithms, from which more complicated sorts can be built up for input data that
has additional special properties:

• std::heap_sort converts a range having the heap property into a sorted range.
heap_sort is not a stable sort.

• std::partition performs the basic action of a quicksort.
• std::merge performs the basic action of a merge sort.
• The insert member of the various sequence containers performs the basic

action of an insertion sort.

Summary
• The mix of features in C++ provides a continuum of implementation choices rang‐

ing from hands-off automation and expressiveness on the one hand, to fine control
over performance on the other hand. It is this degree of choice that makes it possible
to tune C++ programs to meet requirements for performance.

• There are enough parts in most activities worth optimizing that human beings can‐
not reliably remember them all. Paper has a better memory.

• In a test of searching a table with 26 keys, std::unordered_map with string keys
was only 52% faster than std::map with string keys. Given the hype about hashing
being a performance win, this result was surprising.

• Stepanov’s Abstraction Penalty is a toll for using highly productive tools like the C++
standard library algorithms.
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CHAPTER 10

Optimize Data Structures

A thing of beauty is a joy forever
—John Keats (1818)

If you have never stopped to marvel at the container classes of the C++ standard
library (formerly the Standard Template Library, or STL), perhaps you should do so
now. At the time it was introduced into the draft C++ standard in 1994, Stepanov’s
Standard Template Library was the first reusable library of efficient containers and algo‐
rithms. Prior to the STL, every project developed its own linked list and binary tree
implementations, possibly adapting source code from other users. C has no equiva‐
lent. Standard library containers have allowed many programmers to forget their
algorithms and data structures classes and choose exclusively from the standard
library’s menu of prebuilt containers for the past 20 years.

Get to Know the Standard Library Containers
There are many things to like about the C++ standard library containers, such as uni‐
form naming and a consistent notion of iterators for traversing the containers. But
for optimization purposes, some properties are especially important. These include:

• Big-O performance guarantees for the cost of insertion and deletion
• Amortized constant-time cost of appending to sequence containers
• Ability to finely control the dynamic memory allocated by the container

The C++ standard library containers seem almost similar enough that they can be
substituted for one another, notwithstanding their obviously different implementa‐
tions. But this is an illusion. The standard library containers are old enough to vote.
Like other parts of C++, standard library containers have evolved independently of
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one another. The interfaces are only partially overlapping. Big-O performance of the
same operation differs by container. Most importantly, the semantics of some mem‐
ber functions differ from container to container, even when they have the same name.
The developer must know each container class in detail to understand how to use
them optimally.

Sequence Containers
The sequence containers std::string, std::vector, std::deque, std::list, and
std::forward_list  keep items in the order in which they are inserted. Therefore,
each container has a front and a back. All sequence containers have means to insert
items. All but std::forward_list have constant-time member functions to push
items onto the back. However, only std::deque, std::list, and std::forward_list
can efficiently push items onto the front.

The items in std::string, std::vector, and std::deque are numbered from 0 to
size–1, and can be retrieved efficiently by subscripting. std::list and std::for
ward_list are different, having no subscripting operator.

std::string, std::vector, and std::deque are built on an array-like internal back‐
bone. When an item is inserted, any item following it must be bumped up to the next
location in the array, which makes the cost of inserting anywhere but at the end O(n),
where n is the number of items. When items are inserted, these internal arrays may
be reallocated, which invalidates all iterators and pointers. By contrast, std::list
and std::forward_list invalidate iterators and pointers only to list elements that are
removed. Two std::list or std::forward_list instances can even be spliced
together or merged without invalidating iterators. Insertion in the middle of a
std::list or std::forward_list takes constant time, assuming that an iterator
already points to the insertion point

Associative Containers
Associative containers all store inserted items based on some ordering property of the
items, rather than on the order of insertion. All associative containers provide effi‐
cient, sub-linear-time access to the items they contain.

Maps and sets present different interfaces. Maps store a separately defined key and
value, and thus provide an efficient mapping from key to value. Sets store unique,
ordered values, and provide efficient tests for the presence of a value. “Multimaps”
differ from maps (and similarly “multisets” differ from sets) only in that they permit
insertion of multiple items that compare as equal.

In implementation terms, there are four ordered associative containers: std::map,
std::multimap, std::set, and std::multiset. The ordered associative containers
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require that an ordering relationship like operator<() be defined on the keys
(std::map) or items themselves (std::set). The ordered associative containers are
implemented as balanced binary trees. It is not necessary to sort an ordered associa‐
tive container. Iterating through them produces items in order by their ordering rela‐
tionship. Inserting or removing items takes amortized O(log2 n) time, where n is the
number of items in the container.

Although it is possible for maps and sets to have different implementations, in prac‐
tice all four associative containers are implemented as separate façades over the same
balanced binary tree data structure. This was true of the compilers I used. I therefore
do not present separate timing results for multimaps, sets, and multisets.

Since the introduction of C++11, there are also four unordered associative containers:
std::unordered_map, std::unordered_multimap, std::unordered_set, and
std::unordered_multiset. These containers appear in Visual C++ as early as 2010.
The unordered associative containers require only an equality relationship to be
defined on the keys (std::unordered_map) or items (std::unordered_set). Unor‐
dered associative containers are implemented as hash tables. Iterating through an
unordered associative container produces the items in no defined order. Inserting or
removing items takes constant time on average, although worst-case time is O(n).

Associative containers make obvious choices for lookup tables. The developer can
also store items that have an ordering relation in a sequence container, sort the con‐
tainer, and do relatively efficient O(log2 n) searches.

Experimenting with the Standard Library Containers
I built several types of containers with 100,000 elements, and measured performance
for insertion, deletion, and visiting each element. In the sequence containers, I also
measured the cost of sorting. These are common building blocks for the infinite uses
to which data structures may be applied.

This number of elements is enough that the amortized cost of insertion approaches
the asymptotic behavior specified for the container—100,000 elements is enough to
exercise the cache memory pretty thoroughly. It isn’t a small container by any means,
nor is it so impractically large that it would be rare.

That said, big-O performance does not tell the full story. I found that some containers
were many times faster than others, even when an operation had O(1) asymptotic cost
on both containers being compared.

I also found that unordered maps, with their O(1) search cost, were faster than maps,
but not by the wide margin I had expected. And the cost in memory to obtain that
performance was significant.
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Most types of container provide several ways in which items can be inserted. I discov‐
ered that certain ways of inserting were 10% or 15% faster than others, and often with
no clear reason why.

The cost of inserting 100,000 elements into a container comes in two parts: the cost of
allocating storage, and the cost of copy constructing the elements into the storage.
The cost of allocating storage is fixed for items of a specific size, while the cost of
copy-construction is not bounded, depending on the whim of the programmer. In
the case of a very expensive item copy constructor, the copying cost will come to
dominate the cost of building the container. In this case, all containers will perform
approximately the same when tested for insertions.

Most types of container also provide several ways to iterate through items. Again, I
found certain ways to be significantly faster than others, with no obvious reason for
the differences. Interestingly, there was less difference than I expected in the cost to
iterate in the various container types.

I tested the cost of sorting the sequence containers to see how they might fare if sub‐
stituted for associative containers in applications that search tables. Some containers
sort their elements as part of inserting them; other containers cannot be sorted at all.

The results reported here are significant enough to be interesting, but are probably
fragile. As implementations evolve over time, the fastest method may change. For
instance, while stable_sort() consistently outperformed sort(). I suspect this
would not have been the case when stable_sort() was added to the algorithms
library.

Element data type
For the items in the sequence containers, I used a key/value structure. The associative
containers create a very similar structure built out of std::pair:

struct kvstruct {
    char key[9];
    unsigned value; //  could be anything at all
    kvstruct(unsigned k) : value(k)
    {
        if (strcpy_s(key, stringify(k)))
            DebugBreak();
    }
    bool operator<(kvstruct const& that)  const {
        return strcmp(this->key, that.key) < 0;
    }
    bool operator==(kvstruct const& that) const {
        return strcmp(this->key, that.key) == 0;
    }
};
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The copy constructor for this class is generated by the compiler, but it is nontrivial,
having to bit-copy the contents of one kvstruct to another. As before, my goal was to
make copying and comparison at least a little expensive to simulate real-world data
structures.

The keys themselves were C-style null-terminated character strings comprised of
seven-digit numbers. The keys were drawn from a uniform random distribution
using C++’s <random> header. The same number was stored as an unsigned integer as
the item’s value field. Duplicate keys were eliminated, to produce an initial vector of
100,000 distinct values in no particular order.

A note on designing the experiment
Some containers are very inexpensive to insert into or traverse, even with 100,000
items. To get the test to run for a measurable amount of time, I had to repeat the
insertion or traversal 1,000 times. But this presented a problem. Each time I inserted
items into a container, I had also to clear out the container by deleting the items,
which affected the total run time. For instance, the following code measures the cost
of assigning one vector to another. It inevitably and inextricably combines the cost of
constructing a new copy of random_vector and then deleting it:

{   Stopwatch sw("assign vector to vector + delete x 1000");
    std::vector<kvstruct> test_container;
    for (unsigned j = 0; j < 1000; ++j) {
        test_container = random_vector;
        std::vector<kvstruct>().swap(test_container);
    }
}

To obtain separate costs for the assignment and the deletion, I constructed a more
complex version of this code to accumulate separately the time taken to create the
new copy and to delete it:

{   Stopwatch sw("assign vector to vector", false);
    Stopwatch::tick_t ticks;
    Stopwatch::tick_t assign_x_1000 = 0;
    Stopwatch::tick_t delete_x_1000 = 0;
    std::vector<kvstruct> test_container;
    for (unsigned j = 0; j < 1000; ++j) {
        sw.Start("");
        test_container = random_vector;
        ticks = sw.Show("");
        assign_x_1000 += ticks;
        std::vector<kvstruct>().swap(test_container);
        delete_x_1000 += sw.Stop("") - ticks;
    }
    std::cout << "    assign vector to vector x 1000: "
              << Stopwatch::GetMs(assign_x_1000)
              << "ms" << std::endl;
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    std::cout << "    vector delete x 1000: "
              << Stopwatch::GetMs(delete_x_1000)
              << "ms" << std::endl;
}

The first statement in the loop, sw.Start("");, starts the stopwatch without printing
anything. The next statement, test_container = random_vector;, consumes time
copying the vector. The third statement, ticks = sw.Show("");, sets ticks to the
elapsed time so far.

What value is in ticks? The source of ticks in the Stopwatch instance sw has a 1-
millisecond tick. The time taken by the assignment is far less than 1 millisecond, so
mostly the value in ticks is 0. But not always. The clock is independent of this code,
ticking steadily somewhere in the hardware. So occasionally, a situation arises where,
for instance, the stopwatch started during the 987th microsecond of a 1-millisecond
tick, and by the time the assignment statement completed, the tick had occurred. In
this case, ticks will equal 1. If the assignment takes 500 microseconds, this will hap‐
pen about half the time. If the assignment takes 10 microseconds, it will happen
about 1% of the time. Given enough repetitions of the loop, an accurate aggregate
time emerges.

ticks is accumulated in assign_x_1000, the variable that counts the time taken by
the assignment. Then, the statement std::vector().swap(test_container); deletes
the contents of the vector test_container. Finally, delete_x_1000 += sw.Stop("")
- ticks; gets another tick count that is either zero or one, subtracts the tick count
from the end of the assignment, and accumulates the difference in delete_x_1000.
The measured cost of deleting the vector 1,000 times is 111 milliseconds, or 0.111
milliseconds per deletion.

Armed now with the cost of deleting a container with 100,000 entries, the remaining
code can be tackled with arithmetic. The following code is another loop that fills a
container 1,000 times, which also must include the cost of deleting the container:

{   Stopwatch sw("vector iterator insert() + delete x 1000");
    std::vector<kvstruct> test_container;
    for (unsigned j = 0; j < 1000; ++j) {
        test_container.insert(
             test_container.begin(),
             random_vector.begin(),
             random_vector.end());
        std::vector<kvstruct>().swap(test_container);
    }
}

A particular test run of the preceding code took 696 milliseconds to fill the container
and delete the container 1,000 times. If the cost of deleting the vector 1,000 times, as
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measured earlier, is 111 milliseconds, the cost of a single call to insert() is
696 − 111

1000 = 0 . 585 milliseconds.

Modern C++ Coding Note
There is a little-remarked standard library in C++ for generating random numbers,
called <random>. Once I discovered this library, it became one of my favorite tools for
generating random search keys. For instance, Example 10-1 shows the code I used to
generate the random strings for my container tests.

Example 10-1. Creating a vector of unique kvstruct instances

# include <random>

// build count-element vector containing unique random strings
void build_rnd_vector(std::vector<kvstruct>& v, unsigned count){
    std::default_random_engine e;
    std::uniform_int_distribution<unsigned> d(count, 10*count-1);
    auto randomizer = std::bind(d,e);
    std::set<unsigned> unique;
    v.clear();
    while (v.size() < count) {
        unsigned rv = randomizer();
        if (unique.insert(rv).second == true) { // item inserted
            kvstruct keyvalue(rv);
            v.push_back(keyvalue);
        }
    }
}

The first line of build_rnd_vector() constructs a random number generator, basi‐
cally a source of randomness. The second line creates a random number distribution,
an object that transforms sequences of random numbers from the generator into
sequences of numbers that follow some probability distribution. In this case, the dis‐
tribution is uniform, which means each value is equally likely to occur, with mini‐
mum value count and maximum value 10*count-1. So, if count is 100,000, the values
provided by the distribution will range from 100,000 to 999,999. That is, they will all
be six digits long. The third line creates an object that applies the generator as an
argument to the distribution, so that calling the object’s operator() generates a ran‐
dom number.

The generators are all documented and have known properties. There is even a gener‐
ator called std::random_device that produces values from a source of true random‐
ness, if one is available.

Distributions provide the power in this library. For instance, here are a few useful dis‐
tributions:
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std::uniform_int_distribution<unsigned> die(1, 6);

The distribution of a fair, six-sided die, which produces numbers from 1 to 6
with equal probability. Dice with 4, 20, or 100 sides can be simulated by varying
the second argument.

std::binomial_distribution<unsigned> coin(1, 0.5);

The distribution of a fair coin toss, which produces values of 0 or 1 with equal
probability. A biased coin could be simulated by adjusting the second argument
away from 0.5.

std::normal_distribution<double> iq(100.0, 15.0);

The distribution of assessed intelligence in the human population, returning val‐
ues of type double such that about two-thirds of the results are between 85.0 and
115.0.

For more refined statistical tastes, there are Poisson and exponential distributions for
building event simulations (also known as test drivers), and several population-based
distributions.

std::vector and std::string
A sort of “product sheet” for these data structures would say:

• Sequence container
• Insert time: from back aggregate O(1), from elsewhere O(n)
• Index time: by position, in O(1)
• Sort in O(n log2 n)
• Search in O(log2 n) if sorted, else O(n)
• Iterators and references invalidated when the internal array is reallocated
• Iterators produce items front-to-back or back-to-front
• Reasonable control over allocated capacity independent of size

Historically, std::string was permitted novel implementations, but C++11 locked
down the definition. Visual Studio’s implementation might as well be a derived class
of std::vector with specialized member functions for string handling. Comments
about std::vector apply equally to Visual Studio’s std::string.

std::vector is a dynamically resizable array (see Figure 10-1). Array items are
instances of the template type parameter T that are copy-constructed into the vector.
Although the item copy constructors may allocate memory for members, the only
calls std::vector makes to the memory manager are to reallocate its internal buffer
as items are added. This flat structure makes std::vector unusually efficient. Bjarne
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Stroustrup, creator of C++, recommends std::vector as the go-to container class
unless there is a specific reason why another container is needed. I’ll show why in this
section.

Figure 10-1. std::vector possible implementation

Many operations on std::vector are efficient in big-O terms, running in constant
time. Among these operations are pushing a new item onto the end of the vector, and
obtaining a reference to the ith element. Because of the vector’s simple internal struc‐
ture, these operations are quite fast in absolute terms as well. Iterators over
std::vector are random-access iterators, which means computing the distance
between two iterators in the same vector can be done in constant time. This property
makes divide-and-conquer searches and sorts of std::vector efficient.

Performance Consequences of Reallocation
std::vector has a size, which describes how many elements are currently in the vec‐
tor, and a capacity, which describes how big the internal buffer that holds its elements
is. When size == capacity, any further insertions trigger an expensive expansion: real‐
locating the internal buffer, copying the vector elements to the new storage, and inva‐
lidating all iterators and references to the old buffer. When reallocation becomes
necessary, the capacity of the new buffer is set to some multiple of the new size. The
effect of this is that the cost of insertion is constant in the aggregate, though some
insertions are expensive while others are not.

One secret of efficient std::vector use is that capacity can be reserved ahead of need
by a call to void reserve(size_t n), thus preventing unnecessary reallocate-and-
copy cycles.

Another secret of std::vector’s efficiency is that it doesn’t automatically return
memory to the memory manager if items are removed. If a program pushes a million
items onto a vector and then removes them, the vector continues to hold onto a mil‐
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lion items’ worth of storage. Developers must keep this fact in mind when
std::vector is used in constrained environments.

Several member functions of std::vector affect its capacity, but the standard is
cagey about making any guarantees. void clear() sets the size of the container to
zero, but is not guaranteed to reallocate the internal buffer to reduce its capacity. In
C++11, and anticipated in Visual Studio 2010, void shrink_to_fit() is a hint to the
vector to reduce its capacity to match its current size, but reallocation is not manda‐
tory.

To ensure the release of memory from a vector in all versions of C++, use the follow‐
ing trick:

std::vector<Foo> x;
   ...
vector<Foo>().swap(x);

This statement constructs a temporary, empty vector, swaps its contents with the con‐
tents of vector x, then deletes the temporary, so that the memory manager reclaims all
memory formerly belonging to x.

Inserting and Deleting in std::vector
There are several ways to fill a vector with data. I explored the cost to construct a vec‐
tor of 100,000 kvstruct instances, determining that there are definitely faster and
slower methods.

The fastest way to fill up a vector is to assign it:

std::vector<kvstruct> test_container, random_vector;
   ...
test_container = random_vector;

Assignment is very efficient because it knows the size of the vector it is copying, and
needs to call the memory manager only once to create the assigned vector’s internal
buffer. A test of the previous statement copied a 100,000-entry vector in 0.445 milli‐
seconds.

If the data is in another container, std::vector::insert() will copy it into a vector:

 
std::vector<kvstruct> test_container, random_vector;
   ...
test_container.insert(
        test_container.end(),
        random_vector.begin(),
        random_vector.end());

A test of this statement copied a 100,000-entry vector in 0.696 milliseconds.
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The member function std::vector::push_back() can efficiently (that is, in constant
time) put a new item onto the end of a vector. Since the items are in another vector,
there are three ways to get at them:

• The code can use a vector iterator:
std::vector<kvstruct> test_container, random_vector;
   ...
for (auto it=random_vector.begin(); it!=random_vector.end(); ++it)
    test_container.push_back(*it);

• The std::vector::at() member function can be used:
std::vector<kvstruct> test_container, random_vector;
   ...
for (unsigned i = 0; i < nelts; ++i)
    test_container.push_back(random_vector.at(i));

• The code can use a vector subscript directly:
std::vector<kvstruct> test_container, random_vector;
   ...
for (unsigned i = 0; i < nelts; ++i)
    test_container.push_back(random_vector[i]);

The three methods produced similar times of 2.26, 2.05, and 1.99 milliseconds,
respectively, in my tests. However, this is six times the amount of time taken by the
simple assignment statement.

The reason this code is slower is that it inserts items into the vector one at a time. The
vector doesn’t know how many items will be inserted, so it makes its internal buffer
bigger incrementally. Several times during this loop, the vector’s internal buffer is
reallocated, and all the items are copied to the new buffer. std::vector guarantees
that in the aggregate, push_back() happens in constant time, but that doesn’t mean it
has no cost.

The developer can use extra knowledge to make this loop more efficient, by pre-
allocating a buffer big enough to hold the whole copy. The iterator variant of this
code looks like this:

std::vector<kvstruct> test_container, random_vector;
   ...
test_container.reserve(nelts);
for (auto it=random_vector.begin(); it != random_vector.end(); ++it)
    test_container.push_back(*it);

The resulting loop runs in a respectable 0.674 milliseconds.

There are still more ways to insert items into a vector. Another variant of the
insert() member function can be used:
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std::vector<kvstruct> test_container, random_vector;
   ...
for (auto it=random_vector.begin(); it != random_vector.end(); ++it)
    test_container.insert(test_container.end(), *it);

This ought to be exactly as expensive as push_back(), but it isn’t (in Visual Studio
2010). All three variants (iterator, at(), and subscript) run in about 2.7 milliseconds.
Reserving space in advance reduces this to 1.45 milliseconds, but this is not competi‐
tive with any of the previous results.

Finally, we come to std::vector’s super-weakness: inserting at the front. std::vec
tor does not provide a push_front() member, because the time cost is O(n). Insert‐
ing at the front is inefficient because every item in the vector must be copied to make
room for the new entry. And it is, indeed, inefficient. The following loop:

std::vector<kvstruct> test_container, random_vector;
   ...
for (auto it=random_vector.begin(); it != random_vector.end(); ++it)
    test_container.insert(test_container.begin(), *it);

takes 8,065 milliseconds. That’s a comma there, not a decimal point. This loop takes
almost three thousand times as long as inserting at the back.

So, to fill up a vector efficiently, try assignment, insert() with iterators from another
container, push_back(), and insert() at the back of the vector, in that order.

Iterating in std::vector
Vectors are inexpensive to traverse, visiting each element. But as with insertion, the
time cost of the available methods differs significantly.

There are three ways to iterate through a vector: with an iterator, with the at() mem‐
ber function, or by subscripting. If the controlled action of the loop is expensive, the
difference in cost of the various traversal methods becomes insignificant. However,
developers often perform only a simple, fast action on the data in each element. In
this example, the loop sums the contents, which takes a negligible amount of time (it
also keeps the compiler from optimizing away the whole loop as a no-op):

std::vector<kvstruct> test_container;
   ...
unsigned sum = 0;
for (auto it=test_container.begin(); it!=test_container.end(); ++it)
    sum += it->value;

std::vector<kvstruct> test_container;
   ...
unsigned sum = 0;
for (unsigned i = 0; i < nelts; ++i)
    sum += test_container.at(i).value;
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std::vector<kvstruct> test_container;
   ...
unsigned sum = 0;
for (unsigned i = 0; i < nelts; ++i)
    sum += test_container[i].value;

It is reasonable for the developer to expect these loops to be nearly equivalent in cost,
but in fact they are not. The iterator version takes 0.236 milliseconds. The at() ver‐
sion is slightly better, at 0.230 milliseconds, but as with insertion, the subscript ver‐
sion is more efficient, taking just 0.129 milliseconds. The subscripting version is 83%
faster in Visual Studio 2010.

Sorting std::vector
You can sort a vector efficiently prior to using a binary search to look up items. The
C++ standard library has two sorting algorithms, std::sort() and std::sta
ble_sort(). Both algorithms run in O(n log2 n) time if the container’s iterators are
random-access iterators, as std::vector’s are. Both algorithms run somewhat faster
on data that is already sorted. Sorting is accomplished by a brief program fragment:

std::vector<kvstruct> sorted_container, random_vector;
   ...
sorted_container = random_vector;
std::sort(sorted_container.begin(), sorted_container.end());

The results are summarized in Table 10-1.

Table 10-1. Cost of sorting a vector of 100,000 items

std::vector VS2010 release, i7, 100k items
std::sort() vector 18.61 ms
std::sort() sorted vector 3.77 ms
std::stable_sort() 16.08 ms
std::stable_sort() sorted 5.01 ms

Lookup with std::vector
The following program fragment looks for every key from random_vector in
sorted_container:

std::vector<kvstruct> sorted_container, random_vector;
   ...
for (auto it=random_vector.begin(); it!=random_vector.end(); ++it) {
    kp = std::lower_bound(
                sorted_container.begin(),
                sorted_container.end(),
                *it);
    if (kp != sorted_container.end() && *it < *kp)
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        kp = sorted_container.end();
}

This program looked up 100,000 keys in the sorted vector in 28.92 milliseconds.

std::deque
The “product sheet” for deque looks like this:

• Sequence container
• Insert time: from back or front O(1), from elsewhere O(n)
• Index time: by position, in O(1)
• Sort in O(n log2 n)
• Search in O(log2 n) if sorted, else O(n)
• Iterators and references invalidated when the internal array is reallocated
• Iterators produce items front-to-back or back-to-front

std::deque is a specialized container for creating first-in, first-out queues (FIFO).
Insertion and deletion at either end is constant-time. Subscripting is also constant-
time. The iterators are random-access like those of std::vector, so std::deque can
be sorted in O(n log2 n) time.

Because std::deque makes the same performance guarantees (in big-O terms) as
std::vector, and has constant-time insertion at both ends, it’s tempting to wonder
what the big deal is about std::vector. However, the constant of proportionality of
all these operations is greater for deques than for vectors. Measured performance of
common operations involving deques is 3 to 10 times slower than corresponding
operations in vectors. Iterating, sorting, and lookup are relative bright spots for
deques, being only about 30% slower than for vectors.

std::deque is typically implemented as an array of arrays (Figure 10-2). The two
indirections needed to get to an item in the deque reduces cache locality, and the cost
of more frequent calls to the memory manager is greater than with std::vector.

Pushing an item onto either end of a deque may cause at most two calls to the alloca‐
tor: one to add another block of items, and, less frequently, another to extend the
deque backbone. This allocation behavior is more complex, and thus harder to reason
about, than the allocation behavior of vectors. std::deque does not offer any equiva‐
lent to std::vector’s reserve() member function to preallocate its internal data
structures. The deque may seem like an obvious container with which to implement a
FIFO queue. There is even a container adapter template called std::queue, for which
deque is the default implementation. However, there is no guarantee that the alloca‐
tion performance will be very good in this use.
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Figure 10-2. std::deque possible implementation after a few insertions and deletions

Inserting and Deleting in std::deque
std::deque provides the same interface for insertion as does std::vector, plus the
member push_front().

Here is an assignment of one deque to another. This operation took 5.70 millisec‐
onds:

std::deque<kvstruct> test_container;
std::vector<kvstruct> random_vector;
   ...
test_container = random_vector;
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Insertion into a deque using a pair of iterators looks like this. This operation took
5.28 milliseconds:

std::deque<kvstruct> test_container;
std::vector<kvstruct> random_vector;
   ...
test_container.insert(
        test_container.end(),
        random_vector.begin(),
        random_vector.end());

Here are three ways to copy items from a vector to a deque using push_back():

std::deque<kvstruct> test_container;
std::vector<kvstruct> random_vector;
   ...
for (auto it=random_vector.begin(); it!=random_vector.end(); ++it)
    test_container.push_back(*it);

for (unsigned i = 0; i < nelts; ++i)
    test_container.push_back(random_vector.at(i));

for (unsigned i = 0; i < nelts; ++i)
    test_container.push_back(random_vector[i]);

A developer could be excused for guessing that these three loops would cost pretty
much the same. Maybe at() should be a tiny bit slower due to the extra checking it
does. Indeed, the iterator version at 4.33 milliseconds was 15% faster than the sub‐
script version at 5.01 milliseconds, with the at() version in between at 4.76 millisec‐
onds. This is not a tremendous difference; maybe not the big game for which an
optimization effort would normally want to hunt.

Results were similar for the three variants of prepending using push_front(). The
iterator version took 5.19 milliseconds and the subscripting version 5.55 milliseconds
—a difference of only 7%, bordering on the unrepeatable. However, the
push_front() results were 20% slower than for push_back().

Inserting at the back and at the front was about twice as expensive as push_back() or
push_front(), respectively.

Now take a look at the performance of std::vector versus std::deque. A vector per‐
forms an assignment 13 times faster for the same number of entries. A vector is 22
times faster at deletion, 9 times faster at iterator-based insertion, twice as fast at
push_back(), and 3 times as fast when inserting at the end.

Optimization War Story
When I began performance-testing deque, I found a surprise: Operations on
std::deque were a thousand times slower than equivalent std::vector operations.
At first I told myself, “It is what it is. Deque must simply be an awful choice for a data
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structure.” It was only when I ran a “final” set of tests for the tables in this book that
my foolishness was revealed.

My normal practice in development was to run the test programs in the debugger,
because there’s a big fat button for that on the IDE. I was aware that debug runs are
linked to a C++ runtime library with extra debug checking. But I had never seen this
make more than a slight difference in performance. For the tables in the book, it was
my practice to make a final run outside the debugger, because I got more consistent
timings that way. That’s how I found that for std::deque, running under the debug‐
ger is monstrously expensive due to diagnostic code added to memory allocation rou‐
tines. This was an exception to my general experience that measuring relative
performance in debug builds produced similar results to measuring relative perfor‐
mance in release builds. It is possible to control whether the debug heap or normal
heap is ued in debugging. See “Optimizing Pro Tip” on page 39.

Iterating in std::deque
Iterating through the elements of a deque took 0.828 milliseconds for the subscript-
based version and 0.450 milliseconds for the iterator-based code. Interestingly, the
iterator-based traversal is much faster for the deque, while the subscript-based code
was faster for the vector. But the fastest deque traversal method is twice as expensive
as the fastest vector traversal method, continuing the trend set previously.

Sorting std::deque
std::sort() processed 100,000 deque entries in 24.82 milliseconds, which is 33%
more than for the vector. As for the vector, std::stable_sort() was faster at 17.76
milliseconds, and the time was within 10% of the time for the vector. In both cases,
the presorted vector was faster to re-sort.

Lookup with std::deque
It took 35 milliseconds to look up all 100,000 keys in a sorted deque. Lookup was only
about 20% more expensive for the deque than for the vector.

std::list
The “product sheet” for this data structure says:

• Sequence container
• Insert time: O(1) at any position
• Sort in O(n log2 n)
• Search in O(n)
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• Iterators and references never invalidated except for removed items
• Iterators visit list items front-to-back or back-to-front

std::list shares many properties with std::vector and std::deque. Like with vec‐
tor and deque, items can be pushed onto the back of a list in constant time. Like with
a deque (but unlike a vector), items can be pushed onto the front of a list in constant
time. Furthermore, unlike either a vector or deque, items can also be inserted into the
middle of a list in constant time, given an iterator to the insertion point. Like a deque
and a vector, a list can be efficiently sorted. But unlike with vectors and deques, there
is no efficient way to search a list. std::find(), which takes O(n) time, is as good as
you can do.

The received wisdom is that std::list is too inefficient to be useful, but I did not
find that when I tested its performance. While std::list is maybe 10 times as expen‐
sive to copy or create as std::vector, it is quite competitive with std::deque. Push‐
ing incrementally onto the tail of a list is less than twice as expensive as for a vector.
Traversing and sorting a list are only 30% more expensive than the same operations
on a vector. For most of the operations I tested, std::list was less expensive than
std::deque.

The same received wisdom holds that std::list, with its forward and reverse links
and constant-time size() method, is more expensive than necessary for the features
it provides. This thinking led eventually to the inclusion of std::forward_list in
C++11. However, a little performance testing shows that std::list is almost identi‐
cal to std::forward_list in the cost of its operations, at least on PC hardware.

Because std::list has no backbone array that must be reallocated, iterators and ref‐
erences to list items are never invalidated by insertion. They become invalid only if
the items they point to are deleted.

One place std::list shines is that lists can be spliced (in O(1) time) and merged
without copying list items. Even operations like splice and sort don’t invalidate
std::list iterators. Insertion into the middle of a list is constant-time, provided the
program already knows where to insert. So, an application that creates lists of items
and then shuffles them around might be more efficient using std::list than
std::vector.

std::list interacts with the memory manager in a very simple and predictable way.
Each list item is separately allocated when needed. There is no unused capacity hiding
in a list (see Figure 10-3).
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Figure 10-3. std::list possible implementation after a few insertions and deletions

The storage allocated for each list item is the same size. This helps sophisticated
memory managers operate efficiently, and with less risk of fragmenting memory. It is
also possible to define a simple custom allocator for std::list that exploits this
property to operate efficiently (see “A Fixed-Block Allocator” on page 352).

Inserting and Deleting in std::list
The algorithms for copying one list to another by insert(), push_back(), and
push_front() are identical to the listings for a vector and deque, except for the data
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structure declaration at the beginning. The very simple structure of std::list does
not offer the compiler much chance to improve the code during compilation. Tim‐
ings for all these mechanisms are thus consistent for lists, as illustrated in Table 10-2.

Table 10-2. Summary of performance experiments on std::list

std::list, 100k items, VS2010 release, i7 Time List versus vector
Assign 5.10 ms 1046%
Delete 2.49 ms 2141%
insert(end()) 3.69 ms 533%
Iterator push_back() 4.26 ms 88%
at() push_back() 4.50 ms 120%
Subscript push_back() 4.63 ms 132%
Iterator push_front() 4.77 ms  
at() push_front() 4.82 ms  
Subscript push_front() 4.99 ms  
Iterator insert at back 4.75 ms 75%
at() insert at back 4.84 ms 77%
Subscript insert at back 4.88 ms 75%
Iterator insert at front 4.84 ms  
at() insert at front 5.02 ms  
Subscript insert at front 5.04 ms  

Inserting at the end of a list was the fastest way to construct a list; for some reason,
even faster than operator=().

Iterating in std::list
There is no subscripting operator for lists. The only option to traverse the list uses
iterators.

Iterating through the list of 100,000 items took 0.326 milliseconds. This was only 38%
more expensive than traversing a vector.

Sorting std::list
The iterators over std::list are bidirectional iterators, less powerful than the
random-access iterators over std::vector. A particular property of these iterators is
that the cost to find the distance, or number of items between two bidirectional itera‐
tors, is O(n). Thus, std::sort() has O(n2) performance on std::list. The compiler
will still compile a call to std::sort() on a list, but the performance will be far worse
than a developer might expect.
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Fortunately, std::list has a built-in sort that is more efficient, at O(n log2 n). Sorting
the list using std::list’s built in sort() took 23.2 milliseconds, only 25% longer
than sorting the equivalent vector.

Lookup with std::list
Because std::list provides only bidirectional iterators, the binary-search algo‐
rithms are all O(n) for lists. Searching with std::find() is also O(n), where n is the
number of entries in the list. This makes std::list a poor candidate to replace asso‐
ciative containers.

std::forward_list
The “product sheet” for std::forward_list says:

• Sequence container
• Insert time: O(1) at any position
• Sort in O(n log2 n)
• Search in O(n)
• Iterators and references never invalidated except for removed items
• Iterators visit list items front-to-back

std::forward_list is a sequence container stripped down to its bare essentials. It
contains a single pointer to the head node of the list. It was designed deliberately to
make its implementation equivalent to a handcoded, singly linked list. There is no
back() or rbegin() member function.

std::forward_list interacts with the memory manager in a very simple and pre‐
dictable way. Each forward list item is separately allocated when needed. There is no
unused capacity hiding in a forward list (see Figure 10-4). The storage allocated for
each forward list item is the same size. This helps sophisticated memory managers
operate efficiently, and with less risk of fragmenting memory. It is also possible to
define a simple custom allocator for std::forward_list that exploits this property to
operate efficiently (see “A Fixed-Block Allocator” on page 352).
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Figure 10-4. std::forward_list possible implementation

A forward list differs from a list by offering only forward iterators, as the name sug‐
gests. A forward list can be traversed with the usual loop:

std::forward_list<kvstruct> flist;
// ...
unsigned sum = 0;
for (auto it = flist.begin(); it != flist.end(); ++it)
    sum += it->value;

Insertion, however, requires a different approach. Instead of an insert() method,
std::forward_list has insert_after(). There is also a function called
before_begin() to get an iterator to before the first list element (there is no other
way to insert before the first element because the elements only have pointers to the
next element):

std::forward_list<kvstruct> flist;
std::vector<kvstruct> vect;
// ...
auto place = flist.before_begin();
for (auto it = vvect.begin(); it != vect.end(); ++it)
    place = flist.insert_after(place, *it);

std::forward_list wasn’t significantly faster than std::list on my PC. The things
that made std::list slow (allocation per item, poor cache locality) were just as big a
problem for std::forward_list. std::forward_list may be useful on smaller pro‐
cessors with tighter memory constraints, but for desktop- and handset-class process‐
ors, there is little to recommend it.

Inserting and Deleting in std::forward_list
std::forward_list has constant-time insertion at any position, provided there is an
iterator pointing to just before that position. Inserting 100,000 entries into a forward
list took 4.24 milliseconds, about the same as for std::list.
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std::forward_list has a push_front() member function. Inserting 100,000 entries
in this way took 4.16 milliseconds, again about the same as for std::list.

Iterating in std::forward_list
There is no subscripting operator for std::forward_list. The only option to tra‐
verse the list uses iterators.

Iterating through the forward list of 100,000 items took 0.343 milliseconds. This was
only 45% more expensive than traversing a vector.

Sorting std::forward_list
Like std::list, std::forward_list has a built-in sort that runs in O(n log2 n). The
performance of the sort was similar to that of std::list, sorting 100,000 entries in
23.3 milliseconds.

Lookup in std::forward_list
Because std::forward_list provides only forward iterators, the binary-search algo‐
rithms are O(n) for forward lists. Searching with the far simpler std::find() is also
O(n), where n is the number of entries in the forward list. This makes the forward list
a poor candidate to replace associative containers.

std::map and std::multimap
The “product sheet” for these data structures says:

• Ordered associative container
• Insert time: O(log2 n)
• Index time: by key O(log2 n)
• Iterators and references never invalidated except for removed items
• Iterators produce items in sorted or reverse-sorted order

std::map maps instances of a key type to corresponding instances of some value type.
std::map is a node-based data structures, like std::list. However, a map orders its
nodes according to the value of a key. Internally, a map is implemented as a balanced
binary tree with additional links to facilitate iterator-based traversal (see Figure 10-5).
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Figure 10-5. std::map simplified possible implementation

Although std::map is implemented using a tree, it is not a tree. There is no way to
inspect the links, perform a breadth-first traversal, or do other tree-ish things on a
map.

std::map’s interaction with the memory manager is simple and predictable. Each
map item is separately allocated when needed. std::map has no backbone array that
might be reallocated, so iterators and references to map items are never invalidated by
insertion. They become invalid only if the items to which they point are deleted.

The storage allocated for each list item is the same size. This helps sophisticated
memory managers operate efficiently, and with less risk of fragmenting memory. It is
also possible to define a simple custom allocator for std::map that exploits this prop‐
erty to operate efficiently (see “A Fixed-Block Allocator” on page 352).

Inserting and Deleting in std::map
Inserting 100,000 random entries from a vector iterator into a std::map took 33.8
milliseconds.

Inserting into a map is normally O(log2 n) due to the need to traverse the map’s inter‐
nal tree looking for the insert point. This cost is high enough that std::map provides
a version of insert() that takes an extra map iterator serving as a hint that inserting
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at this point might be more efficient. If the hint is optimal, insertion time goes to
amortized O(1).

There is good news and bad news about the insertion hint. The good news is that the
insert-with-hint can never be more expensive than an ordinary insert. The bad news
is that the optimum value recommended for the insertion hint changed for C++11.
Before C++11, the optimum value for the insertion hint was the position before the
new item—that is, if items are inserted in sorted order, the position of the previous
insertion. Since C++11, the optimal insertion hint is the position after the new item;
that is, if items are inserted in sorted order, the position hint should be end(). To
make the previously inserted item the optimal position, the program should iterate
through the sorted input in reverse, as shown in Example 10-2.

Example 10-2. Insert from sorted vector using C++11-style hint

ContainerT test_container;
std::vector<kvstruct> sorted_vector;
   ...
std::stable_sort(sorted_vector.begin(), sorted_vector.end());
auto hint = test_container.end();
for (auto it = sorted_vector.rbegin(); it != sorted_vector.rend(); ++it)
    hint = test_container.insert(hint, value_type(it->key, it->value));

As my experience with both GCC and Visual Studio 2010 showed, the standard
library implementation may either anticipate or trail the latest standard. As a result, a
program optimized using the pre-C++11-style hint might slow down when moved to
a newer compiler, even if the compiler does not fully conform to C++11.

I ran an insertion test using three hints: end(), an iterator to the predecessor node as
specified for standard libraries prior to C++11, and an iterator to the successor node
as specified for C++11. Table 10-3 shows the results. To perform this test, the input
also had to be sorted.

Table 10-3. Performance of insert-with-hint into a std::map

Experiment Time/call
Sorted vector insert() 18.0 ms
Sorted vector insert() end hint 9.11 ms
Sorted vector insert() pre-C++11 hint 14.4 ms
Sorted vector insert() C++11 hint 8.56 ms

It appears that Visual Studio 2010 implements the C++11-style hint. But either hint
performed better than no hint at all, and better than the no-hint version of insert()
and unsorted input.
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Optimizing the check-and-update idiom
In a commonly occurring idiom, a program checks to see whether some key is in the
map, then performs an action depending on the result. A performance optimization
is possible when the action involves inserting or updating the value corresponding to
the searched-for key.

The key to understanding the optimization is that map::find() and map::insert()
both cost O(log2 n) because of the need to check for the presence of the key and later
to find the insertion point. Both of these operations traverse the same set of nodes in
the map’s binary tree data structure:

iterator it = table.find(key); // O(log n)
if (it != table.end()) {
    // key found path
    it->second = value;
}
else {
    // key not found path
    it = table.insert(key, value); // O(log n)
}

If the program captures the result of the first search, it can use that as a hint to
insert(), making the insert run in O(1). There are two ways to improve this idiom,
depending on the needs of the program. If all you need is to know whether the key
was initially found, you can use a version of insert() that returns a pair containing
an iterator to the found or inserted entry, and a bool that is true if the entry was
found and false if it was inserted. This solution works if the program knows how to
initialize the entry before finding out whether it is present or not, or if the value is
inexpensive to update:

std::pair<value_t, bool> result = table.insert(key, value);
if (result.second) {
    // key found path
}
else {
    // key not found path
}

The second method involves finding the key or the insertion point through a call to
lower_bound() for a C++98-style hint, or upper_bound() for a C++11-style hint.
lower_bound() returns an iterator to the smallest entry in the map whose key is less
than the search key, or to end(). This iterator is the insertion hint if the key must be
inserted, and it points to the key if an existing entry must be updated. This method
makes no assumptions about the entry to be inserted:

iterator it = table.lower_bound(key);
if (it == table.end() || key < it->first) {
    // key not found path
    table.insert(it, key, value);
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}
else {
    // key found path
    it->second = value;
}

Iterating in std::map
Iterating through the 100,000-item map took 1.34 milliseconds, about 10 times longer
than iterating through a vector.

Sorting std::map
Maps are inherently sorted. Iterating through a map produces entries in order by
their key and the search predicate in use. Note that it isn’t possible to re-sort a map by
another sorting predicate without copying all elements to another map.

Lookup with std::map
Looking up all 100,000 entries in the map took 42.3 milliseconds. By contrast, it took
28.9 milliseconds to look up all 100,000 entries in a sorted vector and 35.1 millisec‐
onds for a sorted deque, using std::lower_bound(). Table 10-4 summarizes the per‐
formance of a vector and a map when used as a lookup table.

Table 10-4. Insertion and lookup time for vector versus map

 Insert+sort Lookup

Vector 19.1 ms 28.9 ms

Map 33.8 ms 42.3 ms

For a 100,000-element table that is constructed all at once and then searched repeat‐
edly, a vector-based implementation will be faster. If the table will change frequently,
with insertions or deletions, re-sorting the vector-based table will consume any
advantage it may have had in search time.

std::set and std::multiset
The “product sheet” for these data structures says:

• Ordered associative container
• Insert time: O(log2 n)
• Index time: by key O(log2 n)
• Iterators and references never invalidated except for removed items
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• Iterators produce items in sorted or reverse-sorted order

I did not performance-test std::set. On Windows, std::set and std::multiset
use the same data structure as std::map (see Figure 10-6), so the performance char‐
acteristics are the same as for a map. Although a set could in principle be imple‐
mented using a different data structure, there’s no reason why it should be.

Figure 10-6. std::set simplified possible implementation

One difference between std::map and std::set is that the items returned by lookup
are const. This is less of a problem than it seems. If you really want to use the set
abstraction, fields in the value data type that don’t participate in the ordering relation‐
ship can be declared mutable, specifying that they don’t participate in the ordering
relationship. Of course, the compiler believes the developer unconditionally, so it’s
important not to change members that participate in the ordering relation, or the set
data structure will become invalid.

std::unordered_map and std::unordered_multimap
The “product sheet” for these data structures says:

• Unordered associative container
• Insert time: O(1) average, O(n) worst case
• Index time: by key O(1) average, O(n) worst case
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• Iterators invalidated on rehash, references invalidated only for removed items
• Capacity can be increased or decreased independent of size

std::unordered_map maps instances of a key type to corresponding instances of
some value type. In this way it is similar to std::map. However, the mapping is
accomplished differently. std::unordered_map is implemented as a hash table. Keys
are converted to an integer hash, which is used as an array index to find the value in
amortized average constant time.

The C++ standard constrains the implementation of std::unordered_map, just as it
does for std::string. So, while there are several ways in which a hash table might be
implemented, only a design with a dynamically allocated backbone array of buckets
pointing to linked lists of dynamically allocated nodes is likely to comply with the
standard’s definitions.

An unordered map is expensive to construct. It contains dynamically allocated nodes
for each table entry, plus a dynamically resizable bucket array that is periodically real‐
located as the table grows (Figure 10-7). It thus consumes a considerable amount of
memory to achieve an improvement in search performance. Iterators are invalidated
every time the bucket array is reallocated. However, references point to the nodes;
they are invalidated only on deletion.

Hash tables like std::unordered_map have several parameters to adjust in pursuit of
optimal performance. This is either a strength or a weakness, depending on the
developer’s point of view.

The number of entries in the unordered map is its size. The computed ratio
size / buckets is called the load factor. A load factor greater than 1.0 implies that some
buckets have a chain of multiple entries, reducing lookup performance for these keys
(in other words, the hash is not perfect). In real hash tables, collisions among the keys
cause entries to appear in chains even when the load factor is less than 1.0. A load
factor less than 1.0 implies that there are unused buckets consuming space in the
unordered map’s backbone array (in other words, the hash is not minimal). When the
load factor is less than 1.0, the value 1 – load factor is a lower bound on the number of
empty buckets, but since hash functions can be imperfect, the amount of unused
space is generally higher.
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Figure 10-7. std::unordered_map possible implementation

The load factor is a dependent variable in std::unordered_map. A program can
observe its value, but cannot directly set it or predict its value after a reallocation.
When a new entry is inserted in the unordered map, if the load factor exceeds a maxi‐
mum load factor that may be specified by the program, the bucket array is reallocated
and all the entries are rehashed to buckets in the new array. Since the number of
buckets is always increased by a factor greater than 1, the cost of insertion is amor‐
tized O(1). Insertion and lookup performance decline significantly when the maxi‐
mum load factor is greater than 1.0, which is the default. Performance can be
improved modestly by reducing the maximum load factor below 1.0.

The initial number of buckets in an unordered map can be specified as a constructor
argument. The container will not be reallocated until its size exceeds buckets * load
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factor. The program can increase the number of buckets in an unordered map by call‐
ing its rehash() member function. rehash(size_t n) sets the bucket count to be at
least n, reallocates the bucket array, and rebuilds the table, moving all entries to their
appropriate buckets in the new array. If n is less than the current number of buckets,
rehash() may or may not decrease the size of the table and rehash.

A call to reserve(size_t n) can reserve space sufficient to hold n entries before real‐
location. This is equivalent to a call to rehash(ceil(n/max_load_factor())).

A call to the unordered map’s clear() member function erases all the entries and
returns all storage to the memory manager. This is a stronger promise than the one
provided for vector or string’s clear() member function.

Unlike other C++ standard library containers, std::unordered_map exposes the
structure of its implementation by providing an interface for iterating through the
buckets as well as for iterating through the entries in a single bucket. Inspecting the
length of the chains in each bucket can help reveal any issues with the hash function.
I used this interface for inspecting the quality of the hash functions, as seen in
Example 10-3.

Example 10-3. Snooping on std::unordered_map behavior

template<typename T> void hash_stats(T const& table) {
    unsigned zeros = 0;
    unsigned ones  = 0;
    unsigned many  = 0;
    unsigned many_sigma = 0;
    for (unsigned i = 0; i < table.bucket_count(); ++i) {
        unsigned how_many_this_bucket = 0;
        for (auto it = table.begin(i); it != table.end(i); ++it) {
            how_many_this_bucket += 1;
        }
        switch(how_many_this_bucket) {
        case 0:
            zeros += 1;
            break;
        case 1:
            ones  += 1;
            break;
        default:
            many += 1;
            many_sigma += how_many_this_bucket;
            break;
        }
    }
    std::cout << "unordered_map with " << table.size()
              << " entries" << std::endl
              << "    " << table.bucket_count() << " buckets"
              << " load factor " << table.load_factor()
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              << ", max load factor "
              << table.max_load_factor() << std::endl;
    if (ones > 0 && many > 0)
        std::cout << "    " << zeros << " empty buckets, "
                  << ones << " buckets with one entry, "
                  << many << " buckets with multiple entries, "
                  << std::endl;
    if (many > 0)
        std::cout << "    average length of multi-entry chain "
        << ((float) many_sigma) / many << std::endl;
}

I discovered, using a hash function from the Boost project, that 15% of my entries
collided, and that the automatic allocation produced a table with a load factor of 0.38,
meaning that 62% of the backbone array was unused. The hash functions I tried per‐
formed far worse than I expected.

Inserting and Deleting in std::unordered_map
Like std::map, std::unordered_map provides two insertion methods, with and
without an insertion hint. But unlike a map, an unordered map does not use the
insertion hint. It is provided for interface compatibility only, and it carries a slight
performance penalty even though it accomplishes nothing.

The insertion test took 15.5 milliseconds. Insertion performance can be improved
somewhat by preallocating sufficient buckets to prevent rehashing, through a call to
reserve(). The improvement in performance was only 4% on my test, improving
insertion time to 14.9 milliseconds.

Reallocation can be deferred by setting the maximum load factor very high. I tested
to see whether performance improved when I did this and then rehashed after all
items were inserted. This turned out to be a disastrous deoptimization for the version
of unordered_map in Visual Studio 2010’s standard library. Apparently items are
inserted onto the end of the collision chain in Visual Studio’s implementation, so the
cost of each insertion went from constant to O(n). It is possible that a more sophisti‐
cated implementation would not have this weakness.

Iterating in std::unordered_map
Example 10-4 contains code to iterate through a std::unordered_map.

Example 10-4. Iterating through the entries in an unordered map

for (auto it = test_container.begin();
          it != test_container.end();
        ++it) {
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    sum += it->second;
}

An unordered map cannot be sorted, and iterating through an unordered map pro‐
duces items in an opaque order, as the container’s name implies. Iterating through the
unordered map was relatively efficient at 0.34 milliseconds. This was only 2.8 times
slower than the same traversal of a std:vector.

Lookup with std::unordered_map
Lookup is the raison d'être of std::unordered_map. I compared the lookup perfor‐
mance of a 100,000-entry key/value table based on an unordered map versus a sorted
table based on a vector and searched with std::lower_bound().

std::unordered_map performed my lookup test of 100,000 queries in 10.4 millisec‐
onds. As seen in Table 10-5, this is 3 times faster than std::map, and 1.7 times faster
than for a sorted std::vector using std::lower_bound(). Yes, this is faster—much
faster. But hash tables are held in such reverence that I expected a truly astonishing,
order-of-magnitude performance increase. This is not what I saw.

Table 10-5. Insertion and lookup time for vector, map, and unordered_map

 Insert+sort Lookup

Map 33.8 ms 42.3 ms

Vector 19.1 ms 28.9 ms

Unordered map 15.5 ms 10.4 ms

Compared to std::map, the unordered map is somewhat faster to build and much
faster to search. The downside of the unordered map is the amount of storage it uses.
In a constrained environment, it may be necessary to use the more compact table
based on std::vector. Otherwise, the unordered map is an unambiguous perfor‐
mance win.

Other Data Structures
The standard library containers, helpful as they are, are not the final word in data
structures. The Boost library alone contains a number of data structures in imitation
of the standard library containers. Boost provides the following libraries containing
alternative containers:

boost::circular_buffer

Similar in many respects to std::deque, but more efficient.
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Boost.Container

Variations on standard library containers such as a stable vector (a vector in
which reallocation doesn’t invalidate iterators), a map/multimap/set/multiset
implemented as a container adapter for std::vector, a static vector with variable
length up to a fixed maximum, and a vector with optimized behavior when the
vector has only a few elements.

dynamic_bitset

Looks like a vector of bits.

Fusion
Containers and iterators on tuples.

Boost Graph Library (BGL)
Algorithms and data structures for graph traversal.

boost.heap

A priority queue with better performance and more nuanced behavior than the
simple std::priority_queue container adapter.

Boost.Intrusive
Provides intrusive containers (containers that rely on node types that explicitly
contain links). The point of intrusive containers is to improve performance in
very hot code. This library contains singly and doubly linked lists, associative
containers, unordered associative containers, and a variety of explicit balanced
tree implementations. make_shared, along with move semantics and the
emplace() member functions added to most containers, reduces the need for
intrusive containers.

boost.lockfree

Lock-free and wait-free queue and stack.

Boost.MultiIndex
Containers that have multiple indices with different behaviors.

And there are doubtless other container classes buried in Boost.

Another significant contribution comes from games company Electronic Arts, who
open-sourced their version of the standard library container classes, called EASTL.
Electronic Arts’s take on the standard library container classes includes:

• A simpler and more sensible Allocator definition
• Stronger guarantees on some containers, including a guarantee that containers

don’t call into the memory manager until the program puts items into them
• More programmability of std::deque
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• A bunch of containers similar to the ones provided by Boost

Summary
• Stepanov’s Standard Template Library was the first reusable library of efficient con‐

tainers and algorithms.
• Big-O performance of container classes does not tell the full story. Some containers

are many times faster than others.
• std::vector is the fastest container at insert, delete, iterate, and sort operations.
• Lookup using std::lower_bound in a sorted std::vector can be competitive with
std::map.

• std::deque is only slightly faster than std::list.
• std::forward_list is no faster than std::list.
• The hash table std::unordered_map is faster than std::map, but not by the order-

of-magnitude difference that its reputation suggests.
• The Internet is a rich source of containers imitating the standard library containers.
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CHAPTER 11

Optimize I/O

A program is a spell cast over a computer, turning input into error messages.
—Anonymous

This chapter treats efficient use of the C++ streaming I/O functions for the com‐
monly occurring example of reading and writing text data. Reading and writing data
are activities so commonplace that developers don’t even notice them—yet these
activities are time-consuming.

The rotation of a disk platter is as ponderous and slow to today’s ultra-fast computer
chips as the rotation of the Earth is to us. The read heads have inertia that must be
overcome to move their bulk from track to track. These physical properties fiercely
resist attempts at improving hardware performance. In the internetworked world of
limited data rates and busy servers, response latency may be measured in seconds
rather than milliseconds. Even the speed of light becomes a significant factor when
streaming data from distant computers.

Another problem with I/O is that there is a lot of code between the user’s program
and the spinning platters of the disk or the network interface card. The cost of all this
code must be managed to make I/O as efficient as possible.

A Recipe for Reading Files
There are a number of formulas on the Web for reading and writing files, and even
some that claim to be fast. They range in performance over a whole order of magni‐
tude in my tests. Readers who are already smart enough not to use an unvetted recipe
from the Internet (such as the legendarily dangerous and incorrect recipes for mak‐
ing explosives or cooking meth) might be wise to add to that list recipes for reading a
file in C++.
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Optimization War Story
My sister-in-law Marcia liked to bake pies, but she was never satisfied with the recipes
she could find for pie crust. She could not get her crusts to come out as light and flaky
as the best pie crusts she had tasted. Although Marcia was not a software developer,
she was a pretty good optimizer, so this is what she did.

She collected a number of recipes for pie crust, all of which claimed to be “the best pie
crust ever.” She noted that all of them had ingredients in common: flour, salt, water,
shortening. Then she looked at the differences. Some used butter or lard instead of
vegetable shortening. Some called specifically for cold ingredients or to cool the
dough before rolling it out. Some added a little sugar, a tablespoon of vinegar, or an
egg. Marcia took the distinctive advice from several recipes and performed tasty
experiments over several months. As a result of her patient experimentation, she set‐
tled upon a combination of the advice from several recipes. The resulting pie crusts
were amazing.

As with my sister-in-law’s optimization effort, I discovered that there are several tech‐
niques for improving the performance of file-reading functions. Many of these tech‐
niques can be combined. I also discovered some techniques that had little value.

Example 11-1 is a simple function to read a text file into a string. I have encountered
code like this over and over, often as a prelude to parsing the string as an XML or
JSON block.

Example 11-1. Original file_reader() function

std::string file_reader(char const* fname) {
    std::ifstream f;
    f.open(fname);
    if (!f) {
        std::cout << "Can't open " << fname
                  << " for reading" << std::endl;
        return "";
    }

    std::stringstream s;
    std::copy(std::istreambuf_iterator<char>(f.rdbuf()),
              std::istreambuf_iterator<char>(),
              std::ostreambuf_iterator<char>(s) );
    return s.str();
}
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The fname argument contains a filename. If the file cannot be opened,
file_reader() prints an error message to standard output, and returns the empty
string. Otherwise, std::copy() copies f’s streambuf into std::stringstream s’s
streambuf.

Create a Parsimonious Function Signature
From a library design standpoint, file_reader() could be improved (see “Parsi‐
mony Is a Virtue in Library Design” on page 194). It does several different things: it
opens a file; it performs error handling (in the form of reporting failure to open the
file); it reads the open, valid stream into a string. As a library function, this combina‐
tion of responsibilities makes file_reader() hard to use. For instance, if the client
program implements exception handling, or wants to use a Windows resource for
error message strings, or even just wants to print to std::cerr, file_reader() can’t
be used. file_reader() also creates new memory and returns it, a pattern that
potentially causes multiple copies to be made as the returned value is passed up a call‐
ing chain (see “Copy Free Libraries” on page 134). When the file cannot be opened,
file_reader() returns the empty string. It also returns the empty string if the file is
readable, but doesn’t contain any characters. It would be nice to get an error indica‐
tion so these cases could be distinguished.

Example 11-2 is an updated version of file_reader() that separates the concerns of
opening files and reading streams, and has a signature that users won’t immediately
want to change.

Example 11-2. stream_read_streambuf_stringstream(), now with parsimony!

void stream_read_streambuf_stringstream(
    std::istream& f, 
    std::string& result) {
    std::stringstream s;
    std::copy(std::istreambuf_iterator<char>(f.rdbuf()),
              std::istreambuf_iterator<char>(),
              std::ostreambuf_iterator<char>(s) );
    std::swap(result, s.str());
}

The last line of stream_read_streambuf_stringstream() exchanges the dynamic
storage of result with that of s.str(). I might instead have assigned s.str() to
result, but that would have caused an allocation and copy unless the compiler and
string library implementation both provided move semantics. std::swap() is special‐
ized for many standard library classes to call a swap() member function. The mem‐
ber function in turn swaps pointers, which is far less expensive than an allocate-and-
copy operation.
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As a bonus for being parsimonious, f becomes a std::istream, rather than a
std::ifstream. This function could work on other kinds of streams too, like
std::stringstream, for instance. The function is also shorter and easier to read,
containing just one conceptual nugget of computation.

stream_read_streambuf_stringstream() may be called with this client code:

std::string s;
std::ifstream f;
f.open(fname);
if (!f) {
    std::cerr << "Can't open " << fname
              << " for reading" << std::endl;
}
else {
    stream_read_streambuf_stringstream(f, s);
}

Notice that the client is now responsible for opening the file and for reporting errors
in a manner appropriate to the client, while the stream-reading “magic” is still in
stream_read_streambuf_stringstream()—only this version of the function isn’t
very magical.

I performed an experiment that read a 10,000-line file 100 times. This experiment
exercises much of the machinery in C++ standard I/O. Because of the repetition, the
operating system almost certainly caches the file contents. In real-world conditions,
which are difficult to simulate in a test loop, this function probably takes longer than
the measured 1,548 milliseconds in both Visual Studio 2010 and 2015.

Because this program reads the disk, and because there is only one disk on my com‐
puter, the test run was more sensitive to other disk activity on the PC than other tests
I have run. I had to close nonessential programs and stop nonessential services. Even
then, I had to make several test runs and report the smallest number I got.

stream_read_streambuf_stringstream() makes use of standard library idioms, but
isn’t particularly efficient. It uses character iterators to copy a single character at a
time. It is reasonable to hypothesize that each character fetched operates a substantial
amount of machinery in std::istream, and perhaps even in the host operating sys‐
tem’s file I/O API. It is equally reasonable to imagine that a std::string in the
std::stringstream is extended by one character at a time, resulting in a significant
number of calls into the memory allocator.

There are several variations of the copy-the-stream-iterator idea. Example 11-3 uses
std::string::assign() to copy an iterator from the input stream into a
std::string.
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Example 11-3. Another copy-the-stream-iterator file reader

void stream_read_streambuf_string(
    std::istream& f,
    std::string& result) {
    result.assign(std::istreambuf_iterator<char>(f.rdbuf()),
                  std::istreambuf_iterator<char>());
}

This code ran my test in 1,510 milliseconds when compiled with Visual Studio 2010,
and 1,787 milliseconds using Visual Studio 2015.

Shorten Calling Chains
Example 11-4 is another character-at-a-time variation. std::istream has an opera
tor<<() that takes a streambuf as an argument. Perhaps operator<<() bypasses the
istream API to call directly into the streambuf.

Example 11-4. Append stream to a stringstream, a character at a time

void stream_read_streambuf(std::istream& f, std::string& result) {
    std::stringstream s;
    s << f.rdbuf();
    std::swap(result, s.str());
}

This code ran my test in 1,294 milliseconds on Visual Studio 2010 and 1,181 millisec‐
onds on Visual Studio 2015—17% and 51% faster, respectively, than
stream_read_streambuf_string(). It is my hypothesis that the underlying code just
runs a smaller amount of machinery.

Reduce Reallocation
stream_read_streambuf_string() contains seeds of hope for optimization.
Although there is no obvious way to optimize the iterate-the-streambuf idiom, the
std::string into which the file is being read can be preallocated by a call to
reserve() to prevent costly reallocation as the string grows longer, character by char‐
acter. Example 11-5 tests whether this idea improves performance.

Example 11-5. stream_read_string_reserve(): Preallocating storage for the result

void stream_read_string_reserve(std::istream& f, 
                                std::string& result) 
{
    f.seekg(0,std::istream::end);
    std::streamoff len = f.tellg();
    f.seekg(0);
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    if (len > 0)
        result.reserve(static_cast<std::string::size_type>(len));

    result.assign(std::istreambuf_iterator<char>(f.rdbuf()),
                  std::istreambuf_iterator<char>());
}

stream_read_string_reserve() finds how long the stream is by positioning its
stream pointer at the end of the stream, reading the offset, and then resetting the
stream pointer to the beginning. istream::tellg() actually returns a small struct
that gives the position, including an offset for a partially read UTF-8 multibyte char‐
acter. Fortunately, this struct implements a conversion to a signed integral type. The
type must be signed because tellg() can fail, returning an offset of -1 if, for instance,
the stream has not been opened, or if there has been an error, or if end-of-file has
been reached. If tellg() returns an offset instead of -1, that value can be used as a
hint to std::string::reserve() to preallocate sufficient storage for the whole file, in
a manner similar to remove_ctrl_reserve() in Example 4-3.

stream_read_string_reserve() tests the hypothesis that the cost of seeking the file
pointer twice is less than the cost of the allocations eliminated by the call to
reserve(). This is not a foregone conclusion. If seeking to the end of the file causes
all the disk sectors in the file to be read, there is a substantial cost. On the other hand,
having read these disk sectors, the operating system may have them in cache, reduc‐
ing other costs. Maybe it depends on the file size. C++ might be able to seek the file
pointer to end-of-file without reading anything but the directory entry for the file, or
there may be an operating system–dependent function for doing this (perhaps more
than one).

When the conjectures start piling up like this, the experienced optimizer recognizes
that the cost of finding the answers to all these questions is high, and the benefit
unknown. An experiment will quickly tell if the C++ idiom of seeking to end-of-file
to get the file size is helpful. On Windows, stream_read_string_reserve() per‐
formed no better on the test than stream_read_streambuf_string(). However, this
may only mean that the degree of improvement was not noticeable compared to
other inefficiencies in this method of reading the file.

Spoiler alert: the technique of finding the length of the stream and preallocating stor‐
age is a useful tool. It is good library design to factor out reusable tools into their own
functions. A function stream_size() implementing this technique is in
Example 11-6.
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Example 11-6. stream_size(): compute length of a stream

std::streamoff stream_size(std::istream& f) {
    std::istream::pos_type current_pos = f.tellg();
    if (-1 == current_pos)
        return -1;
    f.seekg(0,std::istream::end);
    std::istream::pos_type end_pos = f.tellg();
    f.seekg(current_pos);
    return end_pos - current_pos;
}

A stream-reading function may be called with the stream already partially consumed.
stream_size() accounts for this possibility by saving the current position, seeking to
the end of the stream, and computing the difference between the current position and
the end. The stream pointer is restored to the saved position before the function ends.
This is actually more correct than the simplified computation done in
stream_read_string_reserve(). It’s another example of how good library design
makes functions more flexible and general.

Example 11-7 is a version of stream_read_string() with the file size estimation per‐
formed outside the function. This allows the developer to provide an estimate when
called on streams that cannot determine their size. It defaults to the behavior of
stream_read_string() when no estimate is available.

Example 11-7. stream_read_string_2(): general-purpose version of stream_read_string()

void stream_read_string_2(std::istream& f, 
                          std::string& result, 
                          std::streamoff len = 0) 
{
    if (len > 0)
        result.reserve(static_cast<std::string::size_type>(len));

    result.assign(std::istreambuf_iterator<char>(f.rdbuf()),
                  std::istreambuf_iterator<char>());
}

stream_read_string_2() ran the test in 1,566 milliseconds on VS2010 and 1,766
milliseconds on VS2015. The cost of the extra function call to stream_size(), while
presumably nonzero, was not observable in my test. On the other hand,
stream_read_string_2() was not observably faster than stream_read_string().
Did this technique fail? We’ll see later.
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Take Bigger Bites—Use a Bigger Input Buffer
C++ streams contain a class derived from std::streambuf that improves perfor‐
mance in the case of file reading by reading data from the underlying operating sys‐
tem in bigger chunks. The data goes into a buffer inside the streambuf, from which it
is extracted byte-by-byte by the iterator-based input methods discussed previously.
Some articles on the Internet suggest that increasing the size of this input buffer will
improve performance. Example 11-8 is a simple way to do this.

Example 11-8. Increasing the size of std::streambuf ’s internal buffer

std::ifstream in8k;
in8k.open(filename);
char buf[8192];
in8k.rdbuf()->pubsetbuf(buf, sizeof(buf));

Many Internet-dwellers report having difficulty using pubsetbuf(). It must be called
after the stream is opened and before any characters are read from the stream. The
call fails if any status bits (failbit, eofbit) are set in the stream. The buffer must
remain valid until the stream is closed. I obtained a small but measurable 20–50
millisecond improvement in test run time on most of the input functions in this sec‐
tion by setting a larger buffer in the streambuf. Values over 8 KB had little additional
effect on run time. This was rather disappointing, because back in the day, increasing
the size of a similar buffer in the C FILE struct produced a dramatic improvement on
code I had written. This demonstrates again how prior experience can lead the opti‐
mizing developer astray. This improvement amounts to around 5% on the 1,500-
millisecond test run times observed so far, but might be a bigger component if the
overall run time can be reduced.

Take Bigger Bites—Read a Line at a Time
In the introduction to this section, I noted that the files to be read were often text
files. For a text file divided into lines, it is a reasonable hypothesis that a function that
reads lines might reduce the number of function calls, hopefully using a line-oriented
or buffer-filling interface internally. In addition, if the result string is updated less fre‐
quently, there should be less copying and reallocation. Indeed, there is a function
called getline() in the standard library, and Example 11-9 can be used to test this
hypothesis.

Example 11-9. stream_read_getline() reads the file a line at a time

void stream_read_getline(std::istream& f, std::string& result) {
    std::string line;
    result.clear();
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    while (getline(f, line))
        (result += line) += "\n";
}

stream_read_getline() appends to result. result must be cleared at the start
because there is nothing requiring that it be empty when passed into the function.
clear() does not return the string’s dynamic buffer to the memory manager. It just
sets the length of the string to zero. Depending how the string argument was used
before the call, it might already have a substantial dynamic buffer, reducing the bur‐
den of allocation.

Testing stream_read_getline() validates these hypotheses: it takes only 1,284 milli‐
seconds on VS2010 and 1,440 milliseconds on VS2015 to complete 100 iterations of
reading a 10,000-line file.

Although result might happen already to be long enough to prevent reallocation, it’s
a good plan to reserve space, just in case. The same mechanism used in
stream_read_string_2() can be added to stream_read_getline(), producing the
function in Example 11-10.

Example 11-10. stream_read_getline_2(): line at a time, plus preallocation of result
variable

void stream_read_getline_2(std::ifstream& f, 
                           std::string& result, 
                           std::streamoff len = 0) 
{
    std::string line;
    result.clear();

    if (len > 0)
        result.reserve(static_cast<std::string::size_type>(len));

    while (getline(f, line))
        (result += line) += "\n";
}

This optimization yielded a just-measurable 3% performance improvement versus
stream_read_getline(). This improvement can be combined with a bigger stream‐
buf to get test run times of 1,193 (VS2010) and 1,404 (VS2015) milliseconds.

Another way to approach taking bigger bites is by using the std::streambuf member
function sgetn(), which retrieves an arbitrary amount of data into a buffer argument
to the call. For files of reasonable size, the entire file can be retrieved in a single big
gulp. The stream_read_sgetn() function in Example 11-11 illustrates this approach.
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Example 11-11. stream_read_sgetn()

bool stream_read_sgetn(std::istream& f, std::string& result) {
    std::streamoff len = stream_size(f);
    if (len == -1)
        return false;

    result.resize (static_cast<std::string::size_type>(len));

    f.rdbuf()->sgetn(&result[0], len);
    return true;
}

In stream_read_sgetn(), sgetn() copies data directly into the result string, which
must be made big enough to hold the data. The size of the stream must therefore be
determined before the call to sgetn(). It is not optional, like in the
stream_read_string_2() function in Example 11-7. The size is determined by a call
to stream_size().

As previously noted, stream_size() can fail. It would be nice to get a failure indica‐
tion out of stream_read_sgetn(). Fortunately, since this library function uses the
copy-free idiom (see “Copy Free Libraries” on page 134), its return value is available
for a success/fail indication.

stream_read_sgetn() is fast. It completed the test in 307 (VS2010) and 148 (VS2015)
milliseconds, over 4 times faster than stream_read_streambuf(). When combined
with a bigger rdbuf, test run time shrank to 244 (VS2010) and 134 (VS2015) millisec‐
onds. The modest improvement from a bigger rdbuf makes a bigger contribution
when the overall time is shorter.

Shorten Calling Chains Again
std::istream provides a read() member function that copies characters directly
into a buffer. This function mimics the low-level read() function in Linux and Read
File() on Windows. If std::istream::read() is wired directly to this low-level
functionality, bypassing the buffering and other baggage of C++ stream I/O, it should
be more efficient. Furthermore, if the entire file can be read at once, it may produce a
very efficient call. Example 11-12 implements this functionality.

Example 11-12. stream_read_string() uses read() into a string’s storage

bool stream_read_string(std::istream& f, std::string& result) {
    std::streamoff len = stream_size(f);
    if (len == -1)
        return false;

    result.resize (static_cast<std::string::size_type>(len));
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    f.read(&result[0], result.length());
    return true;
}

stream_read_string(), running the test in 267 (VS2010) and 144 (VS2015) millisec‐
onds, is about 25% faster than stream_read_sgetn() and 5 times faster than
file_reader().

A problem with stream_read_sgetn() and stream_read_string() is that they
assume the pointer &s[0] points to a contiguous block of storage. Prior to C++11, the
C++ standard did not require the characters of a string to be stored contiguously,
though all standard library implementations of which I am aware were coded this
way. The C++11 standard contains clear language in section 21.4.1 saying that string
storage is contiguous.

I tested a function that dynamically allocated a character array into which data was
read and then copied into a string using assign(). This function would be usable
even if a novel string implementation violated the contiguous storage rule:

bool stream_read_array(std::istream& f, std::string& result) {
    std::streamoff len = stream_size(f);
    if (len == -1)
        return false;

    std::unique_ptr<char> data(new char[static_cast<size_t>(len)]);

    f.read(data.get(), static_cast<std::streamsize>(len));
    result.assign(data.get(), static_cast<std::string::size_type>(len));
    return true;
}

This function performed my test in 307 (VS2010) and 186 (VS2015) milliseconds,
only a little slower than stream_read_string().

Things That Didn’t Help
I found some seriously complex advice to construct a custom streambuf to improve
performance. Example 11-13 is one such function found in the wild.

Example 11-13. Kids, don’t try this at home

// from: http://stackoverflow.com/questions/8736862
class custombuf : public std::streambuf
{
public:
    custombuf(std::string& target): target_(target) {
        this->setp(this->buffer_, this->buffer_ + bufsize - 1);
    }
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private:
    std::string& target_;
    enum { bufsize = 8192 };
    char buffer_[bufsize];
    int overflow(int c) {
        if (!traits_type::eq_int_type(c, traits_type::eof())) {
            *this->pptr() = traits_type::to_char_type(c);
            this->pbump(1);
        }
        this->target_.append(this->pbase(),
                             this->pptr() - this->pbase());
        this->setp(this->buffer_, this->buffer_ + bufsize - 1);
        return traits_type::not_eof(c);
    }
    int sync() { this->overflow(traits_type::eof()); return 0; }
};

std::string stream_read_custombuf(std::istream& f) {
    std::string data;
    custombuf sbuf(data);
    std::ostream(&sbuf) << f.rdbuf() << std::flush;
    return data;
}

The problem with this code sample is that it’s an attempt to optimize an inefficient
algorithm. As observed previously (in stream_read_streambuf()), inserting a
streambuf on an ostream wasn’t particularly fast. Performance, at 1,312 (VS2010) and
1,182 (VS2015) milliseconds, was no better than that of stream_read_streambuf().
Any improvement was probably due to using an 8 KB buffer in the custom stream‐
buf, which can be done with just a couple of lines of code.

Writing Files
To test my file-reading functions, I had to create files. This let me test file-writing
functions. My first file-writing attempt looked like Example 11-14.

Example 11-14. stream_write_line()

void stream_write_line(std::ostream& f, std::string const& line) {
    f << line << std::endl;
}

This function, called 10,000 times to produce a file and iterated 100 times to produce
timing data, took 1,972 (VS2010) and 2,110 (VS2015) milliseconds.

stream_write_line() pushes out each line with a std::endl. Something I didn’t
know about endl is that it flushes the output. Without the std::endl, writing should
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be faster, because std::ofstream only pushes a few big blocks of data out to the oper‐
ating system. Example 11-15 tests this hypothesis.

Example 11-15. stream_write_line_noflush() is faster

void stream_write_line_noflush(std::ostream& f,
                               std::string const& line) 
{
    f << line << "\n";
}

Of course, either stream_write_line_noflush() must be finished with an
f.flush(), or the stream must be closed, so that the last buffer full of data goes out.
stream_write_line_noflush() produced my file in 367 (VS2010) and 302 (VS2015)
milliseconds, about 5 times faster than stream_write_line().

I also called stream_write_line_noflush() with the entire file in a single string. As
expected, this was much faster, completing the test loop in 132 (VS2010) and 137
(VS2015) milliseconds. This was about 1.7 times faster than putting out the file line-
by-line.

Reading from std::cin and Writing to std::cout
When reading from the standard input, it is worth knowing that std::cin is tied to
std::cout. Requesting input from std::cin flushes std::cout first, so that interac‐
tive console programs display their prompts. A call to istream::tie() will produce a
pointer to a tied stream, if any exist. A call to istream::tie(nullptr) breaks an
existing tie. Flushing is quite costly, as shown in the previous section.

Another thing to know about std::cin and std::cout is that the C++ streams are
conceptually connected to the C FILE* objects stdin and stdout. This permits a pro‐
gram to use both C++ and C I/O statements and have interleaving of the output or
input make some kind of sense. The way std::cout is connected to stdout is
implementation-defined. Most standard library implementations forward std::cout
directly to stdout by default. stdout is line-buffered by default, a mode not present
in C++ iostreams. When stdout sees a newline, it flushes its buffer.

Performance improves if the connections are severed. Calling the static member
function std::ios_base::sync_with_stdio(false) breaks this connection, improv‐
ing performance at the expense of unpredictable interleaving if a program uses both
C and C++ I/O functions.

I did not test how significant the performance difference was.
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Summary
• Code for “fast” file I/O on the Internet is not necessarily fast, no matter what the site

tries to sell you.
• Increasing the size of the rdbuf produces a few percent performance improvement

on reading files.
• The best read times I could obtain used the std::streambuf::sgetn() function to

fill a string buffer preallocated to the size of the file.
• std::endl flushes the output. It’s expensive if you are not doing console output.
• std::cout is tied to std::cin and stdout. Breaking these ties can improve

performance.
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1 Yes, yes, I have heard of GPUs. When millions of developers are programming directly on GPUs, they will be
mainstream. That time has yet to arrive.

CHAPTER 12

Optimize Concurrency

It’s tough to make predictions, especially about the future.
—Yogi Berra (1925–2015), baseball legend and inadvertent humorist

This quip appeared in English-language physics and economics journals prior to
becoming a “Yogi-ism.” It is also attributed as a Danish proverb. It seems unlikely,
though, that Berra misappropriated it from any of these sources.

All but the smallest modern computers process multiple execution streams concur‐
rently. They contain multiple CPU cores, graphics processors with hundreds of sim‐
ple cores, audio processors, disk controllers, network cards, and even keyboards with
separate computing power and memory. Like it or not, developers live in a concur‐
rent world, and must understand how to program concurrent activities.

Software practices for concurrency evolved in a world of single-core processors. Since
2005, the advent of multicore microprocessors providing true (versus time-sliced)
concurrency has altered the development landscape, informing best practices with
new rules. These rules may be unfamiliar even to developers experienced with con‐
currency issues that arise in single-processor systems.

If the future direction of processor development leads to commercial devices with
dozens or hundreds of cores, programming best practices will continue to change.
Several competing tools promoting fine-grained concurrency have arrived that antici‐
pate this future. However, general-purpose hardware with many cores has yet to
become mainstream,1 standards of practice have not yet solidified in the developer
community, and clear leaders among fine-grained concurrency solutions have yet to
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emerge. This future is by no means certain. It is with some sadness that I leave this
very interesting topic for others to cover.

Concurrency can be provided to programs by a variety of mechanisms. Some of them
live outside of C++, in the operating system or on the hardware. C++ code appears to
run normally as a single program or a group of programs communicating via I/O.
Still, these approaches to concurrency have some bearing on the design of C++ pro‐
grams.

The C++ standard library directly supports a shared-memory thread model of con‐
currency. Many developers are more familiar with the concurrency features of their
operating system, or with the C-language calls of the POSIX Threads (pthreads)
library. It is also my experience that developers are far less familiar with the concur‐
rency features of C++, and concurrency in general, than they are with other areas of
C++ programming. For this reason, I provide more extensive notes on how these
C++ features may be used than I do for other features covered in this book.

Concurrency support in the C++ standard library is a work in progress. While the
standard has made tremendous strides in providing foundational concepts and capa‐
bilities, many capabilities are still working their way through standardization and will
not arrive until C++17 or later.

This chapter discusses several techniques to improve performance of thread-based
concurrent programs. The discussion assumes that readers are already basically
familiar with thread-level concurrency and synchronization primitives, and are look‐
ing for ways to optimize their threaded programs. Providing “basic familiarity” with
thread-level concurrency would be the topic of yet another book.

Concurrency Refresher
Concurrency is the simultaneous (or apparently simultaneous) execution of multiple
threads of control. The goal of concurrency is not a reduction in the number of
instructions executed or data words accessed per se. It is rather an increase in utiliza‐
tion of computing resources that reduces run time as measured on a wall clock.

Concurrency improves performance by permitting some program activities to move
forward while other activities wait for an event to occur or a resource to become
available. This allows computing resources to be utilized more of the time. The more
activities that proceed concurrently, the more resources are used and the more activi‐
ties wait for events and resources, in a positive feedback loop that increases overall
utilization of computing and I/O resources up to some saturation point, hopefully
near 100% utilization. The result is a reduction of wall-clock time versus what would
happen if each task was performed to completion before the next task started, with
the computer idling while awaiting events.
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From the standpoint of optimization, the challenge of concurrency is to find enough
independent tasks to fully utilize available computing resources, even if some tasks
must wait on external events or availability of resources.

C++ offers a modest library for shared-memory thread-based concurrency. This is by
no means the only way that C++ programs can implement a system of cooperating
programs. Other kinds of concurrency also have an impact on C++ programs, and
are thus worth at least a brief look.

This section examines the C++ memory model and the basic toolkit for using shared
memory in multithreaded programs. In my opinion, it’s the gnarliest topic in C++. It’s
gnarly because our sad little monkey brains are single-threaded. They can reason nat‐
urally about just one cause-and-effect stream at a time.

A Walk Through the Concurrency Zoo
Concurrency can be provided to programs by the computer hardware, by operating
systems, by function libraries, and by the features of C++ itself. This section describes
a number of concurrency features and their impact on C++.

The fact that certain concurrency features are built into C++ while others are pro‐
vided by library code or the operating system must not be read as an endorsement of
one concurrency model over others. Some facilities are built in because they have to
be. There is no other way to provide them. The most notable forms of concurrency
include:

Time slicing
This is a function of the scheduler in the operating system. In time slicing, an
operating system maintains a list of currently executing programs and system
tasks, and allocates chunks of time to each program. Any time a program is wait‐
ing for an event or resource, the program is taken off the operating system’s
runnable list, making its share of the processor available for the other programs.

An operating system is processor- and hardware-dependent. It makes use of a
timer and periodic interrupts to mediate the scheduling of processes. C++
remains unaware that it is being time sliced.

Virtualization 
In one typical kind of virtualization, a lightweight operating system called a
hypervisor allocates chunks of processor time to a guest virtual machine. The
guest virtual machine (VM) contains a filesystem image and a memory image,
which is typically an operating system running one or more programs. When a
hypervisor runs a guest virtual machine, certain processor instructions and
accesses to certain regions of memory cause a trap into the hypervisor, allowing
the hypervisor to emulate I/O devices and other hardware resources. In another
type of virtualization, a conventional operating system hosts the guest virtual
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machines, using the operating system’s I/O facilities to more efficiently emulate
I/O when the host and guest virtual machines run the same operating system.

Some advantages of virtualization include:

• Guest virtual machines are packaged as disk files when they aren’t running.
The guest VM can be checkpointed and saved, loaded and resumed, and
copied and run on multiple computer hosts.

• Multiple guest virtual machines can be run concurrently, resources permit‐
ting. Each guest VM is isolated from the others by the hypervisor, in cooper‐
ation with the computer’s virtual memory protection hardware. This allows
hardware to be commoditized and rented by the hour.

• Guest virtual machines can be configured to use a portion of the resources
(physical memory, processor cores) of a host computer. Computing resour‐
ces can be tailored to fit the requirements of the programs running on each
guest VM, providing consistent levels of performance and preventing unin‐
tended interactions among multiple VMs running concurrently on the same
hardware.

As with traditional time slicing, C++ remains unaware that it is running within a
guest VM under a hypervisor. C++ programs may be indirectly aware that they
have constrained resources. Virtualization is relevant to C++ program design
because it makes it both possible to limit the computational resources consumed
by a program and necessary for the program to know what resources are actually
available.

Containerization 
Containerization is similar to virtualization in that containers hold a filesystem
image and a memory image containing a checkpointed program state. They dif‐
fer in that the container host is an operating system, so that I/O and system
resources can be provided directly instead of emulated less efficiently by the
hypervisor.

Containerization has the same advantages as virtualization (packaging, configu‐
ration, and isolation) plus containers can run somewhat more efficiently.

Containerization is not visible to C++ programs running within a container. It is
relevant to C++ programs for the same reason as virtualization.

Symmetric multiprocessing 
A symmetric multiprocessor is a computer containing several execution units
that execute the same machine code and have access to the same physical mem‐
ory. Modern multicore processors are symmetric multiprocessors. The currently
executing programs and system tasks can be run on any available execution unit,
though the choice of execution unit may have consequences on performance.
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2 Some operating systems permit designated blocks of memory to be shared between processes. These mecha‐
nisms for sharing memory among processes are arcane and operating system–dependent, and are not covered
here.

A symmetric multiprocessor executes multiple threads of control with true hard‐
ware concurrency. If there are n execution units, the total run time of a compute-
bound program can be reduced by a factor of as much as 1/n. These hardware
threads stand in contrast to software threads, discussed later, which may or may
not run on distinct hardware threads, and thus may or may not reduce total run
time.

Simultaneous multithreading 
Some processors are designed so that each hardware core has two (or more) reg‐
ister sets and executes two or more corresponding streams of instructions. When
one stream stalls (as for an access to main memory), instructions from the other
stream can execute. A processor core having this feature acts like two (or more)
cores, so that a “four-core processor” really can host eight hardware threads. This
is important, as we’ll see in “Create as Many Runnable Threads as Cores” on page
308, because the most efficient use of software threads matches the number of
software threads to the number of hardware threads.

Multiple processes 
Processes are concurrent streams of execution that have their own protected vir‐
tual memory space. Processes communicate using pipes, queues, network I/O, or
some other unshared mechanism.2 Processes synchronize using synchronization
primitives or by pending on input (that is, blocking until the input becomes avail‐
able).

The principal advantage of processes is that the operating system isolates one
process from another. If one process crashes, the others remain alive, although
they may have nothing to do.

The greatest weakness of processes is that they have a lot of state: virtual memory
tables, multiple execution unit contexts, plus the contexts of all suspended
threads. They are slower to start, stop, and switch between than threads.

C++ doesn’t experience processes directly. Generally, a C++ program is repre‐
sented by an operating system process. There are no tools in C++ to manipulate
processes because not all operating systems even possess a process concept. On
small processors, programs may be time sliced but not protected from one
another, so that they act more like threads.

Distributed processing 
Distributed processing is distribution of an activity onto a collection of process‐
ors that are not necessarily the same, and that communicate over links that are
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typically slow compared to the processor. A cluster of cloud instances communi‐
cating via TCP/IP links is an example of distributed processing. An example of
distributed processing on a single PC is offloading drivers to processors running
on disk drives and network cards. Another example is offloading graphics tasks
to the many kinds of specialized processors in a graphics processing unit (GPU).
GPUs have traditionally been provided on video cards, but the latest silicon styl‐
ings from several manufacturers put GPUs onto the microprocessor die.

In a typical distributed processing setup, data flows through a pipeline or net‐
work of processes, where each process performs some transformation on the
input, pushing the transformed data to the next stage in the pipeline. This model,
which is as old as Unix command-line pipelines, allows relatively heavyweight
processes to run efficiently. Processes in a pipeline are long-lived, avoiding
startup costs. Processes can continuously transform units of work, so they use
whole time slices, subject to availability of input. Most importantly, processes do
not share memory or synchronize with each other, so they run at full speed.

Although C++ contains no process concept, distributed processing is relevant to
C++ development because it influences the design and structure of programs.
Sharing memory does not scale beyond a few threads. Some treatments of con‐
currency advocate abandoning shared memory altogether. Distributed process‐
ing systems often decompose naturally into subsystems, producing modular,
understandable, reconfigurable architectures.

Threads 
Threads are concurrent streams of execution within a process that share the same
memory. Threads synchronize using synchronization primitives and communi‐
cate using shared memory locations.

Their strength, in comparison to processes, is that threads consume fewer
resources and are faster to create and faster to switch between.

Threads have several weaknesses, however. Since all threads in a process share
the same memory space, a thread writing to invalid memory locations can over‐
write data structures in other threads, causing them to crash or behave unpre‐
dictably. Further, access to shared memory is many times slower than access to
unshared memory and must be synchronized between threads, or the contents
are difficult to interpret.

Most operating systems support threads with an operating system–dependent
library. Up until recently, C++ developers with experience in concurrency used a
native thread library or the POSIX Thread (pthread) library, which provides a
cross-platform solution with basic services.

284 | Chapter 12: Optimize Concurrency



Tasks 
A task is a unit of execution that can be invoked asynchronously in the context of
a separate thread. In task-based concurrency, the tasks and the threads are sepa‐
rately and explicitly managed, so that a task is assigned to a thread for execution.
By contrast, in thread-based concurrency, the thread and the executable code
running on the thread are managed as a unit.

Task-based concurrency is built atop threads, so tasks share the strengths and
weaknesses of threads.

An additional advantage of task-based concurrency is that the number of active
software threads can be matched to the number of hardware threads so that
threads execute efficiently. The program can prioritize and queue tasks for execu‐
tion. By contrast, in a thread-based system, the operating system prioritizes
threads in an opaque and operating system–dependent manner.

The cost of tasks’ extra flexibility is greater application complexity. The program
must implement some means of prioritizing or sequencing tasks. The program
must also manage a pool of threads upon which to run tasks.

Interleaved Execution
Astronomers have a funny way of thinking about the universe. Hydrogen makes up
73% of the visible matter in the universe. Helium makes up 25%. Everything else
makes up less than 2%. Astronomers can describe most features of the observable
universe as if it consisted exclusively of hydrogen and helium. They call all the other
elements—the ones that make up planets, processors, and people—“metals,” as if they
had no separate identity, and pretty much ignore them.

Concurrent programs can similarly be abstracted into loads, stores, and branches,
and the branches mostly ignored, as if all the complexity of programming was irrele‐
vant. Discussions of concurrency (including the ones in this book) often feature sim‐
ple program fragments consisting mostly of sequences of assignment statements to
illustrate concurrency concepts.

Concurrent execution of two threads of control can be modeled as interleaving the
simple load and store statements of the two threads. If thread 1 and thread 2 each
consist of a single statement, the possible interleavings are “12” and “21”. If each
thread has two statements, there are several potential interleavings: “1122”, “1212”,
“2112”, “1221”, “2121”, “2211”. In real programs, a very large number of interleavings
are possible.

In the days of single-core processors, concurrency was implemented by time slicing
in the operating system. Race conditions were relatively infrequent because many
statements from one thread executed before the operating system gave control to the
other thread. The interleavings observed in practice were “1111...11112222....2222”.
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With today’s multicore processors, interleavings of individual statements are possible,
so race conditions are more frequently visible. Developers who wrote concurrent pro‐
grams in the single-processor past may have a sense of complacency about their skill
that is no longer warranted.

Sequential Consistency
As noted in Chapter 2, C++ believes in a simple, intuitive model of the computer.
This model includes the requirement that programs are sequentially consistent. That
is, programs behave as if statements are executed in the order in which they are writ‐
ten, subject to C++ flow of control statements. Obvious as this requirement seems,
those weasel-words “as if ” in the previous sentence permit many compiler optimiza‐
tions and innovative microprocessor designs.

For instance, the program fragment in Example 12-1 is sequentially consistent even if
y is set to 0 before x is, or x is set to 1 after y is set to 1, or even if x is set to 1 after the
comparison y == 1 in the if statement, as long as the assignment x = 1 happens
before assert(x == 1)—that is, before the value is used.

Example 12-1. Sequential consistency means “as if ” executed in order

int x = 0, y = 0;
x = 1;
y = 1;
if (y == 1) {
    assert(x == 1);

The reader may well ask, “Why would the compiler want to reorder statements?” In
fact, there are many reasons, all of them about the dark magic of optimal code gener‐
ation in compilers, of which I dare not speak. And it’s not just the compiler moving
things around; modern microprocessors reorder loads and stores too (see “There Are
Multiple Streams of Program Execution” on page 22).

The combined effect of compiler optimizations, out-of-order execution, caching, and
write buffering can be modeled using the common metaphor of loads and stores
breaking loose from their places in the program listing and moving up and down the
page to a point before or after their intended position. This metaphor captures all
these effects without having to explain or understand details of compiler optimiza‐
tions and hardware behavior in a specific processor.

In a particular compiler/hardware combination, not all possible movements of loads
and stores actually happen. Moving loads and stores of shared variables thus illus‐
trates a worst-case scenario. But trying to reason about a specific hardware architec‐
ture when it has three levels of cache and behavior that depends on which cache line
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each variable is on is insanely difficult. It is also not fruitful, because most programs
must run on more than one hardware device over their lifetime.

What matters is that a program remains sequentially consistent when use of a vari‐
able is moved up or down with respect to other statements, so long as it doesn’t move
past an update of that variable. Likewise, the program remains sequentially consistent
when updates of a variable are moved up or down, so long as they don’t move past a
use.

Races
Concurrency creates a problem for C++, which provides no way to tell when two
functions may run concurrently and what variables are shared. Code-moving opti‐
mizations that are perfectly reasonable when considering one function at a time may
cause problems when two functions run concurrently.

If thread 1 consists of the statement x = 0 and thread 2 the statement x = 100, the
outcome of the program depends on a race between the two threads. A race occurs
when the result of the concurrent execution of these statements depends on which
interleaving occurs in a given run of the program. The interleaving “12” produces the
result x == 100, and the interleaving “21” produces x == 0. The result of this pro‐
gram, or any program containing a race, is nondeterministic—that is, unpredictable.

The C++ standard memory model says programs behave as if they were sequentially
consistent, as long as they do not contain races. If a program contains races, sequential
consistency may be violated.

Example 12-2 is a multithreaded version of Example 12-1, this time with more mean‐
ingful variable names.

Example 12-2. Sequential consistency of multiple threads

// thread 1, running in core 1
shared_result_x = 1;
shared_flag_y = 1;
   ...
// thread 2, running in core 2
while (shared_flag_y != 1)
    /* busy-wait for shared_flag_y to be set to 1 */ ;
assert(shared_result_x == 1);

shared_result_x is a result computed in thread 1 to be used by thread 2.
shared_flag_y is a flag set by thread 1 that tells thread 2 that the result is ready to
use. If the compiler or processor reorders the two statements in thread 1 so that
shared_flag_y is set before shared_result_x, thread 2 may (but not necessarily
must) exit its while loop after seeing the new value of shared_flag_y, and asserts
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because it still sees the old value of shared_result_x. Each thread is sequentially con‐
sistent, but the interaction of the two threads is a race.

Sequential consistency of variables shared between threads is guaranteed by some
languages that don’t have that pesky “as if ” in their definition. It is provided in others
because shared variables are explicitly declared; the compiler doesn’t move them
around and generates special code to ensure that the hardware doesn’t move them
either. A concurrent C++ program must explicitly force a particular interleaving to
preserve sequential consistency.

Synchronization
Synchronization is the forced ordering of the interleaving of statements in multiple
threads. Synchronization allows developers to reason about the order in which things
happen in a multithreaded program. Without synchronization, the order in which
things happen is unpredictable, making it hard to coordinate actions between
threads.

Synchronization primitives are programming constructs whose purpose is to achieve
synchronization by forcing a particular interleaving of concurrent programs. All syn‐
chronization primitives work by causing one thread to wait for, or pend on, another
thread. By enforcing a specific execution order, synchronization primitives prevent
races.

A variety of synchronization primitives have been proposed and implemented in the
past 50 years of programming. Microsoft Windows has a rich set of synchronization
primitives, including events on which threads can pend, two kinds of mutexes, a very
general semaphore, and Unix-style signals. Linux has its own rich but distinct set.

It is important to understand that synchronization primitives exist as concepts only.
There is no authoritative voice that says exactly what a semaphore is, or exactly how a
monitor should be implemented. What Windows calls a semaphore can be hard to
recognize from Dijkstra’s original description.3 Furthermore, the whole menagerie of
proposed synchronization primitives can be synthesized out of a sufficiently rich set
of pieces, in the same way that any Boolean function can be synthesized in hardware
from NAND and NOR gates. Different implementations on different operating sys‐
tems should thus be expected.

Classical synchronization primitives interact with the operating system to move
threads between active and pending states. This implementation is appropriate for
computers with only one relatively slow execution unit. However, the latency of start‐
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ing and stopping threads using the operating system can be significant. When there
are multiple processors executing streams of instructions in a truly concurrent fash‐
ion, synchronization by busy-waiting on shared variables can produce very short wait
times. Synchronization library designers may also take a hybrid approach.

Atomicity
An operation on a shared variable (particularly a class instance having multiple mem‐
bers) is atomic  if no thread can ever see an update performed by another thread in a
half-completed state. If update operations are not atomic, some interleavings of two
threads’ code allow one thread to access the shared variable when it is in an inconsis‐
tent, half-updated state due to an update operation in progress on another thread.
Viewed another way, atomicity is a promise that these undesirable interleavings can‐
not occur.

Atomicity by mutual exclusion
Traditionally, atomicity is provided via mutual exclusion. Each thread wishing to
access a shared variable must acquire a mutex before accessing the shared variable,
and release the mutex when the operation is complete. The part of the program boun‐
ded by acquiring and releasing the mutex is called a critical section. If one thread has
acquired a mutex, all other threads pend when they try to acquire the mutex. Thus,
only one thread at a time can perform operations on the shared data. This thread is
said to hold the mutex. The mutex serializes the threads so that critical sections exe‐
cute one after the other.

Loads and stores of shared variables must happen within a critical section, where only
one thread is running, or a race with unpredictable results may occur. But as dis‐
cussed in “Sequential Consistency” on page 286, the compiler and processor both
move loads and stores. A mechanism called a memory fence prevents loads and stores
of shared variables from leaking out of a critical section. In the processor, special
instructions tell it not to move loads and stores past the memory fence. In the com‐
piler, the memory fence is conceptual. The optimizer does not move loads past func‐
tion calls, because any function call might contain a critical section.

The memory fence at the top of a critical section must prevent loads of shared vari‐
ables from leaking out the top of the critical section. This memory fence is said to
have acquire semantics, because it happens when the thread acquires a mutex. Simi‐
larly, the memory fence at the bottom of a critical section must prevent stores of
shared variables from leaking out the bottom. This memory fence is said to have
release semantics, because it happens when the thread releases a mutex.

In the days of single-core processors, memory fences were unnecessary. Compilers
did not reorder loads and stores across function calls, and the operating system
synchronized memory almost accidentally when it switched threads. But in the multi‐
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core world, programmers must contend with this new issue. Developers who use syn‐
chronization primitives provided by the C++ standard library or the native
synchronization library of their operating system don’t need to worry about memory
fences, but programmers implementing synchronization primitives or lock-free data
structures must take a keen interest.

Atomic hardware operations
Implementing atomicity by mutual exclusion has costs that make it a troublesome
tool to wield:

• Since only one thread can hold a mutex, operations on shared variables cannot
run concurrently. The more time a critical section consumes, the more time the
critical section takes away from concurrent execution. The more threads that
operate on the shared variable, the more time the critical section takes away from
concurrent execution.

• When a thread releases a mutex, another thread pending on the mutex can
acquire it. But the mutex may not guarantee which other thread acquires it,
because providing such a guarantee is expensive. If many threads are pending on
the mutex, some threads may never acquire it; the computations performed by
those threads do not move forward. This situation is called starvation.

• If a thread holds one mutex and needs to acquire a second mutex, a situation can
arise where the thread can never move forward because another thread holds the
second mutex and wishes to acquire the first mutex. This situation is called dead‐
lock, or, more colorfully, the deadly embrace. A thread can deadlock itself by try‐
ing to lock the same mutex twice. Any number of threads can deadlock because
of a cyclic dependency on mutexes among the threads. There is no known way to
guarantee that a program that attempts to acquire multiple mutexes is deadlock-
free, although there are deadlock avoidance strategies.

For simple variables like integers and pointers, certain operations can be performed
atomically on some computers because the operations are performed by single
machine instructions. These special atomic instructions contain memory fences that
ensure the instruction is not interrupted halfway through execution.

Atomic instructions form the basis for implementing mutexes and other synchroni‐
zation primitives. Surprisingly sophisticated thread-safe data structures can be imple‐
mented using only the operations that can be done atomically by the hardware. This
is called lock-free programming  because code that works in this way does not have to
wait to acquire a mutex.

Lock-free programs scale to larger numbers of concurrent threads, but they are not a
cure-all. Threads are still serialized by atomic operations, even those performed by a
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single instruction. However, the duration of the critical section is an order of magni‐
tude smaller than that of even the most efficient mutex.

C++ Concurrency Facilities Refresher
As of C++14, concurrency support in the C++ standard library is somewhat Spartan,
compared to the rich facilities in popular operating systems. This is partly because the
C++ facilities must contain only behavior implementable on all operating systems. It
is also partly because C++ concurrency is still a work in progress, with substantial
improvements scheduled for C++17. The advantage of using C++ concurrency fea‐
tures, versus native calls into the operating system, is that the C++ facilities are
defined to behave in a consistent way across platforms.

The concurrency facilities of the C++ standard library fit together like a set of stack‐
ing blocks, building concurrency up from the operating system’s very C-ish threading
library to a fully C++ threading solution that can pass arbitrary argument lists, return
values, throw exceptions, and be stored in containers.

Threads
The <thread> header file provides the std::thread template class, which allows a
program to create thread objects as thin wrappers around the operating system’s own
threading facilities. std::thread’s constructor takes a callable object (a function
pointer, function object, lambda, or bind expression) as an argument, and executes it
in the context of a new software thread. C++ uses variadic template argument for‐
warding magic to call functions with arbitrary argument lists, whereas the underlying
operating system thread invocation typically takes a pointer to a void function with
one void* argument.

std::thread is an RAII (resource acquisition is initialization) class for managing
operating system threads. It provides a get() member function, which returns an
operating system’s native thread handle. This allows a program access to the operat‐
ing system’s generally richer set of functions that act on threads.

Example 12-3 shows a simple example of std::thread use.

Example 12-3. Starting a few simple threads

void f1(int n) {
    std::cout << "thread " << n << std::endl;
 }

void thread_example() {
    std::thread t1;          // thread variable, not a thread
    t1 = std::thread(f1, 1); // assign thread to a thread variable
    t1.join();               // wait for thread to complete
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    std::thread t2(f1, 2);
    std::thread t3(std::move(t2));
    std::thread t4([]() { return; });// works with lambdas too
    t4.detach();
    t3.join();
}

Thread t1 is initially empty. Threads cannot be copied because they each contain a
unique handle to the underlying resource, but the move assignment operator allows
an empty thread to be assigned an rvalue. t1 can own any thread that executes a func‐
tion taking an integer argument. A function pointer to f1 and an integer argument
are provided to the constructor. The second argument is forwarded to the callable
object (f1), which is started in std::thread’s constructor.

Thread t2 is started with the same function but a different second argument. Thread
t3 is an example of the move constructor in action. After the move constructor, t3 is
running the thread started as t2, and t2 is empty. Thread t4 shows that threads can
be started with lambdas as their callable object.

The operating system thread represented by a std::thread has to be disposed of
before the std::thread is destroyed. The thread can be joined, as in t3.join(),
which means the current thread waits for the thread being joined to end. The operat‐
ing system thread can also be dissociated from the std::thread object, as in
t4.detach(). In this case, the thread continues to execute, but isn’t visible to the
thread that started it any longer. A detached thread ends when its callable object
returns. If the callable object does not return, the thread is a resource leak, continuing
to consume resources until the full program ends. If neither join() nor detach() is
called before the std::thread is destroyed, its destructor calls terminate(), abruptly
stopping the whole program.

Although it is possible to work directly with std::thread, it may be more productive
to think of std::thread as a building block of more sophisticated facilities. Any value
returned by the function object is ignored. Any exception thrown by the function
object causes immediate, unconditional program termination via a call to
terminate(). These limitations make naked calls to std::thread fragile, almost as if
the standard writers wanted to discourage their use.

Promises and Futures
The C++ std::promise and std::future template classes are, respectively, the send‐
ing and receiving ends of a message from one thread to another. Promises and futures
allow threads to asynchronously produce values and throw exceptions. The promise
and future share a dynamically allocated variable called the shared state that can hold
either a value of a defined type, or an exception of any type encapsulated in a stan‐
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dard wrapper. A thread of execution can pend on a future, so the future also acts as a
synchronization device.

Promises and futures may be used simply to implement an asynchronous function
call and return. However, the promise and future are far more general than that sim‐
ple use. They can implement a graph of dynamically changing communication points
among threads. That said, they provide no structuring mechanism, so completely
wild and crazy communication graphs may be difficult to debug.

The C++ <future> header file contains the functionality of promises and futures. An
instance of the std::promise template allows a thread to set the shared state to either
a value of a specified type or an exception. The sending thread does not wait for the
shared state to be read; it can continue immediately.

A promise’s shared state is not ready until either a value or an exception is set. The
shared state is meant to be set exactly once. Otherwise:

• If the thread attempts to set a value or exception more than once, the shared state
is instead set to the exception std::future_error with an error code of
promise_already_satisfied, and the shared state becomes ready releasing any
futures waiting on the promise.

• If the thread never sets a value or exception, when the promise is destroyed, the
destructor sets the shared state to the exception std::future_error with error
code broken_promise, and the shared state becomes ready, releasing any futures
waiting on the promise. To get this useful error indication, the promise must be
destroyed in the thread’s callable object.

std::future allows a thread to receive the value or exception saved in the shared
state of a promise. A future is a synchronization primitive; the receiving thread pends
in the call to the future’s get() member function until the corresponding promise is
made ready by a call to set the value or exception.

A future is not valid until it is constructed or assigned from a promise. The receiving
thread cannot pend on a future until it is valid. The future must be constructed from
a promise before the sending thread is executed. Otherwise, the receiving thread may
try to pend on the future before it is valid.

Promises and futures can’t be copied. They are entities that represent a specific com‐
munication rendezvous. They can be constructed and move-constructed, and a
promise can be assigned to a future. Ideally, the promise is created in the sending
thread and the future is created in the receiving thread. There is an idiom in which a
promise is created in the sending thread, then passed as an rvalue reference using
std::move(promise) to the receiving thread so its contents are moved into a promise
belonging to the receiving thread. std::async() performs this strange magic for the
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developer. It is also possible to pass a promise by reference to the sending thread.
Example 12-4 shows how to control thread interaction using promises and futures.

Example 12-4. Promises, futures, and threads

void promise_future_example() {
    auto meaning = [](std::promise<int>& prom) {
        prom.set_value(42); // compute the meaning of life
    };

    std::promise<int> prom;
    std::thread(meaning, std::ref(prom)).detach();

    std::future<int> result = prom.get_future();
    std::cout << "the meaning of life: " << result.get() << "\n";
}

In Example 12-4, the promise prom is created before the std::thread is invoked. This
isn’t perfect as written, because it doesn’t test for a broken promise. It is necessary
though, because if prom is not constructed before the thread starts, there is no way to
guarantee that the future result will be valid before the call to result.get().

The program then constructs an anonymous std::thread. Its arguments are the
lambda meaning, which is the callable object to be executed, and prom, the promise
that is an argument to meaning. Note that since prom is a reference argument, it must
be wrapped in std::ref() so the argument-forwarding magic will work correctly.
The call to detach() dissociates the running thread from the anonymous
std::thread, which is destroyed.

Now two things are happening: the operating system is getting ready to execute
meaning, and the program is creating the future result. The program may execute
prom.get_future() before the thread begins to run. This is why prom was created
before the thread was constructed—so that the future would be valid and the pro‐
gram could pend, awaiting the thread.

The program pends in result.get(), waiting for the thread to set the shared state in
prom. The thread calls prom.set_value(42), making the shared state ready and
releasing the program. The program finishes by outputting "the meaning of life:
42".

There is nothing magical about futures. A developer who wanted to design a thread
that first returned an int and then returned a std::string could make two prom‐
ises. The receiving program would create two matching futures.

Making the future ready signals that the computation is complete. Because a program
can pend on a future, it isn’t necessary for the program to pend on thread termina‐
tion. This will be important in “Asynchronous Tasks” on page 295, when we discuss
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std::async(), and in “Implement a Task Queue and Thread Pool” on page 309,
where we discuss thread pools, because it is more efficient to reuse threads than it is
to destroy and re-create them.

Asynchronous Tasks
The C++ standard library task template class wraps a callable object in a try block
and saves the returned value or thrown exception in a promise. Tasks permit callable
objects to be called asynchronously by threads.

Task-based concurrency in the C++ standard library is only half-formed. C++11 pro‐
vides the async() template function that packages a callable object as a task and
invokes it on a reusable thread. async() is a bit of a “god function” (see “Beware of
‘God Functions’” on page 198), hiding many juicy details of thread pools and task
queues.

Tasks are represented in the C++ standard library <future> header file. The
std::packaged_task template class wraps any callable object (which can be a func‐
tion pointer, function object, lambda, or bind expression) so that it can be called
asynchronously. The packaged task is itself a callable object that can be the callable
argument to a std::thread. The great advantage of tasks versus other callable objects
is that a task can return a value or throw an exception without abruptly terminating
the program. The task’s return value or thrown exception is stored in a shared state
that can be accessed through a std::future object.

Example 12-5 is a simplified version of Example 12-4 that uses a packaged_task.

Example 12-5. packaged_task and thread

void promise_future_example_2() {
    auto meaning = std::packaged_task<int(int)>(
                       [](int n) { return n; });
    auto result  = meaning.get_future();
    auto t       = std::thread(std::move(meaning), 42);

    std::cout << "the meaning of life: " << result.get() << "\n";
    t.join();
}

The packaged_task meaning contains both a callable object and a std::promise. This
solves the problem of getting the promise destructor called in the context of the
thread. Notice that the lambda in meaning simply returns; the machinery of setting
the promise is all comfortably hidden.
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In this example, I joined the thread instead of detaching it. Although it isn’t com‐
pletely obvious from this example, both main program and thread can continue run‐
ning concurrently after the main program gets the future’s value.

The <async> library provides a facility based on tasks. A template function
std::async() executes a callable object argument, and the callable object may be exe‐
cuted in the context of a new thread. However, std::async() returns a std::future,
capable of holding either a return value or an exception thrown by the callable object
called by std::async(). Furthermore, an implementation may choose to allocate
std::async() threads out of a thread pool for improved efficiency. This is illustrated
in Example 12-6.

Example 12-6. tasks and async()

void promise_future_example_3() {
    auto meaning = [](int n) { return n; };
    auto result = std::async(std::move(meaning), 42);
    std::cout << "the meaning of life: " << result.get() << "\n";
}

The lambda defined as meaning and the lambda’s argument are passed to
std::async(). Type deduction is used to determine the template parameters of
std::async(). std::async() returns a future able to retrieve an int result or an
exception, which is moved into result. The call to result.get() pends until the
thread invoked by std::async() fulfills its promise by returning its int argument.
Thread termination is managed within std::async(), which may keep the thread in
a thread pool.

The example code need not explicitly manage thread termination. std::async() may
use a thread pool maintained by the C++ runtime system to recycle the thread if this
is cheaper than destroying and re-creating threads as needed. Explicit thread pools
may be added in C++17.

Mutexes
C++ provides several mutex templates to provide mutual exclusion for critical sec‐
tions. The mutex template definition is simple enough to be specialized for particular
operating system–dependent native mutex classes.

The <mutex> header file contains four mutex templates:

std::mutex

A simple, relatively efficient mutex. On Windows, this class tries a busy-wait first,
and falls back to operating system calls if it cannot obtain the mutex quickly.
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std::recursive_mutex

A mutex that allows a thread that already holds the mutex to acquire it again, as
in a nested function call. This class may be less efficient due to the need to count
how many times it is acquired.

std::timed_mutex

A mutex that permits a timed attempt to acquire the mutex. The requirement for
timed attempts generally requires intervention from the operating system, which
significantly increases the latency of this type of mutex in comparison to
std::mutex.

std::recursive_timed_mutex

A mutex that is both timed and recursive, with mustard, ketchup, and secret
sauce. This type of mutex is tasty, but expensive.

My experience is that recursive and timed mutexes may be warnings of a design that
can be simplified. The scope of a recursive lock is difficult to reason about, so it is
deadlock-bait. The expense of these mutexes should be tolerated only when neces‐
sary, and they should be avoided when designing new code.

C++14 added the <shared_mutex> header file containing support for shared mutexes,
also known as reader/writer mutexes. A single thread can lock a shared mutex in an
exclusive mode, in order to atomically update a data structure. Multiple threads can
lock a shared mutex in a shared mode to atomically read a data structure, but it is
locked against exclusive access until all readers have released the mutex. The shared
mutex may allow more threads to access the data structure without waiting, provided
most accesses are for reading. These shared mutexes are available:

std::shared_timed_mutex

A shared mutex that supports timed and untimed attempts to acquire the mutex.

std::shared_mutex

A simpler shared mutex, scheduled for inclusion in C++17.

It is my experience that reader/writer mutexes lead to starvation of the writer thread
unless reads are infrequent, in which case the value of the reader/writer optimization
is negligible. As with recursive mutexes, developers must make a strong case for using
this more complex mutex, and should usually choose a simpler, more predictable
mutex.

Locks
In C++, the word lock refers to an RAII class that acquires and releases a mutex in a
structured manner. Use of the word can be confusing because mutexes are also some‐
times referred to as locks. Acquiring a mutex is also called locking the mutex, and
releasing the mutex is also called unlocking the mutex. In C++, the mutex member
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function to acquire a mutex is named lock(). I have been using mutexes for over 20
years, and I still have to concentrate to keep these concepts straight.

The C++ standard library provides a simple lock to acquire one mutex, and a more
general lock to acquire multiple mutexes. The general lock implements a deadlock
avoidance algorithm.

The <mutex> header file contains two lock templates:

std::lock_guard

A simple RAII lock. During the class’s construction, the program waits for the
lock to be acquired, and it releases the lock on destruction of the lock_guard.
Pre-standard implementations of this class were often called scope_guard.

std::unique_lock

A general-purpose mutex ownership class that offers RAII locking, deferred lock‐
ing, timed locking attempts, transfer of mutex ownership, and use with condition
variables.

A lock for shared mutexes was added in C++14, in the <shared_mutex> header file:

std::shared_lock

A mutex ownership class for shared (reader/writer) mutexes. It offers all the
sophisticated features of std::unique_lock, plus control of shared mutexes.

A single thread can lock a shared mutex in an exclusive mode, to atomically
update a data structure. Multiple threads can lock a shared mutex in a shared
mode to atomically read a data structure, but it is locked against exclusive access
until all readers have released the mutex.

Condition Variables
Condition variables allow C++ programs to implement the monitor concept proposed
by famous computer scientists C.A.R. Hoare and Per Brinch-Hansen and widely
deployed in Java as synchronized classes.4

A monitor shares a data structure among multiple threads. When a thread success‐
fully enters the monitor, it owns a mutex that allows it to update the shared data
structure. A thread may leave the monitor after updating the shared data structure,
giving up its exclusive access. It may also pend on a condition variable, temporarily
giving up exclusive access until a specific change occurs.
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A monitor may have one or more condition variables. Each condition variable sum‐
marizes a conceptual change-of-state event in the data structure. When a thread run‐
ning inside the monitor updates the data structure, it must notify any condition
variables affected by the update that the event they represent has occurred.

C++ provides two implementations of condition variables in the <condition_vari
able> header file. They differ in the generality of the lock argument they accept:

std::condition_variable

The most efficient condition variable, this requires the use of std::unique_lock
to lock the mutex.

std::condition_variable_any

A condition variable that can use any BasicLockable lock; that is, any lock offer‐
ing lock() and unlock() member functions. This condition variable may be less
efficient than std::condition_variable.

When a thread is released by a condition variable, the thread must verify that the data
structure is in the expected state. This is because some operating systems may spuri‐
ously notify the condition variable. (My experience is that it may also happen due to
programmer error.) Example 12-7 is an extended example of using condition vari‐
ables to implement a multithreaded producer/consumer.

Example 12-7. Simple producer and consumer using condition variables

void cv_example() {
    std::mutex m;
    std::condition_variable cv;
    bool terminate = false;
    int shared_data = 0;
    int counter = 0;

    auto consumer = [&]() {
        std::unique_lock<std::mutex> lk(m);
        do {
            while (!(terminate || shared_data != 0))
                cv.wait(lk);
            if (terminate)
                break;
            std::cout << "consuming " << shared_data << std::endl;
            shared_data = 0;
            cv.notify_one();
        } while (true);
    };

    auto producer = [&]() {
        std::unique_lock<std::mutex> lk(m);
        for (counter = 1; true; ++counter) {
            cv.wait(lk,[&]() {return terminate || shared_data == 0;});
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            if (terminate)
                break;
            shared_data = counter;
            std::cout << "producing " << shared_data << std::endl;
            cv.notify_one();
        }
    };

    auto p = std::thread(producer);
    auto c = std::thread(consumer);
    std::this_thread::sleep_for(std::chrono::milliseconds(1000));
    {
        std::lock_guard<std::mutex> l(m);
        terminate = true;
    }
    std::cout << "total items consumed " << counter << std::endl;
    cv.notify_all();
    p.join();
    c.join();
    exit(0);
}

The producer thread in Example 12-7 “produces” by setting a single integer called
shared_data to a nonzero value. The consumer “consumes” shared_data by setting
it back to zero. The main program thread launches the producer and consumer, then
takes a 1,000-millisecond nap. When the main thread wakes up, it locks mutex m to
briefly enter the monitor, then sets a flag called terminate, which causes both pro‐
ducer and consumer threads to exit. The main program notifies the condition vari‐
able that the state of terminate has changed, joins the two threads, and exits.

consumer enters the monitor by locking the mutex m. The consumer is a single loop
that pends on a condition variable named cv. While it is pending on cv, consumer is
not in the monitor; mutex m is available. When there is something to consume, cv is
notified. The consumer wakes up, relocks the mutex m, and returns from its call to
cv.wait(), conceptually reentering the monitor.

Example 12-7 uses a single condition variable, which has the meaning “the data struc‐
ture has been updated.” The particular update consumer normally waits for is
shared_data != 0, but it also needs to wake up on terminate == true. This is an
economical use of synchronization primitives, in contrast to the array of signals in
the Windows WaitForMultipleObjects() function. A similar example could have
been coded using one condition variable to wake the consumer and another to wake
the producer.

The consumer invokes cv.wait() in a loop, checking each time it wakes to see
whether the proper condition exists. This is because some implementations can spu‐
riously wake threads waiting on a condition variable accidentally, when it isn’t appro‐
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priate. If the condition is met, the while loop exits. If the condition that woke
consumer was terminate == true, consumer exits its outer loop and returns. Other‐
wise, the condition was shared_data != 0. consumer prints a message, then indicates
it has consumed the data by setting shared_data to zero and notifying cv that the
shared data has changed. At this point, consumer is still inside the monitor, holding a
lock on mutex m, but it continues the loop, entering cv.wait() again, unlocking the
mutex and conceptually exiting the monitor.

The producer is similar. It pends until it can lock mutex m, then enters an outer loop
that causes it to continue until it sees terminate == true. The producer waits on cv
looking for a change in state. In this example, producer uses a version of wait() that
takes a predicate argument, causing it to loop until the predicate is false. The predi‐
cate is thus the condition implied by notifying the condition variable. This second
form is syntactic sugar, hiding the while loop. Initially, shared_data is already zero,
so the producer doesn’t wait on cv. It updates shared_data, then notifies cv, then
loops back and enters cv.wait(), releasing the mutex and conceptually exiting the
monitor.

Atomic Operations on Shared Variables
The C++ standard library <atomic> header file provides low-level tools for building
multithreaded synchronization primitives: memory fences and atomic load and store.

std::atomic provides a standard mechanism to update an arbitrary data structure,
so long as it is copy constructable or move constructable. Any specialization of
std::atomic must provide the following functions for any type T:

load()

std::atomic<T> provides the member function T load(memory_order), which
copies the T object out of the std::atomic<T> atomically.

store()

std::atomic<T> provides the member function void store(T, memory_order),
which copies a T object into the std::atomic<T> atomically.

is_lock_free()

is_lock_free() returns bool true if all operations defined on this type are
implemented without the use of mutual exclusion, as by a single read-modify-
write machine instruction.

Specializations of std::atomic are provided for integral and pointer types. Where the
processor supports it, these specializations synchronize memory without invoking
the operating system’s synchronization primitives. The specializations provide a num‐
ber of operations that can be implemented atomically on modern hardware.
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The performance of std::atomic depends on the processor for which code is being
compiled:

• Intel-architecture PCs have a variety of read-modify-write instructions, and the
cost of the atomic access depends on the memory fence, with some fences having
no cost at all.

• On single-core processors with read-modify-write instructions, std::atomic
may generate no extra code at all.

• On processors that do not have atomic read-modify-write instructions,
std::atomic may be implemented using expensive mutual exclusion.

Memory fences

Most std::atomic member functions take an optional memory_order argument that
selects a memory fence around the operation. If the memory_order argument is not
provided, the default is memory_order_acq_rel. This provides a full fence that is
always safe, but can be expensive. More refined fences can be selected, but this should
be done only by knowledgeable users.

Memory fences synchronize main memory with the cache of multiple hardware
threads. In general, a memory fence is executed on each of two threads to synchron‐
ize one thread with the other. C++ allows the following memory fences:

memory_order_acquire

memory_order_acquire may be casually thought to mean “acquire all work done
by other threads.” It ensures that subsequent loads are not moved before the cur‐
rent load or any previous loads. It does this, paradoxically, by waiting for store
operations currently in flight between the processor and main memory to com‐
plete. Without the fence, if a store is in flight when this thread does a load to the
same address, the thread gets old information, as if the load had moved up inside
the program.

memory_order_acquire may be less expensive than the default full fence. It
would be appropriate, for instance, to use memory_order_acquire when atomi‐
cally reading the flag in the while loop of a busy-wait.

memory_order_release

memory_order_release may casually be thought to mean “release all work done
by this thread to this point.” It ensures that previous loads and stores done by this
thread are not moved past the current store. It does this by waiting for store
operations currently in flight within this thread to complete.
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memory_order_release may be less expensive than the default full fence. It
would be appropriate, for instance, when setting the flag at the end of a home-
built mutex.

memory_order_acq_rel

This combines the two previous guarantees, creating a full fence.

memory_order_consume

memory_order_consume is a potentially weaker (and faster) form of
memory_order_acquire that requires only that the current load take place before
other operations that are data-dependent on it. For instance, when a load of a
pointer is marked memory_order_consume, subsequent operations that derefer‐
ence this pointer won’t be moved before it.

memory_order_relaxed

With this value, all reorderings are OK.

As currently implemented on most processors, memory fences are a blunt tool. The
memory fence blocks forward progress until all writes in flight have completed. In
reality, only writes to shared locations need be completed, but neither C++ nor x86-
compatible processors have the means to identify this more restrictive set of loca‐
tions, especially as the set varies from one thread to the next.

Stop and Think
Multicore x86 processors released to date have a helpful memory model. All loads
have acquire semantics, and all stores have release semantics. That is, the x86 archi‐
tecture imposes a strong ordering on memory access. It was probably necessary to
forgo a more aggressive memory model in the x86 to maintain compatibility with a
host of legacy programs whose concurrency features were not in fact correctly imple‐
mented. PowerPC, ARM, and Itanium processors all have weaker ordering (and
higher performance).

What this means is that developers who write concurrent C++ programs using Visual
C++ on the x86 can currently get away with multithreaded murder—but if they
recompile the same program on an ARM or PowerPC processor, they may be sur‐
prised by new threading bugs in their supposedly debugged and working code.

Atomic access is no panacea. The memory fence is quite expensive. To find out just
how expensive, I performed an experiment, timing an atomic store operation versus a
simple store. Example 12-8 times a simple atomic store (with default full fence) per‐
formed in a loop.
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Example 12-8. Atomic store test

typedef unsigned long long counter_t;
std::atomic<counter_t> x;
for (counter_t i = 0, iterations = 10'000'000 * multiplier;
     i < iterations; ++i)
    x = i;

The test took 15,318 milliseconds on my PC. The non-atomic version of this test,
reproduced in Example 12-9, took 992 milliseconds—about 14 times faster. In an
example with more writes in flight, the difference might be even more dramatic.

Example 12-9. Non-atomic store test

typedef unsigned long long counter_t;
counter_t x;
for (counter_t i = 0, iterations = 10'000'000 * multiplier;
     i < iterations; ++i)
    x = i;

If std::atomic were implemented with an operating system mutex, as it might be on
some small processors, the difference in performance might be several orders of mag‐
nitude. std::atomic must thus be used with some knowledge of the target hardware.

If you’re wondering what the single quotes are doing in the numeric constant, the
ability to put group-separators in a numeric constant is one of several small but won‐
derful additions in C++14. Some people may find the C++14 changes small and fussy.
I find them very helpful.

On Deck: Future C++ Concurrency Features
The developer community shows a tremendous interest in concurrency, driven no
doubt by the availability and the need to make use of rapidly growing computer
resources. Many developers became experienced with thread-based concurrency
using either native calls or the C-style functions of the POSIX Threads (pthreads)
library. Some of these developers built C++-style wrappers around the native calls.
The best of these efforts have emerged in public, gathering user communities and
cross-pollinating one another. Many proposals for new C++ concurrency features are
now working their way through the standardization process. C++17 is likely to have
far more extensive concurrency support—but nothing is certain about the future
except that it is coming.

This is just a sample of what may arrive by C++17:
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Cooperative multithreading
In cooperative multithreading, two or more software threads pass execution
among themselves via explicit statements so that only one thread is actually run‐
ning at a time. Coroutines are an example of cooperative multithreading.

Cooperative multithreading has a few key advantages:

• Each thread can maintain its context when not actively executing.
• Since only one thread is running at a time, variables are not shared. Mutual

exclusion is not necessary.
Coroutines appear to be coming in C++17, and are available right now in Boost.
A bunch of building blocks for various innovative concurrency schemes are lis‐
ted in a recent proposal from the C++ Concurrency TR working group.

SIMD instructions
SIMD is an acronym for single instruction multiple data. In processors supporting
SIMD, certain instructions operate on a vector of registers. The processor per‐
forms the same action simultaneously on each register in the vector, reducing
overhead versus scalar operations.

The C++ compiler does not normally generate SIMD instructions because their
behavior is complex and not well matched to the way C++ describes programs.
Compiler-dependent pragmas or inline assembly features allow SIMD instruc‐
tions to be inserted into functions, which are then provided in libraries for speci‐
alized tasks like digital signal processing or computer graphics. SIMD
programming is thus both processor- and compiler-dependent. Among the many
web references regarding SIMD instructions is a Stack Exchange Q&A that con‐
tains lots of references about using SIMD in C++.

Optimize Threaded C++ Programs
TANSTAAFL: There ain’t no such thing as a free lunch.

—First used in print in the article “Economics in Eight Words” in the El Paso
Herald-Post on June 27, 1938. Many geeky people recognize the quote from Robert
A. Heinlein’s 1966 novel The Moon Is a Harsh Mistress.

Desktop-class microprocessors in widespread use as of early 2016 have a few cores
with highly pipelined execution units and multiple levels of cache memory. Their
architectures are appropriate for high-performance execution of a few threads of con‐
trol. Executing many threads requires frequent, expensive context switches.

This architecture must be held in mind when designing concurrent programs.
Attempting to force-fit a data-parallel, fine-grained model of concurrency onto cur‐
rent desktop processor designs can produce programs that use concurrency ineffi‐
ciently.
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In the bright future of personal hover-cars and cities in the clouds, programming lan‐
guages will automatically parallelize programs in an effective way. Until then, it’s up
to individual developers to find tasks that can be done concurrently. Although oppor‐
tunities for concurrency are as diverse as are programs, there are some reliable places
to look for threadable code. I’ve listed a few of these in the following sections.

The threading behavior of a program may be wired deeply into its structure. It can
thus be more difficult to modify threading behavior than to optimize allocation or
function calls. That said, there are some design practices for concurrent programs
that optimize performance. Some of these practices have evolved only in the past few
years, so they may not be familiar even to experienced users.

Prefer std::async to std::thread
From a performance standpoint, a significant problem with std::thread is that each
invocation starts a new software thread. Starting a thread has both direct and indirect
costs that make this operation very expensive:

• The direct cost includes calling into the operating system to allocate space for the
thread in the operating system’s tables, allocate memory for the thread’s stack,
initialize the thread’s register set, and schedule the thread to run. If the thread
gets a new scheduling quantum, there is a delay before it begins to run. If it gets
the rest of the invoking thread’s scheduling quantum, there is a delay while stor‐
ing the invoking thread’s registers.

• An indirect cost of creating threads is an increase in the amount of memory
used. Each thread must reserve storage for its own stack of called functions. If
large numbers of threads are started and stopped frequently, this can cause
thrashing in the cache as threads executing on the computer compete for access
to a limited cache.

• Another indirect cost is incurred when the number of software threads exceeds
the number of hardware threads. All threads then begin to slow down as they
must be scheduled by the operating system.

I measured the cost of starting and stopping a thread by running the program frag‐
ment in Example 12-10 in a loop. The void function within the thread returns imme‐
diately. This is the briefest possible function. The call to join() causes the main
program to wait until the thread finishes, causing thread invocations to be laid end-
to-end with no overlap. This would be bad concurrency design if it didn’t have a spe‐
cific goal of measuring the cost of starting threads.
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Example 12-10. Starting and stopping std::thread

std::thread t;
t = std::thread([]() { return; });
t.join();

In fact, this test probably underrepresents the cost of thread invocation, because the
threads don’t write anything into the cache. But the results are still significant: 10,000
thread invocations took around 1,350 milliseconds, or about 135 microseconds per
thread start and stop, on Windows. This is many thousands of times the cost of exe‐
cuting the lambda. std::thread is a fabulously expensive way to perform a brief
computation, even if it could be done concurrently.

There is no escaping this cost because it is a latency. It is the time it takes before the
call to std::thread’s constructor returns and the time before the call to join() ends.
Even if the program detaches the threads instead of waiting to join them, the test still
consumes over 700 milliseconds.

A useful optimization in concurrent programming is to reuse threads instead of cre‐
ating new threads for each use. A thread can pend on some condition variable until
needed, be released, and then execute a callable object. While some of the costs of
switching threads (saving and restoring registers and flushing and refilling the cache)
are the same, other costs, like allocating memory for the thread and scheduling it in
the operating system, are eliminated or reduced.

The template function std::async() runs a callable object in the context of a thread,
but the implementation is allowed to reuse threads. The standard hints that
std::async() may be implemented using a thread pool. On Windows, std::async()
is significantly faster. I ran the code fragment in Example 12-11 in a loop to measure
the improvement.

Example 12-11. starting and stopping with async()

std::async(std::launch::async, []() { return; });

std::async() returns a std::future, which in this case is an unnamed temporary.
The program calls the destructor of this unnamed std::future as soon as
std::async() returns. The destructor waits for the future to become ready, so it can
throw any exception that might occur. No explicit join() or detach() call is
required. Example 12-11, like Example 12-10, lays the thread executions out end-to-
end.

The improvement was dramatic: 10,000 invocations of the simple lambda took only
86 milliseconds, about 14 times faster than if a new thread was started each time.
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Create as Many Runnable Threads as Cores
Older treatises on concurrency advise creating as many threads as are convenient, in
a manner similar to creating dynamic variables. This thinking reflects an antique
world where threads competed for the attention of a single processor. In the modern
world of multicore processors, this advice is too simplistic.

The optimizing developer may distinguish two kinds of threads, with different
behavior:

Runnable threads compute continuously
A runnable thread consumes 100% of the computing resources of the core upon
which it runs. If there are n cores, scheduling a runnable thread on each core can
reduce wall clock run time almost to 1/n. However, once a thread is running on
each available core, scheduling additional threads produces no further improve‐
ment in run time. Instead, the threads simply chop up the available hardware pie
into smaller and smaller slices. In fact, there is a limit to how finely access can be
sliced, beyond which a time slice is all starting and stopping, with no time in the
middle for computation. As the number of runnable threads increases, overall
performance drops off and can ultimately approach zero.

Waitable threads wait for an external event, then compute briefly
A waitable thread consumes just a few percent of the computational resources
available on a core. Scheduling multiple waitable threads on a core uses a greater
fraction of the available resources if execution of the waitable threads is inter‐
leaved so that the computation on one waitable thread happens during the wait
on another waitable thread. This reduces wall clock run time up to a saturation
point at which all computational resources are in use.

In the single-core past, there was no benefit from scheduling computations as runna‐
ble threads. All performance gains came from interleaving waitable threads with
other threads. This is no longer the case when there are multiple cores.

C++ provides a function called std::thread::hardware_concurrency() that returns
the number of available cores. This function accounts for cores allocated to other vir‐
tual machines by hypervisors, and cores that behave as two or more logical cores due
to simultaneous multithreading. It allows a program to scale to hardware containing
more (or fewer) cores as time passes.

To test the effect of multiple threads on performance, I wrote a function, time
waster() (Example 12-12), that repeatedly performs a time-consuming computation.
The computation takes 3,087 milliseconds if all the iterations are performed in a sin‐
gle loop in the main program.
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Example 12-12. An iterated waste of computer time

void timewaster(unsigned iterations) {
    for (counter_t i = 0; i < iterations; ++i)
        fibonacci(n);
}

I then wrote a function to create threads that each ran timewaster(), dividing the
number of iterations performed by the number of threads (Example 12-13). I used
this function to test performance as I varied the number of threads.

Example 12-13. A multithreaded time waster

void multithreaded_timewaster(
        unsigned iterations,
        unsigned threads)
{
    std::vector<std::thread> t;
    t.reserve(threads);
    for (unsigned i = 0; i < threads; ++i)
        t.push_back(std::thread(timewaster, iterations/threads));
    for (unsigned i = 0; i < threads; ++i)
        t[i].join();
}

Some observations:

• std::thread::hardware_concurrency() returns 4 on my hardware. As
expected, the fastest time, 1,870 milliseconds, came by running four threads.

• Somewhat surprisingly, the best time was closer to half (not a quarter) of the
single-thread time.

• Although the general trend was for experiments with more than four threads to
take longer, there was considerable variation from run to run, so that the result
was not reliable.

There is, of course, a practical obstacle to limiting the number of threads launched by
a program. In a big program with multiple developers, or with third-party libraries, it
may be hard to know how many threads have been launched elsewhere in the pro‐
gram. Threads are created at need, anywhere in the program. Although the operating
system serves as a container that knows all the threads that are running, this knowl‐
edge is not made explicit in C++.

Implement a Task Queue and Thread Pool
The solution to the problem of not knowing how many threads are running is to
make threading explicit: provide a thread pool, a data structure that contains a fixed
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number of long-lived threads, and a task queue, a data structure that contains a list of
computations to perform, which are serviced by the threads in the thread pool.

In task-oriented programming, the program is written as a collection of runnable task
objects that are executed by threads from the thread pool. When a thread becomes
available, it fetches a task from the task queue. When the thread finishes the task, it
does not terminate; it either runs the next task or blocks, pending the arrival of a new
task to be executed.

There are several advantages to task-oriented programs:

• Task-oriented programs can efficiently handle I/O completion events from non‐
blocking I/O calls, achieving high processor utilization.

• Having a thread pool and task queue eliminates the overhead of starting threads
for short-lived tasks.

• Task-oriented programming centralizes asynchronous processing in one set of
data structures, so that it is easy to limit the number of threads in use.

A disadvantage of task-oriented programs is a problem called inversion of control.
Instead of the flow of control being specified by the program, it becomes implicit in
the order of event messages received. This can make task-oriented programs difficult
to reason about or debug, though my personal experience is that this confusion rarely
occurs in practice.

Standard thread pools and task queues are coming to C++, probably in C++17. They
are available today in the Boost library and Intel’s Threading Building Blocks.

Perform I/O in a Separate Thread
The physical realities of spinning disks and distant network connections create delay
between the time a program requests data and the time the data becomes available.
I/O is thus a perfect place to look for concurrency. It is also typical of I/O that a pro‐
gram must transform the data before it can be written, or after it is read. For instance,
a file of XML data may be read from the Internet. Then the data is parsed to extract
information interesting to the program. Because the data is not usable until after it
has been transformed, the whole process, including reading and parsing, becomes an
obvious candidate to move into a separate thread.

Program Without Synchronization
Synchronization and mutual exclusion slow down multithreaded programs. Getting
rid of this synchronization can improve performance. There are three easy ways to
program without explicit synchronization, and one hard way:
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Event-oriented programming
In event-oriented programming, the program is written as a collection of event-
handling functions that are invoked from a framework. The underlying frame‐
work dispatches each event from an event queue to the handler function
registered for that event. Event-oriented programming is similar in many ways to
task-oriented programming. The framework in an event-oriented program acts
like the task scheduler, and the event handlers are similar to tasks. The important
difference is that in an event-oriented program, the framework is single-
threaded, and the event-handling functions are not concurrent.

There are several advantages to event-oriented programs:

• Because the underlying framework is single-threaded, no synchronization is
required.

• Event-oriented programs can efficiently handle I/O completion events from
nonblocking I/O calls. An event-oriented program achieves the same high
processor utilization as a multithreaded program does.

As with task-oriented programs, the chief disadvantage of event-oriented pro‐
grams is a problem called inversion of control, where the flow of control becomes
implicit in the order of event messages received. This can make event-oriented
programs difficult to reason about or debug.

Coroutines 
Coroutines are executable objects that explicitly hand off execution from one
object to another, but remember their execution pointers so they can resume if
called again. Like event-oriented programs, coroutines are not truly multithrea‐
ded, so no synchronization is required unless they are controlled by multiple
threads.

Two kinds of coroutines can be distinguished. The first kind has its own stack,
and can relinquish control to another coroutine at any point in execution. The
second kind borrows the stack of another thread, and can relinquish control only
at its top level.

Coroutines may arrive by C++17.

Message passing
In a message-passing program, threads of control take input from one or more
sources, transform it, and put it on one or more output sinks. The connected
outputs and inputs form a graph with well-defined entry and exit nodes. The
items read and written by the thread implementing each stage of a message-
passing program may be implemented as network datagrams, character I/O
streams, or data structures in explicit queues.
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Unix command-line pipelines and web services are examples of message-passing
programming. The components of a distributed processing system are message-
passing programs.

Among the advantages of message-passing programs are:

• Synchronization of the output of each stage to the input of the next stage is
implicit. It is either handled by the operating system when the stages com‐
municate with datagrams, or provided within a queue connecting the stages.
The concurrency of the system happens outside the stages, so stages can usu‐
ally be considered to be single-threaded code that may block on input and
output actions.

• Because the outputs of one stage are each connected to a single input of the
next stage, issues of starvation and fairness occur less frequently.

• Synchronization occurs less frequently, on larger units of data. This increases
the fraction of time that multiple threads can run concurrently.

• Because pipeline stages do not share variables, they don’t slow down for
mutexes and memory fences.

• Larger units of work can be passed between pipeline stages, so that each
stage uses whole time slices instead of stopping and starting for mutual
exclusion. This improves processor utilization.

Disadvantages of message-passing programs include:

• Messages are not inherently object-oriented. The C++ developer must write
code to marshal input messages into member function calls.

• Error recovery can be an issue when a pipeline stage crashes.
• Not every problem has an obvious solution as a pipeline of independent pro‐

grams passing messages.

Stop and Think
This book discusses the C++ facilities for sharing variables and synchronizing
threads, because these facilities must be baked into the C++ language to function
efficiently. Message-passing programs use libraries outside of C++, so this book
only spends a few words on them. That doesn’t mean message passing is unim‐
portant.

A large and vocal design community thinks explicit synchronization and shared
variables are a bad idea: complex, race-prone, and unscalable. These developers
think the only scalable way to program concurrently is with pipelines.
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The highly concurrent architectures of GPUs don’t even provide shared memory,
so for these processors a message-passing program design is required.

Lock-free programming
Hic Sunt Dracones (English translation: Here Be Dragons)

—Inscription on the Hunt-Lenox Globe (c. 1503–07), implying dangerous
unknown shores

Lock-free programming refers to programming practices that permit multithrea‐
ded updates to data structures without the need for mutual exclusion. In a lock-
free program, expensive mutexes are replaced by atomic operations synchronized
by the hardware. Lock-free data structures can perform significantly better than
conventional containers guarded by a mutex, especially when many threads
access the same container.

Lock-free array, queue, and hash-table container classes in C++ have been
released publically. Boost has lock-free stack and queue containers, but they have
been tested only on the GCC and Clang compilers. Intel’s Threading Building
Blocks has lock-free array, queue, and hash-map containers. These containers are
not identical to the equivalent C++ standard library containers due to the
requirements of lock-free programming.

Lock-free data structures are insanely difficult to reason about. Even well-known
experts argue about the correctness of published algorithms. For this reason, I
recommend sticking to widely published and well-supported code rather than
attempting to build lock-free data structures on your own.

Remove Code from Startup and Shutdown
A program can launch as many threads as needed to perform tasks concurrently or
make use of multiple CPU cores. One part of the program, however, is quite difficult
to run concurrently: the code executed before main() gets control, and after main()
exits.

Before main() starts, all variables with static storage duration (“Storage Duration of
Variables” on page 108) are initialized. For plain-old-data types, this initialization has
zero cost. The linker points the variables at the initialization data. But for variables of
class type and static storage duration, the initialization process calls each variable’s
constructor serially, in a single thread, in a particular order defined by the standard.

It is easy to forget that variables such as strings, which are initialized with static string
constants, actually execute code during initialization. Likewise, constructors that con‐
tain function calls or non-const expressions in their initializer lists also are executed
at run time, even if the constructor body is empty.
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These costs, which may each be small when considered in isolation, can add up dra‐
matically, causing large programs to be unresponsive for several seconds after startup.

Optimization War Story
Google’s Chrome browser is a massive program, developed by hundreds of people
over a period of years. The number of tables that must be initialized in Chrome is
mind-boggling. To ensure that startup performance does not degrade (further), the
Chromium project administrators added a rule to the review procedure requiring
approval for every static variable initialized with executable code.

Make Synchronization More Efficient
Synchronization is the overhead cost of shared-memory concurrency. Reducing this
overhead cost is an important pathway to optimal performance.

The received wisdom is that synchronization primitives such as mutexes are expen‐
sive. The truth, of course, is complicated. On both Windows and Linux, for instance,
the mutex upon which std::mutex is based is a hybrid design that busy-waits on an
atomic variable for a short period of time, then pends on an operating system signal if
it cannot rapidly acquire the mutex. The cost of the “happy path,” where no other
thread holds the mutex, is low. The cost when the thread must pend on the signal is
measured in milliseconds. The important cost of a mutex is the cost of waiting for
another thread to release it, not the cost of calling lock().

Multithreaded programs most frequently run into trouble when there are many
threads contending to acquire the same mutex. When contention is low, holding the
mutex usually doesn’t slow other threads down. When contention is high, any con‐
tended mutex causes threads to run one at a time, spoiling the developer’s attempt to
execute the parts of a program concurrently.

Concurrent C++ programs are significantly more complex than single-threaded ones.
It is harder to create examples or test cases that produce meaningful results, so I must
fall back on heuristics in this section.

Reduce the Scope of Critical Sections
A critical section is a region of code bounded by acquiring a mutex and releasing that
mutex. During execution of a critical section, no other thread can access shared vari‐
ables controlled by that mutex. And that’s the problem in a nutshell. If the critical sec‐
tion does anything but access shared variables, other threads have to wait for no good
reason.
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To illustrate this problem, look again at Example 12-7. The two lambdas producer
and consumer are run concurrently in two threads. Both threads immediately attempt
to enter the monitor controlled by mutex m. Both threads remain in the monitor
except when they are in cv.wait(). producer sets the shared variable shared_data to
the next value in sequence. consumer clears shared_data. But producer and
consumer each do one other thing; they log one line of text to cout.

As written, cv_example can produce somewhere between 35 and 45 updates to
shared_data in 1,000 milliseconds, on my i7 system compiled with Visual Studio
2015 in release mode. It may not immediately be obvious whether this is a lot or a
little. But if I comment out the two output statements, cv_example can produce 1.25
million updates. Putting characters on the console performs a lot of behind-the-
scenes magic, so this isn’t too surprising in retrospect.

There are two lessons here. Lesson number one is that the monitor concept, where
code is always in the monitor except while waiting on a condition variable, can be
difficult to use efficiently. Lesson number two is that performing I/O in a critical sec‐
tion does not lead to optimal performance.

Limit the Number of Concurrent Threads
As mentioned in “Create as Many Runnable Threads as Cores” on page 308, the num‐
ber of runnable threads should be less than or equal to the number of processor cores to
eliminate the overhead of context switching. To provide a second reason why, I first
have to explain how mutexes are implemented.

The mutex class provided by Windows, Linux, and most other modern operating sys‐
tems is a hybrid design optimized for multicore processors. A thread t1 attempting to
acquire a mutex that is not locked acquires the mutex immediately. If t1 attempts to
acquire a mutex that is held by another thread, t2, t1 first busy-waits for a limited
amount of time. If t2 releases the mutex before the busy-wait times out, t1 acquires the
mutex and continues to run, efficiently using its whole time slice. If t2 does not release
the mutex in time, t1 pends on an operating system event, giving up its time slice. t1

goes on the operating system’s “pending” list.

If there are more threads than cores, only some threads are assigned to cores and
actually progress at any instant of time. The remaining threads wait on the operating
system’s “runnable” queue, and are eventually given a time slice. The operating system
wakes on a periodic interrupt to make decisions about what to run. This interrupt is
slow compared to the rate at which individual instructions are executed. A thread on
the “runnable” queue may thus wait many milliseconds before the operating system
allocates it a core on which to run.

If t2 holds the mutex but is waiting on the operating system’s “runnable” queue
instead of actually executing, it cannot release the mutex. When t1 attempts to acquire
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5 I’m skipping over a lot of arcane details here. Windows fiddles thread priorities to give the newly runnable
thread a turn sooner. Other operating systems do other things in hopes of reducing the duration of critical
sections. The takeaway should be that once the operating system gets involved in a critical section, it’s going to
be a long wait.

the mutex, its busy-wait times out, and t1 pends on an operating system event, which
means t1 gives up its time slice and its core and goes on the operating system’s “pend‐
ing” list. Eventually t2 gets a core to run on and releases the mutex, signaling the event
on which t1 is pending. The operating system notes that the event has occurred, and
moves t1 to the “runnable” queue. But the operating system does not necessarily allo‐
cate a core to run t1 immediately.5 The operating system runs the threads currently
assigned to cores for their full time slices, unless they block on an event. The operat‐
ing system doesn’t allocate a core to the newly runnable t1 until some other thread
exhausts its time slice, which may take many milliseconds.

It is this slow path the developer attempts to eliminate by limiting the number of
active threads. Avoiding the slow path means that instead of hundreds of interlocked
operations per second, threads t1 and t2 can perform millions of interlocked opera‐
tions per second.

The ideal number of threads contending for a brief critical section is two. When there
are only two threads, there are no issues of fairness or starvation, and no chance of
the thundering herd problem described in the following section.

Avoid the Thundering Herd
A phenomenon called the thundering herd occurs when many threads are pending on
an event, such as the availability of work, that only one thread can service. When the
event occurs, all the threads become runnable, but only a few of them can run imme‐
diately because there are only a few cores. One of these takes the work item. The
operating system moves the rest to the runnable queue, and eventually runs each one.
Each thread discovers that the signaled event has already been serviced, and pends
again on the event, spending time on logistics without making progress.

Avoiding the thundering herd may be as easy as limiting the number of threads cre‐
ated to service the event. Two threads may be better than one, but 100 threads is
probably not better (see “Limit the Number of Concurrent Threads” on page 315).
Limiting the number of threads may be easier for software designs that implement
work queues than for designs that associate a thread with each work item.
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Avoid Lock Convoys
A lock convoy occurs when many threads synchronize, pending on a resource or criti‐
cal section. This causes additional congestion because they all attempt to proceed at
once and are made to progress one at a time, as if in a convoy.

In a simple case, a thundering herd occurs over and over. There are enough threads
contending for a mutex that many threads pend on the mutex’s operating system sig‐
nal. When the thread holding the mutex releases it, the event is signaled, and all the
pending threads become runnable. The first thread to get the processor locks the
mutex again. All the remaining threads eventually get the processor, check the mutex,
see it is still locked, and go back to pending. The overall effect is that the operating
system spends a lot of time restarting threads, but most threads don’t progress. Worse
yet, all the threads are still synchronized. They will all wake at once when the next
thread releases the mutex, and repeat the cycle.

In a more complex case, a thundering herd of threads all attempt to acquire a second
mutex or perform some action, like reading a file, that is bottlenecked by the physical
properties of the device. Since threads are synchronized, they all attempt to access the
second resource at about the same time. Performance is degraded because the threads
request the same resource at the same time, causing serialization. If they had not been
synchronized, they might all have progressed.

Lock convoys are visible as systems that usually run well, but occasionally seem to
become unresponsive for a few seconds at a time.

Reducing the number of threads or scheduling threads to start at different times may
relieve the lock convoy, though there is always a risk that it will simply emerge in
another place. Sometimes it is best simply to acknowledge that certain groups of tasks
can’t be performed concurrently because they share some hardware device or other
bottleneck.

Reduce Contention
Threads in a multithreaded program may contend over resources. At any point where
two or more threads need the same resource, mutual exclusion causes a thread to
pend, losing concurrency. There are several techniques to address the problem of
contention:

Be aware that memory and I/O are resources
Not every developer realizes that the memory manager is a resource. The mem‐
ory manager must serialize access in multithreaded systems, or its data structures
will get corrupted. A large number of threads all attempting to allocate dynamic
variables (std::string is a particular offender) at once may experience perfor‐
mance that falls off a cliff suddenly as the number of threads increases.
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File I/O is a resource. The disk drive can only be in one place at a time. Attempt‐
ing to do I/O on multiple files simultaneously can cause performance to fall off
suddenly.

Network I/O is also a resource. The Ethernet connector is a narrow pipe through
which bits squirt. It is possible for modern processors to saturate even gigabit
Ethernet cables. Saturating a WiFi connection is easy.

When there is a performance problem, it is time to take a step back and ask,
“What is the whole program doing right now?” Logging that is no problem most
of the time may be slowing the whole system down if something else is also bang‐
ing away at the disk or network interface. That dynamic data structure may not
scale to many threads.

Duplicate resources
Instead of multiple threads contending for a resource such as a shared map or
hash table, sometimes it is possible to duplicate the table so that each thread has
an unshared copy, eliminating contention. Although maintaining two copies of a
data structure is more work, it may still result in reduced wall clock time versus a
shared data structure.

Even hardware resources like disk drives and network interface cards can be
duplicated to improve throughput.

Partition resources
Instead of multiple threads contending for a single data structure, sometimes it is
possible to partition the data structure so that each thread only accesses the por‐
tion of the data that it works with.

Fine-grained locking
Instead of locking an entire data structure with a single mutex, multiple mutexes
can be used. For example, in a hash table, one mutex can lock the hash table
backbone against modification (such as inserting and deleting entries), and
another mutex can lock the entries against modification. Reader/writer locks may
be a good choice here. To access a hash table entry, a thread takes a read lock on
the backbone, and either a read or write lock on the entry. To insert or delete an
entry, the thread takes a write lock on the backbone.

Lock-free data structures
Use of a lock-free data structure such as a hash table relieves the need for mutual
exclusion. This is the ultimate extent to which fine-grained locking can be taken.

Resource scheduling
Some resources, such as a hard drive, are not susceptible to duplication or parti‐
tioning. But it is still possible to schedule disk activity so that it doesn’t all happen
at once, or so that accesses to adjacent parts of the disk are performed together.
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The operating system may schedule reads and writes at a fine-grained level, but
the program can sequence operations like reading configuration files so that they
don’t all happen at the same time.

Don’t Busy-Wait on a Single-Core System
C++ concurrency features allow developers to implement high-performance synchro‐
nization primitives that do busy-waits. But busy-waiting is not always a good idea.

In a single-core processor, the only way to synchronize threads is to invoke the oper‐
ating system’s synchronization primitives. A busy-wait is laughably ineffective. In
fact, busy-waiting causes the thread to waste its whole time slice, because a thread
holding a mutex cannot run to complete its critical section until the waiting thread
gives up the processor.

Don’t Wait Forever
What happens to a thread that waits unconditionally for an event? If the program
runs properly, perhaps nothing. But what if the user attempts to stop the program?
The user interface shuts down, but the program doesn’t stop, because there are
threads still running. If main() tries to join the waiting thread, it hangs. If the waiting
thread is detached, main() may exit. Then what happens is dependent on how the
thread is waiting. If it’s waiting for a flag to be set, it waits forever. If it’s waiting on an
operating system event, it waits forever. If it’s waiting on a C++ object, then it very
much depends whether some nonblocked thread deletes the object. That might cause
the waiting thread to terminate. Or not.

Waiting forever is the enemy of error recovery. It is the difference between a program
that mostly works but sometimes is flaky, and a program that has solid, dependable
behavior that is reassuring to users.

Rolling Your Own Mutex May Be Ineffective
It is not difficult to code a simple class that acts as a mutex, busy-waiting until
another thread updates an atomic variable. Such a class may even be faster than the
system-provided mutex when contention is low and critical sections are brief. How‐
ever, the mutexes that come with an operating system often know secrets about the
operating system and the way it schedules tasks that improve their performance or
avoid priority inversion issues on that particular operating system.

The design of robust mutexes is informed by the design of the operating system they
must run on. Rolling your own is not a broad pathway to optimization.
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Limit Producer Output Queue Length
In a producer/consumer program, any time the producer is faster than the consumer,
data builds up in the queue between producer and consumer. Some of the many
problems with this situation include:

• The producer contends for the processor, memory allocator, and other resources,
further slowing the consumer and exacerbating the problem.

• The producer will eventually consume all system memory resources, causing the
entire program to terminate unexpectedly.

• If the program is designed to recover from exceptions, it may need to process all
queued data before restarting, which increases the time to recover.

This situation is especially likely in situations where a program sometimes takes input
from a streaming source with a maximum rate that limits how often the producer
runs, and sometimes takes input from a fixed source like a file, where the producer
can run continuously.

The solution is to limit the queue size and block the producer when the queue is full.
The queue only needs to be big enough to smooth any variation in the consumer’s
performance. Frequently only a few entries are necessary. Any extra queue entries
only cause the producer to run further and further ahead, increasing resource con‐
sumption without contributing to concurrency.

Concurrency Libraries
There are a number of well-regarded concurrency libraries. The developer looking to
implement a message-passing style of concurrency would be well advised to take up
one of these tools. Threading Building Blocks in particular offers some features for
concurrency that are not yet in the C++ standard. Options include:

Boost.Thread and Boost.Coroutine
Boost’s Thread library is an anticipation of the C++17 standard library thread
library. Some parts are still very experimental. Boost.Coroutine is also experi‐
mental.

POSIX Threads
POSIX Threads  (pthreads) is a cross-platform library of threads and synchroni‐
zation primitives—possibly the oldest and most widely used library for concur‐
rency. Pthreads is a C-style function library that provides traditional capabilities.
It is extensively documented, widely available on Linux distributions, and also
available for Windows.
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Threading Building Blocks (TBB)
TBB is an ambitious, well-documented C++ threading API with a template fla‐
vor. It provides parallel for loops, tasks and thread pools, concurrent containers,
data-flow message-passing classes, and synchronization primitives. TBB was
developed by Intel to promote effective use of multicore microprocessors. It is
now open source, has extensive documentation including at least one good book
(Intel Threading Building Blocks by James Reinders, also from O’Reilly), and runs
on both Windows and Linux.

0mq (also spelled ZeroMQ)
0mq is a communication library for connecting message-passing programs. It
supports a variety of communication paradigms and strives for efficiency and
parsimony. My personal experience with this library has been very positive. 0mq
is open source, well documented, and actively supported. There is also a reima‐
gining of 0mq called nanomsg that is said to address some issues in 0mq.

Message Passing Interface (MPI)
MPI  is an API specification for message passing in a distributed network of
computers. Implementations have the flavor of a C-style function library. MPI
has its origin at California’s Lawrence Livermore National Laboratory, a place
long associated with supercomputer clusters and with the kind of high-energy
physics that goes boom. MPI is well documented in an old-fashioned 1980s DoD
style. Implementations exist for both Linux and Windows, including one from
Boost, but they don’t always cover the full specification.

OpenMP
OpenMP is an API for “multi-platform shared-memory parallel programming in
C/C++ and Fortran.” In use, a developer decorates a C++ program with pragmas
that define its parallel behavior. OpenMP provides a fine-grained model of con‐
currency with an emphasis on numerical computation, and is evolving toward
programming of GPUs. OpenMP is available on Linux using both GCC and
Clang, and on Windows using Visual C++.

C++ AMP
C++ AMP is an open specification of a C++ library designed to perform parallel
data computations on GPU devices. The version from Microsoft resolves to
DirectX 11 calls.
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Summary
• A multithreaded C++ program is sequentially consistent if it contains no races.
• A large and vocal design community thinks explicit synchronization and shared

variables are a bad idea.
• Performing I/O in a critical section does not lead to optimal performance.
• The number of runnable threads should be less than or equal to the number of pro‐

cessor cores.
• The ideal number of threads contending for a brief critical section is two.
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CHAPTER 13

Optimize Memory Management

Efficiency is doing better what is already being done.
—Peter F. Drucker (1909–2005), American management consultant

The memory manager is the set of functions and data structures of the C++ runtime
system that oversees allocation of memory to dynamic variables. The memory man‐
ager must meet many demands. Meeting these demands efficiently is an open
research challenge. In many C++ programs, the memory manager’s functions are
quite hot. If its performance could be improved, it would have a global effect on the
program. For all these reasons, the memory manager is a natural target for optimiza‐
tion efforts.

In my opinion, there are other places to look for performance improvement first, that
are more likely to be fruitful than fiddling with the memory manager. Memory man‐
agers, being very hot code, are usually well wrung out right out of the box. Memory
management is at best an aspect of an aspect of overall program run time. Amdahl’s
Law limits how much overall improvement the developer can obtain, even if the cost
of memory management could be driven to zero. In large programs in one study, per‐
formance improvement from optimizing memory management ranged from negligi‐
ble to about 30%.

The C++ memory manager is highly customizable, with a substantial API. Although
many programmers never have to use this API, it provides many ways to optimize
performance. Several high-performance memory managers exist that can be plugged
into C++ by replacing the C functions malloc() and free(). In addition, the devel‐
oper can substitute specialized memory managers for hot classes and standard library
containers.
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C++ Memory Management API Refresher
The C++ toolkit for managing dynamic variables was introduced in “C++ Dynamic
Variable API Refresher” on page 113. This toolkit contains an interface to the mem‐
ory manager consisting of new- and delete-expressions, memory management func‐
tions, and standard library allocator template classes.

The Life Cycle of Dynamic Variables
A dynamic variable goes through five distinct life stages. The most common variation
of the new-expression performs the allocate and place stages. After the use stage, a
delete-expression performs the destroy and free stages. C++ provides facilities to man‐
age each of these stages separately:

Allocate
The program asks the memory manager to return a pointer to a contiguous
region of memory containing at least a specified number of untyped memory
bytes. Allocation can fail if memory is not available. The C library function
malloc() and the various overloads of the C++ operator new() function man‐
age the allocate phase.

Place 
The program establishes the initial value of the dynamic variable, placing the
value into the allocated memory. If the variable is a class instance, one of its con‐
structors is called. If the variable is a simple type, it is optionally initialized.
Placement can fail if the constructor throws an exception, requiring allocated
storage to be returned to the memory manager. New-expressions participates in
this phase.

Use
The program reads values from the dynamic variable, calls member functions of
the dynamic variable, and writes values to the dynamic variable.

Destroy
If the variable is a class instance, the program calls its destructor to perform a
final operation on the dynamic variable. Destruction is an opportunity for the
dynamic variable to return any system resources it holds, complete any cleanup,
say any last words, and make ready to go into the good night. Destruction can fail
if the destructor throws an exception that is not handled in the destructor body.
If this happens, the program unconditionally terminates. Delete-expressions man‐
age this phase. It is possible to destroy a variable without freeing its storage by
calling its destructor explicitly.
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Free 
The program returns the storage formerly belonging to the destroyed dynamic
variable to the memory manager. The C-library free() function and the various
overloads of the C++ operator delete() function perform the free phase.

Memory Management Functions Allocate and Free Memory
C++ provides a collection of memory management functions, rather than C’s simple
malloc() and free(). These functions provide the rich behavior of new-expressions
described in “New-Expressions Construct Dynamic Variables” on page 328. Over‐
loads of operator new() allocate storage for single instances of any type. Overloads
of operator new[]() allocate storage for arrays of any type. When both array- and
non-array functions operate in the same way, I describe them together as operator
new(), with the understanding that there is an equivalent operator new[]().

operator new() implements allocation

A new-expression calls one of several versions of operator new() to obtain memory
for a dynamic variable, or operator new[]() to obtain memory for a dynamic array.
C++ provides default implementations of these operators. It also implicitly declares
them, so they can be called by the program without having to include the <new>
header. The program can override the defaults with its own implementation if
desired.

operator new() is important to examine for optimization purposes because the
default memory manager is expensive. In some situations, the program can allocate
memory very efficiently by providing a specialized implementation.

C++ defines several overloads of operator new().

void* ::operator new(size_t)

By default, memory is allocated for all dynamically allocated variables by calling
this overload of operator new(), with an argument specifying the minimum
number of bytes to allocate. The standard library implementation of this over‐
load throws a std::bad_alloc exception if there is not enough memory to fulfill
the request.

The standard library implementations of all other operator new() overloads call
this one. A program can globally change how memory is allocated by providing a
definition of ::operator new(size_t) in any compilation unit.

Although it is not required by the C++ standard, the standard library version of
this overload is usually implemented using a call to malloc().
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void* ::operator new[](size_t)

Arrays are allocated with a call to this overload. The standard library implemen‐
tation calls ::operator new(size_t).

void* ::operator new(size_t, const std::nothrow_tag&)

A new-expression like Foo* p = new(std::nothrow) Foo(123); calls the non-
throwing overload of operator new(). If no memory is available, this version
returns nullptr instead of throwing a std::bad_alloc exception. The standard
library implementation calls operator new(size_t) and catches any exceptions
it may throw.

void* ::operator new[](size_t, const std::nothrow_tag&)

This is the array version of the non-throwing operator new().

A new-expression can invoke an operator new() with an arbitrary signature provided
the first argument is of type size_t. All of these operator new() overloads are called
placement operator new(). The new-expression matches the types of the arguments
in the placement parameters with available operator new() function signatures to
determine which function is used.

Two overloads of placement operator new() are provided by the standard library
and implicitly declared. These do not allocate memory (the first life stage of a
dynamic variable) but contain an extra argument that accepts a pointer to memory
that the program has already allocated. They are:

void* ::operator new(size_t, void*)

This is placement operator new() for variables. It accepts a pointer to memory
as its second argument and simply returns that pointer.

void* ::operator new[](size_t, void*)

This is the array version of placement operator new(). It accepts a pointer to
memory as its second argument and returns that pointer.

These two placement operator new() overloads are called by the placement new-
expression new(p) type, where p is a pointer to valid storage. The standard says these
overloads can’t be replaced by developer code. If they were replaced, and the replace‐
ment did anything other than return its pointer argument, much of the standard
library would stop working. This is important to know, because some C++ compilers
don’t enforce the prohibition against replacing these overloads, which means they can
be replaced—for instance, with code that prints out diagnostics.

Aside from the two placement operator new() overloads listed here, other place‐
ment operator new() overloads have no defined meaning in C++ and are available
to the developer for any use.
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operator delete() frees allocated memory

A delete-expression invokes operator delete() to return memory for a dynamic
variable to the runtime system, and operator delete[]() to return memory for a
dynamic array.

The new operators and delete operators work together to allocate and free memory.
If a program defines an operator new() that allocates memory from a special mem‐
ory pool or in a special way, it must define a matching operator delete() in the
same scope to return memory to the pool from which it was allocated, or behavior is
undefined.

Memory management functions from the C library

C++ provides the C-library functions  malloc(), calloc(), and realloc() to allocate
memory, and the free() function to return memory that is no longer needed. These
functions are provided for compatibility with C programs.

void* malloc(size_t size) implements the allocate phase of a dynamic variable’s
lifetime, returning a pointer to storage sufficient to hold size bytes, or nullptr if no
storage is available.

void free(void* p) implements the free phase, returning the storage pointed to by
p to the memory manager.

void* calloc(size_t count, size_t size) implements the allocate phase of a
dynamic array. It performs a simple computation to convert a number count of array
elements, each of size size bytes, to a number of bytes, and then returns the value of
a call to malloc().

void* realloc(void* p, size_t size) changes the size of a block of memory,
moving the block to new storage if needed. The contents of the old block are copied
to the new block, up to the minimum of the new and old sizes. realloc() must be
used very carefully. Sometimes it moves the pointed-to block and deletes the old
block. If it does this, pointers to the old block become invalid. Sometimes it reuses the
existing block, which happens to be bigger than the requested size.

According to the C++ standard, malloc() and free() act upon a region of memory
called the “heap,” while overloads of operator new() and operator delete() oper‐
ate on a region of memory called the “free store.” The careful language of the stan‐
dard preserves the option for library developers to implement the two sets of
functions differently. That said, the requirements for memory management are simi‐
lar in the C and C++ worlds. It just isn’t sensible for a compiler to have two parallel
but different implementations. In all standard library implementations of which I am
aware, operator new() calls malloc() to actually allocate storage. A program can
globally change how memory is managed by replacing malloc() and free().
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1 In C++, an n-dimensional array is an array of n–1-dimensional arrays. Thus, the leftmost dimension is the
highest dimension.

New-Expressions Construct Dynamic Variables
A C++ program requests creation of a dynamic variable or array using a new-
expression. A new-expression contains the keyword new followed by a type, a pointer
to which is returned by the new-expression. The new-expression can also contain an
initializer to set the initial value of the variable or each array element. A new-
expression returns a typed pointer to a fully initialized C++ variable or array, rather
than the simple void pointer to uninitialized storage returned by C++ operator
new() or C’s memory management functions .

The syntax of the new-expression, in all its glory, looks like this:

::optional new (placement-params)optional (type) initializeroptional

or:

::optional new (placement-params)optional type initializeroptional

The difference between these two lines is in the optional parentheses around type,
which are sometimes needed to help the compiler distinguish the end of the
placement-params from the beginning of a complicated type, or the end of the type
from the beginning of the initializer. cppreference, among other sources, has
vastly more information on all the syntactic wrinkles of new-expressions.

When type declares an array, the highest (that is, leftmost)1 array dimension may be
described by a non-constant expression, allowing the size of the array to be specified
at run time. This is the only place in C++ where a declaration may have a variable
size.

A new-expression returns an rvalue pointer to the dynamic variable or the first ele‐
ment of the dynamic array. (The fact that this pointer is an rvalue is important; see
“Implement Move Semantics” on page 137 for details.)

All versions of the new-expression do a lot more than just call an operator new()
function to allocate storage. If the call to operator new() is successful, the non-array
version constructs a type object. If the constructor throws an exception, its members
and bases are destroyed, and the allocated memory is returned by a call to the
operator delete() whose signature corresponds to the operator new() function
used to allocate the memory. If no operator delete() matches, the memory is not
returned to the memory manager, potentially causing a memory leak. The new-
expression returns the pointer, rethrows the caught exception, or returns nullptr in
the case of the non-throwing new-expression.
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The array new-expression works in the same way, but with the added complexity that
any of several constructors might throw an exception, requiring the array new-
expression to destroy all successfully constructed instances and return the memory to
the free store before returning or rethrowing the exception.

Why are there two kinds of new-expression, one for arrays and one for instances? The
array new-expression may allocate space to store the number of array elements, as well
as the space allocated for the array itself. That way, the array delete-expression need
not provide this value. This extra overhead is not necessary for single instances. This
C++ behavior was designed at a time when memory was far more precious than it is
today.

Non-throwing new

If placement-params consists of the tag std::nothrow, the new-expression does not
throw std::bad_alloc. Instead, it returns nullptr without attempting to construct
an object.

Historically, there was a time when many C++ compilers did not properly implement
exception handling. Code written for these old compilers, or ported from C, needed
an allocation function that returned null when it ran out of memory.

Some industries—notably the aerospace and automotive industries—have imposed
coding standards that prohibit the throwing of exceptions. This causes a problem
because new-expressions are otherwise defined to throw on error; hence the need for a
non-throwing new-expression.

There is received wisdom that exception handling is slow, and that therefore a non-
throwing new-expression should be faster. However, modern C++ compilers imple‐
ment an exception handling mechanism with very low runtime cost unless an
exception is thrown, so the truth of this received wisdom may be compiler-
dependent. See “Use No-Cost Exception Handling” on page 183 for a more extensive
discussion of the cost of exception handling.

Placement new performs placement without allocation

If placement-params is a pointer to existing valid storage, the new-expression does
not call the memory manager, but simply places type at the location indicated by the
pointer, which must point to sufficient storage to hold type. Placement new is used
like this:

char mem[1000];
class Foo {...};
Foo* foo_p = new (mem) Foo(123);

C++ Memory Management API Refresher | 329



This example places an instance of class Foo on top of the array mem. Placement new
calls a class constructor to perform initialization for class instances. For a basic type,
placement new performs initialization instead of construction.

Since placement new does not allocate storage, there is no corresponding placement
delete. The instance of Foo placed on top of mem by placement new is not automati‐
cally destroyed when mem goes out of scope. It is up to the developer to properly
destroy instances created with placement new by explicitly calling the class’s destruc‐
tor. In fact, if an instance of Foo is placed into storage declared to be an instance of
Bar, Bar’s destructor is called, with undefined and typically disastrous results. Place‐
ment new should thus be used on memory returned by operator new(), or on mem‐
ory occupied by an array of char or some other basic type.

Placement new is used in the Allocator template parameter of standard library con‐
tainers, which must place class instances on previously allocated but unused memory.
See “Provide Custom Standard Library Allocators” on page 343 for details.

Custom placement new, the half-formed hinterland of allocation

If placement-params is anything other than std::nothrow or a single pointer, the
new-expression is called custom placement new. C++ does not impose any meaning on
the custom placement new-expression. It is available for the developer’s use to allocate
storage in an unspecified way. The custom placement new-expression searches for an
overload of operator new() or operator new[]() whose first argument matches
size_t, and whose subsequent arguments match the types of the expression list. If
the constructor for the dynamic object throws an exception, the placement new-
expression searches for an overload of operator delete() or operator delete[]()
whose first parameter is void*, and whose subsequent arguments match the types of
the expression list.

Placement new is useful if the program needs to establish more than one mechanism
to create dynamic variables, or to pass arguments for memory manager diagnostics.

An issue with custom placement new is that there is no way to specify a matching
“custom placement delete-expression.” Thus, while the various placement overloads of
operator delete() are invoked when the object constructor throws an exception in
the new-expression, delete-expressions cannot call these overloads. This creates a
conundrum for the developer, since the standard says behavior is undefined if the
operator delete() does not match the operator new() that allocated the dynamic
variable. The matching placement operator delete() must be declared, because it is
called in a new-expression if the object constructor throws an exception. There’s just
no way to call it from a delete-expression. However, the standard committee is work‐
ing to address this issue in a future version of the C++ standard.
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The simplest solution is to note that if the fancy placement operator new() is com‐
patible with an ordinary operator delete(), the behavior, while undefined, is pre‐
dictably OK. Another solution is to note that delete-expressions aren’t so complicated
or magical that they cannot be coded as free functions if needed.

Class-specific operator new() gives fine control of allocation

The new-expression looks up operator new() in the scope of the type being created.
A class can thus provide implementations of these operators to get fine control over
allocation for just that class. If a class does not define a class-specific operator new(),
the global one is used. To use the global operator new() instead of a class-specific
version, the programmer specifies the global scope operator :: in the new-expression,
as in

Foo* foo_p = ::new Foo(123);

A class-specific operator new() is invoked only to allocate instances of the class that
defines that function. Member functions of the class that contain new-expressions
involving other classes use the operator new() defined for that other class, if any, or
the global operator new() by default.

A class-specific operator new() can be efficient because it allocates objects of a single
size. Thus, the first free block is always usable. If the class is not used in multiple
threads, the class-specific operator new() can dispense with the overhead of making
its internal data structures thread-safe.

The class-specific operator new() is defined to be a static member function. This
makes sense, because operator new() allocates storage for every instance.

If a class implements a custom operator new(), it must implement a corresponding
operator delete() or else the global operator delete() called, with undefined and
usually unwanted results.

Delete-Expressions Dispose of Dynamic Variables
A program returns the memory used by a dynamic variable to the memory manager
using a delete-expression. The delete-expression handles the last two phases of the
dynamic variable life cycle: destroying the variable and freeing the memory it for‐
merly occupied. The delete-expression contains the keyword delete followed by an
expression that produces a pointer to the variable to be deleted. The syntax of the
delete-expression looks like this:

::optional delete expression

or:

::optional delete [] expression
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The first form of the delete-expression deletes a dynamic variable created with a new-
expression. The second form deletes a dynamic array created with a new[]-expression.
Separate delete-expressions exist for ordinary variables and for arrays because arrays
may be created in a different manner from ordinary variables. Most implementations
allocate extra storage for a count of the number of array elements allocated, so that
the right number of destructors are called. Using the wrong version of the delete-
expression for the dynamic variable results in the destructive chaos that the C++
standard calls “undefined behavior.”

Explicit Destructor Calls Destroy Dynamic Variables
It is possible to perform just the destruction of a dynamic variable without freeing its
storage by calling the destructor explicitly instead of using a delete-expression. The
destructor’s name is just the class name with a tilde (“~”) in front:

foo_p->~Foo();

Explicit destructor calls occur in the same places as placement new; in standard
library Allocator templates where destruction and freeing happen separately.

There is no explicit constructor call... Or is there?
The C++ standard, section 13.1, says “Constructors have no name,” so the program
cannot directly invoke a constructor. The constructor is invoked by means of a new-
expression. The standard is fussy about constructors because the memory occupied by
a class instance is uninitialized storage before the constructor, and an instance after
the constructor. It’s hard to explain this magical transformation.

This isn’t much of a hardship. If a program desires to invoke a constructor explicitly
on an already constructed class instance, the placement new syntax is simple enough:

class Blah {
public:
    Blah() {...}
    ...
};

Blah* b = new char[sizeof(Blah)];
Blah myBlah;
 ...
new (b) Blah;
new (&myBlah) Blah;

Of course, the linker knows perfectly well that the name of Blah’s constructor is
Blah::Blah(). In Visual C++, the statement

b->Blah::Blah();

332 | Chapter 13: Optimize Memory Management



compiles successfully, and invokes Blah’s constructor. This is a coding horror, making
Optimized C++ one of the first C++ books in the Gothic tradition. The Linux C++
compiler GCC is a little more standard-compliant, offering an error message. The
constructor is meant to be invoked via placement new.

High-Performance Memory Managers
By default, all requests for storage pass through ::operator new(), and released stor‐
age passes through ::operator delete(). These functions form C++’s default mem‐
ory manager. The default C++ memory manager must meet many demands:

• It must perform efficiently, because it is likely to be hot.
• It must work correctly in multithreaded programs. Access to data structures in

the default memory manager must be serialized.
• It must allocate many same-sized objects (like list nodes) efficiently.
• It must allocate many differently sized objects (like strings) efficiently.
• It must allocate very big data structures (I/O buffers, arrays of a million ints), as

well as small data structures (like a single pointer).
• To be maximally efficient, it must be aware of alignment boundaries for pointers,

cache lines, and virtual memory pages, at least for larger allocated memory
blocks.

• Its runtime performance must not degrade over time.
• It must efficiently reuse memory returned to it.

Meeting the many demands of a C++ memory manager is an open and evolving chal‐
lenge spawning ongoing academic research, with compiler vendors in uneven pursuit
of the state of the art. In some situations, a memory manager may not need to meet
all these demands. Both these facts provide opportunities for developers to optimize.

The version of ::operator new() shipped with most C++ compilers is a thin wrap‐
per around the C function malloc(). In the early days of C++, these malloc() imple‐
mentations were designed to meet the relatively simple needs of C programs for a few
dynamic buffers, rather than the preceding long list of requirements of C++ pro‐
grams. Replacing a simple, vendor-provided malloc() with a sophisticated memory
manager was so successful an optimization that developers could build a reputation
as wizards on the basis of this one simple spell.

A variety of more-or-less self-contained memory manager libraries have been written
that claim a substantial performance advantage over the default memory manager. If
a program heavily uses dynamic variables including strings and standard containers,
it’s tempting to view these malloc() replacements as a silver bullet, improving perfor‐
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mance everywhere for the price of a single linker change, and without all that tedious
profiling. But while state-of-the-art memory managers have outstanding perfor‐
mance, there are reasons not to brag prematurely about the benefits of such changes:

• Although state-of-the-art memory managers have demonstrated significant per‐
formance improvements over a naïve malloc() implementation, the particular
baseline competitor is often not clearly specified, and may be an unrealistic straw
man. I have heard a rumor that both Windows and Linux have recently raised
their game with state-of-the-art memory managers. Thus, for Linux since 3.7 and
Windows since Windows 7, there may be little performance boost from changing
memory managers.

• A faster memory manager will help performance only to the extent that allocat‐
ing and freeing dynamic variables dominates the program’s run time. Even if a
program allocates a zillion-node data structure, if this structure is long-lived,
improving allocation has limited benefit due to Amdahl’s Law (see “Amdahl’s
Law” on page 31). While the memory manager code itself may be 3 to 10 times
faster than the default, studied whole-program performance improvements range
from negligible improvement to 30% in several large open-source programs.

• Reducing the number of calls into the memory manager by means described in
Chapter 6 provides a performance boost no matter how fast the allocator is, and
can be targeted to hot code using the profiler.

• State-of-the-art memory managers may pay for improved performance by con‐
suming significant amounts of memory for various caches and free-block pools.
Constrained environments may not have this additional memory to spend.

For older operating systems and embedded development, here are some malloc()
replacements generally regarded as high-performing:

Hoard
Hoard is a commercialized version of a multiprocessor memory allocator from
the University of Texas. It claims 3–7× improvement over malloc(). Hoard
requires a license for commercial use.

mtmalloc
mtmalloc is a malloc() replacement for highly multithreaded workloads in
Solaris. It uses a fast-fit allocator.

ptmalloc (glibc malloc)
ptmalloc is the malloc() provided with Linux 3.7 and later. It has per-thread are‐
nas to reduce contention in multithreaded programs.
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TCMalloc (the Thread-Caching malloc())
TCMalloc (located in the gperftools package), is Google’s malloc() replacement.
It has a specialized small-object allocator and carefully designed spinlocks for
managing large blocks. According to the designers, it is better behaved than
glibc’s malloc(). tcmalloc is only tested on Linux.

For small embedded projects, it is not an impossible task to implement your own
memory manager. Searching the Web for “fast-fit memory allocation” provides a
bunch of links to start from. I implemented a fast-fit memory manager for an embed‐
ded project with good results. That said, the design of fully general multithreaded
memory managers is another topic that would fill a whole book by itself. The people
who write memory managers are specialists. The more sophisticated the program and
its operating environment are, the less likely it is that a roll-your-own solution will be
performant and bug-free.

Provide Class-Specific Memory Managers
Even a state-of-the-art malloc() is exactly the kind of compromise that creates opti‐
mization opportunities. operator new() can also be overridden at the class level (see
“Class-specific operator new() gives fine control of allocation” on page 331). When
code that dynamically creates instances of a class is hot, a class-specific memory man‐
ager can improve performance.

If a class implements operator new(), this function is called instead of the global
operator new() when requesting memory for instances of the class. A class-specific
operator new() can take advantage of extra knowledge not available to the default
version. All allocation requests for instances of a particular class request the same num‐
ber of bytes. Memory managers for same-sized requests are particularly easy to write,
and run efficiently for a variety of reasons:

• Fixed-block memory managers efficiently reuse returned memory. They do not
experience fragmentation, because all requests are the same size.

• Fixed-block memory managers can be implemented with low or no memory
overhead.

• Fixed-block memory managers can provide a guaranteed upper bound on the
amount of memory consumed.

• The functions of a fixed-block memory manager that allocate and free memory
are internally simple enough that they can efficiently be inlined. The functions of
the default C++ memory manager cannot be inlined. They must be function calls
so they can be replaced by a developer-defined override. The C memory manage‐
ment functions malloc() and free() must be ordinary functions for the same
reason.
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• Fixed-block memory managers have good cache behavior. The last node freed
can be the next node allocated.

Many developers have never seen a class-specific memory manager. I suspect this is
because they have several moving parts that have to be written and strung together, so
the learning curve is steep. Even in a big program, only a few classes may be hot
enough to benefit from this optimization. It’s not something that needs to be done
many times in a given program.

Fixed-Size-Block Memory Manager
Example 13-1 defines a simple fixed-size-block memory manager that allocates
blocks from a single, statically declared chunk of storage called the arena. Fixed-size-
block memory managers of this kind are most frequently found in embedded
projects, as an alternative to allocating from the free store. fixed_block_memory_man
ager is internally very simple: just a singly linked list of free memory blocks. This
simple design will be used for several purposes in this chapter. It’s worth taking a look
at it in detail.

Example 13-1. Fixed-size-block memory manager

template <class Arena> struct fixed_block_memory_manager {
    template <int N>
        fixed_block_memory_manager(char(&a)[N]);
    fixed_block_memory_manager(fixed_block_memory_manager&)
        = delete;
   ~fixed_block_memory_manager() = default;
    void operator=(fixed_block_memory_manager&) = delete;

    void*  allocate(size_t);
    size_t block_size() const;
    size_t capacity() const;
    void   clear();
    void   deallocate(void*);
    bool   empty() const;

private:
    struct free_block {
        free_block* next;
    };
    free_block* free_ptr_;
    size_t      block_size_;
    Arena       arena_;
};

# include "block_mgr.inl"
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The constructor, defined in Example 13-2, accepts a C-style array of char as its argu‐
ment. This array forms the arena from which blocks of memory will be allocated. The
constructor is a template function that allows the array size to be captured as a tem‐
plate parameter.

Example 13-2. fixed_block_memory_manager constructor definition

template <class Arena>
    template <int N>
        inline fixed_block_memory_manager<Arena>
        ::fixed_block_memory_manager(char(&a)[N]) :
            arena_(a), free_ptr_(nullptr), block_size_(0) {
            /* empty */
        }

Modern C++ Coding Note
To keep template class definitions tidy, it is possible to define template class member
functions outside the template class definition. I keep my member function defini‐
tions in a file with the suffix .inl, for "inline definitions.” When the function definition
appears outside the template class, however, a more verbose syntax is required to help
the compiler connect the definition with the declaration in the template class body.
The first line of the previous example, template <class Arena>, declares the tem‐
plate parameter of the class. The second line, template <int N>, applies to the con‐
structor function itself, which is a template function. When the member function
definition appears outside the template class body, the inline keyword must be
explicitly provided, as inline linkage is assumed only when the definition appears
inside the class.

The allocate() member function in Example 13-3 pops a block off the free list, if
any blocks are available, and returns it. If the free list is empty, allocate() attempts
to get a new list of free blocks from the arena manager, which I will describe in a
moment. If the arena manager has no more memory to allocate, it returns nullptr
and allocate() throws std::bad_alloc.

Example 13-3. fixed_block_memory_manager’s definition of allocate()

template <class Arena>
    inline void* fixed_block_memory_manager<Arena>
                 ::allocate(size_t size) {
    if (empty()) {
        free_ptr_ = reinterpret_cast<free_block*>
                    (arena_.allocate(size));
        block_size_ = size;
        if (empty())
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            throw std::bad_alloc();
    }
    if (size != block_size_)
        throw std::bad_alloc();
    auto p = free_ptr_;
    free_ptr_ = free_ptr_->next;
    return p;
}

The deallocate() member function is very simple. It pushes a block onto the free
list:

template <class Arena>
    inline void fixed_block_memory_manager<Arena>
                ::deallocate(void* p) {
    if (p == nullptr)
        return;
    auto fp = reinterpret_cast<free_block*>(p);
    fp->next = free_ptr_;
    free_ptr_ = fp;
}

Here are the remaining member function definitions. Copying and assignment of the
memory manager are disabled in the class definition using the C++11 syntax:

template <class Arena>
    inline size_t fixed_block_memory_manager<Arena>
                  ::capacity() const {
    return arena_.capacity();
}

template <class Arena>
    inline void fixed_block_memory_manager<Arena>::clear() {
    free_ptr_ = nullptr;
    arena_.clear();
}

Block Arena
The only complexity in fixed_block_memory_manager arises from how the initial
free list is created. This complexity is factored into a separate template class. The
implementation presented here is called fixed_arena_controller, and is defined in
Example 13-4. As used here, arena means an enclosed space in which some activity
takes place. block_arena is a fixed pool of memory that can be allocated by
block_manager.

Example 13-4. Block arena for fixed-block memory manager

struct fixed_arena_controller {
    template <int N>
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        fixed_arena_controller(char(&a)[N]);
    fixed_arena_controller(fixed_arena_controller&) = delete;
   ~fixed_arena_controller() = default;
    void operator=(fixed_arena_controller&) = delete;
    
    void*  allocate(size_t);
    size_t block_size() const;
    size_t capacity() const;
    void   clear();
    bool   empty() const;

private:
    void*  arena_;
    size_t arena_size_;
    size_t block_size_;
};

The purpose of the class fixed_arena_controller is to create a list of memory
blocks. All the memory blocks are the same size. The size is set the first time allo
cate() is called. Each memory block must be big enough to hold the requested num‐
ber of bytes, but it must also be big enough to hold a pointer that is used when the
block is on the free list.

The constructor template function accepts the arena array from
fixed_block_memory_manager, saving the size of the array and a pointer to its start:

template <int N>
    inline fixed_arena_controller
           ::fixed_arena_controller(char (&a)[N]) :
    arena_(a), arena_size_(N), block_size_(0) { /*empty*/
}

The allocate() member function is where the action takes place. It is called by the
allocate() member function of fixed_block_memory_manager when the free list is
empty, which happens when the first allocation request occurs.

fixed_arena_controller has a single block of memory to allocate. If that block is
used up, allocate() is called again and must return an error indication, which in
this case is nullptr. Different kinds of arena controllers might break up big blocks of
memory obtained, for instance, by a call to ::operator new(). For a different arena
controller, calling allocate() more than once might be OK.

The first time it is called, allocate() sets the block size and capacity in blocks.
Actually creating the free list is an exercise in reinterpreting untyped memory bytes
into typed pointers. The char array is interpreted as a set of blocks laid end-to-end.
The first bytes of each block are a pointer to the next block. The pointer in the last
block is set to nullptr.
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fixed_arena_controller has no control over the size of the arena array. There may
be a few unused bytes at the end that are never allocated. The code for setting the
free-block pointers is not pretty. It has to continually reinterpret one kind of pointer
as another, stepping outside of C++’s type system into the realm of implementation-
defined behavior. This is true of memory managers in general, and is unavoidable.

The allocation and deallocation code for fixed_arena_controller is simple, overlay‐
ing a list of free nodes over the storage provided to the constructor and returning a
pointer to the first element of the list. The code looks like this:

inline void* fixed_arena_controller
             ::allocate(size_t size) {
    if (!empty())
        return nullptr;    // arena already allocated

    block_size_ = std::max(size, sizeof(void*));
    size_t count = capacity();

    if (count == 0)
        return nullptr;    // arena not big enough for even one item

    char* p;
    for (p = (char*)arena_; count > 1; --count, p += size) {
        *reinterpret_cast<char**>(p) = p + size;
    }
    *reinterpret_cast<char**>(p) = nullptr;
    return arena_;
}

Here is the rest of fixed_arena_controller:

inline size_t fixed_arena_controller::block_size() const {
    return block_size_;
}

inline size_t fixed_arena_controller::capacity() const {
    return block_size_ ? (arena_size_ / block_size_) : 0;
}

inline void fixed_arena_controller::clear() {
    block_size_ = 0;
}

inline bool fixed_arena_controller::empty() const {
    return block_size_ == 0;
}

Adding a Class-Specific operator new()
Example 13-5 is a very simple class with a class-specific operator new() and opera
tor delete(). It also contains the static member mgr_, which is the fixed-block
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memory manager described in “Fixed-Size-Block Memory Manager” on page 336.
operator new() and operator delete() are inline functions that forward requests
to the allocate() and deallocate() member functions of mgr_.

Example 13-5. Class with class-specific operator new

class MemMgrTester {
    int contents_;
public:
    MemMgrTester(int c) : contents_(c) {}

    static void* operator new(size_t s) {
        return mgr_.allocate(s);
    }
    static void  operator delete(void* p) {
        mgr_.deallocate(p);
    }
    static fixed_block_memory_manager<fixed_arena_controller> mgr_;
};

mgr_ is declared public so I could reinitialize the free list to facilitate writing perfor‐
mance tests via a call to mrg_.clear(). If mgr_ is initialized once at program startup
and never needs to be reinitialized, it could as well be a private member.

A memory manager that can be reset like this is called a pool memory manager, and
the arena it controls is called a memory pool. A pool memory manager can be useful
in cases where a data structure is constructed, used, and then destroyed. If the entire
memory pool can be reinitialized quickly, the program can dispense with freeing the
data structure node-by-node.

mgr_ is declared as a static member of the class BlockTester. Somewhere in the pro‐
gram, static members must also be defined. The definition looks like Example 13-6.
This code defines a memory arena and then mgr_, whose constructor takes the arena
as an argument.

Example 13-6. Initializing the memory manager

char arena[4004];
fixed_block_memory_manager<fixed_arena_controller>
    MemMgrTester::mgr_(arena);

The example code just shown does not define a class-specific operator new[]() to
allocate storage for arrays. The fixed-block memory manager would not work for
arrays, which by definition may have different numbers of elements. If the program
tries to allocate an array of MemMgrTester, the new-expression uses the global opera
tor new[]() because a class-specific one is not defined. Individual instances are allo‐
cated with the fixed-block memory manager, and arrays use malloc().
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Performance of the Fixed-Block Memory Manager
The fixed-block memory manager is very efficient. The allocate and free methods
have a fixed cost, and the code can be inlined. But how much faster are they than
malloc()?

I performed two experiments to test the performance of a class-specific operator
new(). In the first test, I allocated a million BlockTester instances. Allocating with
the class-specific operator new() and my fixed-block memory manager took 4 milli‐
seconds. Allocating with the global operator new(), which uses malloc(), took 64
milliseconds. The fixed-block memory manager was 15 times faster than malloc() in
the test. This result probably overstates the performance improvement that might be
achieved in an actual program, though. Amdahl’s Law implies that the more compu‐
tation occurs in between allocations, the smaller the performance gain from speeding
up allocation will be.

In the second experiment, I created an array of 100 pointers to BlockTest. I created a
million BlockTester instances, assigning each to an array position at random and
deleting any instance already there. Using the fixed-block memory manager, the test
took 25 milliseconds. It took 107 milliseconds using the default global memory man‐
ager. The fixed-block memory manager was 3.3 times faster.

Variations on the Fixed-Block Memory Manager
The basic structure of the fixed-block memory manager is extremely simple. Varia‐
tions (any of which you may find if you spend time searching for memory managers
on the Internet) can be tried to see if any of them better suit the program being opti‐
mized:

• Instead of starting with a fixed arena, memory can be allocated using malloc()
when the free list is empty. Freed memory blocks are cached on the free list for
rapid reuse.

• The arena can be created by a call to malloc() or ::new instead of being fixed. If
necessary, a chain of arena blocks can be maintained so that there is no limit on
how many small blocks may be allocated. The fixed-block memory manager still
retains its advantages of speed and compactness even if it occasionally calls
malloc().

• If instances of the class are used for a while and then all discarded, the fixed-
block memory manager can be used as a memory pool. In a memory pool, allo‐
cation proceeds as normal, but memory is not freed at all. When the program is
done with instances of the class, they are all collected at once by reinitializing the
static arena, or returning the dynamically allocated arena to the system memory
manager. Even if they are all reclaimed at once, allocated blocks must still be
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deleted by a call to the destructor. Many pool allocators on the Internet forget
this tiny but important detail.

A general memory manager can be designed that serves each different request size
from a different arena, and returns each different request size to a different free list. If
all request sizes are rounded to the next-higher power of two, the result is a “fast-fit”
memory manager. Typically, the fast-fit memory manager allocates only objects up to
a particular maximum size, sending larger requests to the default memory manager.
The code for a fast-fit allocator is too big to reproduce in this book, but it’s available
on the Web.

Boost has a fixed-block memory manager, called Pool.

Non-Thread Safe Memory Managers Are Efficient
The fixed-block memory manager owes some of its efficiency to not being thread
safe. Non-thread safe memory managers are efficient for two reasons. First, they don’t
require synchronization mechanisms to serialize critical regions. Synchronization is
expensive because a very slow memory fence (see “Atomicity by mutual exclusion” on
page 289 and “Memory fences” on page 302) is at the heart of every synchronization
primitive. Even if only one thread calls the memory manager (which is typical), these
expensive instructions slow things down.

Second, non-thread safe memory managers are efficient because they never pend on
synchronization primitives. When a program has several threads calling into the
memory manager, the threads experience contention for the memory manager as a
resource. The more threads there are in the system, the greater the contention is, and
the more access to the allocator serializes the activity of the threads.

When a class implements a class-specific memory manager, even if the program as a
whole is multithreaded, if a given class is only used in one thread it never has to wait.
By contrast, calls into the default memory manager experience contention in multi‐
threaded programs even for objects only used in one thread.

Non-thread safe memory managers are also far easier to write than thread-safe ones,
since minimizing the critical section so the memory manager runs efficiently can be
complex.

Provide Custom Standard Library Allocators
The container classes of the C++ standard library make heavy use of dynamic mem‐
ory. They are a natural place to look for optimization opportunities, including custom
memory managers like the ones described in “Fixed-Size-Block Memory Manager”
on page 336.
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2 Oh, you did not just think, “Oh sure you can. You just go into /usr/include and ...” That is so unclean! Brrrrr.

But there is a problem. The variables dynamically allocated in a std::list<T> are not
of the user-provided type T. They are of some invisible type, like listitem<T>, that
contains the previous and next list item pointers as well as the payload type T. The
dynamically allocated variables in a std::map<K,V> are of another hidden type, like
treenode<std::pair<const K, V>>. These class templates are buried in compiler-
provided header files. It isn’t possible2 to modify these classes to add a class-specific
operator new() and operator delete(). And besides, templates are generic. The
developer only wants to change the memory manager for certain instances of the
generic template in a specific program, not for all instances in all programs. Fortu‐
nately, the C++ standard provides a mechanism to define the memory manager used
by each container. Standard library containers take an Allocator argument that
allows the same ability to customize memory management as does a class-specific
operator new().

Allocator is a template class that manages memory. At its root, an allocator does
three things: it retrieves storage from a memory manager, returns storage to a mem‐
ory manager, and copy-constructs itself from a related allocator. That ought to be
simple, but it is not. Allocators have a long, painful history, covered in “Additional
Definitions for C++98 Allocator” on page 347. Allocators are regarded by some influ‐
ential developers as among the most broken parts of C++. Still, if the code is hot
enough, and the container is one of the more tractable node-based containers
(std::list, std::forward_list, std::map, std::multimap, std::set, or std::mul
tiset), a performance improvement may be available through implementing a cus‐
tom allocator.

Allocator implementations range from the simple to the mind-numbingly complex.
The default allocator, std::allocator<T>, is a thin wrapper around ::operator
new(). The developer can provide a nondefault allocator with different behavior.

There are two basic kinds of allocator. The simplest kind is stateless—that is, an allo‐
cator type with no non-static state. std::allocator<T>, the default allocator for stan‐
dard library containers, is stateless. Stateless allocators have desirable properties:

• A stateless allocator can be default-constructed. There is no need to create an
explicit instance of a stateless allocator to pass into the constructor of the con‐
tainer class. std::list<myClass, myAlloc> my_list; constructs a list of
myClass instances allocated with the stateless allocator myAlloc.

• A stateless allocator does not take up any space in container instances. Most stan‐
dard library container classes inherit from their allocator, taking advantage of the
empty base class optimization to produce a zero-byte base class.
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• Two instances of a stateless allocator my_allocator<T> are indistinguishable.
That means an object allocated by one stateless allocator can be freed by another.
This in turn makes operations like std::list’s splice() member function pos‐
sible. It is sometimes, but not always also the case that two stateless allocators for
different types, like AllocX<T> and AllocX<U>, can be equal. This is true, for
instance, of std::allocator.
Equality also means that move assignment and std::swap() can happen effi‐
ciently. If the two allocators are not equal, the contents of one container must be
deep-copied, using the allocator of the target container.
Note that while equality may happen to be true even of instances of completely
unrelated allocator types, like AllocX<T> and AllocY<U>, this property is not val‐
uable. The type of the container includes the type of the allocator. You can’t splice
a std::list<T,AllocX> to a std::list<T,AllocY> any more than you can splice
a std::list<int> to a std::list<string>.

Of course, the primary disadvantage of a stateless allocator is the same as its primary
advantage. All instances of a stateless allocator by their nature get memory from the
same memory manager. It’s a global resource, a dependency on a global variable.

An allocator with internal state is more complex to create and to use, for the follow‐
ing reasons:

• In most cases, an allocator with local state can’t be default-constructed. The allo‐
cator must be constructed, then passed to the container’s constructor:

char arena[10000];
MyAlloc<Foo> alloc(arena);
std::list<Foo, MyAlloc<Foo>> foolist(alloc);

• The allocator state must be stored in every variable, increasing its size. This is
very painful for containers that create a lot of nodes, like std::list and
std::map, but these are exactly the containers programmers most desire to cus‐
tomize.

• Two allocators of the same type may not compare equal because they have differ‐
ing internal state, making some operations on containers using that allocator type
impossible and others painfully inefficient.

Allocators with state have the critical advantage, however, that it is easier to create
multiple kinds of memory arenas for different purposes when all requests don’t have
to go through a single global memory manager.

For a developer writing custom allocators to improve performance, the choice
between allocators with or without local state comes down to how many classes the
developer intends to fiddle with. If just one class is hot enough to optimize, a stateless
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allocator is simpler. If the developer wants to optimize more than one or two classes,
then allocators with local state will be more flexible. However, such a developer may
have trouble pointing to a profiling run to prove the necessity. Writing custom alloca‐
tors for many containers may not optimize return on investment of the developer’s
time.

Minimal C++11 Allocator
If the developer is lucky enough to have a compiler and standard library that fully
conform to C++11, he can provide a minimal allocator that requires only a few defini‐
tions. Example 13-7 is one that does approximately what std::allocator does.

Example 13-7. Minimal C++11 allocator

template <typename T> struct my_allocator {
    using value_type = T;

    my_allocator() = default;

    template <class U> my_allocator(const my_allocator<U>&) {}

    T* allocate(std::size_t n, void const* = 0) {
        return reinterpret_cast<T*>(::operator new(n*sizeof(T)));
    }

    void deallocate(T* ptr, size_t) {
        ::operator delete(ptr);
    }
};

template <typename T, typename U>
    inline bool operator==(const my_allocator<T>&,
                           const my_allocator<U>&) {
    return true;
}

template <typename T, typename U>
    inline bool operator!=(const my_allocator<T>& a,
                           const my_allocator<U>& b) {
    return !(a == b);
}

The minimal allocator contains these few functions:

allocator()

This is the default constructor. If the allocator has a default constructor, the
developer does not need to explicitly create an instance to pass into the contain‐
er’s constructor. The default constructor is typically empty in stateless construc‐
tors, and is typically not present at all in allocators with non-static state.
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template <typename U> allocator(U&)

This copy constructor makes it possible to convert an allocator<T> into a
related allocator for a private class such as allocator<treenode<T>>. This is
important because in most containers, no nodes of type T are ever allocated.

The copy constructor is typically empty in stateless allocators, but must copy or
clone the state in allocators with non-static state.

T* allocate(size_type n, const void* hint = 0)

This function allocates storage sufficient to hold n bytes and returns a pointer to
it, or throws std::bad_alloc. hint is meant to help the allocator in an unspeci‐
fied way related to “locality.” I’ve never seen an implementation that used hint.

void deallocate(T* p, size_t n)

This function releases storage previously returned by allocate(), pointed to by
p and occupying n bytes, to the memory manager. n must be the same as the
argument to allocate() that allocated the storage pointed to by p.

bool operator==(allocator const& a) const

bool operator!=(allocator const& a) const

These functions test two allocator instances of the same type for equality. If the
instances compare equal, then objects allocated from one instance may safely be
freed on another. That means the two instances allocate objects from the same
storage area.

The implication of equality is large. It means, for instance, that std::list items
can be spliced from one list to another if and only if the two lists have the same
type of allocator and the two allocator instances compare equal. The allocator
type is part of the container instance type, so if the allocators are different types,
it doesn’t matter if they secretly share the same storage.

Stateless allocators return true unconditionally when tested for equality. Alloca‐
tors with non-static state must compare their state to determine equality, or sim‐
ply return false.

Additional Definitions for C++98 Allocator
C++11 takes significant pains to make allocators easier to write, at the cost of making
container classes more complex. The developer who must write an allocator for a pre-
C++11 standard library container will find out why.

Allocators weren’t originally meant for (or at least not only meant for) managing
memory. The allocator concept evolved in the 1980s, when microprocessors and
developers were straining to break out of the confines of a 16-bit address space. PCs
of the day formed an address from a segment register plus an offset. Each program
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was compiled for a memory model, which described the default way in which pointers
worked. There were a bunch of memory models. Some were efficient, but limited the
amount of memory a program or its data could occupy. Other memory models
allowed more memory, but were slower. The C compilers of the day were extended
with additional type modifiers so that individual pointers could be declared near or
far, based on how much memory the developer wanted to access with them.

Allocators as originally imagined were meant to unmuddle this memory model mess.
But by the time allocators arrived in C++, hardware makers had already heard the
collective screaming of thousands of C developers, and implemented a uniform
memory model with no segment registers. Furthermore, the allocator solution was
unworkably inefficient using the compilers of the day.

Prior to C++11, every allocator contained all the functions in the minimal allocator,
plus all of the following:

value_type

The type of the object to be allocated.

size_type

An integral type big enough to hold the maximum number of bytes that can be
allocated by this allocator.

For allocators used as parameters to standard library container templates, this
definition must be typedef size_t size_type;.

difference_type

An integral type big enough to hold the maximum difference between two point‐
ers.

For allocators used as parameters to standard library container templates, this
definition must be typedef ptrdiff_t difference_type;.

pointer

const_pointer

The type of a pointer to (const) T.

For allocators used as parameters to standard library container templates, these
definitions must be:

typedef T* pointer;

typedef T const* const_pointer;

For other allocators, pointer might be a pointer-like class that implements
operator*() to dereference the pointer.
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reference

const_reference

The type of a reference to (const) T.

For allocators used as parameters to standard library container templates, the
definitions must be:

typedef T& reference;

typedef T const& const_reference;

pointer address(reference)

const_pointer address(const_reference)

Functions that produce a pointer to (const) T, given a reference to (const) T.

For allocators used as parameters to standard library container templates, these
definitions are required to be:

pointer address(reference r) { return &r; }

const_pointer address(const_reference r) { return &r; }

These functions were meant to abstract memory models. Unfortunately, they
have been hamstrung for compatibility with the standard library containers,
which need pointer to actually be a T* so like magic line random-access iterators
and binary search work efficiently.

Even though these definitions have fixed values for allocators used by standard
library containers, the definitions are required, as the container code in C++98 uses
them. For instance:

typedef size_type allocator::size_type;

Some developers derive their allocator templates from std::allocator, to get these
definitions without writing them. But this practice is controversial. std::allocator
might change someday, after all. It changed a lot in the early years, and it changed
again for C++11, so these fears are well founded. Another approach is to simply fac‐
tor out the most unchanging of these definitions, as in

template <typename T> struct std_allocator_defs {
    typedef T value_type;
    typedef T* pointer;
    typedef const T* const_pointer;
    typedef T& reference;
    typedef const T& const_reference;
    typedef size_t size_type;
    typedef ptrdiff_t difference_type;

    pointer address(reference r) { return &r; }
    const_pointer address(const_reference r) { return &r; }
};
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Carried to its logical conclusion, these definitions can be made into a traits class,
which is what some of the more complex allocator templates on the Web do. This is
also what the C++11 minimal allocator does, only the traits class works backward
from normal. The traits class looks at the allocator template to see if it has any of
these definitions, and provides a standard definition if the allocator does not. Then,
the container code references the allocator_traits class, not the allocator, as in

typedef std::allocator_traits<MyAllocator<T>>::value_type value_type;

With the boilerplate out of the way, it’s time to look at the important definitions
(remember, the definitions for the minimal allocator discussed in “Minimal C++11
Allocator” on page 346 are also included):

void construct(pointer p, const T& val)

This function copy-constructs an instance of T using placement new:

new(p) T(val);

For C++11, this function can be defined so that an argument list can be given to
the T constructor:

template <typename U, typename... Args>
    void construct(U* p, Args&&... args) {
        new(p) T(std::forward<Args>(args...));
    }

void destroy(pointer p);

This function destroys a pointer to T, calling p->~T();.

rebind::value

The declaration of struct rebind is at the very heart of allocators. It typically
looks like this:

template <typename U> struct rebind {
    typedef allocator<U> value;
};

rebind gives a formula for creating an allocator for a new type U, given an
allocator<T>. Every allocator must provide this formula. It’s how a container
like std::list<T> allocates instances of std::list<T>::listnode<T>. It’s
important that in most containers, no nodes of type T are ever allocated.

Example 13-8 is a full C++98-style allocator equivalent to the C++11 minimal alloca‐
tor in Example 13-7.

Example 13-8. C++98 allocator

template <typename T> struct my_allocator_98 :
    public std_allocator_defs<T> {
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    template <typename U> struct rebind {
        typedef my_allocator_98<U, n> other;
    };

    my_allocator_98() {/*empty*/}
    my_allocator_98(my_allocator_98 const&) {/*empty*/}

    void construct(pointer p, const T& t) {
        new(p) T(t);
    }
    void destroy(pointer p) {
        p->~T();
    }
    size_type max_size() const {
        return block_o_memory::blocksize;
    }
    pointer allocate(
        size_type n,
        typename std::allocator<void>::const_pointer = 0) {
        return reinterpret_cast<T*>(::operator new(n*sizeof(T)));
    }
    void deallocate(pointer p, size_type) {
        ::operator delete(ptr);
    }
};

template <typename T, typename U>
    inline bool operator==(const my_allocator_98<T>&,
                           const my_allocator_98<U>&) {
    return true;
}

template <typename T, typename U>
    inline bool operator!=(const my_allocator_98<T>& a,
                           const my_allocator_98<U>& b) {
    return !(a == b);
}

When examining allocator code on the Internet, developers will encounter a variety
of different spellings of the types. An extremely cautious and conformant developer
will write the signature of the allocate() function as

pointer allocate(
    size_type n,
    typename std::allocator<void>::const_pointer = 0);

while a less cautious developer may write the same signature for an allocator strictly
for use with standard library containers as

T* allocate(size_t n, void const* = 0);
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The first signature is the most technically standard-conformant, but the second sig‐
nature will compile successfully and has the advantage of brevity. This is the way
things work in the wild and woolly world of templates.

Another issue with allocator code on the Internet is that allocate() must throw
std::bad_alloc if the request cannot be fulfilled. So, for instance, the following code
which calls malloc() to allocate memory is not standard-conforming because
malloc() can return nullptr:

pointer allocate(
    size_type n,
    typename std::allocator<void>::const_pointer = 0) {
    return reinterpret_cast<T*>(malloc(n*sizeof(T)));
}

A Fixed-Block Allocator
The standard library container classes std::list, std::map, std::multimap,
std::set, and std::multiset all create a data structure from many identical nodes.
Such classes can take advantage of simple allocators implemented using the fixed-
block memory manager described in “Fixed-Size-Block Memory Manager” on page
336. The partial definition in Example 13-9 shows the two functions allocate() and
deallocate(). The other definitions are identical to those in the standard allocator
shown in Example 13-8.

Example 13-9. Fixed-block allocator

extern fixed_block_memory_manager<fixed_arena_controller>
    list_memory_manager;

template <typename T> class StatelessListAllocator {
public:
   ...

    pointer allocate(
        size_type count,
        typename std::allocator<void>::const_pointer = nullptr) {
        return reinterpret_cast<pointer>
                (list_memory_manager.allocate(count * sizeof(T)));
    }
    void deallocate(pointer p, size_type) {
        string_memory_manager.deallocate(p);
    }
};

As previously mentioned, std::list never attempts to allocate nodes of type T.
Instead, std::list uses Allocator template parameter to construct a listnode<T>,
by calling list_memory_manager.allocate(sizeof(<listnode<T>>)).
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The list allocator required a change to the memory manager previously defined. The
implementation of std::list that comes with Microsoft Visual C++ 2015 allocates a
special sentinel node that is a different size from the other list nodes. It happens to be
smaller than a regular list node, so it was possible to make a small change to the
fixed-block memory manager that allowed it to work. The modified version is shown
in Example 13-10. The change is that instead of testing that the current request size is
equal to the saved block size, allocate() only tests that it is not greater than the
saved block size.

Example 13-10. Modified allocate() function

template <class Arena>
    inline void* fixed_block_memory_manager<Arena>
                 ::allocate(size_t size) {
    if (empty()) {
        free_ptr_ = reinterpret_cast<free_block*>
                        (arena_.allocate(size));
        block_size_ = size;
        if (empty())
            throw std::bad_alloc();
    }
    if (size > block_size_)
        throw std::bad_alloc();
    auto p = free_ptr_;
    free_ptr_ = free_ptr_->next;
    return p;
}

Performance of the fixed-block allocator
I wrote a program to test the performance of the fixed-block allocator. The program
is a loop that repeatedly creates a list of 1,000 integers, then deletes the list. Using the
default allocator, it took 76.2 microseconds. The program created and destroyed a list
using the block allocator in 11.6 microseconds, about 5.6 times faster. This is an
impressive performance improvement, but it must be regarded with some suspicion.
Only the creation and destruction of the list benefit from this optimization. Perfor‐
mance gains in a program that also processes the list will be far more modest.

I also built a map of 1,000 integer keys. Creating and destroying the map using the
default allocator took 142 microseconds, versus 67.4 microseconds with the block
allocator. This more modest 110% improvement shows the effect that additional
activity in the program (in this case, rebalancing the tree in which the map is stored)
has on the performance improvement achieved by the block allocator.
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A Fixed-Block Allocator for Strings
std::string stores its contents in a dynamic array of char. Because the array is real‐
located to a larger size as the string grows, it doesn’t seem to be a candidate for the
simple fixed-block allocator in the previous section. But sometimes even this limita‐
tion can be overcome. A developer who knows the maximum size a string can take in
the program can create an allocator that always produces fixed-size blocks of the
maximum size. This situation is surprisingly common, because the number of appli‐
cations for million-character strings is limited.

Example 13-11 is a partial listing of the fixed-block allocator for strings.

Example 13-11. Fixed-block allocator for strings

template <typename T> class NewAllocator {
public:
   ...
    pointer allocate(
        size_type /*count*/,
        typename std::allocator<void>::const_pointer = nullptr) {
        return reinterpret_cast<pointer>
                   (string_memory_manager.allocate(512));
    }

    void deallocate(pointer p, size_type) {
        ::operator delete(p);
    }
};

The important feature of this allocator is that allocate() completely ignores the size
request, and returns a fixed-size block.

Performance of the string allocator

I tested the string allocator in a version of remove_ctrl() from Example 4-1 in Chap‐
ter 4. This function used std::string inefficiently, creating many temporary strings.
Example 13-12 is the modified function.

Example 13-12. Version of remove_ctrl() using the fixed-block string allocator

typedef std::basic_string<
    char,
    std::char_traits<char>,
    StatelessStringAllocator<char>> fixed_block_string;

fixed_block_string remove_ctrl_fixed_block(std::string s) {
    fixed_block_string result;
    for (size_t i = 0; i<s.length(); ++i) {
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        if (s[i] >= 0x20)
            result = result + s[i];
    }
    return result;
}

An experiment to time the original remove_ctrl() ran in 2,693 milliseconds. The
improved version in Example 13-12 performed the same test in 1,124 milliseconds,
about 1.4 times faster. This performance improvement is significant, but as we saw in
Chapter 4, other optimizations performed even better.

Writing a custom memory manager or allocator can be effective, but it has less benefit
than optimizations than remove calls to the memory manager altogether.

Summary
• There may be more fruitful places to look for performance improvement than the

memory manager.
• Whole-program performance improvements from replacing the default memory

manager ranged from negligible to 30% in several large open-source programs.
• Memory managers for same-sized requests are particularly easy to write, and run

efficiently.
• All allocation requests for instances of a particular class request the same number of

bytes.
• operator new() can be overridden at the class level.
• The standard library container classes std::list, std::map, std::multimap,
std::set, and std::multiset all create a data structure from many identical
nodes.

• Standard library containers take an Allocator argument that allows the same abil‐
ity to customize memory management as does a class-specific operator new().

• Writing a custom memory manager or allocator can be effective, but it has less ben‐
efit than optimizations that remove calls to the memory manager altogether.
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