

Black	BookBlac
	
	
	

Learn	JavaTM	8
In	a	Week
	
A	Beginner’s	Guide	to	Java	Programming
	
Mahavir	DS	Rathore
	

Books	by	Mahavir	DS	Rathore

	
1.	 Java	8	Exception	Handling
2.	 Java	8	Exception	Handling	Quiz

	
	

	

	

	

	

	

	

	

	

Copyright

Learn	JavaTM	 8	 in	 a	Week	 is	by	Mahavir	DS	Rathore.	While	 every	precaution	has	been
taken	 in	 the	 preparation	 of	 this	 book	 the	 author	 assume	No	 responsibility	 for	 errors	 or
omissions,	or	for	damages	resulting	from	the	use	of	the	information	contained	herein.

	

About	the	author
I	 have	been	programming	and	 teaching	 Java	 for	 last	 18	years.	This	book	 is	 an	 effort	 to
document	my	knowledge	 to	 share	with	 everyone	across	 the	world.	 I	 am	available	 to	do
training	on	Java	anywhere	in	the	world.	My	email	id	is	gurumahaveer@gmail.com.

	
Who	should	read	the	book?
This	book	is	for	programmers	who	already	know	some	programming	language	and	are
keen	to	learn	Java.

	

Software	Required
Java	8	(JDK	1.8)	and	Notepad++	editor.

	

Acknowledgement
Java	is	owned	by	Oracle	and	trademark	is	acknowledged.

	

Dedication
To	my	Guru	Shri	Amrite.

	

Source	Code
For	source	code	of	this	book	please	send	me	a	mail	at	gurumahaveer@gmail.com.

	

Feedback
Please	share	your	feedback	which	will	help	me	to	improve	this	book.

	
	

mailto:gurumahaveer@gmail.com

	
	

	
	
Table	of	Content
	
Sl.No Chapter HyperLink

1 What	is	Java? Go

2 JDK	and	JRE Go

3 Setting	Path
Variable

Go

4 Complier	and
Interpreter

Go

5 The	First	Program Go

6 The	HelloWorld
Program

Go

7 Anatomy	of
HelloWorld
Program

Go

8 Multiple	Main
Methods

Go

9 Public	Class	and
File	Name

Go

10 Runtime Go

Execution

11 Alternate
HelloWorld
Program

Go

12 Numeric	Data
Types

Go

13 Non	Numeric
Data	Types

Go

14 Literal	and
Constant

Go

15 Escape	Sequence Go

16 Immutable	String Go

17 StringBuilder
Class

Go

18 Wrapper	Classes Go

19 If…	Else Go

20 Switch…	Case Go

21 For…	Loop Go

22 While…	Loop Go

23 Break	and
Continue

Go

24 Conversion	and
Casting

Go

25 Arithmetic	and
Relational
Operators

Go

26 Logical	and Go

Ternary	Operators

27 Arrays Go

28 Jagged	Array Go

29 For	Each	Loop Go

	

	
	
Chapter	1
What	is	Java?

	

Topics

							Introduction

							Java	as	Software	Platform

							Java	as	Programming	Language

							Languages	That	Influenced	Java

							Languages	Influenced	by	Java

							Summary

	

	

Introduction

The	current	(Latest)	version	of	Java	is	8.	Java	can	be	classified	and	defined	into	two
categories.

1.	 Software	Platform.
2.	 Programming	Language.

	

Java	as	Software	Platform

Java	platform	is	a	collection	of	software	components	which	allow	development	and

execution	of	bytecode	based	languages.	Bytecode	is	binary	code	that	Java	platform
interpret.	The	Java	platform	is	composed	of

	

1.	 Compiler	–	It	generate	bytecode	from	source	code
2.	 Java	Virtual	Machine	–	It	provide	runtime	execution	environment	for	bytecode.
3.	 Libraries	–	It	contain	Java	API.
4.	 Tools	–	Various	Java	Tools.

	

The	Java	bytecode	has	two	important	characteristics

1.	 It	is	processor	independent	i.e.	the	program	can	run	on	any	processor
architecture.

2.	 It	is	Operating	System	independent	i.e.	bytecode	does	not	target	any	Operating
System	such	as	Windows	or	Linux.

	

The	Java	platform	is	available	in	four	flavors	based	upon	device	type.

1.	 Java	Card	–	It	is	used	in	smart	cards	and	small	memory	devices.
2.	 Java	ME	(Micro	Edition)	–	It	is	used	in	Personnel	Digital	Assistants,	Setup	Box	and

printers	application.
3.	 Java	SE	(Standard	Edition)	–	It	is	used	in	development	of	desktop,	communication

and	User	Interface	based	applications.
4.	 Java	EE	(Enterprise	Edition)	–	It	is	used	in	development	of	web	based,	messaging,

distributed	and	enterprise	applications.

	

The	Java	Platform	has	support	for	many	languages	such	as

1.	 Java
2.	 Jython
3.	 Jruby
4.	 Scala
5.	 Groovy
6.	 Rakudo	Perl	6
7.	 Kotlin

	

	

Java	as	Programming	Language

Java	is	multi	paradigm	programming	language.	It	is	one	of	the	most	used	programming
language	for	development	of	various	types	of	software	such	as	desktop,	enterprise,	web
based	and	mobile	applications.

	

Some	of	important	attributes	of	Java	Language	are

1.	 Statically	typed	–	The	type	of	the	variable	is	known	at	compile	time.
2.	 Object	oriented	–	Object	centered	programming.
3.	 Concurrent	–	Support	for	multithreading	programming.
4.	 Reflective	–	Allows	inspection	of	class,	method,	interface,	fields.

	

Languages	That	Influenced	Java

Java	language	falls	in	‘C’	family	of	language	category.	It	has	taken	inspiration	from	many
languages	including	languages	which	were	released	after	Java.	Some	of	the	major
languages	that	have	influenced	Java	are:

1.	 C++
2.	 Oberon
3.	 Ada	83
4.	 C#
5.	 Object	Pascal

	

Languages	Influenced	by	Java

As	per	tiobe	index	Java	is	the	No.1	Programming	language	today.	Java	has	influenced
many

Modern	languages	such	as:

1.	 C#
2.	 Clojure
3.	 Python
4.	 JavaScript
5.	 PHP
6.	 Scala
7.	 Groovy

	

Summary

Java	is	a	programming	language	and	a	platform.	Java	platform	is	divided	into	4	parts	–	SE,
ME,	EE	and	Card.	Java	is	multi-paradigm	programming	language.

	

Chapter	2
Java	Development	Kit	and	Java	Runtime
Engine
	

Topics

							Introduction

							Java	Runtime	Engine

							Java	Development	Kit

							Installing	JDK

							Installing	Notepad++

							Summary

	

	

Introduction

The	minimum	environment	required	for	a	java	program	to	run	is	called	JRE	(Java
Runtime	Engine).	JDK	is	the	minimum	environment	required	for	development	of	Java
Applications.

	

Java	Runtime	Engine	(JRE)

It	is	an	environment	that	is	required	for	executing	a	java	application.	A	very	popular	usage
of	JRE	is	with	a	browser	where	it	is	available	as	a	plugin	to	allow	applet	(client	side
program)	to	execute.	JRE	is	composed	of	following	components:

	

1.	 Interpreter:	It	understand	binary	java	code	(e.g.:	java.exe).
2.	 Tools:	They	provide	various	functionality	such	as	security,	core	services,

internationalization,	RMI	etc.

(e.g.:	keytool,	rmiregistry,	javacpl	etc)

c.	Library:	Java	Application	Programming	Interface	(rt.jar,	jce.jar,	jsse.jar	etc.)

	

JRE	cannot	be	used	for	development	of	Java	application	but	it	is	used	for	executing	them.

	

Java	Development	Kit	(JDK)

It	is	an	environment	that	is	targeted	for	developers	who	desire	to	develop	Java
applications.

JDK	is	nothing	but	Java	Standard	Edition	which	is	used	for	development	of	desktop,	user
interface,	communication	and	applet	types	of	applications.	JDK	is	composed	of	following
components:

	

1.	 Compiler:	It	is	used	to	compile	java	code	to	bytecode	(e.g	Javac.exe).

2.	 Interpreter:	It	processes	bytecode	to	native	code	(e.g.		java.exe).
3.	 Tools:	They	provide	functionality	such	as	RMI,	internationalization,	core	services,

security.
4.	 Library:	Reusable	pre-defined	Java	API	(rt.jar,	jce.jar,	jsse.jar	etc.).

	

JDK	is	a	super	set	of	JRE.	JDK	has	all	the	components	that	JRE	has	plus	it	has	a	compiler.

	

Installing	JDK

JDK	can	be	downloaded	from
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-
2133151.html.

	

JDK	is	available	for	many	operating	systems	such	as	Windows,	Linux,	Mac	OS,	and
Solaris	etc.	When	downloading	ensure	you	choose	Java	8	with	latest	update.	It	is	very
important	to	choose	the	right	architecture	for	JRE	is	available	for	32/64	bit	architecture.
After	JDK	is	downloaded	double	click	on	it	to	install	it.	Choose	the	default	options	to
complete	the	installation.

On	Windows	OS	32	bit	Java	will	install	in	–	C:\Program	Files	(x86)\Java\Jdk1.8.xxx
folder	and

On	64	bit	Windows	OS	Java	will	install	in	-	C:\Program	Files\Java\Jdk1.8.xxx	folder.

	

Please	ensure	that	you	have	downloaded	JDK	and	installed	it.	Please	don’t	download
JRE	and	install	it.

	

Installing	Notepad++

It	is	general	purpose	code	editor	that	has	support	for	over	20	programming	languages.	The
latest	version	is	v6.9	.The	editor	can	be	downloaded	from	https://notepad-plus-
plus.org/download/v6.9.html

	

Summary

JDK	is	the	minimum	environment	required	for	a	developer	for	developing	Java
applications.

JDK	can	be	downloaded	from	oracle	website.	JDK	is	the	super	set	of	JRE.

	

	

	

	

	

	
Chapter	3
Setting	PATH	Variable
	

Topics

							Introduction

							What	is	PATH	variable?

							Summary

	

	

Introduction

Environment	variables	are	special	Windows	OS	variables	that	are	dynamic	in	nature.	They
contain	values	that	can	be	used	by	programs.	Environment	variables	are	used	for	identify
installation	directory,	location	of	temporary	files,	tools	and	profile	settings.	The	value	of
environment	variable	is	changeable	and	updateable	therefore	environment	variable	is
called	as	dynamic.

	

Some	of	the	common	environment	variables	are

1.	 %appdata%:		Location	of	Application	Data	folder	for	your	user	profile.
2.	 %commonprogramfiles%:	Location	of	Common	Files	folder,	within	the	main

Program	Files	folder.
3.	 %path%:	Location	of	various	tools	e.g.	Java	tools.
4.	 %programfiles%:	Location	of	where	programs	are	installed.
5.	 %temp%:	Location	of	temporary	files.
6.	 %windir%:	Location	of	windows	system	files.

	

	

“SET”	command	provide	a	complete	list	of	all	environment	variables	from	command	line.

	

	

“SET”	followed	by	environment	variable	will	show	value	for	that	variable	only.

	

	

	

Setting	“PATH”	Variable

The	“PATH”	variable	contain	the	location	of	tools,	specifically	it	identifies	the	location	of
java	interpreter	(Java.exe),	Java	compiler	(Javac.exe)	and	Java	tool	chain.

PATH	variable	can	be	set	in	two	ways	using

1.	 Command	Line
2.	 Control	Panel

	

Command	Line	Setting

The	PATH	variable	can	be	set	using	SET	command.	The	SET	command	is	not	case
sensitive.

This	technique	will	apply	only	for	the	current	command	line	session.	Let’s	see	how	to	set

PATH	variable	at	command	line.

e.g.	

Set	path=	“C:\Program	Files\Java\jdk1.8.0_65\bin”

Explanation:	The	above	command	will	overwrite	the	PATH	variable	with	the	location	of
JDK	1.8.Use	double	quotes	for	directory	that	contain	space.	When	setting	PATH	variable
do	not	specify	the	name	of	tool	only	identify	the	location.

	

Set	PATH	=	“C:\Program	Files\Java\jdk1.8.0_65\bin”

Explanation:	Path	variable	is	case	insensitive.	The	directory	is	also	case	sensitive.

	

Set	PATH	=	%path%;	“C:\Program	Files\Java\jdk1.8.0_65\bin”

Explanation:	The	above	command	will	append	the	location	of	PATH	variable.

	

Setting	PATH	Using	Control	Panel

This	is	a	superior	way	of	setting	PATH	variable	because	it	will	be	permanent.

To	set	the	PATH	variable	using	control	panel	follows	the	steps	below.

	

1.	 Start	control	panel	->	Choose	System	applet.
2.	 Click	Advanced	System	Settings.
3.	 Choose	advanced	tab	from	environment	variables	dialog	box.
4.	 Click	on	Environment	variables	button.
5.	 Goto	Path	variable	in	System	Variables	container	and	edit	values	to	it.
6.	 If	PATH	variable	is	not	available	then	create	a	new	PATH	variable	and	add	value	to

it.

	

	

Summary

Path	environment	variable	identifies	the	location	of	Java	compiler	and	Java	interpreter.
Path	can	be	set	from	command	line	or	control	panel.	Control	panel	technique	is	better	than
command	line	because	it	is	permanent.

	
Chapter	4
Java	Compiler	and	Java	Interpreter
	

Topics

							Introduction

							Java	Compiler

							Java	Interpreter

							Summary

	

	

Introduction

The	most	fundamental	tools	that	a	Java	programmer	use	are	the	Java	compiler	(Javac.exe)
and	Java	interpreter	(Java.exe).	The	PATH	environment	should	be	set	to	the	location	of	the
JDK	bin	folder	which	contain	the	compiler	and	the	interpreter.	If	you	not	sure	that	your
PATH	is	not	set,	refer	to	the	previous	chapter	on	PATH	environment	variable.

	

Java	Compiler

The	Java	compiler	is	used	for	compiling	Java	programs.	The	compilation	process	generate
bytecode.	Bytecode	is	binary	code	that	is	understood	by	Java	Virtual	Machine	(JVM).

The	Java	compiler	can	be	activated	by	using	“Javac.exe”	command	at	command	line.

	

Some	of	compiler	options	are:

1.	 -help:	Display	all	the	compiler	option.
2.	 -version:	Returns	the	compiler	version.
3.	 -verbose:	Output	compiler	messages.
4.	 –deprecation:	Identify	retired	APIs.
5.	 –nowarn:	Generate	no	warnings.

	

The	compiler	options	are	case	sensitive.

	

A	snapshot	of	Java	compiler	options.

	

	

	

Java	Interpreter

It	is	used	for	executing	Java	programs	i.e.	the	interpreter	take	bytecode	as	an	input	and

execute	that	code	by	converting	it	to	native	code.	The	Java	interpreter	is	identified	by
“Java.exe”	command.

	

Some	of	the	command	Java	interpreter	options	are:

1.	 -version:	display	interpreter	version.
2.	 -verbose:	display	interpreter	information.
3.	 -help:	display	interpreter	options.

	

The	interpreter	options	are	case	sensitive.

A	snapshot	of	Java	interpreter	options

	

	

	

Summary

The	Java	compiler	is	activted	using	“Javac.exe”	command.It	is	used	used	for	compiling
Java	programs.The	Java	interpreter	is	called	using	“Java.exe”	command.	It	is	used	for
executing	Java	programs.

	

	

	

	

Chapter	5
First	Program
	

Topics

							Introduction

							The	First	Program

							Comments

							Summary

	

	

Introduction

A	Java	program	is	saved	with	.java	extension.	The	extension	is	case	sensitive.	The	Java
program	is	compiled	using	the	Java	compiler	(javac.exe)	and	executed	using	Java
interpreter	(java.exe)

	

The	First	Program

Let’s	write	our	first	Java	program	and	save	it	as	Prg.ca.	A	Java	program	that	does	not	have
valid	extension	(.java)	the	java	compiler	generate	an	error.

	

//	Name:	Prg.ca

//	Description:	A	valid	Java	program	has	.java	as	an	extension

class	Program	{	

}

	

Compilation	Command:	Javac	Prg.ca

	

Output:

	

	

If	a	Java	program	is	saved	with	.jAva	extension	then	also	the	compiler	will	generate	an
error	because	the	file	extension	is	case	sensitive.

//	Name:	Prg.jAva

//	Description:	The	extension	of	the	Java	program	is	case	sensitive.

//	The	correct	extension	is	.java

class	Program	{

	

}

	

Compilation	Command:	Javac	Prg.jAva

Output:

	

A	valid	extension	for	Java	program	is	.java.	The	compiler	generate	a	.class	file	as	part	of
compilation	process.	The	.class	file	contain	binary	instructions	called	as	bytecode	which
are	interpreted	by	Java	interpreter.	Now	let’s	write	a	correct	named	Java	program	and
investigate	the	bytecode.

	

//	Description:	A	valid	java	program	has	.java	as	an	extension.

//	Bytecode	is	binary	java	instruction.

//	Save	this	program	as	Prg2.java

	

class	Program	{

	

}

	

The	above	program	when	compiled	will	generate	a	.class	file	named	as	Prg2.class.	This
code	does	not	execute	as	it	does	not	have	“main”	method	which	is	the	entry	point	in	a
program.

Bytecode	is	binary	code	that	can	only	be	understood	by	Java	interpreter.	Open	Prg2.class
file	in	an	editor	to	examine	it.

	

Comments

The	comments	in	a	Java	program	can	be	given	in	two	ways

1.	 Single	line		-	//	This	is	a	comment
2.	 Multi	line	–

/*

This	comment	spans

Across	multiple

lines

*/

Summary

A	Java	program	has	.java	as	an	extension.	The	Java	program	compile	bytecode.	Bytecode
is	processed	by	Java	interpreter.

	

	
Chapter	6
The	HelloWorld	Program
	

Topics

							Introduction

							The	HelloWorld	Program

							Summary

	

	

Introduction

An	executable	Java	program	has	a	“main”	method	of	valid	signature	which	act	as	entry
point	for	the	program.	The	“main”	method	has	to	be	encapsulated	within	a	class.

	

The	HelloWorld	Program

Let’s	write	a	HelloWorld	Program.	After	writing	the	program	compile	it	using	Javac.exe
(compiler)	and	use	Java.exe	(interpreter)	to	execute	it.

	

//Prg.java

//	Description:	HelloWorld	Program

	

class	Program	{

public	static	void	main(String	args[])	{

System.out.println(“Namaskar	-	HelloWorld	-	Java”);

		}

}

	

Command	at	command	line:

1.	 Javac	Prg.java
2.	 Java	Program

	

Output:

	

	

Try-Out:

1.	 Make	main	method	upper	case.

Result:	Compiler	error.

	

The	valid	“main”	methods	that	can	be	used	in	a	Java	are

1.	 public	static	void	main(String[]	args).
2.	 public	static	void	main(String	args[]).
3.	 public	static	void	main(String	…a).

	

Only	one	of	the	above	“main”	method	can	be	used	in	a	class	at	a	time.

Let’s	verify	the	above	with	help	of	examples.

	

//Prg2.java

//Description:	Helloworld	program	using	“main(String[]	args)”	method	as	entry	point

class	Program	{

public	static	void	main(String[]	args)	{

System.out.println(“Namaskar	-	HelloWorld	-	Java”);

		}

}

	

Output:

	

//Prg3.java

//Description	:	Using	“main(String	…a)”	method	as	entry	point.

	

class	Program	{

public	static	void	main(String	…a)	{

System.out.println(“Namaskar	-	HelloWorld	-	Java”);

		}

}

	

Output:

	

Explanation:

1.	 “main(String	…a)”	represent	Java	syntax	that	informs	the	compiler	to	allow	any
number	of	string	arguments	to	main	method.

	

Try	out:

1.	 Have	a	main	method	which	does	not	have	valid	signature.

Result:	Program	will	compile	but	will	not	execute.

	

	

Summary

Main	method	is	the	entry	point	in	a	program	only	when	it	is	of	a	valid	signature	else	it
behave	like	an	ordinary	method	of	the	class.	

	

	

	

	

	
Chapter	7
Anatomy	of	HelloWorld	Program
	

Topics

							Introduction

							Command	Line	Arguments

							Main	Method

							Anatomy	of	System.out.println()

							Summary

	

	

Introduction

In	this	chapter	you	will	understand	the	anatomy	of	the	HelloWorld	program.

	

Command	Line	Arguments

The	main	method	is	an	entry	point	which	take	a	string	array	as	an	argument.	The	arrays
are	bounds	checked	in	Java.	The	programmer	can	pass	any	type	of	data	at	command	line
to	main	method.	The	data	passed	will	be	captured	as	string.	Programmer	has	to	perform
type	conversion	for	further	processing	on	that	data.

	

Let’s	understand	how	to	pass	command	line	arguments	and	capture	them	in	our	program.

//Prg.java

//Description:	Passing	and	capturing	command	line	arguments

	

class	Program	{

public	static	void	main(String	args[])	{

System.out.println(“HelloWorld	:”	+	args[0]);	

System.out.println(“HelloWorld	”	+	args[0]	+”,”	+	args[1]);

}

}

Output:

	

When	the	programmer	passes	just	“Ram”	as	an	argument.	The	Java	interpreter	throws
Array	Exception	because	array	is	bounds	checked	i.e.	the	program	is	anticipating	2
arguments.

	

Output:

	

	

Now	let’s	understand	the	behavior	of	main	method	better	by	passing	Integers.	All
arguments	passed	to	main	method	are	accepted	as	String.	If	integer	is	passed	then	it	has	to
be	converted	for	further	processing.	The	next	program	explain	how	to	accomplish	this.

	

//Prg2.java

//Description:	Passing	integers	at	command	line

	

class	Program	{

public	static	void	main(String	args[])	{

int	i	=	Integer.parseInt(args[0]);	//	conversion	of	string	to	integer

int	j	=	Integer.parseInt(args[1]);

System.out.println(“The	sum	is	:”	+	(i+j));	

}

}

	

Output:

	

	

If	one	of	the	argument	that	is	passed	is	character	then	Java	interpreter	raises	an	exception.

This	is	because	character	cannot	be	converted	to	integer

	

Output:

	

Main	Method

The	signature	of	the	main	method	cannot	be	changed	i.e	“void”	cannot	precede	“static”
keyword	if	void	appears	before	static	compiler	will	report	an	error.

	

The	access	specifier	of	“main”	method	can	only	be	public	i.e.	it	cannot	be
protected,private	or	default.	Let’s	understand	the	behaviour	of	main	method	with	help	of
an	example.

	

//Prg3.java

//Desription:	Using	main	method	signature

	

class	Program	{	//	Compiler	Error

public	void	static	main(String	args[]){		//	static	should	precede	void

		System.out.println(“Namaskar	Helloworld	Java”);

}

}

	

Output:

	

	

When	a	main	method	is	not	public	then	it	won’t	be	an	entry	point	in	the	program.	If	main
method	is	non-public	the	compiler	won’t	report	any	error	but	interpreter	will	raise	an
exception	this	is	because	interpreter	does	not	find	any	entry	point	hence	it	cannot	execute
the	program.

	

//Prg4.java

//Description:	Using	main	method	signature	-	access	specifier

class	Program	{

protected	static	void	main(String	args[]){

		System.out.println(“Namaskar	Helloworld	Java”);

}

}

	

Output:

	

	

Anatomy	of	System.out.println()

The	System	is	a	class	which	belong	to	“java.lang”	package.	A	package	is	a	repositry	of
reusable,	organized	Java	code.	The	“java.lang”	is	the	default	package	hence	it	is	not
required	to	be	imported.

	

The	“out”	is	a	pubic	static	object	of	PrintStream	class.	Static	objects	are	class	level	hence
can	be	accessed	without	an	instance	of	the	class.

	

The	“println”	is	a	method	that	belong	to	PrintStream	class	that	prints	data	on	Stanard
Output	i.e	Visual	Display	Unit	(Monitor).

	

	

Summary

Main	method	takes	string	array	as	an	argument.Main	method	has	to	be	public	only.

The	“java.lang”	is	the	default	package	in	Java.

	

	

	

	

	

	

Chapter	8
Multiple	Main	Methods
	

Topics

							Introduction

							Multiple	main	Methods	in	a	Single	Class

							Multiple	Classes	and	main	Method

							Summary

	

	

	

Introduction

A	Java	program	can	have	multiple	classes.	When	a	Java	program	that	has	multiple	classes
is	compiled	it	will	produce	many	.class	files	i.e.	each	class	in	Java	program	will	compile	to
a	specific	class	file.	The	name	of	.class	file	will	be	same	as	the	name	of	the	class	in	the
program.

	

Since	Java	has	support	for	method	overloading	(mechanism	where	a	class	can	have	many
methods	with	same	name	but	which	differ	in	signature)	a	class	can	have	any	number	of
main	methods	but	one	and	only	one	main	method	will	be	the	entry	point	for	that	class.
Basically	we	can	have	many	classes	and	each	class	can	have	one	main	method	as	entry
point.

	

Multiple	main	Methods	in	a	Single	Class

A	class	in	Java	can	have	any	number	of	main	methods	as	Java	has	support	for	Method
Overloading	(mechanism	where	a	class	can	have	many	methods	with	same	name	but
which	differ	in	signature)	but	there	can	only	be	one	Entry	point	main	method	which	is	of
specific	pre-defined	signature	(refer	Chapter	6).	Let’s	understand	how	to	create	multiple
main	methods	in	a	single	class	with	the	help	of	an	example.

	

//Prg.java

//Description:	Multiple	Main	methods	in	a	single	class

	

class	Program	{

public	static	void	main(String	args[])	{			//	This	is	the	entry	point

														System.out.println(“Namaskar	-	Helloworld	-	Java”);

}

/*	public	static	void	main(String	…	args)	{

														System.out.println(””);

}

*/

public	static	void	main()	{															//	This	is	not	entry	point

														System.out.println	(“Main()	method”);

}

public	void	main(String	ar)	{															//	This	is	not	entry	point

														System.out.println(“String	argument-main”);

}

}

	

The	above	program	compile	and	execute	without	any	error

Output:

	

If	the	commented	code	is	uncommented	then	compiler	yield	into	an	error	because	there
can	only	be	one	entry	point	within	a	class.

Output:

	

	

Multiple	Classes	and	main	Method

A	Java	program	can	have	multiple	classes	and	each	class	can	have	only	one	entry	point	but
the	class	can	have	many	main	methods	which	do	not	act	as	entry	point.	Each	class	in	the
program	will	compile	to	a	.class	file.

To	execute	a	specific	main	method	issue	the	command		“Java	<classname>”.

Let’s	understand	how	to	create	main	methods	in	multiple	classes.

//Prg2.java

//Description	:	Multiple	classes	in	a	program

	

class	Program	{

public	static	void	main(String	args[])	{	//	This	is	the	entry	point

System.out.println(“Program	class	-	Main	method”);

}

public	static	void	main()	{	//	This	is	not	entry	point

System.out.println	(“Program	class	-	Main()	method”);

}

public	void	main(String	ar)	{	//	This	is	not	entry	point

System.out.println(“Program	class	-	String	argument-main”);

}

}

	

class	Test	{

public	static	void	main(String[]	args)	{	//	This	is	the	entry	point

														System.out.println(“Test	class	-	Main	method”);

}

public	static	void	main()	{	//	This	is	not	entry	point

														System.out.println	(“Test	class-Main()	method”);

}

public	void	main(String	ar)	{	//	This	is	not	entry	point

														System.out.println(“Test2	class-String	argument-main”);

}

}

	

class	Test2	{

public	static	void	main(String[]	args)	{	//	This	is	the	entry	point

														System.out.println(“Test2	class	-	Main	method”);

}

public	static	void	main()	{	//	This	is	not	entry	point

														System.out.println	(“Test2	class	-	Main()	method”);

}

public	void	main(String	ar)	{	//	This	is	not	entry	point

														System.out.println(“Test2	class-String	argument-main”);

}

}

	

To	execute	a	desired	main	method	used	the	command	:	Java	<classname>.

Output:

1.	 Java	Program

	

2.	 Java	Test

	

3.	 Java	Test2

	

	

Summary

A	class	can	only	have	one	entry	point.A	program	can	contain	multiple	classes	and	each
class	can	have	it’s	own	entry	point.	Each	class	compile	to	an	individual	class	file.

	

	

	

	

	

	

Chapter	9
Public	Class	and	File	Name
	

Topics

							Introduction

							Public	Class	in	a	Program

							Summary

	

Introduction

In	this	chapter	we	will	discuss	about	how	to	rules	of	naming	a	java	program	and	class	or
classes	that	are	in	it.

	

Public	Class	in	a	Program

A	class	can	only	have	one	of	the	two	access	specifiers	i.e.	a	class	can	be	declared	with
public	or	default	(package	level)	access	specifier.A	class	cannot	be	declared	as	private	or
protected.

	

There	are	rules	that	have	to	be	followed	when	decarling	a	class	or	giving	name	to	Java
program(file).

1.	 There	can	only	be	one	public	class	per	java	file.
2.	 The	public	class	name	and	java	file	name	has	to	be	same.
3.	 Even	the	cases	have	to	match	between	the	java	file	(name)	and	class	(name).

	

Let’s	understand	these	rules	with	help	of	a	program.

	

//Prg.java

//Description:	Class	cannot	be	declared	as	private	or	protected

	

public	class	Prg	{	//	The	name	of	the	public	class	and	file	name	have	to	be	same

																			//	The	name	of	program	will	be	Prg.java

public	static	void	main(string	args[])	{

		System.out.println(“Namaste	Java”);

}

}

	

class	Test	{

public	static	void	main(string	args[])	{

														System.out.println(“Test	class”);

}

}

Command	:	Java	Prg

Output:

	

If	the	Test	class	is	declared	as	private	the	compiler	will	report	and	error.

Output:

	

	

Summary

A	class	cannot	be	declared	as	private	or	protected.There	can	only	be	one	public	class	per
java	file.

	

	

	

	

	

Chapter	10
Runtime	Execution
	

Topics

							Introduction

							Role	of	Java	Interpreter

							What	is	JIT	Compilation?

							Platform	Independence

							Summary

	

Introduction

In	this	chapter	we	will	discuss	about	behaviour	of	program	during	runtime	i.e.	when	the
program	is	executing.	We	will	also	discuss	about	the	role	of	interpreter.Understand	what	is
JIT	and	learn	about	what	makes	Java	platform	independent.

	

Role	of	Java	Interpreter

The	interpreter	can	be	activated	by	executing	the	command	“Java.exe”	from	command
line.	The	interpreter	is	also	called	as	JVM	(Java	Virtual	Machine).	The	responsibility	of
the	interpreter	are	as	follows:

1.	 Taking	bytecode	as	an	input.
2.	 Processing	bytecode	to	native	code(executable	code	for	specific	OS).
3.	 Executing	the	native	code.

	

What	is	JIT	Compilation?

JIT	stands	for	Just	In	Time	compilation.It	is	an	action	performed	by	JVM	where	Bytecode
is	converted	to	Native	code.	Since	it	occur	on	demand	hence	it	is	called	as	Just	In	Time.

	

A	diagram	representing	Just	In	Time	Compilation.

	

Platform	Independence

A	program	is	called	platform	independent	when	the	binary	code	is	not	native	and	does	not
target	a	specific	OS.	Since	Java	Program	is	compiled	into	bytecode	which	does	not	target
any	OS	but	the	bytecode	is	processed	only	by	JVM	and	there	are	JVMs	that	are	available
for	different	OS.	This	is	what	make	Java	program	platform	independent.

A	diagram	representing	how	Java	is	platform	independent.

	

	

	

	

Summary

Java	Virtual	Machine	is	also	called	as	pseudo	OS.JVM	convert	bytecode	to
nativecode.Conversion	of	Bytecode	to	Nativecode	is	called	JIT.

	

	

	

	

	

	

Chapter	11
Alternate	HelloWorld	Program
	

Topics

							Introduction

							Using	PrintStream	Class

							Summary

	

	

Introduction

In	this	chapter	we	will	discuss	an	alternative	way	of	printing	data	on	screen	i.e.	printing
data	without	using	System.out.println()	method.To	accomplish	this	I	will	use	the
PrintStream	class.

	

Using	PrintStream	Class

To	create	an	object	of	PrintStream	class	we	have	to	pass	OutputStream	object	to	the
constructor	of	PrintStream	class.	The	handle	to	output	stream	is	established	using
FileDescriptor	class	‘out’	field	which	is	passed	as	an	argument	to	FileOutputStream(child
class	of	OutputStream	class)	class	constructor.	Let’s	understand	this	with	the	help	of	an
example.	Java.io	package	has	to	be	imported	as	the	classes	used	are	available	in	that
package.

	

//Prg.java

//Description	:	Alternate	HellWorld	Program

	

import	java.io.*;

class	Program	{

public	static	void	main(String	args[])	{

FileOutputStream	obj	=	new	FileOutputStream(FileDescriptor.out);

PrintStream	obj2	=	new	PrintStream(obj);

obj2.println(“Alternative	Namaste	Java”);

}

}

	

Output:

	

Summary

FileDescriptor.out	property	identifies	the	standard	output.PrintStream	takes	OuputStream
class	object	when	it	is	created.

	

	

	

	
Chapter	12
Numeric	DataTypes
	

Topics

							Introduction

							What	is	a	Variable?

							Category	of	DataTypes

							Integer	Types

							Floating	Point	Types

							Summary

	

	

	

Introduction

In	this	chapter	I	will	discuss	how	to	create	and	use	numeric	variables.	You	will	learn	about
creating	and	using	Integer	and	Floating	data	types.

	

What	is	a	Variable?

It	is	a	memory	location	in	a	process	that	store	data.Since	Java	is	statically	typed	language
the	type	of	a	variable	is	known	at	compile	time	therefore	variable	has	a	type.	The	core	data
types	are	also	called	as	primitives.	The	primitives	data	types	supported	by	Java	are

1.	 char
2.	 byte
3.	 short
4.	 int
5.	 long
6.	 float
7.	 double
8.	 boolean

	

Based	on	the	data	type	of	the	variable	memory	will	be	allocated	by	the	JVM.

	

Category	Of	DataTypes

Broadly	Java	support	two	kinds	of	types

Primitive	data	types	–	They	are	core	data	types
Reference/Object	data	types	–	They	derive	from	Object	class	directly	or	indirectly.

	

Integer	Types

Since	Java	is	statically	typed,	a	variable	has	to	be	declared	before	usage.Integer	type	can
only	contain	a	whole	number.The	default	integer	type	is	‘int’.	Supported	integer	types	are

	

Data	Type Size(Bytes) Sign

Byte 1 Signed

Short 2 Signed

Int 4 Signed

long 8 Signed

	

	

Let’s	understand	how	to	use	integer	types	with	help	of	an	example.

//Prg.java

//Description	:	Integer	data	type	behaviour

	

class	Program	{

public	static	void	show()	{

		byte	b=12;

		short	sh=	124;

		int	i	=	256;

		long	l	=	459;

		System.out.println(“Byte	value	:”+b);

		System.out.println(“Short	value	:”+sh);

		System.out.println(“Int	value	:”+	i);

		System.out.println(“Long	value	:”	+	l);

}

public	static	void	main(String	args[]){

show();

}

}

	

Output:

	

	

//Prg2.java

//Description	:	Checking	integer	data	type	value	range

	

class	Program	{

public	static	void	show()	{

		byte	b=-128;		//	-128	to	127	(inclusive)

		short	sh=	124;	//		-32,768	to	32,767

		int	i	=	256;	//		-2^31	and	a	maximum	value	of	2^31-1

		long	l	=	459;	//		-2^63	to	2^63-1

	

		System.out.println(“Byte	value	:”+b);

		System.out.println(“Short	value	:”+sh);

		System.out.println(“Int	value	:”+	i);

		System.out.println(“Long	value	:”	+	l);

}

public	static	void	main(String	args[]){

show();

}

}

	

Output:

	

If	byte	variable	is	assigned	value	of	-129	it	will	generate	a	compiler	output.

	

	

	

Floating	Types

The	floating	numeric	types	can	hold	fractional	number. 	Java	has	support	for	2	floating
types	i.e.	float	and	double.	The	float	type	has	to	be	suffixed	with	‘f’	because	default
floating	type	is	double.

	

Data	Type Size(Bytes) Sign

Float 4 Signed

Double 8 Signed

	

Let’s	understand	the	usage	of	floating	types	with	help	of	examples.

	

//Prg3.java

//Description	:	Checking	floating	data	type

	

class	Program	{

public	static	void	show()	{

		float	f	=	10.10f;	//	identify	a	floating	value	by	a	suffix	‘f’

		double	d	=	20.20d;	//	suffix	‘d’	for	double	is	optional

	

		System.out.println(“Byte	value	:”+f);

		System.out.println(“Short	value	:”+d);

}

public	static	void	main(String	args[]){

show();

}

	

Output:

	

If	floating	variable	value	is	not	suffixed	with	‘f’,	compiler	will	generate	an	error.

	

Output:

	

	

	

Using	floating	and	integer	types	together.

	

//Prg4.java

//Description:	Using	float	and	integer	type	together

	

	

class	Program	{

public	static	void	intOps()	{

int	i=10;

byte	b=34;

i=	i*b;

System.out.println(“i=	i*b	:”	+	i);

}													

	

public	static	void	fltOps()	{

float	f	=	10.45f;

double	d	=	45.5d;

d	=	f*d;

System.out.println(“d	=	f*d	:”	+	d);

}

public	static	void	mixedOps()	{

		float	f	=	10.10f;

		int	j	=10;

		f	=	f	*	j;

		System.out.println(“f	=	f	*	j	:”	+	f);

}

public	static	void	main(String	args[]){

intOps();

fltOps();

mixedOps();

}

}

	

Inference

a.	Higher	memory	type	can	hold	result	of	an	expression.

b.	Floating	point	can	hold	result	of	a	mixed	expression	(integer	cannot).

	

Output:

	

If	result	of	an	expression	is	held	into	a	variable	that	cannot	hold	the	value,	compiler	will	a
generate	an	error.

//Prg4a.java

//Description:	Using	float	and	integer	type	together

	

	

class	Program	{

public	static	void	intOps()	{

int	i=10;

byte	b=34;

b=	i*b;

System.out.println(“i=	i*b	:”	+	i);

}													

	

public	static	void	fltOps()	{

float	f	=	10.45f;

double	d	=	45.5d;

d	=	f*d;

System.out.println(“d	=	f*d	:”	+	d);

}

public	static	void	mixedOps()	{

		float	f	=	10.10f;

		int	j	=10;

		j	=	f	*	j;

		System.out.println(“f	=	f	*	j	:”	+	f);

}

public	static	void	main(String	args[]){

intOps();

fltOps();

mixedOps();

}

}

	

Output:

	

	

A	floating	expression	can	be	casted	into	int	using	the	syntax

int	k=	(int)	f	*	f;

	

//Prg5.java

//Description	:	Type	casting	float	to	an	int

	

class	Program	{

public	static	void	mixedOps()	{

		float	f	=	10.10f;

		int	j	=10;

		j	=	(int)	f	*	j;

		System.out.println(“j	=	(int)	f	*	j		:”	+	j);

}

public	static	void	main(String	args[]){

mixedOps();

}

}

	

Output:

	

All	variables	in	Java	have	default	values	unlike	C	or	C++.	Let’s	understand	this	better	with
help	of	an	example.

	

//Prg6.java

//Description	:	Default	value	of	numeric	data	types.

	

class	Program	{

byte	b;

short	sh;

int	i;

long	l;

float	f;

double		d;

public		void	show()	{

														System.out.println(“Byte	:”+b);

														System.out.println(“Short	:”+sh);

														System.out.println(“Int	:”+	i);

														System.out.println(“Long	:”+	l);

														System.out.println(“Float	:”+	f);

														System.out.println(“Double	:”+	d);

}

public	static	void	main(String	args[])	{

Program	obj	=	new	Program();

obj.show();

	

}

}

	

Output:

	

	

Summary

Java	is	statically	typed	language.DataTypes	can	be	divided	into	2	categories	i.e.	Primitive
and	Reference	types.The	default	floating	data	type	is	double.

	

	

	

	

	

	

	

	

Chapter	13
Non	Numeric	DataTypes
	

	

Topics

							Introduction

							Non	Numeric	Primitive	Types?

							Non	Numeric	Reference	Types

							Summary

	

	

	

Introduction

In	this	chapter	I	will	discuss	how	to	use	non-numeric	data	types.	You	will	learn	about	how
to	use	boolean,	char	and	reference(non	primitive)	types.

	

Non	Numeric	Primitive	Types

There	two	non	numeric	primitive	types	i.e	char	and	boolean.

	

Data	Type Size(Bytes)

char 2

boolean 1

	

Let’s	understand	this	with	help	of	an	example.

//Prg.java

//Description:	Using	char	and	boolean	types

	

class	Program	{

		char	c;

		boolean	b;	

public	void	defValue()	{

		System.out.println(“Default	Character	value	:	“+	c);

		System.out.println(“Default	Boolean	value	:”	+	b);

}

public	void	show()	{

		char	i=	‘a’;

		boolean	b	=	true;

		System.out.println(“Character	value	:	“+	i);

		System.out.println(“Boolean	value	:”	+	b);

}

public	static	void	main(String	args[])	{

		Program	obj	=	new	Program();

		obj.defValue();

		obj.show();

}

}

	

Ouput:

	

	

	

Non	Numeric	Reference	Type

Non	Numeric	reference	type	supported	in	Java	are	String	and	Object.String	is	aggregation
of	characters.Object	is	the	mother	class	of	all	classes	directly	or	indirectly.Let’s
understand	this	better	with	help	of	an	example.

	

//Prg2.java

//Description	:	Non	Numeric	reference	type	behaviour

	

	

class	Program	{		//	Program	class	inherit	from	Object	class	implicitly

		static	void	dataOps()	{

String	str=“Namaskar”;

Object	obj=“Vanakkam”;	//	Object	is	the	mother	class	of	all	classes	in	java

System.out.println	(“String	:”	+	str);

System.out.println	(“Object(String)	:”	+	obj);

obj	=	234;	//	Object	can	be	assigned	with	any	value	because	it	is	the	Mother	class

																														//	of	all	classes.

System.out.println	(“Object(String)	:”	+	obj);

obj	=	false;

System.out.println	(“Object(boolean)	:”	+	obj);

obj	=	234.7899;

System.out.println	(“Object(double)	:”	+	obj);

		}

public	static	void	main(String	args[])	{

dataOps();

}

}

	

	

Output:

	

Summary

Size	of	character	data	type	is	2	bytes.Size	of	Boolean	data	type	is	1	byte.

	

	

	

	

Chapter	14
Literals	and	Constants
	

Topics

							Introduction

							Using	Literals.

							Using	Constants.

							Summary

	

	

	

Introduction

In	this	chapter	I	will	discuss	about	how	to	create	and	use	Literals	and	Constants.

	

Using	Literals

Fixed	or	constant	value	stored	in	a	variable	is	called	as	a	Literal.	Literals	can	be	used	for
all	primitives	that	are	supported	by	Java.	Literals	can	also	be	used	with	reference	type
String.

Literals	can	be	used	with	Integer		in	3	ways:

1.	 Decimal		:	Start	with	number		e.g.	int	I	=	889;
2.	 Octal	:	Start	with	‘0’		e.g.	int	i=	0123;
3.	 Hexadecimal	:	Start	with	0x/0X	e.g.	int	i=0x1234;

	

Let’s	understand	this	better	with	help	of	an	example.

	

//Prg.java

//Description:	Integer	literal	usage.

	

class	Program	{

		static	void	prgOps()	{

		int	i=234;

		int	j=01;

		int	k=0xa;

		System.out.println(“\n	int—”);

		System.out.println(“Decimal	Literal	:”+	i);

		System.out.println(“Octal	Literal	:”	+	j);

		System.out.println(“Hexadecimal	Liternal	:”	+	k);

		}

	

		static	void	prgOps2()	{

		short	i=2834;

		short	j=071;

		short	k=0xab;

		System.out.println(“\n	short—”);

		System.out.println(“Decimal	Literal	:”+	i);

		System.out.println(“Octal	Literal	:”	+	j);

		System.out.println(“Hexadecimal	Liternal	:”	+	k);

		}

	

public	static	void	main(String	args[])	{

prgOps();

prgOps2();

}

}

	

	

Output:

	

If	the	hexadecimal	is	given	incorrect	value	compiler	reports	an	error.

	

	

The	floating	point	literal	is	by	default	of	type	double.	To	identify	a	float	type	suffix	‘f/F’
after	the	value	e.g.	float	f	=	10.45f.	If	required	identify	a	double	suffix	‘d/D’	after	the
value	e.g.	double	d=	45.231d.To	identify	powerof	‘e’	can	be	used.	Let’s	understand	this
better	with	help	of	an	example.

	

//Prg2.java

//	Description	:	Floating	point	literal	usage

	

class	Program	{

		static	void	prgOps()	{

		float	i=234.3423f;

		double	j=79879.345d;

		double	k=	686868e4;

		System.out.println(“Decimal	Literal	:”+	i);

		System.out.println(“Octal	Literal	:”	+	j);

		System.out.println(“Hexadecimal	Liternal	:”	+	k);

		}

public	static	void	main(String	args[])	{

prgOps();

}

}

	

	

Output:

	

	

	

The	character	literal	is	enclosed	in	single	quote	and	string	literal	is	put	in	double	quotes.
The	boolean	type	can	have	any	of	the	2	literal	values	i.e.	true	or	false.	Java	also	has
support	for	null	literal	but	it	cannot	be	used	with	primitives	but	can	be	used	with	reference
types.Let’s	understand	it	better	with	an	example.

	

	

//Prg3.java

//Description	:	Literal	usage	with	char,String	and	boolean	type.

	

class	Program	{

		static	void	prgOps()	{

		char	c	=	‘a’;

		String	str	=	“Vanakkam	Java”;

//	c=null;	//	error	cannot	be	used	with	primitives

str	=	null;

boolean	b	=	true;

//	b=	null;	//	error

System.out.println(“Char	literal:”+c);

System.out.println(“String	literal:”+str);

System.out.println(“Boolean	literal:”+b);

		}

public	static	void	main(String	args[])	{

prgOps();

}

}

	

Output:

	

Using	Constants

Constant	is	a	variable	whose	value	once	assigned	cannot	be	changed.Constant	variable	is
declared	using	‘final’	keyword.

Usage

final	int	i=10;
final	char	c=‘a’;
final	boolean	b	=	true;

	

Let’s	understand	this	with	help	of	an	example.

	

//Prg4.java

//Description:	Creating	constant	variable

	

class	Program	{

public	static	void	main(String	args[])	{

final	int	i=10;	//	final	make	a	variable	constant

final	float	f=	10.10f;

final	double	d	=	20.20;

final	char	c	=	‘a’;

final	boolean	b	=	true;

final	String	str	=	“Namaste”;

	

	

System.out.println(“i	:”+i);

System.out.println(“f	:”+f);

System.out.println(“d	:”+d);

System.out.println(“c	:”+c);

System.out.println(“b	:”+b);

System.out.println(“str	:”+str);

}

}

	

Output:

	

	

Summary

Fixed	or	constant	value	store	in	a	variable	is	called	a	literal.	Final	keyword	is	used	for
making	a	variable	constant.

	
Chapter	15
Escape	Sequence
	

Topics

							Introduction

							What	is	Escape	Sequence?

							Summary

	

	

	

Introduction

In	this	chapter	we	will	learn	about	Escape	Sequence	usage	in	Java. 	Escape	Sequences	are

speical	characters.	They	are	also	called	as	control	sequences.

	

What	is	Escape	Sequence?

It	is	used	to	provide	alternative	meaning	to	series	of	character.	Escape	sequence	start	with
a	backslash	(‘').	It	has	special	meaning	for	the	compiler.Some	of	the	escape	sequence
characters	supported	are:

1.	 \t	-	Insert	a	tab	in	the	text.
2.	 \b	-	Insert	a	backspace	in	the	text.
3.	 \n	-	Insert	a	newline	in	the	text.
4.	 \r	-	Insert	a	carriage	return	in	the	text.
5.	 \f	-	Insert	a	formfeed	in	the	text.
6.	 '	-	Insert	a	single	quote	character	in	the	text.
7.	 \”	-	Insert	a	double	quote	character	in	the	text.
8.	 \	-	Insert	a	backslash	character	in	the	text.

	

Let’s	understand	escape	sequences	with	help	of	an	example.

	

Summary

‘\r’	is	used	for	carriage	return,	‘\n’	is	used	for	newline	and	‘\t’	is	used	for	tab.

	

	

	
Chapter	16
Immutable	String
	

Topics

							Introduction

							What	is	Immutability?

							Using	String	type

							Summary

	

	

	

Introduction

In	this	chapter	I	will	discuss	about	the	concept	of	Immutability	and	after	that	we	will	learn
about	how	string	data	type	is	immutable.

	

What	is	Immutability?

The	state	of	an	object	cannot	be	changed	after	initialization	is	called	as	Immutability.	It
should	be	very	clear	that	immutablility	does	not	mean	constant	an	entity.	An	immutable
object	is	an	object	where	the	internal	fields	cannot	be	changed	after	constructor
call.Objects	which	are	immutable	cannot	have	their	state	changed	after	they	have	been
created.

	

Using	String	Type

String	is	a	reference	type	(it	is	not	primitive).String	is	immutable.Once	value	is	assigned
to	string	variable	it	cannot	be	changed.If	a	string	is	assigned	a	new	value	then	JVM	will
create	a	new	string	on	heap	memory.

	

Let’s	understand	string	immutablility	with	help	of	an	example.

	

//Prg.java

//Description	:	String	Immutable	behaviour

	

class	Program	{

static	void	immOps()	{

		String	s	=	“Namaste”;

		s.concat(”	Java”);	//	The	new	string	is	not	concatenated

		System.out.println(“Value	of	string	after	concat()	:”+s);

}

static	void	immOps2()	{

		String	s	=	“Namaste”;

		s=s.concat(”	Java”);

		System.out.println(“Value	of	string	after	concat()(with	assignment)	:”+s);

}

public	static	void	main(String	args[]){

		immOps();

		immOps2();

}

}

	

Output:

	

	

If	programmer	is	not	careful	about	using	strings	then	this	may	lead	to	performance	issues.
If	the	string	variable	has	to	be	intialized	multiple	times	then	it	is	best	to	use	StringBuilder.

	

Strings	can	be	compared	in	two	ways	i.e.	by	value	and	reference.	String	can	be	compared
by	value	using	equals	method	and	by	reference	using	==	operator.Let’s	understand	this
better	with	help	of	an	example.

	

	

//Prg2.java

//Description:	String	comparision

	

class	Program	{

static	void	strOps()	{

														String	str	=	“Namaste”;

														String	str2	=	“namaste”;

														System.out.println(“String	are	same(case	sensitive)	:”+	str2.equals(str));

														System.out.println(“String	are	same(case	insensitive)	:”	+

str.equalsIgnoreCase(str2));

}

static	void	strOps2()	{

														String	str	=	“Namaste”;

														String	str2	=	“namaste”;

														if	(str==str2)	{	//	Reference	comparison

																System.out.println(“Strings	share	same	reference”);

														}	else	{

																System.out.println(“Strings	do	not	share	same	reference”);

														}

}

public	static	void	main(String	args[])	{

														strOps();

}

}

	

	

	

Output:

	

	

Summary

String	is	immutable	type.	String	can	be	compared	as	a	value	or	as	a	reference.

	

	

	

	

	

	

Chapter	17
StringBuilder	Class
	

Topics

							Introduction

							Using	StringBuilder	Class

							Summary

	

	

	

Introduction

In	this	chapter	we	will	discuss	about	how	to	use	StringBuilder	Class.	This	is	a	mechanism
to	initialize	and	reintialize	strings	without	creating	a	new	string	in	memory,	in	short
StringBuilder	is	not	immutable.

	

Using	StringBuilder	Class

It	is	a	mutable	sequence	of	characters.StringBuilder	class	is	not	immutable	like	String
class.

Key	methods	of	StringBuilder	class	are

Append()
Insert()

	

The	StringBuilder	is	available	in	java.io	package	hence	it	has	to	be	imported.

Let’s	understand	usage	of	StringBuilder	class	with	help	of	an	example.

	

//Prg.java

//Description:	Using	StringBuilder	class

	

import	java.lang.*;

	

class	Program	{

	

public	static	void	main(String[]	args)	{

	

StringBuilder	str	=	new	StringBuilder(“Namaste”);

str.append(”	Java”);

System.out.println(“Using	Append()	method:”	+	str);

str.insert(5,”	Vanakkam”);

System.out.println(“Using	Insert()	method:”	+	str);

str.delete(2,5);

System.out.println(“Using	Delete()	method:	“+	str);

	

}

}

	

Output:

	

	

Summary

StringBuilder	is	mutable.	Delete()	method	is	used	for	removing	characters	from	string.

	

	

	

	

	

Chapter	18
Wrapper	Classes
	

Topics

							Introduction

							Using	Wrapper	Class

							Autoboxing	and	Unboxing

							Summary

	

	

	

Introduction

In	this	chapter	you	will	learn	about	how	to	convert	primitive	data	type	into	an	object.	This
conversion	happen	with	the	help	of	wrapper	classes.	In	this	chapter	I	will	also	discuss
about	the	concept	of	Autoboxing	and	Unboxing.

	

Using	Wrapper	Classes

Wrapper	class	is	used	for	converting	a	core	data	type	into	an	object.There	are	8	wrapper
classes	for	8	data	types.List	of	wrapper	classes	is	as	follows

	

Primitive	Type Wrapper	Class

boolean Boolean

char Character

byte Byte

short Short

int Integer

long Long

float Float

double Double

	

Principally	wrapper	classes	are	used	for

1.	 Representing	data	as	null	if	required
2.	 Using	the	data	in	a	collection.

	

Let’s	understand	the	usage	of	wrapper	classes	with	help	of	an	example.

	

//Prg.java

//Description	:	Wrapper	class	usage

	

class	Program	{

static	void	wrapperOps()	{

														int	i=10;

														Integer	iw	=	Integer.valueOf(i);	//	int	to	Integer

														System.out.println(“After	conversion(primitive	to	wrapper)	:”+	iw);

														int	j	=	iw.intValue();

														System.out.println(“After	conversion(wrapper	to	primitive)	:”+j);

}

public	static	void	main(String	args[])	{

wrapperOps();

}

}

	

Output:

	

	

Autoboxing	and	Unboxing

Automatic	conversion	of	primitive	to	equivalent	wrapper	type	by	compiler	is	called
Autoboxing.	

e.g.

int	i=10;

Integer	j=i;

	

Automatic	conversion	of	wrapper	type	to	equivalent	primitive	type	by	compiler	is	called
Unboxing.

e.g.

Integer	j=	new	Integer(50);

int	i=j;

Let’s	understand	this	better	with	the	help	of	an	example.

	

//Prg2.java

//Description	:	Autoboxing	and	Unboxing	behaviour

	

class	Program	{

static	void	boxOps()	{

														int	i=20;

														Integer	j=i;	//	Autoboxing

														Integer	m	=	new	Integer(77);

														int	k=m;	//	Unboxing

														System.out.println(“Value	of	i(primitive)	:”+i);

														System.out.println(“Value	of	j(wrapper	-	Autoboxing)	:”+j);

														System.out.println(“Value	of	k(primitive-	Unboxing)	:”+k);

}

public	static	void	main(String	args[])	{

														boxOps();

}

}

	

Output:

	

A	wrapper	can	only	be	automatically	be	converted	to	it’s	eqivalent	type.	If	we	try	to
convert	to	any	other	type	compiler	report	and	error.

	

……

//Code	snapshot

Integer	m	=	new	Integer(77);

														int	k=m;	//	Unboxing

														short	sh	=	m;		//	compiler	error

……………

	

Output:

	

	

Summary

Wrapper	class	is	used	for	representing	data	in	a	collection.Automatic	conversion	from
primitive	type	to	wrapper	class	is	called	Autoboxing	and	automatic	conversion	from
wrapper	class	to	primtive	type	is	called	as	Unboxing.

	

	

	

	

Chapter	19
If…else
	

Topics

							Introduction

							Using	If.	Else	Statement

							Summary

	

	

	

Introduction

In	this	chapter	you	will	learn	about	how	to	use	‘if’	condition	statement.	The	‘if’	statement
is	used	for	checking	conditions	and	making	decision	based	on	it.

	

Using	If..else	Statement

‘If’	is	an	fundamental	and	important	construct	in	Java.	It	is	used	for	making	decision	based
on	condition	.

	

There	are	3	flavours	of	‘if’	construct

if(condition)
if(condition)	<instructions>	else	<instructions>
if(condition)	<instructions>	elseif	<instructions>	else	<instructions>

	

The	<condition>	has	to	evaluate	to	a	boolean	‘true’.	When	more	than	one	condition
matches	the	execution	the	first	matching	conditon	code	is	only	executed	other	matching
condition	code	will	not	be	executed.	Let’s	understand	this	with	the	help	of	an	example.

	

//Prg.java

//Description:	Using	‘if’	condition

	

class	Program	{

static	void	ifOps()	{

int	i=10;

if	(i	>	5)

														System.out.println(“i	is	greater	than	5”);

}

	

static	void	ifOps2()	{

boolean	b=true;

if	(b)

														System.out.println(“b	is	true”);

else

														System.out.println(“b	is	false”);

}

	

static	void	ifOps3()	{

int	i=8;

if	(i	==	5)	//	==	is	equality	operator

														System.out.println(“i	value	is	5”);

else	if(i==6)

														System.out.println(“i	value	is	5”);

else	if(i==7)

														System.out.println(“i	value	is	7”);

else

														System.out.println(“The	value	of	i	is	“+i);

}

	

	

public	static	void	main(String	args[])	{

ifOps();

ifOps2();

ifOps3();

}

}

	

Output:

	

The	‘if’	construct	can	only	take	a	boolean	condition,	if	the	condition	is	not	boolean	then	it
would	yield	into	a	compiler	error.	The	below	code	will	yield	into	a	compiler	error

	

…….	Code	snapshot	……………………

int	i=8;

if	(i)	//	not	a	boolean	condition

														System.out.println(“i	value	is	5”);

else	if(i==6)

														System.out.println(“i	value	is	5”);

else	if(i==7)

														System.out.println(“i	value	is	7”);

else

														System.out.println(“The	value	of	i	is	“+i);

……………………………….

	

Ouput:

	

	

Summary

‘if’	condition	is	used	for	decision	making.	Input	for	‘if’	condition	is	a	boolean	and	only
first	matching	condition	is	executed.

	

	

	

	

	

Chapter	20
Switch..	Case
	

Topics

							Introduction

							Using	Switch…case	Statement

							Summary

	

	

	

Introduction

In	this	chapter	I	will	discuss	about	how	to	use	Switch..	case	statement.	Switch..case	is
used	for	executing	code	based	on	a	condition.

	

Using	Switch..case	Statement

Switch..	case	is	alternative	to	‘if	..	else’	statement.	Switch	statement	can	have	any	number
of	possible	execution	paths.	A	switch..case	works	with	the	following	primitive	types

byte
short
char
int

The	‘case’	has	to	have	break	statement	else	the	control	will	fall	through	to	next	case.	A
switch..case	can	also	have	‘default’	statement	that	will	be	executed	when	none	of	the	case
condition	match.

Let’s	understand	switch..	case	with	the	help	of	an	example.

	

In	this	example	I	show	how	to	use	integer	with	switch..case

	

//Prg.java

//Description	:	Using	Switch..case	with	integer

	

class	Program	{

public	static	void	switchOps()	{

int	day=1;

switch(day)	{

														case	1:

																												System.out.println(“Sunday”);

																												break;

														case	2:

																												System.out.println(“Monday”);

																												break;

														case	3:

																												System.out.println(“Tuesday”);

																												break;

														case	4:

																												System.out.println(“Wednesday”);

																												break;

														case	5:

																												System.out.println(“Thursday”);

																												break;

														case	6:

																												System.out.println(“Thursday”);

																												break;

														case	7:

																												System.out.println(“Thursday”);

																												break;

														default:

System.out.println(“Invalid	day”);																											

}

}

public	static	void	main(String	args[])	{

switchOps();

}

}

	

Output:

	

If	the	value	of	‘day’	variable	is	9	then	‘default’	case	will	be	executed.

	

Output:

	

If	the	value	of	the	‘day’	variable	is	1	and	‘case	1:’		does	not	have	break	statement	then	the
control	will	fall	throught	and	code	for	‘case	2:’	will	also	be	executed.

	

Output:

	

The	next	example	demonstrate	how	to	use	char	and	String	types	inside	swith..case.

	

//Prg2.java

//Description	:	Using	Switch..case	with	char	&	String

	

class	Program	{

public	static	void	switchOps()	{

char	day=‘i’;

switch(day)	{

														case	‘i’:

																												System.out.println(“One”);

																												break;

														case	‘x’:

																												System.out.println(“Ten”);

																												break;

														default:

System.out.println(“Invalid	number”);																											

}

}

public	static	void	switchOps2()	{

		String	state=“TN”;

switch(state)	{

														case	“KA”:

																												System.out.println(“Karnataka”);

																												break;

														case	“TN”:

																												System.out.println(“Tamil	Nadu”);

																												break;

														default:

System.out.println(“Invalid	state”);																											

}

}

public	static	void	main(String	args[])	{

switchOps();

switchOps2();

}

}

	

	

Output:

	

Now	let’s	learn	about	how	to	use	enum	inside	switch..case.

//Prg3.java

//Description	:	Using	enum	with	switch…	case

	

enum	Metro	{

Delhi,

Kolkata,

Mumbai,

Bengaluru

}

	

class	Program	{

static	void	switchOps()	{

														Metro	city;

														city	=	Metro.Mumbai;

														switch(city)	{

																												case	Delhi:

																																										System.out.println(“Delhi	is	in	north	of	India”);

																																										break;

																												case	Mumbai:

																																										System.out.println(“Mumbai	is	in	west	of	India”);

																																										break;

																												case	Kolkata:

																																										System.out.println(“Kolkata	is	in	east	of	India”);

																																										break;

																												case	Bengaluru:

																																										System.out.println(“Bengaluru	is	in	south	of	India”);

																																										break;

																												default:

																																										System.out.println(“This	is	not	a	metro	city”);

														}

}

public	static	void	main(String	args[])	{

														switchOps();

}

}

	

Output:

	

	

Summary

Switch..	case	can	work	with	primitives	and	reference	types.	‘break’	keyword		has	to	be
used	in	“case”	else	logic	will	fall	through.	Enum	can	be	used	in	switch	case.

	

	

	

	

	

	

Chapter	21
For	Loop

	

Topics

							Introduction

							Using	for.	Loop

							Summary

	

	

	

Introduction

In	this	chapter	we	will	discuss	about	how	to	use	for	loop.	The	for	loop	helps	in	executing
and	iterating	over	instructions	for	a	know	number	of	times.

	

Using	for…loop

It	is	used	for	executing	a	block	of	code	multiple	times(fixed).

Syntax

for	(initialization;	condition;	increment)	{

instructions;

}

It	has	3	parts													

Initialization	:	Is	executed	once	at	the	beginning	of	the	loop.
Condition	:	Loop	is	executed	only	when	condition	evaluate	to	true.
Increment	:	Variable	can	be	incremented	or	decremented.

	

Let’s	understand	this	better	with	the	help	of	an	example

	

//Prg.java

//Description	:	Behaviour	of	for	Loop

class	Program	{

static	void	forOps()	{

														for(int	i=10;	i>0;i—)

																												System.out.println(“Value	of	i	:”+	i);

}

static	void	forOps2()	{

														for(;;)	{

																												System.out.println(“Infinite	loop”);

														}

}

public	static	void	main(String	args[])	{

														forOps();

														//forOps2();

}

}

It	is	not	mandtory	to	supply	all	values	for	3	parts	for	a	‘for’	loop.	If	the	condition	is
missing	then	the	loop	will	become	infinte.Uncomment	the	forOps2()	method	to	see
execution	of	infinite	for	loop.

Output:

	

We	can	write	any	legal	java	instructions	inside	any	of	the	3	parts	of	the	for	loop.

The	next	program	demonstrates	this	behaviour.

	

//Prg2.java

//Description	:	Using	for	loop

	

class	Program	{

static	void	forOps()	{

														for	(int	i=0;i	<	10	;	i++,System.out.println(“In	loop”))

																												System.out.println(“Value	of	i	:”+i);

}

public	static	void	main(String	args[])	{

														forOps();

}

}

	

Output:

	

	

Summary

For	loop	is	used	mainly	for	fixed	iterations.	For	loop	has	3	parts	i.e	initialization,
condition	and	increment.

	

	

	

	

Chapter	22
While	and	Do.	While	Loops
	

Topics

							Introduction

							Using	While	loop

							Using	Do…While	loop

							Summary

	

	

	

Introduction

In	this	chapter	I	will	discuss	about	while	and	do	..	while	loops.	Both	of	these	loops	execute
as	block	of	instructions	until	the	condition	is	true,	the	loops	are	exited	when	the	condition
is	false.

	

Using	While	Loop

In	while	loop	the	condition	is	checked	before	the	loop	is	executed.The	syntax	of	the	while
is	as	follows

Syntax	:

														while(Boolean_expression)	{

																																										//Statements

}

Let’s	understand	while	loop	better	with	help	of	an	example.

	

//Prg.java

//Description:Using	While	loop

	

class	Program	{

static	void	whileOps()	{

int	i=10;

while	(i	>	0)	{

														System.out.println(“The	value	of	i:”+i);

														i—;

}

	

}

public	static	void	main(String	args[])	{

		whileOps();

}

}

	

Output:

	

	

Using	Do..While	Loop

Do..	while	loop	is	guaranteed	to	be	executed	at	least	once	then	the	condition	is	checked.

Syntax	of	the	do..while	loop.

do	{

																														statement(s)

}	while	(expression);

Let’s	understand	do..while	loop	with	help	of	an	example.

//Prg2.java

//Description	:	Using	Do..	While

	

class	Program	{

static	void	dowhileOps()	{

int	i=0;

System.out.println(“Do..while	loop	demo”);

do	{

			System.out.println(“The	value	of	i:”+i);

			i++;

}	while	(i<10);

}

public	static	void	main(String	args[])	{

dowhileOps();

}

}

	

Output:

	

Summary

While	loop	checks	the	condition	before	execution.Do	while	loop	execute	the	code	block	at
least	once	and	then	check	for	condition.

	

	

	

	

Chapter	23
Break	and	Continue	keywords
	

Topics

							Introduction

							Using	Break	Keyword

							Using	Continue	Keyword

							Summary

	

	

Introduction

In	this	chapter	I	will	discuss	about	break	and	continue	keyword.	Both	these	keywords	are
used	in	loops	such	as	for,	while	and	do…while	loops	and	break	keyword	is	used	in
switch…case	as	well.

	

Using	Break	Keyword

It	is	used	for	exiting	a	loop	or	a	case	statement	from	a	switch.	The	break	keyword	can	be

1.	 Labelled:		A	means	to	identify	area	within	a	code	block.
2.	 Unlabeled:	No	identifier	associated.

	

Let’s	understand	break	keyword	with	the	help	of	an	example

	

//Prg.java

//Description:	Using	break	statement

	

class	Program	{

static	void	breakOps()	{

														int	k=0;

														while	(k<10)	{

																												if	(k==5)

																																										break;

																												k++;

														}

														System.out.println(“The	value	of	‘k’	after	break	is:”+	k);

}

static	void	breakOps2()	{

first:	//	Label

														for(int	i	=	0;	i	<	3;	i++)	{

														second:	//	label

																												for(int	j	=	0;	j	<	4;	j	++)

																												{

																																										System.out.println(“Value	of	i:”+i);

																																										System.out.println(“Value	of	j:”+j);

																																										break	first;

																												}

														}

	

third:	//	Label

														for(int	a	=	0;	a	<	4;	a++)	{

																												System.out.println(“The	value	of	a:”+a);

														}

													

}

public	static	void	main(String	args[])	{

														breakOps();

														breakOps2();

}

}

	

Output:

	

Using	Continue	Keyword

The	continue	statement	skips	the	current	iteration	of	a	loop.	The	control	is	return	back	at
the	starting	of	the	loop	after	continue	statement	is	executed.	It	can	be	of	2	types

1.	 Labeled
2.	 Unlabeled

	

Let’s	understand	Continue	keyword	with	the	help	of	an	example.

	

//Prg2.java

//Description:	Using	continue	-	labeled	and	unlabeled

	

class	Program	{

static	void	contiOps()	{

int	limit	=	10;

int	facto	=	1;

	

OutLoop:	for	(int	i	=	1;	i	<=	limit;	i++)	{

facto	=	1;

for	(int	j	=	2;	j	<=	i;	j++)	{

if	(i	>	10	&&	i	%	2	==	1)	{

continue	OutLoop;

}

facto	*=	j;

}

System.out.println(i	+	”	factorial	is	”	+	facto);

}

}

public	static	void	main(String	args[])	{

														contiOps();

}

}

	

Output:

	

Summary

Break	statement	is	used	for	terminating	a	loop.	Continue	statement	is	used	for	ignoring	the
next	set	of	instructions	in	a	loop.

	

	

	

Chapter	24
Type	Conversion	and	Type	Casting
	

Topics

							Introduction

							What	is	Type	Conversion?

							What	is	Type	Casting?

							Summary

	

	

Introduction

In	this	chapter	you	will	learn	about	type	conversion	and	type	casting.	When	the	data	that
we	require	is	not	in	the	form	that	is	required	for	further	processing	then	data	has	to	be
converted	or	casted.

	

What	is	Type	Conversion?

Assigning	value	of	a	variable	of	a	type	to	a	variable	of	compatible	type	is	called	as	type
conversion.		e.g	byte	to	int	,int	to	long,	int	to	double.Type	conversion	does	not	occur
between	incompatible	types.	e.g	boolean	to	int,	int	to	char		or		a	string	cannot	be	casted	to
an	int.

Type	conversion	is	widening	in	nature	i.e	it	occur	between	small	type(memory)	to	large
type(memory)	e.g	byte	to	int	or	int	to	long.

	

Let’s	understand	type	conversion	with	help	of	an	example.

	

//Prg.java

//Description	:	Working	with	type	conversion

	

class	Program	{

static	void	tcOps()	{	//	widening	(small	to	large)

														byte	b=45;

														int	i=b;	//	automatic	conversion

														float	f=b;

														double	d=b;

														System.out.println(“The	value	after	conversion(byte	to	int)	:”	+	i);

														System.out.println(“The	value	after	conversion(byte	to	double)	:”	+	d);

}

	

public	static	void	main(String	args[])	{

			tcOps();		

}

}

	

Output:

If	the	conversion	occur	between	larger	type	to	smaller	type	it	would	yield	into	a	compiler
error.

	

Output:

	

	

What	is	Type	Casting?

If	destination	type	is	smaller	than	source	type,	then	it	has	to	be	explicitly	casted	this	is
called	as	Type	Casting.

	

e.g	int	i=10;

byte	b	=	(byte)	l;

Let’s	understand	type	casting	with	help	of	an	example.

//Prg2.java

//Description:	Working	with	type	casting

	

class	Program	{

static	void	tcOps()	{	//	Narrowing	(Large	to	small)

														double	d=	45.78979;

														float	f	=	(float)d;

														int	i	=	(int)	d;

														long	l	=	(long)	d;

														//boolean	b	=	(boolean)	d;	//	compiler	error

														System.out.println(“The	value	after	type	casting(double	to	float)	“+	f);

														System.out.println(“The	value	after	type	casting(double	to	int)	“+	i);

														System.out.println(“The	value	after	type	casting(double	to	long)	“+l);

}

public	static	void	main(String	args[])	{

			tcOps();

}

}

Output:

	

Casting	cannot	be	done	between	unrelated	types	such	as	float	to	boolean	(It	will	yield	into
compiler	error).

//	code

double	d=	45.78979;

boolean	b	=	(boolean)	d;	//	compiler	error

	

Output:

	

	

Summary

Type	conversion	is	automatic	conversion	from	one	to	another	compatible	type.Type
casting	is	explicit	conversion	from	one	to	another	type.	Type	casting	cannot	be	done
between	unrelated	types.

	

	

	

Chapter	25
Arithmetic	and	Relational	Operators
	

Topics

							Introduction

							What	are	Operators?

							Using	Arithmetic	Operators

							Using	Relational	Operators

							Summary

	

	

	

Introduction

In	this	chapter	I	will	discuss	about	how	to	use	arithmetic	and	relational
operators.Arithmetic	and	relational	operators	form	the	backbone	of	mathematical
computation	in	Java.

	

What	are	Operators?

They	are	special	symbols	that	perform	specific	operation.	Operator	can	work	with	multiple
operands.

	

Java	has	support	for	5	types	of	operators

Arithmetic
Relational
Bitwise
Logical
Assignment

	

Using	Arithmetic	Operators

They	are	used	for	creating	mathematical	expressions.Some	of	the	arithmetic	operators	are

	

+	:	Addition		(Works	with	2	operands)
-	:	Subtraction	(Works	with	2	operands)
/	:	Division	(Works	with	2	operands)
*:	Multiplication	(Works	with	2	operands)
%	:	Modulus	(Reminder-	Works	with	2	operands)
++	:	Unary	Increment	(Works	with	1	operand)
—	:	Unary	Decrement	(Works	with	2	operand)

	

Let’s	understand	arithmetic	operators	with	help	of	an	example.

//Prg.java

//Description	:	Working	with	arithmetic	operators

	

class	Program	{

static	void	ariOps()	{

														int	i=20,j=10;

														int	sum	=	i+j;

														int	subs	=	i-j;

														int	prod	=	i*j;

														int	div	=	i/j;

														int	rem	=	i	%	j;

														i++;

														—j;

														System.out.println(”	The	sum	is	:”+	sum);

														System.out.println(”	The	substraction	is	:”+	subs);

														System.out.println(”	The	multiplication	is	:”+	prod);

														System.out.println(”	The	division	is	:”+	div);

														System.out.println(”	The	remainder	is	:”+	rem);

}

public	static	void	main(String	args[])	{

														ariOps();

}

}

	

Output:

	

	

Using	Relational	Operators

Relational	operators	work	with	2	operands.It	is	used	for	determining	relationship	that	one
operand	has	with	another.	They	are	used	in	control	and	looping	constructs.	e.g	if,for,while
etc.	The	outcome	of	relational	expression	is	a	boolean.

The	List	of	relational	operators	is	as	follows

	

Expression Result

op	>	op2 op	is	greater	than
op2

op	>=	op2 op	is	greater	than
or	equal	to	op2

op	<	op2 op	is	less	than	to
op2

op	<=	op2 op	is	less	than	or
equal	to	op2

op	==	op2 op	and	op2	are
equal

op	!=	op2 op	and	op2	are
not	equal

	

Let’s	understand	usage	of	relational	operators	with	help	of	an	example.

	

//Prg2.java

//Description	:	Using	relational	expression

	

class	Program	{

static	void	relOps()	{

														int	i=10;

														int	j=20;

													

														if	(i	==	j)

																												System.out.println(“i	is	equal	to	j”);

				if	(i	>	j)

																												System.out.println(“i	is	greater	than	j”);

														if	(i	<	j)

																												System.out.println(“i	is	less	than	j”);													

														System.out.println(“i==j	“+(i==j));

														System.out.println(“i	>	j	“+(i>j));

														System.out.println(“i	<	j	“+(i<j));

}

public	static	void	main(String	args[])	{

														relOps();

}

}

	

Output:

	

Summary

Operators	are	special	symbols	that	perform	specific	operation.The	outcome	of	relational
expression	is	a	boolean.Arithmetic	operators	are	used	for	mathematical	operations.

	

	

	

	
Chapter	26
Logical	and	Ternary	Operators
	

Topics

							Introduction

							Using	Logical	Operators

							Using	Ternary	Operators

							Using	Instanceof	operator

							Summary

	

	

	

Introduction

In	this	chapter	I	will	discuss	about	how	to	use	Logical,	Ternary	and	Instanceof	opertors.

	

Using	Logical	Operator

They	are	used	for	binding	and	checking	multiple	conditions	together.	The	relational
operators	are	bound	together	using	logical	operators.There	are	4	logical	operators	in	Java.

Logical	operators	in	Java

Operator
Symbol

Operator
Name

&& AND

|| OR

! NOT

^ XOR

	

	

Description	of	logical	operators.

1.	 AND	operator	(&&)	–	Returns	true	when	both	the	condition	are	true	else	false.
2.	 OR	operator(||)	–	Returns	true	when	either	of	the	condition	true.	It	is	false	of	both

the	conditions	are	false.
3.	 NOT	operator(!)	–	Returns	true	when	the	condition	is	false	and	is	false	when	the

condition	is	true.
4.	 XOR	operator(^)	–	Returns	true	when	either	of	the	conditions	is	true.	It	will	yield

false	if	both	the	conditions	are	true	or	both	the	conditions	are	false.

	

Let’s	understand	logical	operators	with	the	help	of	examples.

	

//Prg.java

//Description:	Using	‘AND’	operator

	

class	Program	{

static	void	andOps()	{

int	a=10;

int	b=20;

if	(a	>	5	&&	b	<	25)	//	Is	true	when	both	conditions	are	true	else	false.

														System.out.println(“Value	of	a,b	is	greater	than	5	and	less	than	25”);

else

{

				System.out.println(“Value	of	a:”	+	a);

														System.out.println(“Value	of	b:”	+	b);

}

}													

		public	static	void	main(String	args[])	{

		andOps();

		}													

}

	

Output:

	

Let’s	understand	usage	of	OR	operator(||)	and	NOT	operator(!).

	

//Prg2.java

//Description:	Using	‘OR’	operator

	

class	Program	{

static	void	orOps()	{

int	a=10;

int	b=20;

if	(a	>	5	||	b	<	25)	//	Is	true	when	either	of	the	conditions	are	true	else	false.

														System.out.println(“Value	of	a,b	is	greater	than	5	and	less	than	25”);

else

{

				System.out.println(“Value	of	a:”	+	a);

														System.out.println(“Value	of	b:”	+	b);

}

}

static	void	notOps()	{

			boolean	b=true;

			if	(!b)

														System.out.println(“Value	of	b	is	false”);

else

System.out.println(“Value	of	b	is	true”);

}		

		public	static	void	main(String	args[])	{

		orOps();

		notOps();

		}													

}

	

	

Output:

	

	

Using	Ternary	Operator

It	is	used	for	assigning	a	value	to	a	variable	based	on	a	boolean	expression.	It	can	be	used
as	an	alternative	to	if/else	statement.

	

Syntax	:

result	=	someCondition	?	value1	:	value2;

	

If	the	conditon	is	true	then	value1	is	returned	else	value2	is	returned	and	stored	in
result	variable.

	

Let’s	understand	ternary	operator	better	with	help	of	an	example.

	

//Prg3.java

//Description	:	Using	Ternary	operator

	

class	Program	{

static	void	terOps()	{

			int	j=10;

String	result	=	false	?	“Superman	is	the	greatest”	:	“Batman	is	better”;

System.out.println(result);

result	=	j>20	?	“J	is	greater	than	20”	:	“J	is	not	less	than	20”;

System.out.println(result);

}

	

		public	static	void	main(String	args[])	{

		terOps();

	

		}													

}

	

Output:

	

	

Using	Instanceof	Operator

It	is	used	to	check	if	a	given	variable	is	of	a	given	type.It	is	also	called	as	comparison
operator	i.e.	it	compares	variable	with	type.

	

Let’s	understand	instanceof	operator	with	an	example.

	

//Prg4.java

//Description	:	Using	instanceof	operator

	

class	Program	{

static	void	instOps()	{

Program	obj	=	new	Program();

if	(obj	instanceof	Program)

														System.out.println(“obj	is	typeof	Program”);

else

														System.out.println(“obj	is	not	typeof	Program”);

}

public	static	void	main(String	args[])	{

instOps();

}

}

	

Output:

	

If	used	with	a	null	value	it	will	return	false.

	

//Prg5.java

//Description	:	Using	instanceof	operator	with	null

	

class	Program	{

static	void	instOps()	{

Program	obj=null;

if	(obj	instanceof	Program)

														System.out.println(“obj	is	typeof	Program”);

else

														System.out.println(“obj	is	not	typeof	Program”);

}

public	static	void	main(String	args[])	{

instOps();

}

}

	

Output:

	

Summary

Logical	operators		are	used	for	checking	multiple	conditions	together.	Instanceof	operator
is	used	to	check	if	a	given	variable	of	a	given	type.

	

	

	

	

	

	

	

Chapter	27

Arrays
	

Topics

							Introduction

							What	is	an	Array?

							Using	Single	Dimension	Array

							Using	Multi	Dimension	Array

							Summary

	

	

	

Introduction

In	this	chapter	you	will	learn	about	how	to	operate	on	arrays.	Array	is	used	as	a	storage
entity	for	large	data	in	memory.	I	will	also	discuss	about	single	and	multi	dimension
arrays.

	

What	is	an	Array?

It	is	a	data	container	which	is	used	for	storing	data	at	runtime	within	memory.	The
attributes	of	an	array	are	as	follows

1.	 Fixed	size	–	Size	in	bytes	is	known	before	usage.
2.	 Single	type	–	It	can	only	be	of	a	single	type.
3.	 Accessed	using	an	index.
4.	 Index	start	with	0.

	

So	the	array	can	be	defined	as	a	container	of	data	located	in	memory	which	of	a	fixed	size
and	is	of	a	given	data	type.Java	arrays	are	safe	i.e	they	are	bounds	checked.	If	the	user
accesses	beyond	the	bounds	the	JVM	raises	an	exception.

	

Syntax	of	array	definition:

Datatype	arobj=new	Datatype[size];

	

Array	are	used	for	quick	and	easy	access	to	data.	It	eliminate	the	need	for	creating	many
variables.	The	data	located	in	an	array	can	be	accessed	using	an	index.

	

There	are	2	types	of	arrays	i.e

1.	 Single	dimension.
2.	 Multi	dimension.

	

Using	Single	Dimension	Array

They	have	one	row	and	fixed	number	of	columns.Length	property	is	used	for	getting	the
length	of	an	array.

	

Array	Declaration

Datatype	ar[];
Datatype	[]ar;

	

Array	Definition

Datatype	obj[]	=new	Datatype[size];
Datatype	[]obj	=new	Datatype[size];

	

Let’s	understand	usage	of	single	dimension	array	with	an	example.

	

//Prg.java

//Description	:	Working	with	single	dimension	arrays

	

class	Program	{

static	void	sdOps()	{

														int	[]ar2;

														int	ar3[]	=	{1,2,5,6,7,8,9};

}

static	void	sdOps2()	{

														int	[]ar	=	new	int	[5];

														ar[0]=	20;

														ar[1]=40;

														ar[2]=50;

														ar[3]=60;

														ar[4]=70;

														System.out.println(“The	length	of	the	array	is:”+	ar.length);

														for	(int	i=0;i<	ar.length;i++)

																												System.out.println(“The	location	:	“+	i	+	”	has	value:”+	ar[i]);

}

static	int[]	sqArray(int	ar[])	{

														for	(int	i=0;i<ar.length;i++)

																												ar[i]=	ar[i]*ar[i];

													

														return	ar;

}

static	void	show(int	ar[])	{

														System.out.println(“\n”);

														for	(int	i=0;i<	ar.length;i++)

																												System.out.println(“The	location	:	“+	i	+	”	has	value:”+	ar[i]);

}

public	static	void	main(String	args[])	{

														sdOps();

														sdOps2();

														int	ar[]	=	{1,2,5,6,7};

														int	sq[]	=	sqArray(ar);

														show(sq);

}

}

	

Output:

	

If	the	array	is	accessed	beyond	it’s	bound	then	JVM	throws	an	exception.

//	code	snapshot

	

int	[]ar	=	new	int	[5];

														ar[0]=	20;

														ar[1]=40;

														ar[2]=50;

														ar[3]=60;

														ar[4]=70;

														ar[5]=90;

	

Output:

	

	

	

Multi	Dimension	Array

The	data	is	stored	in	combination	of	rows	and	columns.The	MD	array	can	be	2,3,4	or	‘N’
dimension.

	

MD	Declaration	Syntax:

dataType[][]	ar;
dataType	[][]ar;

dataType	ar[][];
dataType	[]ar[];		

	

	

Let’s	understand	how	to	create	and	access	2	dimension	array.

	

//Prg2.java

//Description	:	Working	with	multidimension	array

	

class	Program	{

static	void	muldOps()	{

		int	ar[][]	=	{{2,3},{3,4},{6,7}};

		int	[]ar2[]	=	{{4,5},{6,7},{9,7}};

}

	

static	void	muldOps2()	{

int	ar[][]	=	new	int	[2][2];

ar[0][0]=5;

ar[0][1]=1;

ar[1][0]=3;

ar[1][1]=7;

for	(int	i=0;i<	ar.length;i++)	//	Getting	length	of	row

														for	(int	j=0;j	<	ar[0].length;j++)	//	Getting	length	of	column

																												System.out.println(“The	value	at	location	:ar[“+i+”]”+”[“+j+”]”+
”	is	:”	+	ar[i][j]);

}

static	int	[][]	muldOps3(int	ar[][])	{

ar[0][0]=ar[0][0]	*	ar[0][0];

ar[0][1]=ar[0][1]	*	ar[0][1];

ar[1][0]=ar[1][0]	*	ar[1][0];

ar[1][1]=ar[1][1]	*	ar[1][1];

return	ar;

}

static	void	show(int	ar[][])	{

for	(int	i=0;i<	ar.length;i++)	//	Getting	length	of	row

														for	(int	j=0;j	<	ar[0].length;j++)	//	Getting	length	of	column

																												System.out.println(“The	value	at	location	:ar[“+i+”]”+”[“+j+”]”+
”	is	:”	+	ar[i][j]);

}

	

	

public	static	void	main(String	args[])	{

muldOps();

muldOps2();

	

int	ar[][]	=	{{2,3},{3,4},{6,7}};

System.out.println(“\n	Before	square”);

show(ar);

System.out.println(“\n	After	square”);

int	ar2[][]	=	muldOps3(ar);

show(ar2);

	

}

}

	

Output:

	

	

Let’s	understand	how	to	create	and	access	3	dimension	array.	Length	property	can	be	used
to	get	size	of	a	given	dimension.

ar[0].length	//	Getting	length	of	column	for	first	row

	

	

//Prg3.java

//Description	:	Working	with	multidimension	array(3D)

	

class	Program	{

static	void	muldOps()	{

int	ar[][][]	=	new	int	[2][2][2];

ar[0][0][0]=5;

ar[0][0][1]=1;

ar[0][1][0]=3;

ar[0][1][1]=8;

ar[1][0][0]=2;

ar[1][0][1]=9;

ar[1][1][0]=6;

ar[1][1][1]=4;

for	(int	i=0;i<	ar.length;i++)	//	Getting	length	of	row

														for	(int	j=0;j	<	ar[0].length;j++)	//	Getting	length	of	column

																	for	(int	k=0;k	<	ar[0][0].length;k++)

																												System.out.println(“The	value	at	location
:ar[“+i+”]”+”[“+j+”]”+”[“+k+”]”+	”	is	:”	+	ar[i][j][k]);

}

	

	

public	static	void	main(String	args[])	{

muldOps();		

}

}

	

Output:

	

	

Summary

Array	is	container	of	data	in	memory.	It	is	of	fixed	size	and	is	of	a	given	data	type.Length
property	return	the	size	of	the	current	dimension.

	

	

	

	

	

	

	

Chapter	28
Jagged	Arrays
	

Topics

							Introduction

							Using	Jagged	Array

							Summary

	

	

	

Introduction

In	this	chapter	I	will	discuss	about	how	to	create	and	use	Jagged	array.	Jagged	array	helps
in	better	utilization	of	memory	by	allow	to	create	arrays	which	fit	user’s	need.

	

Using	Jagged	Array

It	is	a	multi	dimension	array	in	which	the	columns	can	vary	for	each	row.	The	rows	are
identified	first	then	the	columns	are	identified	for	each	row.This	helps	in	allocation	of
memory	as	per	requirement	which	saves	memory	wastage.

	

Syntax:

														int	ar[][]	=	new	int[2][];

ar[0]	=	new	int[2];			//	The	first	row	will	have	2	columns

ar[1]	=	new	int[3];		//	The	second	row	will	have	3	columns

	

	

Let’s	understand	jagged	arrays	with	help	of	an	example.

	

//Prg.java

//Description	:	Working	with	jagged	arrays

	

class	Program	{

static	void	jaggOps()	{

														int	ar[][]	=	new	int[3][];

														ar[0]=new	int	[1];

														ar[1]	=	new	int[2];

														ar[2]	=	new	int	[3];

														for(int	i=0;i<ar.length;i++)

																												for(int	j=0;j<ar[i].length;j++)

																																										ar[i][j]	=	i*j;

																											

														for(int	i=0;i<ar.length;i++)

																												for(int	j=0;j<ar[i].length;j++)

																																										System.out.println(“The	value	at	location
:ar[“+i+”]”+”[“+j+”]”+	”	is	:”	+	ar[i][j]);

													

}

public	static	void	main(String	args[])	{

														jaggOps();

}

}

	

	

The	numbers	rows	are	2.	For	1st	row	there	are	2	columns	and	the	second	row	has	3
columns.

	

Summary

In	Jagged	array	the	number	of	columns	can	vary.Jagged	array	help	in	optimizing	memory
usage.

	

	

	

	

	

	

Chapter	29
For	Each	Loop
	

Topics

							Introduction

							Using	For	Each	Loop

							Summary

	

	

	

Introduction

In	this	chapter	we	will	discuss	about	how	to	iterate	over	arrays	using	For	Each	loop.	It
better	and	simplier	to	use	for	each	loop	over	other	loops	for	aggregates.

	

Using	For	Each	Loop

This	was	introduced	in	Java	5.	For	each	loop	is	used	for	iterating	over	arrays	and
collections	i.e	it	is	a	loop	that	is	exclusively	to	used	for	against	aggregates.	For	each	loop
is	less	error	prone	compared	to	for,while	and	do..while	loops	because	there	is	no	condition
check	involved	hence	is	simplier	and	safer	to	use.

	

Salient	features

1.	 No	increment	required
2.	 No	Condition	check	required

	

Syntax	:

																for(data_type	variable	:	array	|	collection)			{	}

	

Let’s	understand	the	usage	of	for	each	loop	with	help	of	an	example.

Using	for	each	with	single	dimension	array.

//Prg.java

//Description	:	for..	each	loop	with	single	dimension	array

	

class	Program	{

static	void	foreachOps()	{

														int	ar[]	=	{1,2,3,4,5,6,7};

														for(int	i	:	ar)

																	System.out.print(i+”	“);

													

}

public	static	void	main(String	args[])	{

														foreachOps();

}

}

	

Output:

	

The	for	each	loop	can	also	be	used	with	multi	dimension	array.	The	outer	loop	iterate	over
rows	and	inner	loop	over	columns.

	

//Prg2.java

//Description	:	for..	each	loop	using	with	multi	dimension	array

	

class	Program	{

													

static	void	foreachOps()	{

														int	ar[][]	=	{{13,22},{36,43},{56,68},{71,83}};

														for(int	i[]	:	ar)

																												for	(int	j	:	i)

																																										System.out.print(j+”	“);

}

public	static	void	main(String	args[])	{

														foreachOps();

}

}

	

Output:

	

Summary

For	each	was	introduced	in	Java	5.	Foreach	loop	is	used	for	iterating	over	arrays	and
collections.

	

	

	Chapter 1 What is Java?
	Chapter 2 Java Development Kit and Java Runtime Engine
	Chapter 3 Setting PATH Variable
	Chapter 4 Java Compiler and Java Interpreter
	Chapter 5 First Program
	Chapter 6 The HelloWorld Program
	Chapter 7 Anatomy of HelloWorld Program
	Chapter 8 Multiple Main Methods
	Chapter 9 Public Class and File Name
	Chapter 10 Runtime Execution
	Chapter 11 Alternate HelloWorld Program
	Chapter 12 Numeric DataTypes
	Chapter 13 Non Numeric DataTypes
	Chapter 14 Literals and Constants
	Chapter 15 Escape Sequence
	Chapter 16 Immutable String
	Chapter 17 StringBuilder Class
	Chapter 18 Wrapper Classes
	Chapter 19 If... else
	Chapter 20 Switch.. Case
	Chapter 21 For Loop
	Chapter 22 While and Do. While Loops
	Chapter 23 Break and Continue keywords
	Chapter 24 Type Conversion and Type Casting
	Chapter 25 Arithmetic and Relational Operators
	Chapter 26 Logical and Ternary Operators
	Chapter 27 Arrays
	Chapter 28 Jagged Arrays
	Chapter 29 For Each Loop

