O'REILLY"

R
LN
QAR
\ \\\ N

Tt
\\ul'.'l\v\‘ § EARRY

LA
SRR

ity o
‘};}@?*{\\\M .

arning

AavasCript

JAVASCRIPT ESSENTIALS FOR MODERN
APPLICATION DEVELOPMENT

Ethan Brown

O'REILLY"

Learning JavaScript

This is an exciting time to learn JavaScript. Now that the latest JavaScript ~ “It's high time for all JS
speoﬂcatpn—ECl\/llASCHpti 6.Q (ES6)l—has lbeen f|na||z§d, qurn|ng how to devs to really learn JS.
develop high-quality applications with this language is easier and more But I don't i

satisfying than ever. This practical book takes programmers (amateurs and ut L dont just mean

pros alike) on a no-nonsense tour of ESE, along with some related tools shallow 'T got some code

and techniques. running' kind of learn-

Author Ethan Brown (Web Development with Node and Express) notonly ing. This book guides
guides you through simple and straightforward topics (variables, control you to the deeper kind of
flow, arrays), but also covers complex concepts such as functional and . 19
asynchronous programming. You'll learn how to create powerful and learning we all need!
responsive web applications on the client, or with Node js on the server. T D;f:?/'{ﬁosmi?slzse‘;re‘;

m Use ES6 today and transcompile code to portable ES5

m Translate data into a format that JavaScript can use “A well-written, compact

introduction to all of
JavaScript, up to and
including ECMAScript 6.”

- . —Axel Rauschmayer
m Grasp the complexities of asynchronous programming Author, Speaking JavaScript

m Understand the basic usage and mechanics of JavaScript
functions

m Explore objects and object-oriented programming
m Tackle new concepts such as iterators, generators, and proxies

m Work with the Document Object Model for browser-based apps

m Learn Node.js fundamentals for developing server-side
applications

Ethan Brown is Director of Engineering at Pop Art, an interactive marketing
agency, where he is responsible for the architecture and implementation of web-
sites and web services for clients ranging from small businesses to international
enterprise companies. He has over 20 years of programming experience.

WEB PROGRAMMING / JAVASCRIPT Twitter: @oreillymedia

facebook.com/oreilly

US $39.99 CAN $45.99
ISBN: 978-1-491-91491-5

JOTNFAERTORTE i

7814911914915

THIRD EDITION

Learning JavaScript

Ethan Brown

Beijing + Boston + Fanham - Sebastopol - Tokyo QY RI=[ANG

Learning JavaScript
by Ethan Brown

Copyright © 2016 Ethan Brown. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meg Foley Indexer: Judith McConville
Production Editor: Kristen Brown Interior Designer: David Futato
Copyeditor: Rachel Monaghan Cover Designer: Karen Montgomery
Proofreader: Jasmine Kwityn lllustrator: Rebecca Demarest
October 2006: First Edition

December 2008: Second Edition

March 2016: Third Edition

Revision History for the Third Edition
2016-02-12: First Release
2016-04-15: Second Release
2016-05-13: Third Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491914915 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning JavaScript, the cover image of
a baby rhino, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-491-91491-5
[LSI]

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491914915

For Mark—a true friend, and fellow creator.

Table of Contents

Preface.oooviiiiiiii Xv
1. Your First Application.covuiiiniiiiii ittt iieeieeenaens 1
Where to Start 2
The Tools 2

A Comment on Comments 4
Getting Started 5
The JavaScript Console 7
jQuery 8
Drawing Graphics Primitive 9
Automating Repetitive Tasks 11
Handling User Input 12
Hello, World 13

2. JavaScript Development Tools.overiieiiniiii ittt 15
Writing ES6 Today 15
ES6 Features 16
Installing Git 17

The Terminal 17
Your Project Root 18
Version Control: Git 18
Package Management: npm 21
Build Tools: Gulp and Grunt 23
Project Structure 24

The Transcompilers 25
Running Babel with Gulp 25
Linting 27
Conclusion 30

3. Literals, Variables, Constants, and Data Types

Variables and Constants
Variables or Constants: Which to Use?
Identifier Names
Literals
Primitive Types and Objects
Numbers
Strings
Escaping
Special Characters
Template Strings
Multiline Strings
Numbers as Strings
Booleans
Symbols
null and undefined
Objects
Number, String, and Boolean Objects
Arrays
Trailing Commas in Objects and Arrays
Dates
Regular Expressions
Maps and Sets
Data Type Conversion
Converting to Numbers
Converting to String
Converting to Boolean
Conclusion

B 0] 11470 5 2

A Control Flow Primer
while Loops
Block Statements
Whitespace
Helper Functions
if...else Statement
do...while Loop
for Loop
if Statement
Putting It All Together
Control Flow Statements in JavaScript
Control Flow Exceptions

33
35
35
36
37
38
40
40
41
42
43
44
44
44
45
45
48
48
50
51
51
52
52
52
53
53
54

55
55
59
59
60
61
62
63
64
65
66
68
68

| Table of Contents

Chaining if...else Statements 69

Metasyntax 69
Additional for Loop Patterns 71
switch Statements 72
for...in loop 75
for...of loop 75
Useful Control Flow Patterns 76
Using continue to Reduce Conditional Nesting 76
Using break or return to Avoid Unnecessary Computation 76
Using Value of Index After Loop Completion 77
Using Descending Indexes When Modifying Lists 77
Conclusion 78
. Expressions and Operators.oveueineineernennieneeeeneeneennennanns 79
Operators 81
Arithmetic Operators 81
Operator Precedence 83
Comparison Operators 85
Comparing Numbers 87
String Concatenation 88
Logical Operators 88
Truthy and Falsy Values 89
AND, OR, and NOT 89
Short-Circuit Evaluation 91
Logical Operators with Nonboolean Operands 91
Conditional Operator 92
Comma Operator 93
Grouping Operator 93
Bitwise Operators 93
typeof Operator 95
void Operator 96
Assignment Operators 96
Destructuring Assignment 97
Object and Array Operators 99
Expressions in Template Strings 99
Expressions and Control Flow Patterns 99
Converting if...else Statements to Conditional Expressions 100
Converting if Statements to Short-Circuited Logical OR Expressions 100
Conclusion 100
CRUNCtions. ... 101
Return Values 102

Table of Contents | vii

Calling Versus Referencing
Function Arguments
Do Arguments Make the Function?
Destructuring Arguments
Default Arguments
Functions as Properties of Objects
The this Keyword
Function Expressions and Anonymous Functions
Arrow Notation
call, apply, and bind
Conclusion

Scope Versus Existence

Lexical Versus Dynamic Scoping
Global Scope

Block Scope

Variable Masking

Functions, Closures, and Lexical Scope
Immediately Invoked Function Expressions
Function Scope and Hoisting
Function Hoisting

The Temporal Dead Zone

Strict Mode

Conclusion

. Arraysand Array Processing.evererenieeiieiiierineienaeennn,

A Review of Arrays
Array Content Manipulation
Adding or Removing Single Elements at the Beginning or End
Adding Multiple Elements at the End
Getting a Subarray
Adding or Removing Elements at Any Position
Cutting and Replacing Within an Array
Filling an Array with a Specific Value
Reversing and Sorting Arrays
Array Searching
The Fundamental Array Operations: map and filter
Array Magic: reduce
Array Methods and Deleted or Never-Defined Elements
String Joining
Conclusion

102
103
105
106
107
107
108
110
111
112
114

115
116
116
117
119
119
121
122
123
125
126
126
127

129
129
130
131
131
132
132
132
133
133
134
136
138
141
141
142

viii

| Table of Contents

9. Objects and Object-Oriented Programming............ccovvviivinnienniennnnnn. 145

Property Enumeration 145
for...in 146
Object.keys 146

Object-Oriented Programming 147
Class and Instance Creation 148
Dynamic Properties 149
Classes Are Functions 150
The Prototype 151
Static Methods 153
Inheritance 154
Polymorphism 155
Enumerating Object Properties, Revisited 156
String Representation 157

Multiple Inheritance, Mixins, and Interfaces 157

Conclusion 159

10, Mapsand Sets.cuueereeieriiereiie it eiiereerenaeenneennereneeenes 161

Maps 161

Weak Maps 163

Sets 164

Weak Sets 165

Breaking the Object Habit 165

11. Exceptionsand ErrorHandling.............coiiiiiiiiiiiiiiiiiiiiniinnne 167

The Error Object 167

Exception Handling with try and catch 168

Throwing Errors 169

Exception Handling and the Call Stack 169

try...catch...finally 171

Let Exceptions Be Exceptional 172

12. Iteratorsand Generators................evvviiiiiiiiiiiiiiiiiiiiiiiia, 173

The Iteration Protocol 175

Generators 177
yield Expressions and Two-Way Communication 178
Generators and return 180

Conclusion 180

13. Functions and the Power of Abstract Thinking.................cociiiiiiiinnnt, 181

Functions as Subroutines 181

Functions as Subroutines That Return a Value 182

Table of Contents | ix

14.

15.

Functions as...Functions
So What?
Functions Are Objects
IIFEs and Asynchronous Code
Function Variables
Functions in an Array
Pass a Function into a Function
Return a Function from a Function
Recursion
Conclusion

Asynchronous Programming............covvviiiiinnienniennnnnns

The Analogy
Callbacks
setInterval and clearInterval
Scope and Asynchronous Execution
Error-First Callbacks
Callback Hell
Promises
Creating Promises
Using Promises
Events
Promise Chaining
Preventing Unsettled Promises
Generators
One Step Forward and Two Steps Back?
Don’t Write Your Own Generator Runner
Exception Handling in Generator Runners
Conclusion

Dateand Time. . o.oneiei ittt et ie et e enenees

Dates, Time Zones, Timestamps, and the Unix Epoch
Constructing Date Objects
Moment.js
A Practical Approach to Dates in JavaScript
Constructing Dates
Constructing Dates on the Server
Constructing Dates in the Browser
Transmitting Dates
Displaying Dates
Date Components
Comparing Dates

183
185
186
187
189
191
192
193
194
195

197
198
198
199
200
201
202
203
204
204
206
208
209
210
213
214
214
215

217
217
218
219
220
220
220
221
221
222
223
224

X

Table of Contents

16.

17.

Date Arithmetic
User-Friendly Relative Dates
Conclusion

Formatting Numbers

Fixed Decimals

Exponential Notation

Fixed Precision

Different Bases

Advanced Number Formatting
Constants
Algebraic Functions

Exponentiation

Logarithmic Functions

Miscellaneous

Pseudorandom Number Generation
Trigonometric Functions
Hyperbolic Functions

Reqular EXpressions.oveueerneetietiiiriieiieetiereeeenaeennennnnns

Substring Matching and Replacing

Constructing Regular Expressions

Searching with Regular Expressions

Replacing with Regular Expressions

Input Consumption

Alternation

Matching HTML

Character Sets

Named Character Sets

Repetition

The Period Metacharacter and Escaping
A True Wildcard

Grouping

Lazy Matches, Greedy Matches

Backreferences

Replacing Groups

Function Replacements

Anchoring

Word Boundary Matching

Lookaheads

Constructing Regexes Dynamically

224
225
225

227
227
228
228
228
229
229
229
230
230
230
231
232
232
233

235
235
236
237
237
238
240
240
241
242
243
244
244
245
246
247
248
249
251
251
252
253

Table of Contents

| xi

18.

19.

20.

Conclusion

JavaScriptinthe Browser.........covvviiiiiiiiiiiiienneenns.

ES5 or ES6?
The Document Object Model
Some Tree Terminology
DOM “Get” Methods
Querying DOM Elements
Manipulating DOM Elements
Creating New DOM Elements
Styling Elements
Data Attributes
Events
Event Capturing and Bubbling
Event Categories
Ajax
Conclusion

The Almighty Dollar (Sign)
Including jQuery

Waiting for the DOM to Load
jQuery-Wrapped DOM Elements
Manipulating Elements
Unwrapping jQuery Objects
Ajax

Conclusion

Node Fundamentals

Modules

Core Modules, File Modules, and npm Modules
Customizing Modules with Function Modules
Filesystem Access

Process

Operating System

Child Processes

Streams

Web Servers

Conclusion

254

255
255
256
259
259
260
261
261
262
263
264
265
268
269
272

273
273
274
274
275
275
277
278
278

279
279
280
282
284
286
289
291
292
293
294
296

Xii

| Table of Contents

21. Object Property Configuration and Proxies..............covivviiiiirennnnnns
Accessor Properties: Getters and Setters
Object Property Attributes
Protecting Objects: Freezing, Sealing, and Preventing Extension
Proxies
Conclusion

22. Additional ReSOUICES. ... v v veee et etie it ie it ietieeieeneeneeneenneannns
Online Documentation
Periodicals
Blogs and Tutorials
Stack Overflow
Contributing to Open Source Projects
Conclusion

T e T 1) (o S

297
299
301
304
306

307
307
308
308
309
311
311

Table of Contents

xXiii

Preface

Even though this is my second book on technologies in the JavaScript ecosystem, I
still find myself somewhat surprised at my role as a JavaScript expert and evangelist.
Like so many programmers, I held a strong prejudice against JavaScript up until
about 2012. To do such an about-face still feels a little disorienting.

My prejudice was for the usual reasons: I considered JavaScript a “toy” language
(without really learning it properly, and therefore not knowing of what I spoke) that
was practiced by dangerous, sloppy, untrained amateur programmers. There is a little
truth in both of these reasons. ES6 was developed quickly, and even its inventor Bren-
dan Eich admits there are things that he didn’t get right the first time around—and by
the time he realized it, too many people were relying on the problematic behavior for
him to effectively change it (show me the language that doesn't suffer from this prob-
lem, however). As for the second reason, JavaScript did make programming suddenly
accessible. Not only did everyone have a browser, but with only a little effort, they
could see the JavaScript that enabled the websites that were rapidly proliferating on
the Web. People learned by trial and error, by reading each other’s code and—in so
many cases—emulating poorly written code with insufficient understanding.

I'm glad I have learned enough about JavaScript to recognize that—far from being a
toy language—it is based on extremely solid foundations, and is powerful, flexible,
and expressive. I'm also glad I have come to embrace the accessibility that JavaScript
brings. I certainly hold no animosity toward amateurs: everyone has to start some-
where, programming is a profitable skill, and a career in programming has many
advantages.

To the new programmer, the amateur, I say this: there is no shame in being an ama-
teur. There is some shame in staying an amateur (if you make programming your
profession, certainly). If you want to practice programming, practice it. Learn every-
thing you can, from every source you can. Keep an open mind and—perhaps most
importantly—question everything. Question every expert. Question every experi-
enced programmer. Constantly ask “Why?”

XV

For the most part, I have tried to keep this book to the “facts” of JavaScript, but it is
impossible to completely avoid opinion. Where I offer opinions, take them for what
they are. You are welcome to disagree, and you are encouraged to seek out the opin-
ions of other experienced developers.

You are learning JavaScript at a very exciting time. The Web is leaving its infancy
(technically speaking), and web development isn't the confusing, complicated Wild
West that it was 5 and 10 years ago. Standards like HTML5 and ES6 are making it
easier to learn web development, and easier to develop high-quality applications.
Node.js is extending the reach of JavaScript beyond the browser, and now it is a viable
choice for system scripting, desktop application development, backend web develop-
ment, and even embedded applications. Certainly I haven’'t had this much fun pro-
gramming since I started in the mid-1980s.

A Brief History of JavaScript

JavaScript was developed by Brendan Eich, a developer at Netscape Communications
Corporation, in 1995. Its initial development was very rapid, and much of the criti-
cism leveled at JavaScript has cited the lack of planning foresight during its develop-
ment. However, Brendan Eich was not a dabbler: he had a solid foundation in
computer science, and incorporated remarkably sophisticated and prescient ideas
into JavaScript. In many ways, it was ahead of its time, and it took 15 years for main-
stream developers to catch on to the sophistication the language offered.

JavaScript started life with the name Mocha, and was briefly named LiveScript before
being officially renamed to JavaScript in a Netscape Navigator release in 1995. The
word “Java” in “JavaScript” was not coincidental, but it is confusing: aside from a
common syntactic ancestry, JavaScript has more in common with Self (a prototype-
based language developed at Xerox PARC in the mid-’80s) and Scheme (a language
developed in the 1970s by Guy Steele and Gerald Sussman, which was in turn heavily
influenced by Lisp and ALGOL) than with Java. Eich was familiar with both Self and
Scheme, and used some of their forward-thinking paradigms in developing Java-
Script. The name JavaScript was partially a marketing attempt to tie into the success
Java was enjoying at the time.'

In November 1996, Netscape announced that they had submitted JavaScript to Ecma,
a private, international nonprofit standards organization that carries significant influ-
ence in the technology and communications industries. Ecma International pub-
lished the first edition of the ECMA-26 specification, which was, in essence,
JavaScript.

1 Eich confessed in a 2014 interview to enjoying thumbing his nose at Sun Microsystems, who “hated Java-
Script?

xvi | Preface

The relationship between Ecma’s specifications—which specify a language called
ECMAScript—and JavaScript is mostly academic. Technically, JavaScript is an imple-
mentation of ECMAScript, but for practical purposes, JavaScript and ECMAScript
can be thought of interchangeably.

The last major ECMAScript version was 5.1 (generically referred to as ES5), pub-
lished in June 2011. Browsers “in the wild” that are old enough not to support
ECMAScript 5.1 have fallen well below the single digits, and it’s safe to say that
ECMAScript 5.1 is the current lingua franca of the Web.

ECMAScript 6 (ES6)—which is the focus of this book—was published by Ecma Inter-
national in June 2015. The working name for the specification prior to publication
was “Harmony, and you will hear ES6 referred to as “Harmony;,” “ES6 Harmony,”
“ES6,” “ES2015,” and “ECMAScript 20157 In this book, we will refer to it simply as

ESe6.

ES6

If ES5 is the current lingua franca of the Web, the attentive reader might be wonder-
ing why this book focuses on ES6.

ES6 represents a significant advancement in the JavaScript language, and some of
ES5’s major shortcomings are addressed in ES6. I think you will find that ES6 is gen-
erally a much more pleasant and powerful language to work with (and ES5 was quite
enjoyable to start with). Also—thanks to transcompilers—you can write ES6 today
and transcompile it to “web-compatible” ES5.

With ES6 finally published, browser support for it will grow steadily, and at some
point, transcompilation will no longer be necessary to reach a broad audience (I am
not foolish enough to make a prediction—even a rough one—about when that will
happen).

Whats clear is that ES6 represents the future of JavaScript development, and by
investing your time in learning it now, you will be prepared for the future, with trans-
compilers preventing us from sacrificing portability now.

However, not every developer will have the luxury of writing ES6 today. It's possible
that you're working on a very large existing ES5 code base that would be prohibitively
expensive to convert to ES6. And some developers simply won’t wish to go through
the extra effort involved in transcompilation.

With the exception of Chapter 1, this book will cover ES6, not ES5. Where appropri-
ate, I will point out where ES6 differs from ES5, but there will not be side-by-side
code examples, or extensive discussion of doing things “the ES5 way” when there is a
better way in ES6. If you fall into that category of programmers who, for whatever

Preface | xvii

reason, need to stick to ES5, this may not be the book for you (though I hope you will
return to it at some point in the future!).

The editorial choice to focus on ES6 was made carefully. The improvements in ES6
are significant enough that it would have been difficult to maintain a clear pedagogi-
cal framework. In short, a book that attempts to cover ES5 and ES6 would do both
topics a disservice.

Who This Book Is For

This book is primarily for readers who already have some experience with program-
ming (even an introductory programming class, or an online course). If youre new to
programming, this book will be helpful, but you might want to supplement it with an
introductory text or class.

Those who already have some JavaScript experience (especially if it’s only in ES5) will
find a practical and thorough coverage of important language concepts.

Programmers who are coming from another language should feel right at home with
the content in this book.

This book does attempt to comprehensively cover the language features, related tools,
techniques, and paradigms that drive modern JavaScript development. Therefore, the
material in this book necessarily ranges from the simple and straightforward (vari-
ables, control flow, functions) to the complicated and esoteric (asynchronous pro-
gramming, regular expressions). Depending on your level of experience, you may
find some chapters more challenging than others: the beginning programmer will no
doubt need to revisit some of the material more than once.

What This Book Is Not

This book is not a comprehensive reference to JavaScript or its related libraries. The
Mozilla Developer Network (MDN) maintains an excellent, thorough, up-to-date,
and free online JavaScript reference, which will be referenced liberally throughout
this book. If you prefer a physical book, David Flanagan’s JavaScript: The Definitive
Guide is quite comprehensive (though it does not cover ES6 at the time of this writ-

ing).

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

xviii | Preface

https://developer.mozilla.org/en-US/docs/Web/JavaScript
http://shop.oreilly.com/product/9780596805531.do
http://shop.oreilly.com/product/9780596805531.do

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

N

Safari® Books Online

Safari Books Online is an on-demand digital library that deliv-
1 o ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,

Preface | xix

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/

Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf-
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/learning]S_3E.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

The opportunity to write books for O’Reilly is a tremendous honor, and I owe a debt
of gratitude to Simon St. Laurent for seeing the potential in me, and bringing me on
board. Meg Foley, my editor, has been supportive, encouraging, and ever-helpful
(there’s a certain green T-shirt in the mail for you, Meg!). An O’Reilly book is a team
effort, and my copyeditor Rachel Monaghan, production editor Kristen Brown, and
proofreader Jasmine Kwityn were fast, thorough, and insightful: thank you all for
your effort!

To my technical reviewers—Matt Inman, Shelley Powers, Nick Pinkham, and Cody
Lindley—thanks for your astute feedback, for your brilliant ideas, and for helping
make this book great. To say I couldn't have done it without you is an understate-
ment. While everyone’s feedback was incredibly helpful, I want to give special recog-

xx | Preface

https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com
http://bit.ly/learningJS_3E
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

nition to Matt: his experience as an educator provided valuable insight on all matters
of pedagogy, and the liberal use of Stephen Colbert images in his feedback helped me
maintain my sanity!

Shelley Powers—author of previous editions of this book—deserves special thanks
not just for passing this title on to me, but for providing her experienced feedback
and for making this a better book (and for sparking some spirited discussions!).

I would like to thank all the readers of of my previous book (Web Development with
Node and Express). If you hadn't bought that book—and reviewed it so positively!—I
would probably not have had the opportunity to write this book. Special thanks to the
readers who took the time to send in feedback and corrections: I have learned a lot
from your responses!

To everyone at Pop Art, where I am honored to work: you are my rock. Your support
humbles me, your enthusiasm motivates me, and your professionalism and dedica-
tion are what get me out of bed in the morning. Tom Paul in particular deserves my
gratitude: his unwavering principles, innovative business ideas, and exceptional lead-
ership inspire me not only to do my best today, but to do even better tomorrow.
Thanks to Steve Rosenbaum for founding Pop Art, weathering stormy seas, and suc-
cessfully passing the torch on to Tom. As I have taken time to finish this book, Col-
wyn Fritze-Moor and Eric Buchmann worked extra hard to cover duties that I
normally would have handled: thank you both. Thanks to Dylan Hallstrom for being
the very model of reliability. Thanks to Liz Tom and Sam Wilskey for joining Team
Pop Art! Thanks to Carole Hardy, Nikki Brovold, Jennifer Erts, Randy Keener, Patrick
Wu, and Lisa Melogue for all of your support. Lastly, thanks always to my predeces-
sors, from whom I learned so much: Tony Alferez, Paul Inman, and Del Olds.

My enthusiasm for this book—and the subject of programming languages in particu-
lar—was sparked by Dr. Dan Resler, Associate Professor at Virginia Commonwealth
University. I registered for his class on compiler theory with a singular lack of inter-
est, and left that class with a passion for formal language theory. Thank you for pass-
ing your enthusiasm—and some small part of your depth of understanding—on to
me.

Thanks to all of my friends in the PSU part-time MBA cohort—it’s been such a pleas-
ure getting to know you all! Special thanks to Cathy, Amanda, Miska, Sahar, Paul S.,
Cathy, John R., Laurie, Joel, Tyler P, Tyler S., and Jess: you've all enriched my life so
much!

If my coworkers at Pop Art motivate me to greatness and inspire my days, my friends
motivate me to deepness and light up my nights. Mark Booth: no friend knows me
better, and there is no one I would sooner trust my deepest secrets to. Your creativity
and talent put me to shame: don’t let me show you up with this stupid book. Katy
Roberts is as reliable as the incoming tide, and as beautiful. Katy, thank you for your

Preface | xxi

http://shop.oreilly.com/product/0636920032977.do
http://shop.oreilly.com/product/0636920032977.do

deep and abiding kindness and friendship. Sarah Lewis: I love your face. Byron and
Amber Clayton are true and loyal friends who always bring a smile to my face. Lor-
raine, it’s been years, but you still bring out the best in me. To Kate Nahas: I'm so glad
we have reconnected after so many years; I look forward to sharing a toast to Duke’s
memory. To Desember: thank you for your trust, warmth, and companionship. Lastly,
thanks to my new friends Chris Onstad and Jessica Rowe: you two have brought so
much joy and laughter into my life in the last two years, I don't know what I would
have done without you.

To my mother, Ann: thank you for your unwavering support, love, and patience. My
father, Tom, remains my prototype for curiosity, innovation, and dedication, and
without him I would be a poor engineer (or perhaps not an engineer at all). My sister,
Meris, will always be a fixed point in my life, representing loyalty and conviction.

xxii | Preface

CHAPTER 1
Your First Application

Often, the best way to learn is to do: so we're going to start off by creating a simple
application. The point of this chapter is not to explain everything that’s going on:
there’s a lot that’s going to be unfamiliar and confusing, and my advice to you is to
relax and not get caught up in trying to understand everything right now. The point
of this chapter is to get you excited. Just enjoy the ride; by the time you finish this
book, everything in this chapter will make perfect sense to you.

If you don’t have much programming experience, one of the things
that is going to cause you a lot of frustration at first is how literal
computers are. Our human minds can deal with confusing input
very easily, but computers are terrible at this. If I make a grammati-
cal error, it may change your opinion about my writing ability, but
you will probably still understand me. JavaScript—Ilike all pro-
gramming languages—has no such facility to deal with confusing
input. Capitalization, spelling, and the order of words and punctu-
ation are crucial. If you're experiencing problems, make sure you've
copied everything correctly: you haven’t substituted semicolons for
colons or commas for periods, you haven’t mixed single quotation
and double quotation marks, and you've capitalized all of your
code correctly. Once youve had some experience, youll learn
where you can “do things your way,” and where you have to be per-
fectly literal, but for now, you will experience less frustration by
entering the examples exactly as they’re written.

Historically, programming books have started out with an example called “Hello,
World” that simply prints the phrase “hello world” to your terminal. It may interest
you to know that this tradition was started in 1972 by Brian Kernighan, a computer
scientist working at Bell Labs. It was first seen in print in 1978 in The C Programming

Language, by Brian Kernighan and Dennis Ritchie. To this day, The C Programming
Language is widely considered to be one of the best and most influential program-
ming language books ever written, and I have taken much inspiration from that work
in writing this book.

While “Hello, World” may seem dated to an increasingly sophisticated generation of
programming students, the implicit meaning behind that simple phrase is as potent
today as it was in 1978: they are the first words uttered by something that you have
breathed life into. It is proof that you are Prometheus, stealing fire from the gods; a
rabbi scratching the true name of God into a clay golem; Doctor Frankenstein breath-
ing life into his creation.' It is this sense of creation, of genesis, that first drew me to
programming. Perhaps one day, some programmer—maybe you—will give life to the
first artificially sentient being. And perhaps its first words will be “hello world”

In this chapter, we will balance the tradition that Brian Kernighan started 44 years
ago with the sophistication available to programmers today. We will see “hello world”
on our screen, but it will be a far cry from the blocky words etched in glowing phos-
phor you would have enjoyed in 1972.

Where to Start

In this book, we will cover the use of JavaScript in all its current incarnations (server-
side, scripting, desktop, browser-based, and more), but for historical and practical
reasons, were going to start with a browser-based program.

One of the reasons we're starting with a browser-based example is that it gives us easy
access to graphics libraries. Humans are inherently visual creatures, and being able to
relate programming concepts to visual elements is a powerful learning tool. We will
spend a lot of time in this book staring at lines of text, but let’s start out with some-
thing a little more visually interesting. I've also chosen this example because it organi-
cally introduces some very important concepts, such as event-driven programming,
which will give you a leg up on later chapters.

The Tools

Just as a carpenter would have trouble building a desk without a saw, we can’t write
software without some tools. Fortunately, the tools we need in this chapter are mini-
mal: a browser and a text editor.

I am happy to report that, as I write this, there is not one browser on the market that
is not suited to the task at hand. Even Internet Explorer—which has long been a

1 Thope you have more compassion for your creations than Dr. Frankenstein—and fare better.

2 | Chapter 1: Your First Application

thorn in the side of programmers—has cleaned up its act, and is now on par with
Chrome, Firefox, Safari, and Opera. That said, my browser of choice is Firefox, and in
this text, I will discuss Firefox features that will help you in your programming jour-
ney. Other browsers also have these features, but I will describe them as they are
implemented in Firefox, so the path of least resistance while you go through this book
will be to use Firefox.

You will need a text editor to actually write your code. The choice of text editors can
be a very contentious—almost religious—debate. Broadly speaking, text editors can
be categorized as text-mode editors or windowed editors. The two most popular text-
mode editors are vi/vim and Emacs. One big advantage to text-mode editors is that,
in addition to using them on your computer, you can use them over SSH—meaning
you can remotely connect to a computer and edit your files in a familiar editor. Win-
dowed editors can feel more modern, and add some helpful (and more familiar) user
interface elements. At the end of the day, however, you are editing text only, so a win-
dowed editor doesn’t offer an inherent advantage over a text-mode editor. Popular
windowed editors are Atom, Sublime Text, Coda, Visual Studio, Notepad++, TextPad,
and Xcode. If you are already familiar with one of these editors, there is probably no
reason to switch. If you are using Notepad on Windows, however, I highly recom-
mend upgrading to a more sophisticated editor (Notepad++ is an easy and free
choice for Windows users).

Describing all the features of your editor is beyond the scope of this book, but there
are a few features that you will want to learn how to use:

Syntax highlighting
Syntax highlighting uses color to distinguish syntactic elements in your program.
For example, literals might be one color and variables another (you will learn
what these terms mean soon!). This feature can make it easier to spot problems
in your code. Most modern text editors will have syntax highlighting enabled by
default; if your code isn’t multicolored, consult your editor documentation to
learn how to enable it.

Bracket matching
Most programming languages make heavy use of parentheses, curly braces, and
square brackets (collectively referred to as “brackets”). Sometimes, the contents
of these brackets span many lines, or even more than one screen, and you’ll have
brackets within brackets, often of different types. It’s critical that brackets match
up, or “balance”; if they don't, your program won’t work correctly. Bracket match-
ing provides visual cues about where brackets begin and end, and can help you
spot problems with mismatched brackets. Bracket matching is handled differ-
ently in different editors, ranging from a very subtle cue to a very obvious one.
Unmatched brackets are a common source of frustration for beginners, so I

TheTools | 3

strongly recommend that you learn how to use your editor’s bracket-matching
feature.

Code folding

Somewhat related to bracket matching is code folding. Code folding refers to the
ability to temporarily hide code that’s not relevant to what youre doing at the
moment, allowing you to focus. The term comes from the idea of folding a piece
of paper over on itself to hide unimportant details. Like bracket matching, code
folding is handled differently by different editors.

Autocompletion

Autocompletion (also called word completion or IntelliSense?) is a convenience
feature that attempts to guess what you are typing before you finish typing it. It
has two purposes. The first is to save typing time. Instead of typing, for example,
encodeURIComponent, you can simply type enc, and then select encodeURICompo
nent from a list. The second purpose is called discoverability. For example, if you
type enc because you want to use encodeURIComponent, you'll find (or “dis-
cover”) that there’s also a function called encodeURI. Depending on the editor,
you may even see some documentation to distinguish the two choices. Autocom-
pletion is more difficult to implement in JavaScript than it is in many other lan-
guages because it’s a loosely typed language, and because of its scoping rules
(which you will learn about later). If autocompletion is an important feature to
you, you may have to shop around to find an editor that meets your needs: this is
an area in which some editors definitely stand out from the pack. Other editors
(vim, for example) offer very powerful autocompletion, but not without some
extra configuration.

A Comment on Comments

JavaScript—like most programming languages—has a syntax for making comments in
code. Comments are completely ignored by JavaScript; they are meant for you or
your fellow programmers. They allow you to add natural language explanations of
what’s going on when it’s not clear. In this book, we’ll be liberally using comments in
code samples to explain what’s happening.

In JavaScript, there are two kinds of comments: inline comments and block com-
ments. An inline comment starts with two forward slashes (//) and extends to the
end of the line. A block comment starts with a forward slash and an asterisk (/*) and
ends with an asterisk and a forward slash (*/), and can span multiple lines. Here’s an
example that illustrates both types of comments:

2 Microsofts terminology.

4

Chapter 1: Your First Application

console.log("echo"); // prints "echo" to the console

/*
In the previous line, everything up to the double forward slashes
is JavaScript code, and must be valid syntax. The double
forward slashes start a comment, and will be ignored by JavaScript.

This text is in a block comment, and will also be ignored
by JavaScript. We've chosen to indent the comments of this block
for readability, but that's not necessary.

*/

/*Look, Ma, no indentation!*/

Cascading Style Sheets (CSS), which we'll see shortly, also use JavaScript syntax for
block comments (inline comments are not supported in CSS). HTML (like CSS)
doesn’t have inline comments, and its block comments are different than JavaScript.
They are surrounded by the unwieldy <! - - and - ->:

<head>
<title>HTML and CSS Example</title>
<!-- this is an HTML comment. ..
which can span multiple lines. -->
<style>
body: { color: red; }
/* this i1s a CSS comment...
which can span multiple lines. */

</style>
<script>
console.log("echo"); // back in JavaScript...
/* ...so both inline and block comments
are supported. */
</script>
</head>

Getting Started

We're going to start by creating three files: an HTML file, a CSS file, and a JavaScript
source file. We could do everything in the HTML file (JavaScript and CSS can be
embedded in HTML), but there are certain advantages to keeping them separate. If
youre new to programming, I strongly recommend that you follow along with these
instructions step by step: we're going to take a very exploratory, incremental approach
in this chapter, which will facilitate your learning process.

It may seem like we're doing a lot of work to accomplish something fairly simple, and
there’s some truth in that. I certainly could have crafted an example that does the
same thing with many fewer steps, but by doing so, I would be teaching you bad hab-
its. The extra steps you'll see here are ones you’ll see over and over again, and while it
may seem overcomplicated now, you can at least reassure yourself that you're learning
to do things the right way.

Getting Started | 5

One last important note about this chapter. This is the lone chapter in the book in
which the code samples will be written in ES5 syntax, not ES6 (Harmony). This is to
ensure that the code samples will run, even if you aren’t using a browser that has
implemented ES6. In the following chapters, we will talk about how to write code in
ES6 and “transcompile” it so that it will run on legacy browsers. After we cover that
ground, the rest of the book will use ES6 syntax. The code samples in this chapter are
simple enough that using ES5 doesn’t represent a significant handicap.

For this exercise, you'll want to make sure the files you create are in
the same directory or folder. I recommend that you create a new
directory or folder for this example so it doesn’t get lost among
your other files.

Let’s start with the JavaScript file. Using a text editor, create a file called main.js. For
now, let’s just put a single line in this file:

console.log('main.js loaded');

Then create the CSS file, main.css. We don’t actually have anything to put in here yet,
so we'll just include a comment so we don't have an empty file:

/* Styles go here. */
Then create a file called index.html:

<!doctype html>
<html>
<head>
<link rel="stylesheet" href="main.css">
</head>
<body>
<hi>My first application!</h1>
<p>Welcome to <i>Learning JavaScript, 3rd Edition</i>.</p>

<script src="main.js"></script>
</body>
</html>
While this book isn’t about HTML or web application development, many of you are
learning JavaScript for that purpose, so we will point out some aspects of HTML as
they relate to JavaScript development. An HTML document consists of two main
parts: the head and the body. The head contains information that is not directly dis-
played in your browser (though it can affect what’s displayed in your browser). The
body contains the contents of your page that will be rendered in your browser. It’s
important to understand that elements in the head will never be shown in the
browser, whereas elements in the body usually are (certain types of elements, like
<script>, won't be visible, and CSS styles can also hide body elements).

6 | Chapter 1: Your First Application

In the head, we have the line <link rel="stylesheet" href="main.css">; this is
what links the currently empty CSS file into your document. Then, at the end of the
body, we have the line <script src="main.js"></script>, which is what links the
JavaScript file into your document. It may seem odd to you that one goes in the head
and the other goes at the end of the body. While we could have put the <script> tag
in the head, there are performance and complexity reasons for putting it at the end of
the body.

In the body, we have <h1>My first application!</h1>, which is first-level header
text (which indicates the largest, most important text on the page), followed by a <p>
(paragraph) tag, which contains some text, some of which is italic (denoted by the
<i> tag).

Go ahead and load index.html in your browser. The easiest way to do this on most
systems is to simply double-click on the file from a file browser (you can also usually
drag the file onto a browser window). You'll see the body contents of your HTML file.

There are many code samples in this book. Because HTML and
JavaScript files can get very large, I won't present the whole files
every time: instead, I will explain in the text where the code sample
fits into the file. This may cause some trouble for beginning pro-
grammers, but understanding the way code fits together is impor-
tant, and can’t be avoided.

The JavaScript Console

We've already written some JavaScript: console.log('main.js loaded'). What did
that do? The console is a text-only tool for programmers to help them diagnose their
work. You will use the console extensively as you go through this book.

Different browsers have different ways of accessing the console. Because you will be
doing this quite often, I recommend learning the keyboard shortcut. In Firefox, it’s
Ctrl-Shift-K (Windows and Linux) or Command-Option-K (Mac).

In the page in which you loaded index.html, open the JavaScript console; you should
see the text “main.js loaded” (if you don't see it, try reloading the page). console. log
is a method?® that will print whatever you want to the console, which is very helpful
for debugging and learning alike.

One of the many helpful features of the console is that, in addition to seeing output
from your program, you can enter JavaScript directly in the console, thereby testing

3 You will learn more about the difference between a function and a method in Chapter 9.

The JavaScript Console | 7

things out, learning about JavaScript features, and even modifying your program
temporarily.

jQuery

We're going to add an extremely popular client-side scripting library called jQuery to
our page. While it is not necessary, or even germane to the task at hand, it is such a
ubiquitous library that it is often the first one you will include in your web code. Even
though we could easily get by without it in this example, the sooner you start getting
accustomed to seeing jQuery code, the better off you will be.

At the end of the body, before we include our own main.js, we'll link in jQuery:

<script src="https://code.jquery.com/jquery-2.1.1.min.js"></script>

<script src="main.js"></script>

You'll notice that we're using an Internet URL, which means your page won't work
correctly without Internet access. We're linking in jQuery from a publicly hosted con-
tent delivery network (CDN), which has certain performance advantages. If you will
be working on your project offline, you'll have to download the file and link it from
your computer instead. Now we'll modify our main.js file to take advantage of one of
jQuery’s features:

$(document).ready(function() {
'use strict';
console.log('main.js loaded');

s

Unless you've already had some experience with jQuery, this probably looks like gib-
berish. There’s actually a lot going on here that won't become clear until much later.
What jQuery is doing for us here is making sure that the browser has loaded all of the
HTML before executing our JavaScript (which is currently just a single console. log).
Whenever were working with browser-based JavaScript, we'll be doing this just to
establish the practice: any JavaScript you write will go between the $(docu
ment).ready(function() { and }); lines. Also note the line 'use strict'; this is
something well learn more about later, but basically this tells the JavaScript inter-
preter to treat your code more rigorously. While that may not sound like a good thing
at first, it actually helps you write better JavaScript, and prevents common and
difficult-to-diagnose problems. We'll certainly be learning to write very rigorous Java-
Script in this book!

8 | Chapter 1: Your First Application

Drawing Graphics Primitive

Among many of the benefits HTML5 brought was a standardized graphics interface.
The HTML5 canvas allows you to draw graphics primitives like squares, circles, and
polygons. Using the canvas directly can be painful, so we'll use a graphics library
called Paper.js to take advantage of the HTML5 canvas.

Paper.js is not the only canvas graphics library available: Kinetic]JS,
Fabric.js, and Easel]S are very popular and robust alternatives. I've
used all of these libraries, and they’re all very high quality.

Before we start using Paper.js to draw things, we'll need an HTML canvas element to
draw on. Add the following to the body (you can put it anywhere; after the intro para-
graph, for example):

<canvas id="mainCanvas'></canvas>

Note that we've given the canvas an id attribute: that's how we will be able to easily
refer to it from within JavaScript and CSS. If we load our page right now, we won't see
anything different; not only haven’t we drawn anything on the canvas, but it’s a white
canvas on a white page and has no width and height, making it very hard to see
indeed.

Every HTML element can have an ID, and for the HTML to be
valid (correctly formed), each ID must be unique. So now that
we've created a canvas with the id “mainCanvas”, we can't reuse
that ID. Because of this, it's recommended that you use IDs spar-
ingly. Were using one here because it’s often easier for beginners to
deal with one thing at a time, and by definition, an ID can only
refer to one thing on a page.

Let’s modify main.css so our canvas stands out on the page. If youre not familiar with
CSS, that's OK—this CSS is simply setting a width and height for our HTML element,
and giving it a black border:*

#mainCanvas {

width: 400px;

height: 400px;

border: solid 1px black;
}

4 If you want to learn more about CSS and HTML, I recommend the Codecademy’s free HTML & CSS track.

Drawing Graphics Primitive | 9

https://www.codecademy.com/tracks/web
http://paperjs.org
http://kineticjs.com
http://fabricjs.com
http://www.createjs.com/#!/EaselJS

If you reload your page, you should see the canvas now.

Now that we have something to draw on, we'll link in Paper.js to help us with the
drawing. Right after we link in jQuery, but before we link in our own main.js, add the
following line:

<script src="https://cdnjs.cloudflare.com/ajax/libs/paper.js/0.9.25/ <«
paper-full.min.js"></script>

Note that, as with jQuery, we're using a CDN to include Paper.js in our project.

You might be starting to realize that the order in which we link
things in is very important. We're going to use both jQuery and
Paper.js in our own main.js, so we have to link in both of those first.
Neither of them depends on the other, so it doesn’t matter which
one comes first, but I always include jQuery first as a matter of
habit, as so many things in web development depend on it.

Now that we have Paper.js linked in, we have to do a little work to configure Paper.js.
Whenever you encounter code like this—repetitive code that is required before you
do something—it’s often called boilerplate. Add the following to main.js, right after
'use strict' (you can remove the console. log if you wish):

paper.install(window);
paper.setup(document.getElementById('mainCanvas'));

// TODO

paper.view.draw();

The first line installs Paper.js in the global scope (which will make more sense in
Chapter 7). The second line attaches Paper.js to the canvas, and prepares Paper.js for
drawing. In the middle, where we put TODO is where we'll actually be doing the inter-
esting stuff. The last line tells Paper.js to actually draw something to the screen.

Now that all of the boilerplate is out of the way, let’s draw something! We'll start with
a green circle in the middle of the canvas. Replace the “TODO” comment with the
following lines:

var ¢ = Shape.Circle(200, 200, 50);
c.fillColor = 'green';

Refresh your browser, and behold, a green circle. You've written your first real Java-
Script. There’s actually a lot going on in those two lines, but for now, it’s only impor-
tant to know a few things. The first line creates a circle object, and it does so with
three arguments: the x and y coordinates of the center of the circle, and the radius of
the circle. Recall we made our canvas 400 pixels wide and 400 pixels tall, so the center
of the canvas lies at (200, 200). And a radius of 50 makes a circle thats an eighth of

10 | Chapter 1:Your First Application

the width and height of the canvas. The second line sets the fill color, which is distinct
from the outline color (called the stroke in Paper.js parlance). Feel free to experiment
with changing those arguments.

Automating Repetitive Tasks

Consider what youd have to do if you wanted not just to add one circle, but to fill the
canvas with them, laid out in a grid. If you space the circles 50 pixels apart and make
them slightly smaller, you could fit 64 of them on the canvas. Certainly you could
copy the code you've already written 63 times, and by hand, modify all of the coordi-
nates so that they’re spaced out in a grid. Sounds like a lot of work, doesn't it? Fortu-
nately, this kind of repetitive task is what computers excel at. Let’s see how we can
draw out 64 circles, evenly spaced. We'll replace our code that draws a single circle
with the following:

var c;
for(var x=25; x<400; x+=50) {
for(var y=25; y<400; y+=50) {
c = Shape.Circle(x, y, 20);
c.fillColor = 'green';
}
}

If you refresh your browser, you’ll see we have 64 green circles! If youre new to pro-
gramming, what you've just written may seem confusing, but you can see it’s better
than writing the 128 lines it would take to do this by hand.

What we've used is called a for loop, which is part of the control flow syntax that we'll
learn about in detail in Chapter 4. A for loop allows you to specify an initial condi-
tion (25), an ending condition (less than 400), and an increment value (50). We use
one loop inside the other to accomplish this for both the x-axis and y-axis.

There are many ways we could have written this example. The way
we've written it, we've made the x and y coordinates the important
pieces of information: we explicitly specify where the circles will
start and how far apart they’ll be spaced. We could have
approached this problem from another direction: we could have
said what’s important is the number of circles we want (64), and let
the program figure out how to space them so that they fit on the
canvas. The reason we went with this solution is that it better
matches what we would have done if we had cut and pasted our
circle code 64 times and figured out the spacing ourselves.

Automating Repetitive Tasks | 11

Handling User Input

So far, what we've been doing hasn't had any input from the user. The user can click
on the circles, but it doesn’t do anything. Likewise, trying to drag a circle would have
no effect. Lets make this a little more interactive, by allowing the user to choose
where the circles get drawn.

It’s important to become comfortable with the asynchronous nature of user input. An
asynchronous event is an event whose timing you don't have any control over. A user’s
mouse click is an example of an asynchronous event: you can't be inside your users’
minds, knowing when theyre going to click. Certainly you can prompt their click
response, but it is up to them when—and if—they actually click. Asynchronous
events arising from user input make intuitive sense, but we will cover much less intu-
itive asynchronous events in later chapters.

Paper.js uses an object called a tool to handle user input. If that choice of names seems
unintuitive to you, you are in good company: I agree, and don’t know why the
Paper.js developers used that terminology.® It might help you to translate “tool” to
“user input tool” in your mind. Let’s replace our code that drew a grid of circles with
the following code:

var tool = new Tool();

tool.onMouseDown = function(event) {
var ¢ = Shape.Circle(event.point.x, event.point.y, 20);
c.fillColor = 'green';
3
The first step in this code is to create our tool object. Once we've done that, we can
attach an event handler to it. In this case, the event handler is called onMouseDown.
Whenever the user clicks the mouse, the function weve attached to this handler is
invoked. This is a very important point to understand. In our previous code, the code
ran right away: we refreshed the browser, and the green circles appeared automati-
cally. That is not happening here: if it were, it would draw a single green circle some-
where on the screen. Instead, the code contained between the curly braces after
function is executed only when the user clicks the mouse on the canvas.

The event handler is doing two things for you: it is executing your code when the
mouse is clicked, and it is telling you where the mouse was clicked. That location is
stored in a property of the argument, event.point, which has two properties, x and
y, indicating where the mouse was clicked.

5 Technical reviewer Matt Inman suggested that the Paper.js developers might have been Photoshop users
familiar with “hand tool,” “direct selection tool,” and so on.

12 | Chapter 1:Your First Application

Note that we could save ourselves a little typing by passing the point directly to the
circle (instead of passing the x and y coordinates separately):

var c¢ = Shape.Circle(event.point, 20);

This highlights a very important aspect of JavaScript: it’s able to ascertain information
about the variables that are passed in. In the previous case, if it sees three numbers in
a row, it knows that they represent the x and y coordinates and the radius. If it sees
two arguments, it knows that the first one is a point object, and the second one is the
radius. We'll learn more about this in Chapters 6 and 9.

Hello, World

Let’s conclude this chapter with a manifestation of Brian Kernighan’s 1972 example.
We've already done all the heavy lifting: all that remains is to add the text. Before your
onMouseDown handler, add the following:

var ¢ = Shape.Circle(200, 200, 80);
c.fillColor = 'black';

var text = new PointText(200, 200);
text.justification = 'center';
text.fillColor = 'white';
text.fontSize = 20;

text.content = 'hello world';

This addition is fairly straightforward: we create another circle, which will be a back-
drop for our text, and then we actually create the text object (PointText). We specify

where to draw it (the center of the screen) and some additional properties (justifica-
tion, color, and size). Lastly, we specify the actual text contents (“hello world”).

Note that this is not the first time we emitted text with JavaScript: we did that first
with console. log earlier in this chapter. We certainly could have changed that text to
“hello world” In many ways, that would be more analogous to the experience you
would have had in 1972, but the point of the example is not the text or how it’s ren-
dered: the point is that youre creating something autonomous, which has observable
effects.

By refreshing your browser with this code, you are participating in a venerable tradi-
tion of “Hello, World” examples. If this is your first “Hello, World,” let me welcome
you to the club. If it is not, I hope that this example has given you some insight into
JavaScript.

Hello, World | 13

CHAPTER 2
JavaScript Development Tools

While you can write JavaScript with nothing more than an editor and a browser (as
we saw in the previous chapter), JavaScript developers rely on some useful develop-
ment tools. Furthermore, because we are focusing on ES6 for the rest of this book,
we'll need a way to convert our ES6 code to portable ES5 code. The tools discussed in
this chapter are very common, and you are likely to encounter them in any open
source project or software development team. They are:

« Git, a version control tool that helps you manage your project as it grows, and
collaborate with other developers.

» Node, which allows you to run JavaScript outside of the browser (and comes with
npm, which gives you access to the rest of the tools on this list).

o Gulp, a build tool that automates common development tasks (Grunt is a popular
alternative).

« Babel, a transcompiler that converts ES6 code to portable ES5 code.

« ESLint, a linter that helps you avoid common mistakes and makes you a better
programmer!

Don’t think of this chapter as a distraction from the topic at hand (JavaScript). Think
of it as a practical introduction to some important tools and techniques that are com-
monly used in JavaScript development.

Writing ES6 Today

I have good news and bad news. The good news is that ES6 (aka Harmony, aka Java-
Script 2015) is an exciting, delightful evolution in the history of JavaScript. The bad
news is that the world isn't quite ready for it. That doesn’t mean you can’t use it now,

15

but it is going to put an extra burden on the programmer, as ES6 code has to be trans-
compiled into “safe” ES5 to ensure that it can run anywhere.

Programmers who have been around a while might be thinking “big deal; back in my
day, there was no such thing as a language that didn't have to be compiled and
linked!” I've been writing software long enough to remember that time, but I do not
miss it: I enjoy the lack of fuss in interpreted languages like JavaScript.!

One of the advantages of JavaScript has always been its ubiquity: it became the stan-
dard browser scripting language almost overnight, and with the advent of Node, its
use broadened beyond the browser. So it is a bit painful to recognize that it will prob-
ably be a few years before you can ship ES6 code without worrying about browsers
that don’t support it. If youre a Node developer, the situation is a little bit brighter:
because you only have one JavaScript engine to worry about, you can track the pro-
gress of ES6 support in Node.

The ES6 examples in this book can be run in Firefox, or on a web-
site such as ES6 Fiddle. For “real-world code,” however, you will
want to know the tools and techniques in this chapter.

One interesting aspect about JavaScript’s transition from ES5 to ES6 is that, unlike
language releases of the past, the adoption is gradual. That is, the browser you’re using
right now probably has some—but not all—features available in ES6. This gradual
transition is made possible in part by the dynamic nature of JavaScript, and in part by
the changing nature of browser updates. You may have heard the term evergreen used
to describe browsers: browser manufacturers are moving away from the concept of
having discrete browser versions that have to be updated. Browsers, they reason,
should be able to keep themselves up to date because they are always connected to the
Internet (at least if they are going to be useful). Browsers still have versions, but it is
now more reasonable to assume that your users have the latest version—because
evergreen browsers don’t give users the option not to upgrade.

Even with evergreen browsers, however, it will be a while before you can rely on all of
the great features of ES6 being available on the client side. So for the time being,
transcompilation (also called transpilation) is a fact of life.

ES6 Features

There are a lot of new features in ES6—so many that even the transcompilers we’ll be
talking about don’t currently support all of them. To help control the chaos, New

1 Some JavaScript engines (Node, for example) do compile your JavaScript, but it happens transparently.

16 | Chapter2: JavaScript Development Tools

http://www.es6fiddle.net/

York-based developer kangax maintains an excellent compatibility table of ES6 (and
ES7) features. As of August 2015, the most complete implementation (Babel) is only
at 72%. While that may sound discouraging, it’s the most important features that have
been implemented first, and all of the features discussed in this book are available in
Babel.

We have a little bit of prep work to do before we can start transcompiling. We'll need
to make sure we have the necessary tools, and learn how to set up a new project to
use them—a process that will become automatic after you do it a few times. In the
meantime, you will probably want to refer back to this chapter as you start new
projects.

Installing Git

If you don’t have Git installed on your system, you can find downloads and instruc-
tions for your operating system on the Git home page.

The Terminal

Throughout this chapter, we'll be working in the terminal (also known as the com-
mand line or command prompt). The terminal is a text-based way of interacting with
your computer, and is commonly used by programmers. Though it is certainly possi-
ble to be an effective programmer without ever using the terminal, I believe it is an
important skill to have: many tutorials and books assume you're using a terminal, and
many tools are designed to be used on the terminal.

The most ubiquitous terminal experience is a shell (terminal interface) called bash,
and it is available by default on Linux and OS X machines. While Windows has its
own command-line experience, Git (which we will install next) provides a bash com-
mand line, which I recommend you use. In this book, we will be using bash.

On Linux and OS X, look in your programs for the Terminal program. On Windows,
after you install Git, look for “Git Bash” in your programs.

When you start the terminal, you see a prompt, which is where you will type com-
mands. The default prompt may include the name of your computer or the directory
you’re in, and it will normally end with a dollar sign ($). Thus, in the code samples in
this chapter, I will use a dollar sign to indicate the prompt. What follows the prompt
is what you should type. For example, to get a listing of the files in the current direc-
tory, type s at the prompt:

$ s

In Unix, and therefore bash, directory names are separated with a forward slash (/).
Even in Windows, where directories are normally separated by backslashes (\), Git

ES6 Features | 17

https://twitter.com/kangax
https://kangax.github.io/compat-table/es6/
https://git-scm.com/

Bash translates backslashes to forward slashes. Bash also uses the tilde (~) as a short-
cut for your home directory (where you should normally be storing your files).

The basics you'll need are the ability to change the current directory (cd), and make
new directories (mkdir). For example, to go to your home directory, type:

$cd~
The command pwd (print working directory) tells you what directory you’re currently
in:
$ pwd
To create a subdirectory called test, type:
$ mkdir test
To change to this newly created directory, type:
$ cd test

Two periods (..) are a shortcut for “parent directory” So to go “up” a directory (if
you've been following along, this will take you back to your home directory), type:

$cd ..

There’s a lot more to learn about the terminal, but these basic commands are all you
need to get through the material in this chapter. If you want to learn more, I recom-
mend the Console Foundations course on Treehouse.

Your Project Root

You'll want to create a directory for each project. We'll call this directory the project
root. For example, if you're following along with the examples in this book, you could
create an Jj directory, which would be your project root. In all the command-line
examples in this book, we'll assume that you're in the project root. If you try an exam-
ple and it doesn't work, the first thing to verify is that you're in the project root. Any
files we create will be relative to the project root. For example, if your project root
is /home/joe/work/lj, and we ask you to create a file public/js/test.js, the full path to
that file should be /home/joe/work/lj/public/js/test.js.

Version Control: Git

We won't discuss version control in detail in this book, but if youre not using it, you
should be. If youre not familiar with Git, I encourage you to use this book as an
opportunity to practice.

First, from your project root, initialize a repository:

$ git init

18 | Chapter2:JavaScript Development Tools

http://teamtreehouse.com/library/console-foundations

This will create a project repository for you (there’s now a hidden directory called .git
in your project root).

Inevitably, there will be some files you never want tracked in version control: build
artifacts, temporary files, and the like. These files can be explicitly excluded in a file
called .gitignore. Go ahead and create a .gitignore file now with the following contents:

npm debugging logs
npm-debug. log*

project dependencies
node_modules

0SX folder attributes
.DS_Store

temporary files

*.tmp
If there are any other “junk” files that you know of, youre welcome to add them here
(for example, if you know your editor creates .bak files, you would add *.bak to this
list).

A command you’ll be running a lot is git status, which tells you the current status
of your repository. Go ahead and run it now. You should see:

$ git status
On branch master

Initial commit

Untracked files:
(use "git add <file>...

to include in what will be committed)
.gitignore

nothing added to commit but untracked files present (use "git add" to track)

The important thing that Git is telling you is that there’s a new file in the directory
(.gitignore), but it’s untracked, meaning Git doesn’t recognize it.

The basic unit of work in a Git repository is the commit. Currently, your repository
doesn’'t have any commits (you've just initialized it and created a file, but you haven’t
registered any of that work with Git). Git doesn’t make any assumptions about what
files you want to track, so you have to explicitly add .gitignore to the repository:

$ git add .gitignore

ES6 Features | 19

We still haven’t created a commit; we've simply staged the file .gitignore to go in the
next commit. If we run git status again, we will see:

$ git status
On branch master

Initial commit

Changes to be committed:
(use "git rm --cached <file>...

to unstage)

new file: .gitignore

Now .gitignore is to be committed. We still haven’t created a commit yet, but when we
do, our changes to .gitignore will be in it. We could add more files, but let’s go ahead
and create a commit now:

$ git commit -m "Initial commit: added .gitignore."

The string that follows -m is the commit message: a brief description of the work
you've done in this commit. This allows you to look back at your commits and see the
history of your project unfold.

You can think of a commit as a snapshot of your project at a moment in time. We've
now taken a snapshot of the project (with only the .gitignore file in it), and you could
go back to that at any time. If you run git status now, Git will tell you:

On branch master
nothing to commit, working directory clean

Let’s make some additional changes to our project. In our .gitignore file, we're ignor-
ing any files named npm-debug.log, but let’s say we want to ignore any files with
the .Jog extension (which is standard practice). Edit the .gitignore file and change that
line to *.log. Let’s also add a file called README.md, which is a standard file that
explains the project in the popular Markdown format:

= Learning JavaScript, 3rd Edition
== Chapter 2: JavaScript Development Tools

In this chapter we're learning about Git and other
development tools.

Now type git status:

$ git status
On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: .gitignore

20 | Chapter2: JavaScript Development Tools

Untracked files:
(use "git add <file>...

to include in what will be committed)

README.md

We now have two changes: one to a tracked file (.gitignore) and one to a new file
(README.md). We could add the changes as we did before:

$ git add .gitignore

$ git add README.md
But this time we'll use a shortcut to add all changes, then create a commit with all of
those changes:

$ git add -A

$ git commit -m "Ignored all .log files and added README.md."
This is a common pattern you'll be repeating frequently (adding changes and then
committing them). Try to make your commits small and logically consistent: think of
them as telling a story to someone else, explaining your thought process. Whenever

you make changes to your repository, you'll be following the same pattern: add one or
more changes, then create a commit:

$ git add -A
$ git commit -m "<brief description of the changes you just made>"

Beginners are often confused by git add; the name makes it seem
like you're adding files to the repository. Those changes can be new
files, but just as likely they’re changes to files already in the reposi-
tory. In other words, youre adding changes, not files (and a new file
is just a special type of change).

This represents the simplest possible Git workflow; if you want to learn more about
Git, I recommend GitHub’s Git Tutorial and Jon Loeliger and Matthew McCullough’s
book, Version Control with Git, Second Edition.

Package Management: npm

Understanding npm is not strictly necessary to JavaScript development, but its
increasingly becoming the package management tool of choice. For Node develop-
ment, it’s practically essential. Whether youre actually writing Node apps or just
doing browser development, you’ll find that life is a lot easier with npm. In particular,
we'll be using npm to install our build tools and transcompilers.

npm comes bundled with Node, so if you haven't installed Node already, go to the
Node.js home page and click on the big green “INSTALL’ button. Once you've
installed Node, verify that npm and Node are functioning on your system. From the
command line, do the following:

ES6 Features | 21

https://try.github.io/levels/1/challenges/1
http://bit.ly/versionControlGit_2e
https://nodejs.org/

$ node -v

v4.2.2

$ npm -v

2.14.7
Your version numbers may vary as Node and npm are updated. Broadly speaking,
npm manages installed packages. A package can be anything from a full application,
to sample code, to a module or library that you’ll use in your project.

npm supports installing packages at two levels: globally and locally. Global packages
are usually command-line tools that you'll use in the development process. Local
packages are project-specific. Installing a package is done with the npm install com-
mand. Let’s install the popular Underscore package to see how it works. In your
project root, run the following:

$ npm install underscore
underscore@1.8.3 node_modules\underscore

npm is telling you that it installed the latest version of Underscore (1.8.3 as I write
this; yours will probably be different). Underscore is a module with no dependencies,
so the output from npm is very brief; for some complex modules, you may see pages
of text go by! If we wanted to install a specific version of Underscore, we can specify
the version number explicitly:

$ npm install underscore@l.8.0

underscore@1.8.0 node_modules\underscore
So where did this module actually get installed? If you look in your directory, you'll
see a new subdirectory called node_modules; any local modules you install will go in
this directory. Go ahead and delete the node_modules directory; we’ll be re-creating it
in a moment.

As you install modules, you’ll want to keep track of them somehow; the modules you
install (and use) are called dependencies of your project. As your project matures,
you’ll want a concise way to know what packages your project depends on, and npm
does this with a file called package.json. You don’t have to create this file yourself: you
can run npm init, and interactively answer some questions (you can simply press
Enter for each question and accept the defaults; you can always edit the file and
change your answers later). Go ahead and do this now, and take a look at the gener-
ated package.json file:

$ npm init

Dependencies are split into regular dependencies and dev dependencies. Dev depen-
dencies are packages that your app can run without, but are helpful or necessary in
building your project (we'll see examples of these soon). From here on out, when you
install local packages, you should add either the --save or --save-dev flag; if you
don’t, the package will be installed, but not listed in the package.json file. Lets go
ahead and reinstall Underscore with the - -save flag:

22 | Chapter2: JavaScript Development Tools

$ npm install --save underscore

npm WARN package.json 1j@1.0.0 No description

npm WARN package.json 1j@1.0.0 No repository field.
underscore@1.8.3 node_modules\underscore

You might be wondering what all of these warnings are. npm is telling you that there
are some components missing from your package. For the purposes of this book, you
can ignore these warnings: you only need to worry about them if youre using npm to
publish your own packages, which is beyond the scope of this book.

Now if you look at your package.json file, you'll see that Underscore is listed as a
dependency. The idea of dependency management is that the dependency versions
referenced in package.json are all that’s necessary to re-create (download and install)
the dependencies themselves. Let’s try this out. Delete the node_modules directory
again, and then run npm 1install (note we don't specify any particular package
name). npm will install any packages listed in the package.json file. You can look at
the newly created node_modules directory to verify this.

Build Tools: Gulp and Grunt

For most development, you’ll probably want a build tool, which automates the repeti-
tive tasks you perform as part of the development process. Currently, the two most
popular build tools for JavaScript are Grunt and Gulp. These are both capable build
systems. Grunt has been around a couple of years longer than Gulp, so the commu-
nity is larger, but Gulp is catching up fast. Because Gulp seems to be the increasingly
popular choice for new JavaScript programmers, we'll use it in this book, though I am
not prepared to say Gulp is superior to Grunt (or vice versa).

First, you'll install Gulp globally with:

$ npm install -g gulp

If youre on Linux or OS X, you'll need elevated privileges to use
the -g (global) switch when running npm: sudo install -g gulp.
You'll be prompted for your password and given superuser privi-
\ leges (for that command only). If you are on a system that someone

else manages, you might have to ask them to put you in the sudoers
file.

You'll only need to install Gulp globally once for each system you develop on. Then,
for each project, you'll need a local Gulp, so from your project root, run npm install
--save-dev gulp (Gulp is an example of a dev dependency: your app won't need it to
run, but you'll use it to help with your development process). Now that Gulp has been
installed, we create a Guipfile (gulpfile.js):

const gulp = require('qgulp');
// Gulp dependencies go here

ES6 Features | 23

http://gruntjs.com/
http://gulpjs.com/

gulp.task('default', function() {
// Gulp tasks go here
b

We haven't actually configured Gulp to do anything yet, but we can verify that Gulp
can run successfully now:

$ gulp

[16:16:28] Using gulpfile /home/joe/work/1lj/gulpfile.js
[16:16:28] Starting 'default'...

[16:16:28] Finished 'default' after 68 ps

If youre a Windows user, you may get the error “The build tools
for Visual Studio 2010 (Platform Toolset = v100) cannot be found.”
Many npm packages have a dependency on Visual Studio build
\ tools. You can get a free version of Visual Studio from the product
download page. Once you've installed Visual Studio, look for
“Developer Command Prompt” in your program files. In that com-
mand prompt, navigate to your project root and try to install Gulp
again, and you should have better luck. You don’t need to continue
using the Visual Studio Developer Command Prompt, but it’s the
easiest way to install npm modules that have dependencies on
Visual Studio.

Project Structure

Before we use Gulp and Babel to convert our ES6 code to ES5, we need to think about
where were going to put our code within our project. There’s no one universal stan-
dard for project layout in JavaScript development: the ecosystem is just too diverse
for that. Very commonly, you’'ll see source code in src or js directories. We're going to
put our source in es6 directories, to make it perfectly clear that we're writing ES6
code.

Because many projects include both server-side (Node) code and client-side
(browser) code, were going to separate these two categories as well. Server-side code
will simply go in the es6 directory in our project root, and code destined for the
browser will go in public/es6 (by definition, any JavaScript sent to the browser is pub-
lic, and this is a very common convention).

In the next section, we'll take our ES6 code and convert it to ES5, so we'll need a place
to put that ES5 code (we don’t want to mix it in with ES6 code). A common conven-
tion is to put that code in a directory called dist (for “distribution”).

Putting it all together, your project root will look something like this:

.git # Git
.gitignore

24 | Chapter2: JavaScript Development Tools

https://www.visualstudio.com/en-us/visual-studio-homepage-vs.aspx
https://www.visualstudio.com/en-us/visual-studio-homepage-vs.aspx

package. json # npm
node_modules

es6 # Node source
dist
public/ # browser source
es6/
dist/
The Transcompilers

As T write this, the two most popular transcompilers are Babel and Traceur. I have
used both, and they are both quite capable and easy to use. I am currently leaning
slightly toward Babel, and we’ll be using it as the transcompiler in this book. So let’s
get started!

Babel started as a ES5 to ES6 transcompiler, and has grown to be a general-purpose
transcompiler that’s capable of many different transformations, including ES6, React,
and even ES7. Starting with version 6 of Babel, transformations are no longer
included with Babel. To perform our ES5 to ES6 transformation, we need to install
the ES6 transformations and configure Babel to use them. We make these settings
local to our project, as it is conceivable that we’ll want to use ES6 on one project,
React on another, and ES7 (or some other variant) on another. First, we install the
ES6 (aka ES2015) preset:

$ npm install --save-dev babel-preset-es2015

Then we create a file in our project root called .babelrc (the leading period indicates
the file should be normally hidden). The contents of this file are:

{ "presets": ["es2015"] }

With this file in place, any use of Babel in this project recognizes that youre using
ES6.

Running Babel with Gulp

Now we can use Gulp to do something actually useful: convert the ES6 code we'll be
writing to portable ES5 code. We'll convert any code in es6 and public/es6 to ES5 code
in dist and public/dist. We'll be using a package called gulp-babel, so we start by
installing it with npm install --save-dev gulp-babel. Then we edit gulpfile.js:

const gulp = require('qulp');
const babel = require('gulp-babel');

gulp.task('default', function() {
// Node source

The Transcompilers | 25

https://babeljs.io/
https://github.com/google/traceur-compiler

gulp.src("es6/**/*. js")
.pipe(babel())
.pipe(gulp.dest("dist"));
// browser source
gulp.src("public/es6/**/*.js")
.pipe(babel())
.pipe(gulp.dest("public/dist"));
H;
Gulp uses the concept of a pipeline to do its work. We start off by telling Gulp what
files we're interested in: src("es6/**/*.js"). You might be wondering about the **;
that’s a wildcard for “any directory, including subdirectories” So this source filter will
pick up all js files in es6, and any subdirectories thereof, no matter how deep. Then
we pipe those source files to Babel, which is what transforms them from ES6 to ES5.
The final step is to pipe the compiled ES5 to its destination, the dist directory. Gulp
will preserve the names and directory structure of your source files. For example, the
file es6/a.js will be compiled to dist/a.js, and es6/a/b/c.js will be compiled to dist/a/b/
c.js. We repeat the same process for the files in our public/es6 directory.

We haven't learned any ES6 yet, but let’s create an ES6 sample file, and verify that our
Gulp configuration is working. Create the file es6/test.js that shows off some of the
new features of ES6 (don’t worry if you don’t understand this file; when you’re done
with this book, you will!):

'use strict';
// es6 feature: block-scoped "let" declaration
const sentences = [
{ subject: 'JavaScript', verb: 'is', object: 'great' },
{ subject: 'Elephants', verb: 'are', object: 'large' },
1;
// es6 feature: object destructuring
function say({ subject, verb, object }) {
// es6 feature: template strings
// note that quotes below are backticks ('), not single quotes (')
console.log("${subject} ${verb} ${object});
}
// es6 feature: for..of
for(let s of sentences) {
say(s);
}

Now create a copy of this file in public/es6 (you can change the contents of the senten-
ces array if you want to verify that your files are different). Now type gulp. When it’s
done, look in the dist and public/dist directories. You’ll see a test.js file in both places.
Go ahead and look at that file, and note that it differs from its ES6 equivalent.

Now let’s try running the ES6 code directly:

$ node es6/test.js
/home/ethan/1je3/es6/test.js:8

26 | Chapter2: JavaScript Development Tools

function say({ subject, verb, object }) {
A

SyntaxError: Unexpected token {
at exports.runInThisContext (vm.js:53:16)
at Module._compile (module.js:374:25)
at Object.Module._extensions..js (module.js:417:10)
at Module.load (module.js:344:32)
at Function.Module._load (module.js:301:12)
at Function.Module.runMain (module.js:442:10)
at startup (node.js:136:18)
at node.js:966:3

The error you get from Node may be different, as Node is in the process of imple-

menting ES6 features (if youre reading this book far enough in the future, it may
work completely!). Now let’s run the ES5 equivalent:

$ node dist\test.js
JavaScript is great
Elephants are large

We've successfully converted ES6 code to portable ES5 code, which should run any-

where! As a last step, add dist and public/dist to your .gitignore file: we want to keep
track of the ES6 source, not the ES5 files that are generated from it.

Linting

Do you run a lint roller over your dress or suit before you go to a fancy party or an
interview? Of course you do: you want to look your best. Likewise, you can lint your
code to make it (and by extension, you) look its best. A linter takes a critical eye to
your code and lets you know when youre making common mistakes. I've been writ-

ing software for 25 years, and a good linter will still find mistakes in my code before I
do. For the beginner, it’s an invaluable tool that can save you a lot of frustration.

There are several JavaScript linters out there, but my preference is Nicholas Zakas’s
ESLint. Install ESLint:

npm install -g eslint

Before we start using ESLint, we need to create an .eslintrc configuration file for our
project. Each project you work on may have different technologies or standards, and
the .eslintrc allows ESLint to lint your code accordingly.

The easiest way to create an .eslintrc file is to run eslint --init, which will i