Full Sta
JavaScript

Learn Backbones,
Node.js, and MongoDB

Second Edition

Azat Mardan

ApPress’

Full Stack JavaScript

Learn Backbone.js,
Node.js, and MongoDB

Second Edition

Azat Mardan

Apress’

Full Stack JavaScript: Learn Backbone.js, Node.js, and MongoDB

Azat Mardan
San Francisco, California, USA

ISBN-13 (pbk): 978-1-4842-3717-5 ISBN-13 (electronic): 978-1-4842-3718-2
https://doi.org/10.1007/978-1-4842-3718-2

Library of Congress Control Number: 2018962263
Copyright © 2018 by Azat Mardan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be
obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images
only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan

Development Editor: James Markham

Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the
sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook
Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484237175. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3718-2

To my parents, Almas and Alsu, who bought
me my first computer, and let me use the phone
line for dial-up Internet.

Table of Contents

About the AUtNOF ... ———————— Xi
Acknowledgmentsccccuuseenmmmsssnsnmmssssssnsessssssssssssssnnsessssnnnssssssnnnnsssss Xiii
o - - T XV
Introduction.........cociiieememmnnnninnsssss s —————————— Xvii
Part I: Quick Start...........cccciniimmmmmmsssseesssnnnn s ———————— 1
Chapter 1: BaSiCS.....ccuuemmmmmsssnnnmmssssnnnsmsssssnssessssssnssssssnsnssssssnnnsssssnnnnsssss 3
Front-End Definitionsccccoviierninncninn s 4
Web ReqUESTE CYCIE.....cvrererre ettt sne s enes 5
Mobile DeVEIOPMENT........cccvvrirererr e 6
HyperText Markup Language.........cccvvererimnnensresinssenssessessessssssessesssssssssessessens 8
Cascading Style Sheets ... 12
JAVASCIIPL....cecceeccrrese e 14
Agile MethodoIOgIieS.......coerverrrrrrerrerere s s s s ss s s e ssessssssesseees 27
£ 1] 11 OSSOSO P 27
Test-Driven Developmentcccvevevrvnieniennsersene e seesesessens 29
Continuous Deployment and Integrationccevevvrvninennsnsenienssensenens 29

Pair Programming.........cccccvvnrrenienennsensesessssessese e sessesessessssessessesassessesaesaes 30
Back-End Definitionscccvevninininssssese s sss s e s 31
T T R 31
NOSQL and MoNgODBccouevriireernerre e 33
Cloud COMPULING ...vecererrerrererserere s sere s e e s sse e ssesessessesassessessessessssessessees 33

TABLE OF CONTENTS

HTTP Requests and RESPONSEScccucrervcmnnenenesinssssesesss s ssssessessesnes 34
RESTHUI APL........oovetcieicirereresese et ss e e nas 35
SUMIMANY.....eieereeeere e se s r e e e e s re e sre e 37
Chapter 2: Setup......cccusmmmmmissmmmmmissssnnmmssssssnmssssssnmssssssnessassn s 39
[Tz LI (1o OO RS 40
Development FOIUEr ... 40
BIOWSETS ...veereeenseesseseresesessesesss e sss e ses e sssssesss e ssssessssesessssessssssenssnnnssnensnnes 42
IDES and Text EQITOrSccovvvreresernsesenesesssesessesessse s sesss s sessesessesessnnes 43
Version Control SYSIEMS........ccoveevvrenrenrnsnneserese e 45
LOCAI HTTP SEIVEIS....ccvccerreerrneseseserrssesesssss s se e ssssssssssss e ssssssssssssssssesessssenns 46
Database: MongoDB ... s 47
Required COMPONENTScovvvrvrierirnrire s 52
Node.js INStallation............cccoveererieneresrnesre s 52
Browser JavaScript LIDraries ... sessessesees 54
TS Y o] RS 55
ClOUA SEIUP..cveeerreerrese s e 55
SSH KBYS ...evieriresir et r e s 55
GIEHUD ..o 58
MiICrOSOft AZUIE.....cceceee s 59
3 T 0TS 61
SUMIMANY.....eieeeeereree e se s s e se s e s re e e e e 63

Part lI: Front-End Prototyping........ccsccmmmmmmssssensnmssssssssssssssssssnnss 69

Chapter 3: Getting Data from Backend Using jQuery and Parse......... 67
DEfiNIIONSccivecrerce e s 68
JavaScript Object Notation.........ccccvvrrevvrnrnrerie e s 68
AUAX ..ottt e 70
CrosS-Domain CallSccccverermninmnenerernssssse e sesnns 71

TABLE OF CONTENTS

JAUETY FUNCHIONScieciceer ettt s e 72
BOOTSIIAD. ..ccue et 74
LSS currrrerrreerrse s e s e 79
LeSS VariabIes........cvveernserereserese s s 79
LSS MIX-INS ...uervreeerrererrnesessesesssse s sss s s s ssssesesss e e sessessssssensnns 80
LeSS OPErations........cccverenerinenenin s s s s 82

An Example Using a Third-Party APl (OpenWeatherMap) and jQuery.................. 84
PaISE ...t ———————— 96
Message Board with Parse OVEIVIEWccccevvververernsensenseresessessessesessessessenes 107
Message Board with Parse: REST APl and jQuery Version...........cccuecvvenens 109
Pushing t0 GItHUDcccverr e 119
Deployment t0 MiCroSOft AZUre..........cecevverieene i 121
Deployment of Weather App t0 Heroku ... 122
Updating and Deleting MESSAQESccoerererrrrerermnmsenesenseseseses s sessesessesessnnes 125
SUMMANY....ceiveeriresesese s e s e s e s e nensenenns 126
Chapter 4: Intro to Backbone.jS.......ccccuusmemmmnmssssnnnssssssnnsssssssssnssssnnns 127
Setting Up a Backbone.js App from ScratChcccocevvvvvnievnsnvenseniesensensennens 128
Backbone.js DEPENdENCIES..........ccvverrererierneeneserser e e se s e e s s e s see e ssesneas 128
Working with Backbone.js Collections...........cccoveevrevrnccnncennescreseseseseneens 133
Backbone.js Event Binding..........ccouovrenmrenerensesenesesesesessesesseses e sesesessssesennes 141
Backbone.js Views and Subviews with Underscore.jsc.courererensesesenerennes 147
Refactoring Backbone.js Codecouuvvirerinennesnnese s 159
AMD and Require.js for Backbone.js Development..........c.cccvivvririenenenseniennes 168
Require.js for Backbone.js Productionc.ccoccvvrvenenininsnniensensen e sesenens 179
Super Simple Backbone.js Starter Kit...........cccooorninninninsninsnncnne e 185
SUMMANY..c..eitiiiire e e s s b e e e e s Re b e e e aenne s 185

vii

TABLE OF CONTENTS

Chapter 5: Backbone.js and Parse........ccussemmrsssssnnsssssssnnsssssssssssssssnns 187
Message Board with Parse: JavaScript SDK and Backbone.js Version............. 188
Taking Message Board FUrther ... 208
SUMMANY....eieeerircreree e s e e 209

Part lll: Back-End Prototyping......c.ccccemmrnmssssnsnnnnssssssssnnsssssnnns 211

Chapter 6: Intro to Node.jS.......ccummmmmnmmmnmmmmmmmsssssssssssssssssssssssssssssnnenes 213
Building “Hello World” in NOAE.[S.......cccvrerverinreririirsie e ses s e ssesnens 214
Node.js COre MOUUIEScceverererinrerirenire s 216

D ot 216
] TR TSN 217
Lo =T (1 o SR 218
UPD ottt nnan 218
L3S 218
npm Node.js Package Managercccuvrrninsniennesnsessesse s sessesessssessessenns 219
Deploying “Hello World” t0 PaasS...........ccooerrcnnenenesc s 222
Deploying t0 MiCroSOft AZUFEccvveeerenmrrnsesseses e 222
Deploying 10 HErOKU........c.vceverecerne s 223
Message Board with Node.js: Memory Store Version...........ccccveeveerenreriennens 225
UNit TeSting NOGE.JScvveeerreerrrererese s 225
SUMMATY ...t 237

Chapter 7: Intro to MongoDB............cccccvnssnemnmmmssssnnnssssssnssesssssssnsssssnns 239
MONGODB SNEIL........cceeieeeireere e e 240
BSON ODJECE ID ... e es 242
MoNQGODB NAtiVE DIIVEN.......ccceeeereeererereree s 243
MongoDB on Heroku: MongoLab...........ccccuerennnnnernenennsesse s 246
Message Board: MongoDB VErSioNccvvevvrnieneresensensessssssessessessssessessenes 252
SUMMAIY . ueiteirrerere e serse e s s sre s e e s ssessese s e saesaese e e saesaesae e e e saesaesseennesaess 256

viii

TABLE OF CONTENTS

Chapter 8: Putting Frontend and Backend Together...........ccccnrrinnnns 257
Adding CORS for Different-Domain Deployment...........cccccovvvniennenrnicnennenens 258
Message Board Ul..........cocoriinnnnnnnsnc s 260
Message Board APl ..o s 268
Deployment t0 HEIOKUc.ccoveveereerenrsesseseses s s 274
Same-Domain Deployment SEIVE.........ccvvvrninienenensessesesss s ssessssessessens 275
Deployment to Amazon WED SErVICES......ccvevrrrreriererensersesessssessessessssessessenes 282
SUMMAIY .. ueiteirererereesere s reesessersessess e e ssessess e e ssesaesaessesessesaesaessssesaesaessssensessens 287

Chapter 9: CONCIUSION......ccoccurrssemrmsssnsssssnsssssnsesssnsesssnsesssnnesssnnssssnnssss 289

Appendix: Further Reading.......cccccuverrsssssssmmmnnmssssssssssssssnsnssssssssssnnnnns 291
Free JavaScript and Node ReSOUICESccvvvrvrernnnsnse s sessese s 291
GoOod JAvaScript BOOKScocucurverereninsinesesis s ssssessessesssses e s sssssssessessens 292
GOOU NOUE.JS BOOKS ...cveuererseerreerrssessssessssssessssessssssssssssssssesssssssssssessssssssssssssanes 292
Interactive Online Classes and COUISES..........ouerereresssnssssesesssssssesesesssssseaes 293
Startup Books and BlOgS.........ccveerrerererrerserersssensessessessssessessessssessessessessssessessens 293

1T = 295

ix

About the Author

Azat Mardan has over 18 years of experience
in web, mobile, and software development.
With a Bachelor’s degree in Informatics and
a Master of Science degree in Information
Systems Technology, Azat possesses deep
academic knowledge as well as extensive
practical experience. Azat is an experienced
software engineer, author, and educator. He

has published 16 books and counting.

Currently, Azat works as a Software
Engineering Leader at Indeed.com, the number one job search site. Before
Azat worked as a Technology Fellow at Capital One Financial Corporation,
atop 10 USA bank. Even before that, Azat was a Team Lead at DocuSign,
where his team rebuilt 50 million user products (DocuSign web app) using
the tech stack of Node.js, Express.js, Backbone.js, CoffeeScript, Jade, Stylus,
and Redis.

Recently, he worked as a senior engineer at the curated social media
news aggregator web site, Storify.com (now part of Adobe), which
is used by BBC, NBC, CNN, the White House, and others. Storify runs
everything on Node.js unlike other companies. It’s the maintainer of the
open source library jade browser.

Before that, Azat worked as a CTO/Cofounder at Gizmo—an enterprise
cloud platform for mobile marketing campaigns, and has undertaken the
prestigious 500 Startups business accelerator program.

http://docusign.com/
http://storify.com/
http://npmjs.org/jade-browser
http://www.crunchbase.com/company/gizmo
http://500.co/

ABOUT THE AUTHOR

Azat also has past experience developing mission-critical applications
for government agencies in Washington, DC, including the National
Institutes of Health, the National Center for Biotechnology Information,
and the Federal Deposit Insurance Corporation, as well as for Lockheed
Martin.

Azatis a frequent attendee at Bay Area tech meet-ups and hackathons
(AngelHack hackathon "12 finalist with team FashionMetric.com, which
went on to raise venture capital from Mark Cuban and TechStars).

In addition, Azat teaches technical classes at General Assembly, Hack
Reactor, pariSOMA, and Marakana (acquired by Twitter) to much acclaim.
In his spare time, he writes about technology on his blog: Webapplog.
com, which was a number one in “express.js tutorial” Google search results

for some time.

Azat is also the author of Pro Express.js, Practical Node.js, Node Program
(http://nodeprogram.com/) and others. Azat is the creator of open
source Node.js projects, including ExpressWorks, mongoui, and HackHall.

You can reach Azat and say hi using one of these methods:

Twitter: @azatmardan https://twitter.com/azatmardan - Azat
loves getting “Hi” on Twitter

LinkedIn: 1inkedin.com/in/azatm

Blog: webapplog.com

GitHub: github.com/azat-co/fullstack-javascript

xii

http://nih.gov/
http://nih.gov/
http://ncbi.nlm.nih.gov/
http://fdic.gov/
http://lockheedmartin.com/
http://lockheedmartin.com/
http://angelhack.com/
http://fashionmetric.com/
http://generalassemb.ly/
http://hackreactor.com/
http://hackreactor.com/
http://parisoma.com/
http://marakana.com/
http://webapplog.com/
http://webapplog.com/
http://expressjsguide.com/assets/img/expressjs-tutorial.png
http://proexpressjs.com/
http://practicalnodebook.com/
http://nodeprogram.com/
http://nodeprogram.com/
http://npmjs.org/expressworks
http://npmjs.org/mongoui
http://hackhall.com/
https://twitter.com/azatmardan
http://linkedin.com/in/azatm
http://webapplog.com/
https://github.com/azat-co/fullstack-javascript

Acknowledgments

I'would like to thank the team of early Node contributors bringing
JavaScript to the servers. Without them, the full stack JavaScript
development wouldn’t be possible.

Thank you to the supporters of my Kickstarter campaign to write the
second edition of this book and do so in the open on GitHub. Without
you I probably would have not worked on this release so hard and maybe
not worked at all. You are AWESOME because you made this new edition
areality and not only that but you have made this edition and previous
edition available on GitHub for the entire world to read and learn Node
which is the greatest technology for building web applications ever.

In particular, very great many thanks to individual Kickstarter
supporters (who will soon get the signed print books and other rewards or
maybe already have them): Matthew Amacker, Jordan Horiuchi, Tim Chen,
Alexey Bushneyv, Aleksey Maksimov, Maurice van Cooten, Ryan, Ng Yao
Min, Kommana Karteek, Elias Yousef, Arhuman, Javier Armendariz, Dave
Anderson, Edithson Abelard. You guys are brilliant!

I cannot not mention the biggest supporter DevelopIntelligence,
which is one of the best if not the best tech training companies in the world
(http://www.developintelligence.com). So if you need to train your
software engineers in... anything! Then email them. Seriously, Develop
Intelligence has been around for 10+ years, and they have great teachers
with great technical classes. I was one of their instructors so I know. :)

I'm grateful to my copy and content editors at Apress, specifically to
James Markham, Louise Corrigan, Teresa Horton, and Karen Jameson.
They accomplished an amazing feat by bringing this book to life in a span
of a few weeks.

xiii

http://www.developintelligence.com/

ACKNOWLEDGMENTS

Also, I'm grateful to the students of Hack Reactor, Marakana,
pariSOMA, and General Assembly where I taught and used early Full Stack
JavaScript (or its parts) training material.

Once again, big thanks goes to Develop Intelligence who backed my
effort to open source the manuscript of this book and allowed me to work
in the open with early readers. I taught many corporate workshop on
React, Node, cloud, and JavaScript to clients of Develop Intelligence. If you
wants a world-class on-site tech training, go to developintelligence.com
and book the class.

Xiv

http://hackreactor.com/
http://marakana.com/
http://parisoma.com/
http://generalassemb.ly/

Preface

I'm writing this as I'm sitting at the San Francisco airport waiting for

my flight to Portland, Oregon, for the biggest Node.js conference. I'll be
speaking there about Node.js. It’s scary and funny at the same time to
think that I started to learn Node only three years ago. Yes, I remember
how I decided that the best way to learn is to teach others. For this reason I
started teaching my first Node classes and writing this book. The book was
mostly for me, so I could remember how to push Heroku or how to create
Node servers that talk to MongoDB. It was called Rapid Prototyping with
JS back then. Three years sped away; I published a few more Node books
as well as released several Node apps in production; and in 2014, Apress
approached me wanting to publish an updated edition under a new title.

I can't believe this is the second editon of the book. It's 2018 and a lot of
thing changes. I am glad for the evolution of JavaScript and innovation in
the Node.js space.

The main reason I bet my time and energy on JavaScript and Node
in the first place is that I felt both intuitively and logically the potential of
the full stack JavaScript. The one language to rule the whole stack across
all the layers. Logically I understood the code reuse, expressiveness, and
performance advantages of Node.js and the ever-increasing importance
of front-end development with MVC-like frameworks such as Backbone.
Intuitively, I just freaking fell in love with JavaScript both on the browser
and on the server.

Yes, I used JavaScript for many years but it was more pain than fun.
Not anymore. I was able to get a sense of what’s going on at the front end
while at the same time getting all the power and flexibility on the server.
My brain started to think 5, maybe 10 times faster than before because I

PREFACE

started to remember all the obscure methods from Array or String objects.
I stopped having Mozilla Developer Network or Google open next to my
code editor. And what a relief when you don’t need to wait for the compiler
each time that you want to test something really quickly.

The airline crew announced my boarding. I need to get on the plane,
but I hope this easy, beginner-friendly manual will open the world of
full stack JavaScript and cloud computing. Jump on board this amazing
technology with me.

Introduction

The kind of programming that C provides will probably
remain similar absolutely or slowly decline in usage, but rela-
tively, JavaScript or its variants, or XML, will continue to
become more central.

— Dennis Ritchie

In this introduction, we cover:

e Reasons behind full stack JavaScript development in
general and for the writing of this book

o What to expect and what not to expect, and what are
the prerequisites

e Suggestions on how to use the book and examples
o Explanation of the book’s notation format

Full Stack JavaScript is a hands-on book that introduces you to
rapid software prototyping using the latest cutting-edge web and mobile
technologies including Node.js, MongoDB, Twitter Bootstrap, LESS,
jQuery, Parse.com, Heroku, and others.

Why This Book?

This book was borne out of frustration. T have been in software engineering for
many years, and when I started learning Node.js and Backbone.js, I learned
the hard way that their official documentation and the Internet lack good
quick start guides and examples. Needless to say, it was virtually impossible to
find all of the tutorials for JS-related modern technologies in one place.

xvii

https://en.wikipedia.org/wiki/Dennis_Ritchie
http://nodejs.org/
http://mongodb.org/
http://twitter.github.com/bootstrap
http://lesscss.org/
http://jquery.com/
http://parse.com/
http://heroku.com/

INTRODUCTION

The best way to learn is to do, right? Therefore, I used the approach
of small, simple examples (that is, quick start guides) to expose myself to
the new cool tech. After I was done with the basic apps, needed some
references and organization. I started to write this manual mostly for
myself, so I could understand the concepts better and refer to the samples
later. Then StartupMonthly and I taught a few two-day intensive classes
on the same subject—helping experienced developers to jump-start
their careers with only-one-language development, that is, JavaScript.
The manual we used was updated and iterated many times based on the
feedback received. The end result is this book.

Why Go Full Stack JavaScript?

The reasons I love developing with full stack JavaScript, or as others call it
universal or isomorphic JavaScript, are numerous:

e Code reuse: I can share my libraries, templates, and
models between the browser and the server.

e No context switch: My brain learns and thinks faster,
leaving me more time to work on the actual tasks at
hand.

o Great ecosystem: npm!

o Vibrant community: They are approachable and eager
to help.

o Great masters: A treasure chest of knowledge and
best practices has accumulated through the years of
browser JavaScript.

o Tons of tutorials and good books: JavaScript is the
most popular language, hence more people are
writing about it.

xviii

http://startupmonthly.org/

INTRODUCTION

e No compilation: Development is faster with interpreted
platforms.

e Good performance: Node’s non-blocking I/0 is fast.

e Evolving standard: EMCA is constantly pushing new
and better versions of JavaScript.

I'm sure I've missed a few points, but you got the idea. Whatever the
drawbacks of ES5 (the language most of us know as JavaScript) are, they
were fixed in ES6/ES2015 and newer versions. The future for JavaScript is
so bright we all will have to code with sunglasses on.

What to Expect

Full Stack JavaScript readers should expect a collection of quick start
guides, tutorials, and suggestions (for example, Git workflow). There is a lot
of coding and not much theory. All the theory we cover is directly related
to some of the practical aspects and is essential for better understanding of
technologies and specific approaches to dealing with them (for example,
JSONP and cross-domain calls).

In addition to coding examples, the book covers virtually all setup and
deployment step by step.

You'll learn on the examples of the Message Board application
starting with front-end components. There are a few versions of these
applications, but by the end of the book we’ll put the front end and back
end together and deploy to the production environment. The Message
Board application contains all of the necessary components typical for a
basic web app, and building it will give you enough confidence to continue
developing on your own, apply for a job/promotion, or build a startup!

Xix

INTRODUCTION

Who This Book Is For

The book is designed for advanced-beginner and intermediate-level web
and mobile developers: somebody who has been (or still is) an expert in
other languages like Ruby on Rails, PHP, Perl, Python, or/and Java. He/she
is the type of developer, who quickly wants to learn more about JavaScript
and Node.js-related techniques for building web and mobile application
prototypes. The target reader doesn’t have time to dig through voluminous
(or tiny, at the other extreme) official documentation. The goal of Full
Stack JavaScript is not to make an expert out of a reader, but to help him/
her to start building apps as soon as possible.

As the full title indicates, Full Stack JavaScript: Learn Backbone.js, Node.
Jjs and MongoDB is about turning your idea into a functional prototype in
the form of a web or mobile application as fast as possible. This approach
adheres to the Lean Startup methodology; therefore, this book would be
more valuable to startup founders, but big companies’ employees will also
find it useful, especially if they plan to add new skills to their resumes.

What This Book Is Not

Full Stack JavaScript is neither a comprehensive book on several
frameworks, libraries, or technologies (or just a particular one), nor a
reference for all the tips and tricks of web development. Examples similar
to ones in this book might be publicly available online.

More importantly, if you're not familiar with fundamental programming
concepts like loops, if/else statements, arrays, hashes, objects, and functions,
you should be aware that you won'’t find them covered in Full Stack
JavaScript. Additionally, it would be challenging to follow the examples.

Many volumes of great books have been written on fundamental
topics — the list of such resources is at the end of the book in the chapter
“Further Reading”” The purpose of Full Stack JavaScript is to give agile
tools without replicating theory of programming and computer science.

http://theleanstartup.com/

INTRODUCTION

Prerequisites

I recommend the following prerequisites to get the full advantage of the

examples and materials covered in this book:

Knowledge of fundamental programming concepts
such as objects, functions, data structures (arrays,
hashes), loops (for, while), and conditions (if/else,
switch)

Basic web development skills including, but not limited
to, HTML and CSS

Using macOS or UNIX/Linux systems for this book’s
examples (and for web development in general),
although it’s still possible to hack your way on a
Windows-based system

Access to the Internet
5-20 hours of time

A credit/debit card, which is required by some cloud
services even for free accounts

How to Use the Book

The digital version of this book comes in two formats:

1.

PDF: Suited for printing; opens in Adobe Reader,
Mac OS X Preview, iOS apps, and other PDF viewers.

mobi: Suited for Kindles of all generations as well
as desktop and mobile Amazon Kindle apps and
Amazon Cloud Reader; to copy to devices use
Whispernet or a USB cable, or e-mail it to yourself.

INTRODUCTION

Links to web resources are provided throughout the book. In the
e-book version, the table of contents has local hyperlinks that allow
you to jump to any part or chapter of the book. This is very useful for
referring to certain parts of content later; for example, if you want to
look up how to deploy to Heroku, you can quickly jump to the needed
commands.

I encourage you to take notes and highlight text as you read it
studiously. It will improve your retention of the material.

There is a summary in the beginning of each chapter describing in
a few short sentences what examples and topics the particular chapter
covers.

Each project comes with a YouTube screencast video. I recommend
watching the videos to improve your comprehension. You can watch
the videos first or read the text first. The videos are supplemental, so
it's not a big deal if you are reading the digital book offline or the print
book and don’t have the ability to watch the video. The text covers
everything in the videos. The reason I recorded the screencasts is
because people learn differently; some prefer text and others videos.
This way, you can take advantage of both media as well as see certain
development steps in action.

For faster navigation between parts, chapters, and sections of the book,
please use the book’s navigation pane, which is based on the Table of
Contents (the screenshot is below).

xxii

INTRODUCTION

L] L] ! 9781420265955.pdf (page 1 of 288)
My & | & | ¢ £ v 5

Contents at a Glance

Contents

About the Author

About the Technical Reviowor

Acknowloggments

Introduction
» Chapter 1: Setting up Nodejsa...
» Chapter 2: Using Expross.js 4 to...
Chapter 3: TOD and BOD for No...
b Chapter 4: Template Engines: Ja...
& Chapter 5: Persistence with Mo...
» Chaptor 6: Using Secsions and...
¥ Chaptor 7: Boosting Your Node.j... =
pisenieesll Practical
» Chapter 9: Real-Time Apps with.,
» Chaptor 10: Getting Noda.|s Ap...

]
* Chaptor 11; Depioying Noge.js Apps
¥ Chapter 12: Publishing Node js..
Index

Building Real-World Scalable Web Apps

LEARN TO BUILD COMPLEX WEB APPS
WITH NODE.JS

Azat Mardan

The Table of Contents pane in the Mac OS X Preview app

Examples

All of the source code for examples used in this book is available in the
book itself for the most part, as well as at the book’s Apress.com product
page (www.apress.com/9781484237175) and in a public GitHub
repository (https://github.com/azat-co/fullstack-javascript).
You can also download files as a ZIP archive or use Git to pull them. More

xxiii

https://www.apress.com/9781484237175
https://github.com/azat-co/fullstack-javascript
https://github.com/azat-co/fullstack-javascript/archive/master.zip

INTRODUCTION

on how to install and use Git will be covered later in the book. The source
code files, folder structure, and deployment files should work locally and/
or remotely on Paa$ solutions—that is, Windows Azure and Heroku—with
minor or no modifications.

Source code that is in the book is technically limited by the platform
to the width of about 70 characters. I tried my best to preserve the best
JavaScript and HTML formatting styles, but from time to time you might
see backslashes (\). There is nothing wrong with the code. Backslashes are
line escape characters, and if you copy-paste the code into the editor, the
example should work just fine. Please note that code in GitHub and in the
book might differ in formatting.

Last, let me (and others) know if you spot any bugs, by submitting
an issue to GitHub! Please, don’t send me bug reports in an e-mail,
because posting to a public forum like GH Issue will help others, prevent
duplicates, and keep everything organized.

Notation

This is what source code blocks look like:

var object = {};

object.name = "Bob";
Terminal commands have a similar look but start with a dollar sign:

$ git push origin heroku
$ cd /etc/
$ 1s

Inline file names, path/folder names, quotes, and special words/names
are italicized, while command names (e.g., mongod and emphasized
words, such as Note, are bold.

XXiv

https://github.com/azat-co/fullstack-javascript/issues

INTRODUCTION

Terms

For the purposes of this book, we're using some terms interchangeably.
Depending on the context, they might not mean exactly the same thing.
For example, function = method = call, attribute = property = member =
key, value = variable, object = hash = class, list = array, framework = library
=module.

Additionally, “full stack” is listed as “fullstack” within code snippets.

PART |

Quick Start

CHAPTER 1

Basics

I think everyone should learn how to program a computer,
because it teaches you how to think. I view computer science
as a liberal art, something everyone should learn to do.

—Steve Jobs

In this chapter, we'll cover these topics:
e Overview of HTML, CSS, and JavaScript syntaxes
e Briefintroduction to Agile methodology

e Advantages of cloud computing, Node.js, and
MongoDB

e Descriptions of HTTP requests/responses and RESTful
API concepts

In this chapter we will brush up on the fundamental concepts before
moving forward. If you are an experienced web developer, then feel free
to skip this chapter. If you are new to web development, then pay extra
attention. Why? Maybe you have heard and are familiar with some terms,
but wonder what they actually mean. Another good reason is that this
chapter will cover the RESTful API in a very beginner-friendly manner. REST
is used in virtually all modern web architectures, and we’ll use it in the book
alot. There is one last reason: You'll look smart at a cocktail party or in front
of your colleagues and your boss by acing the hodpodge of web acronyms.

© Azat Mardan 2018 3
A.Mardan, Full Stack JavaScript, https://doi.org/10.1007/978-1-4842-3718-2_1

CHAPTER 1 BASICS

Front-End Definitions

Front end is a term for browser applications. A browser is called a client
because in networking we use client-server communication. Users interact
with a client to make requests to a server, which sends back responses.
Thus frontend refers to browser or client applications. A client can be a
mobile application as well.

Very rarely in some conversations (by some rather old-school Java
architects), “front end” is used to define server applications. This is very
confusing. The only excuse I can make for this usage is that these server
apps are facing the browser requests first rather than some other server
applications. Or, depending on the context, these server applications act as
static web servers to the browser application. To have everything clear and
precise, for this book we assume that when we mention front end it is the
browser applications and their code.

Front-end development, or front-end web development, implies
the usage of various technologies. Each of them individually is not too
complex, but the sheer number of them makes beginners timid. For
example, technologies used include Cascading Style Sheets (CSS),
Hypertext Markup Language (HTML), Extensible Markup Language
(XML), JavaScript (JS), JavaScript Object Notation (JSON), Uniform
Resource Identifier (URI), Hypertext Transfer Protocol (HTTP), Secure
Sockets Layer (SSL), Transport Layer Security (TLS), Transmission Control
Protocol/Internet Protocol (TCP/IP), Internet Relay Chat (IRC), Remote
Procedure Call (RPC), GraphQL, ES, and many other technologies (my
next books will be called Swimming in Acronym Soup).

In addition to the low-level technologies, there are numerous
frameworks, tools, and libraries; for example, React, jQuery, Backbone.js,
Angular.js, Webpack, Grunt, and so on. Please don’t confuse front-end
frameworks with back-end frameworks: The front-end frameworks run on
the browser whereas the back-end ones run on the server.

CHAPTER 1 BASICS

To build a web application developers have to have multiple things. In
a nutshell, front-end web development consists of these components:

1. HTML or templates that compile to HTML
2. Stylesheets to make HTML pretty

3. JavaScript to add interactivity or some business logic
to the browser app

4. Some hosting (AWS, Apache, Heroku, etc.)

5. Build scripts to prepare code, manage
dependencies, and do pretty much anything that’s
needed

6. Logic to connect to the server (typically via XHR
requests and RESTful API)

Now you know what a job that has the title of front-end developer
entails. The great payback to mastering this hodgepodge is the ability to
express your creativity by building beautiful and useful apps.

Before we start building, let’s cover a bird’s-eye view of the web request
cycle.

Web Request Cycle

This section is important for someone very new to the web development.
The whole World Wide Web or the Internet is about communication
between clients and servers. This communication happens by sending
requests and receiving responses. Typically browsers (the most popular
web clients) send requests to servers. Behind the scenes, servers send their
own requests to other servers. Those requests are similar to the browser
requests. The language of requests and responses is HTTP(S). Let’s explore
the browser request in more details.

CHAPTER 1 BASICS

The browser request consists of the following steps:

1. Auser types a URL or follows a link in his or her
browser (also called the client).

2. The browser makes an HTTP request to the server.

3. The server processes the request, and if there are
any parameters in a query string or body of the
request, it takes them into account.

4. 'The server updates, gets, and transforms data in the
database.

5. The server responds with an HTTP response
containing data in HTML, JSON, or other formats.

6. The browser receives the HTTP response.

7. The browser renders an HTTP response to the user in
HTML or any other format (e.g., JPEG, XML, JSON).

Mobile applications act in the same manner as regular web sites, only
instead of a browser there is a native app. Mobile apps (native or HTML5) are
just another type of client. Other minor differences between mobile and web
include data transfer limitation due to carrier bandwidth, smaller screens,
and the more efficient use of local storage. Most likely you, my reader, are
aweb developer aspiring to use your web chops in mobile. With JavaScript
and HTMLS5 it’s possible, so it’s worth covering mobile development closer.

Mobile Development

Is mobile going to overtake web and desktop platforms? Maybe, but it’s
around 2020 and the web traffic is still around 50%. Moreover, the mobile
development development field is still somewhat hard and slow compared
to the web one. That’s good if you are a native mobile developer, but most of

CHAPTER 1 BASICS

us are not. There’s a bigger gap in talent compared to web. The gap is closing.

With React Native, you can write once in JavaScript and reuse code on iOS and

Android. You can build Windows and macOS desktop apps with JavaScript

using Electron. There are other approaches to mobile and desktop that

leverage JavaScript as well.

These are the approaches to mobile development, each with its own

advantages and disadvantages:

1.

Native: Native iOS, Android, Blackberry apps built
Objective-C, Swift, or Java.

Abstracted native: Native apps built with JavaScript,
React Native (https://facebook.github.io/
react-native), NativeScript, Appcelerator
(https://www.appcelerator.com), Xamarin,
(https://xamarin.com), Smartface (https://
www.smartface.io), or similar tools, and then
compiled into native Objective-C or Java.

Responsive: Mobile websites tailored for smaller
screens with responsive design, CSS frameworks
like Bootstrap (https://twitter.github.
io/bootstrap) or Foundation (https://
foundation.zurb.com), regular CSS, or different
templates. You might use some JavaScript
frameworks for the development like Backbone.js,
Angular.js, Ember.js, or React.js.

Hybrid: HTML5 apps which consist of HTML, CSS,
and JavaScript, and are usually built with frameworks
like Sencha Touch (https://www.sencha.com/
products/touch), Trigger.io (https://trigger.
io), orIonic (https://ionicframework.com)

https://facebook.github.io/react-native
https://facebook.github.io/react-native
https://facebook.github.io/react-native
https://www.appcelerator.com
https://www.appcelerator.com
https://xamarin.com
https://xamarin.com
https://www.smartface.io
https://www.smartface.io
https://www.smartface.io
https://twitter.github.io/bootstrap
https://twitter.github.io/bootstrap
https://twitter.github.io/bootstrap
https://foundation.zurb.com
https://foundation.zurb.com
https://foundation.zurb.com
https://www.sencha.com/products/touch
http://www.sencha.com/products/touch)
http://www.sencha.com/products/touch)
https://trigger.io
https://trigger.io
https://trigger.io
https://ionicframework.com
https://ionicframework.com

CHAPTER 1 BASICS

and then wrapped into a native app with PhoneGap
(https://phonegap.com). As in the third approach,
you probably will want to use a JavaScript framework
for the development such as Backbone.js, Angular.js,
Ember.js, or React.js.

My personal favorites are the second and fourth approaches, which
are abstracted and hybrid ones. The second approach doesn’t require a
different code base. A minimal viable product (MVP) can be built across
multiple platforms by sharing a lot of the code. I recommend React Native.
Check out my book and course React Native Quickly (https://node.
university/p/react-native-quickly)to get started with mobile
development using the abstracted approach.

The fourth approach is more powerful and provides more scalable
(in a development sense) Uls. This is better suited for complex apps.
Code reuse between cross-platform mobile and web is easy because most
of the times you're writing in JavaScript.

HyperText Markup Language

HTML is not a real programming language in itself. It is a set of markup
tags that describe the content and present it in a structured and formatted
way. We cannot code much logic into HTML. There are no variables or
loops. HTML is the language of the web because it is ubiquitous and used
by all clients (browsers) to interpret the data to users.

HTML tags consist of a tag name inside of the angle brackets (<>). In
most cases, tags surround the content, with the end tag having a forward
slash before the tag name. Tags create hierarchy of content. Each tag has a
meaning, purpose, and a default display representation in a browser. For
example, there are tags for headings, paragraphs, bullet points, images,
links, and many more items.

https://phonegap.com
https://phonegap.com
https://amzn.to/2H2Rhbk
https://node.university/p/react-native-quickly
https://node.university/p/react-native-quickly
https://node.university/p/react-native-quickly

CHAPTER 1 BASICS
In this example, each line is an HTML element:

<h2>Cverview of HTML</h2>
<div>HTML is a ...</div>

<link rel="stylesheet" type="text/css" href="style.css" />

An HTML document itself is an element of the <htm1> tag, and all
other elements such as head, body, h2, and p are children of that <htm1>
tag. The tag head is for metadata of the page—info of the page itself,
not visible to the user content, while body is for the content (visible to
the user). Developers use four-space indentation to signify and mark
the nested elements. The element 11ink is two levels nested in the htm1l
element. (It includes/imports the CSS style.)

<!DCCTYPE html>
<html lang="en">
<head>
<link rel="stylesheet" type="text/css"

href="style.css"/>

</head>
<body>
<h2>Overview of HTML</h2>
<p>HTML is a ...</p>
</body>

</html>

Notice that the closing tags have a slash (/) inside the angle brackets
(<>), but before the name of the tag, e.g., </htm1>. This is important
for proper rendering (interpretation and displaying) of elements by the
browser.

There are different flavors and versions of HTML, such as DHTML,
XHTML1.0, XHTML1.1, XHTML2, HTML4, and HTMLS5. This comic
strip does a good job of explaining the differences: Misunderstanding
Markup: XHTML 2/HTML5 (https://bit.1ly/2N5WTU1). Before HTML5

https://coding.smashingmagazine.com/2009/07/29/misunderstanding-markup-xhtml-2-comic-strip
https://coding.smashingmagazine.com/2009/07/29/misunderstanding-markup-xhtml-2-comic-strip
https://bit.ly/2N5WTUl

CHAPTER 1 BASICS

web developers had to use the appropriate version, but now just write
<!DOCTYPE html> and modern browsers will understand your markup.
Any HTML element can have attributes. You already saw 11ink with
rel, type, and href. Attributes are typically extra information that is not
directly visible by the user. Attributes are not content and they are different
in this sense from nested elements, which are content. The most important
attributes which are applicable to almost all elements and tags are class,
id, style, and data-name. Then there are event attributes such as
onclick,onmouseover,onkeyup,andSO(nL

class

The class attribute defines a class that is used for styling in CSS or
Domain Object Model (DOM) manipulation; for example:

<p class="normal">...</p>
id

The id attribute defines an ID that is similar in purpose to element class,
but it has to be unique; for example:

<div id="footer">...</div>

style
The style attribute defines inline CSS to style an element; for example:

...

title

The title attribute specifies additional information that is usually
presented in tooltips by most browsers; for example:

...

10

CHAPTER 1 BASICS

data-name

The data-name attribute allows for metadata to be stored in the DOM,;

for example:

<tr data-token="fal0a70c-21lca-4e73-aaf5-
d889c7263al0e">...</tr>

onclick

The onclick attribute calls inline JavaScript code when a click event
happens; for example:

<input type="button"

onclick="validateForm();">...

onmouseover

The onmouseover attribute is similar to onc1ick but for mouse hover
events; for example:

<a onmouseover="javascript:

this.setAttribute(‘css’, ‘color:red’) ">

Other HTML element attributes for inline JavaScript code are as
follows:

e onfocus: When the browser focuses on an element
e onblur: When the browser focus leaves an element
e onkeydown: When a user presses a keyboard key

e ondblclick: When a user double-clicks the mouse

e onmousedown: When a user presses a mouse button

11

CHAPTER 1 BASICS

¢ onmouseup: When a user releases a mouse button

e onmouseout: When a user moves mouse out of the
element area

e oncontextmenu: When a user opens a context menu

The full list of such events and a browser compatibility table are
presented in “Event compatibility tables” (https://www.quirksmode.
org/dom/events/index.html).

We'll use classes extensively with the Bootstrap framework (https://
getbootstrap.com), but the use of inline CSS and JavaScript code is
generally a bad idea, so we'll try to avoid it. However, it’s good to know the
names of the JavaScript events because they are used all over the place in
jQuery, Backbone.js, and, of course, plain JavaScript. To convert the list
of attributes to a list of JS events, just remove the prefix on; for example,
onclick attribute means click event.

More information is available at MDN: Getting Started with JS
(https://developer.mozilla.org/en-US/docs/JavaScript/
Getting Started)

Cascading Style Sheets

CSS provides a way to format and present content. An HTML document can
have an external stylesheet included in it by a <1ink> tag, as shown in the
previous examples, or it can have CSS code directly inside of a <style> tag:

<style>
body {
padding-top: ;
1
J

</style>

12

https://www.quirksmode.org/dom/events/index.html
https://www.quirksmode.org/dom/events/index.html
https://www.quirksmode.org/dom/events/index.html
https://getbootstrap.com
https://getbootstrap.com
https://getbootstrap.com
https://developer.mozilla.org/en-US/docs/JavaScript/Getting_Started
https://developer.mozilla.org/en-US/docs/JavaScript/Getting_Started
https://developer.mozilla.org/en-US/docs/JavaScript/Getting_Started

CHAPTER 1 BASICS
Each HTML element can have id attributes, class attributes, or both:

<div id="main" class="large">
Lorem ipsum dolor sit amet,
Duis sit amet neque eu.

</div>

In CSS we access elements by their id, class, tag name, and in some
edge cases, by parent-child relationships or element attribute value.

This sets the color of all the paragraphs (<p> tag) to gray (#999999 in
red-blue-green code):

p

color: ;

This sets padding of a <div> element with the id attribute of main:

div#main {
padding-bottom: ;
padding-top: ;

This sets the font size to 14 pixels for all elements witha class
attribute large:

.large {

font-size: ;

This hides <div>, which are direct children of the <body> element:

body > div ¢{

display: none;

—

13

CHAPTER 1 BASICS

This sets the width to 150 pixels for input for which the name attribute

iSemail:
input[name="email"] ¢{
width: ;

—

More information about CSS is available at Wikipedia (https://
en.wikipedia.org/wiki/Cascading Style Sheets)and MDN
(https://developer.mozilla.org/en-US/docs/Web/CSS).

CSS3 is an upgrade to CSS that includes new ways of doing things such
as rounded corners, borders, and gradients, which were possible in regular
CSS only with the help of PNG/GIF images and by using other tricks.

For more information refer to CSS3.info (http://css3.info),
and CSS3 vs. CSS comparison article on Smashing (http://coding.
smashingmagazine.com/2011/04/21/css3-vs-css—a-speed-

benchmark).

JavaScript

JavaScript (JS) was crafted in 1995 at Netscape as LiveScript. Guess what
other technology got its start in 1995? Java. It was very hyped and popular,
so the LiveScript developers renamed it JavaScript. But Java and JavaScript
are very different; they are like ham and hamster. JavaScript has the
same relationship with Java as a hamster has with a ham. So please don'’t
confuse one with another. JavaScript is interpreted and run by a JavaScript
engine (Google Chrome V8 or Microsoft Chakra or SpiderMonkey) from
plain text. Java is compiled to bytecode that is run by the Java Virtual
Machine. There are differences in syntax, memory usage, typing, and
pretty much anything else.

For most beginner programmers, it’s easier to get started with
JavaScript than with any other language. JavaScript has a very expressive
language and very little setup overhead (just open your browser and

14

https://en.wikipedia.org/wiki/Cascading_Style_Sheets
https://en.wikipedia.org/wiki/Cascading_Style_Sheets
https://en.wikipedia.org/wiki/Cascading_Style_Sheets
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
http://css3.info
http://css3.info
http://coding.smashingmagazine.com/2011/04/21/css3-vs-css-a-speed-benchmark
http://coding.smashingmagazine.com/2011/04/21/css3-vs-css-a-speed-benchmark
http://coding.smashingmagazine.com/2011/04/21/css3-vs-css-a-speed-benchmark
http://coding.smashingmagazine.com/2011/04/21/css3-vs-css-a-speed-benchmark

CHAPTER 1 BASICS

start coding). JavaScript is the only native language that runs in the
browsers (until we have WebAssembly, but who wants to do that?). This
fact alone makes JS the most popular language by the number of runtime
environments. Moreover, JavaScript is omnipresent. It can be used almost
anywhere!

These days, JavaScript is used for both client-side and server-side web
development, as well as in desktop application development, drones,
Internet of Things (IoT), and other things. This is the main focus of this
book because with JavaScript you can develop across all the layers.

If you are a beginner programmer, then just learn JavaScript and
you won't need to learn any other languages. You can use JavaScript for
everything like frontend, backend, database, and DevOps, and that will
make you a full stack JavaScript developer, my friend!

Let’s start with JavaScript in HTML. Putting JS code into a <script>
tag is the easiest way to use JavaScript in an HTML document:

<script type="text/javascript" language="javascript">
alert ("Hello world!") //simple alert dialog window

</script>

Be advised that mixing HTML and JS code is not a good idea, so to
separate them we can move the code to an external file, and include it by
setting the source attribute src="filename.js" ona<script>tag; for

example, for the app. js resource:

<script src="js/app.js" type="text/javascript"
language="javascript">

</script>

Note that the closing <script/> tag is mandatory even with an empty
element like we have where we include the external source file. In other
words, just typing <script src="js/app.js"...>will not suffice.

15

CHAPTER 1 BASICS

Ways, ways back when dinosaurs roamed the world, browsers knew
how to parse and run VBScript (Microsoft Visual Basic script, the same as
you use in Excel spreadsheets). Hence, developers were required to specify
what the type of script is this: JavaScript, VB, or something else (Java, Flash,
and other front-end losers). Luckily, now the modern browsers default
to JS because that is the only thing they can run, and because that’s the
only thing commonly used by developers. Thus, the type and 1anguage
attributes over the years became optional in modern browsers due to the
overwhelming dominance of JavaScript.

Other ways to run JavaScript include the following:

e The inline approach already covered
e WebKit browser Developer Tools and FireBug consoles
e The interactive Node.js shell

One of the advantages of the JavaScript language is that it’s loosely
typed. This loose or weak typing, as opposed to strong typing (https://
en.wikipedia.org/wiki/Strong typing)inlanguages like C and
Java, makes JavaScript a better programming language for prototyping.
The following sections introduce some of the main types of JavaScript
objects/classes. I wrote “objects/classes” because JavaScript doesn’t have
classes per se. In JS, objects inherit from objects, which is called prototypal
inheritance. Confusing? Wait until you see other types of inheritance,
because there are several different ways to implement inheritance.

Going back to types, JavaScript primitive types have wrapper objects/
classes that provide extra functionality and static methods. Each primitive
has a object/class.

Number Primitives
Number primitives are numerical values; for example:

const num =

16

https://en.wikipedia.org/wiki/Strong_typing)
https://en.wikipedia.org/wiki/Strong_typing)

CHAPTER 1 BASICS

The way we define variables is with either var, const or let. const
and let respect scopes created by logical blocks (functions, loops, and
conditions), where as var does not. The const declaration will prevent
reassignment. If a developer omits var, const or let, then bad things will
happen such as leaking variables to the global scope and name collisions.

The old way was to use var. I immediately raise a red flag when I
perform a job interview and I see a candidate use var. It was responsible
for quite a lot of weird bugs, so only developers who are unskilled, not
aware of ES2015/ES6 or those who learned JavaScript from w3schools.
com would use the var statement in our day and age. To learn about 10
main features of ES2015/ES6 that every web developer should know, read
this concise but full of examples post: https://webapplog.com/esé6.
For ES7 and ES8 features, I recommend this eloquent blog post from Node
University: https://node.university/blog/1621685/es7es8

Number Object

The Number https://developer.mozilla.org/en-US/docs/
JavaScript/Reference/Global Objects/Number object and its
methods provide added functionality for working with numerical values
(int and floats). For example, developers can create a Number object with

new.

const numCbj = new Number ('123")
const num = numCbj.valueCf ()
const numStr = numObj.toString/()

console.log (numCbj ===)

Notice the last line, the number object is not triple equals the number
primitive. (=== checks for equality in value and type.) This is because
primitive and the object are of different types. Conveniently, JavaScript can

17

http://w3schools.com
http://w3schools.com
https://webapplog.com/es6
https://node.university/blog/1621685/es7es8
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Number

CHAPTER 1 BASICS

automatically convert the types to something similar with double equals
(==). Thus, the following code will be print/output true:

const numCbj = new Number ('123") // Number object

/ /

console.log (numCbhj ===)y // false

The Numbe r method has useful methods such as parseInt () thatis

used to convert values from strings to numbers:

=== "17" // false

=== Number.parseInt ("17",) // true

String Object

The String object has a lot of useful methods, like 1ength, match (), and so
on; for example, to create a St ring object use new:

const strCbj = new String("abcde") // String object
const str = strCbj.valueCf() // string primitive
strCbj.match ()

str.match () // both call will work

String Primitives

String primitives are sequences of characters inside of single quotes (') or
double quotes ("); for example, we can define a string primitive simply by
using single quotes:

const str = 'React Quickly' // single quotes

const strl = "React Quickly"™ // double quotes
console.log(str === strl) // true

const newStr = "abcde".substr(!,”) // newStr 1s bc

18

CHAPTER 1 BASICS

In JavaScript, double quotes don’t have any special power in addition
to defining strings unlike other languages where double quotes signify
interpolation. In my opinion, we should get rid of single quotes and just
use double quotes because it will remove a lot of arguments about what
quotes to use. Typically, developers prefer single quotes because then they
can use double quotes inside for HTML attributes values. The downside is
that you can’t use an apostrophe inside of a single quote string unless you
escape it with a backslash (\).

'it\'s crazy'

'it's crazy' // INVALID string

For convenience, JavaScript automatically wraps string primitives with
String object methods. This is why string primitives have fancy methods
like substr too. The triple equals will return false though, because String
objects and string primitives are not the same types.

RegExp Object

Regular Expressions or RegExps are patterns of characters used in finding
matches, replacing, and testing of strings.

const pattern =
'ab'.match (pattern)
'"AB'.match (pattern)

The match () method returns an array of matches (["aB"]). If all you
need is a Boolean true/false, then simply use pattern.test (str). For
example:

const str = 'A'
const pattern =

pattern.test (str)

19

CHAPTER 1 BASICS

Special Types

When in doubt (when debugging), you can always call t ypeof ob7. For

example,

const obj = {}

console.log (typeof obj) // object
const a =

console.log(typeof a) // number

Here are some of the special types used in JS:
e NaN:Not a number
e null:Null, nada, zip
e undefined: Undeclared variable

e function: Function

JSON

The JSON library allows us to parse and serialize JavaScript objects; for
example, we can take a valid JSON string, convert it to a JS object, add a
new field c, and then convert the object back into the string st ringcbj2
and a pretty string st ringCb3j 3 (with spaces and new lines):

const stringCbj = '{"a": 1, "b": "hi"}'
const obj = JSON.parse (stringCbj)

obj.c =

const stringCbj2 = JSCN.stringify(obj)

console.log(stringCbj2) // JSON string {"a":1,"b":"hi",

const stringCbj3 = JSON.stringify(obj, null,)
P

/ /

// make the string pretty with spaces and new lines

console.log(stringCbj2) // prettified JSON string

20

CHAPTER 1 BASICS

Array Object

Arrays are zero-index-based lists. In JavaScript arrays are objects that
have sequential indices as keys. The are two way to create an array: Array
object and array literal. For example:

const arr = new Array() // Array object

const arr = ['apple', 'orange', 'kiwi'] // Array literay

Each array inherits all Array methods. The Array object has a lot
of very useful methods, like indexCf (), map (), slice (), and join ().
Knowing and using these methods will save you hours of coding and
debugging. Make sure that you're familiar with them!

Data Object

I'really like JavaScript because it’s so easy to create an object. In Java, on
the other hand, developers have to define a class, maybe an interface too,
then have getters and setters in the class, then instantiate the class into an
object. In JavaScript, developers just type { } and boom, they got an object!
Using curly brackets ({ }) is called object literal. For example, here’s an
object with name, url, and price fields:

const obj = {
name: 'Gala',
url: 'img/galalO0x100.7jpg',
price:

1
J
or developers can use the Cbject object:

const obj = new OCbject({a: 1})

21

CHAPTER 1 BASICS

ButI don’t recommend using the Cbject object. Literal is more
eloquent.

Cbiject has useful methods such as Cbject.keys (), Cbject.
entries () and Cbject.values ().

Objects are passed as reference. It better to clone them with cbject.
assign (), otherwise, modifying the original will modify all the references.

const objl

tfa:1}

const obj2 = objl // Reference
console.log(obj2) // { a: 1 |

objl.a =

console.log(obj2) // Changed { a: 2 }

const obj3 = Object.assign({}, objl) // Clone
console.log(obj3) // { a: 2)

objl.a =

console.log(obj3) // Unchanged { a: 2]

Every object inherits from Object. Inheritance is done by prototypes,
class or function factories. I'll provide more on inheritance patterns later.

Boolean Primitives and Objects

Just as with String and Number, Boolean object supports and an
alternative to the primitive boolean. I do not recommend using Boolean
object, only primitive. Here are the usages:

const booll = true

const bool2 = false

const boolCbj = new Boolean (false)
console.log(bool2 === boolCbj) // false
console.log(bool2 == boolCbj) // true

22

CHAPTER 1 BASICS

Date Object

The Date objects allow us to work with dates and time; for example:

const timestamp = Date.now() // 1368407802

const d = new Date() //Sun May 12 2013 18:17:11

GMT-0700 (PDT)

Math Object

The Math object has methods for mathematical constants and functions

such as floor (), random(), round (), sqrt () and so on; for example:

const x = Math.floor ()

const ran = Math.round (Math.random () *)

Browser Objects

Browser objects give us access to a browser and its properties like URLs;

for example:

window.location.href = 'http://rapidprototypingwithjs.com'

console.log('test"')

DOM Objects

DOM objects or DOM nodes are the browser interface to the DOM
elements rendered on the page. They have properties such as width, height,
position, and so on, and, of course, inner content, which can be another
element or text. To get a DOM node, you can use its ID; for example:

const transactionsContainer = document.
createElement ('div'")

transactionsContainer.setAttribute('id', 'main')

23

CHAPTER 1 BASICS

const content = document.createTextNode ('Transactions')
transactionsContainer.appendChild (content)

document .body.appendChild (transactionsContainer)

const main = document.getElementById('main')

console.log(main, main.offsetWidth, main.offsetHeight)

Globals

In addition to classes such as String, Array, Number, and Math, which
have a lot of useful methods, you can call the following methods known as
globals, meaning you can invoke them from anywhere in your code:

e encodeURI: Encodes a Uniform Resource Identifier
(URI) to give you a URL, e.g., encodeURI ('http://

www.webapplog.com/js is awesome')
e decodeURI: Decodes a URI

e encodeURIComponent: Encodes URI for URL
parameters (don’t use it for the entire URL string)

¢ decodeURIComponent: Decodes the fragment
e isNaN: Determines whether a value is a number or not

e JSON:Parsing (parse ()) and serializing
(stringify()) of JSON data

e parseFloat: Converts a string to a floating number
e parselnt: Converts a string to a number
e Intl:Language-specific string comparison methods

e Error:An error object that you can use to instantiate
your own error objects; for example, throw new

Error ('This book rocks!")

e Date: Various methods to work with dates

24

http://www.webapplog.com/js
http://www.webapplog.com/js

CHAPTER 1 BASICS

JavaScript and Node.js Conventions

JavaScript uses a number of style conventions. One of them is camelCase,
in which you type multiple words as one word, capitalizing the first
character of the each except the first word.

Semicolons are optional. Names starting with an underscore (_) are
private methods or attributes, but not because they are protected by the
language. We use the underscore simply to alert the developers not to use
the methods and attributes, because they may change in the future.

JavaScript supports numbers only up to 53 bits in size. Check out large
numbers’ libraries if you need to deal with numbers larger than that.

Another important distinction of JS is that it’s a functional and
prototypal language. Typical syntax for function declaration looks like this:

function Sum(a,b) f{
const sum = a + b
return sum

}

console.log(Sum (!, 7))

Functions in JavaScript are first-class citizens due to the functional
programming nature of the language. Therefore, functions can be used as
other variables or objects; for example, functions can be passed to other
functions as arguments:

const f = function (strl){
return function(str2) {
return strl + ' ' + str2
1
J

}

const a = f£f('hello")
const b = f('goodbye')
console.log((a('Catty'))
console.log((b('Doggy"))

25

CHAPTER 1 BASICS

Another way to define a function is to use a fat arrow syntax. The
difference is that a fat arrow will not use a name, so developers need to
store the function in a variable.

const Sum = (a,b) => {
const sum = a + b
return sum

}

console.log (Sum(,))

Another difference is that fat arrow function syntax preserves the value
of this from the outer scope, which in a way makes the fat arrow syntax
equivalent to using a bind method bind (this) on aregular function.

const Sum = function(a, b) {
const sum = a + b
return sum

}.bind (this)

Of course, in the sum example we never use this so there’s no need.
But when you use classes and inheritance, you'll use this a lot because it’s
the way to refer to the class instance and its methods and attributes/fields/
properties.

Speaking of instances, classes and inheritance, if you want to be a good
full stack developer, then it’s very important to know that there are several
ways to instantiate an object in JS:

e Classical inheritance (http://www.crockford.com/
javascript/inheritance.html)paﬁenl

o Pseudo-classical inheritance (http://javascript.

info/class-patterns) pattern

o Functional inheritance pattern

26

http://www.crockford.com/javascript/inheritance.html
http://www.crockford.com/javascript/inheritance.html
http://www.crockford.com/javascript/inheritance.html
http://javascript.info/class-patterns
http://javascript.info/class-patterns
http://javascript.info/class-patterns

CHAPTER 1 BASICS

For further reading on inheritance patterns, check out “Inheritance
Patterns in JavaScript” (http://bolinfest.com/javascript/
inheritance.php)and Inheritance revisited (https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Inheritance and the
prototype_chain)

Mozilla Developer Network has the best JavaScript and DOM
references (https://developer.mozilla.org/en-US/docs/
JavaScript/Reference). Also, the VS Code editor shows autocomplete
prompts and documentation hints. (No matter what, please stop using
Notepad++.)

As for the ECMAScript specification (standard for JavaScript and

Node), visit: http://www.ecma-international.org.

Agile Methodologies

In modern web development, in addition to full stack JavaScript most
teams use Agile. The Agile software development methodology evolved
due to the fact that traditional methods like Waterfall weren’t good
enough in situations of high unpredictability; that is, when the solution
isunknown (http://www.startuplessonslearned.com/2009/03/
combining-agile-development-with.html). Agile goes hand-in-hand
with Scrum/sprint, test-driven development, continuous deployment,
paired programming, and other practical techniques, many of which were
borrowed from extreme programming.

Scrum

In regard to management, the Agile methodology often uses the Scrum
approach. The Scrum methodology is a sequence of short cycles, and each
cycle is called a sprint. One sprint usually lasts from one to two weeks. A
typical sprint starts and ends with a sprint planning meeting where new

27

http://bolinfest.com/javascript/inheritance.php
http://bolinfest.com/javascript/inheritance.php
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/JavaScript/Reference
https://developer.mozilla.org/en-US/docs/JavaScript/Reference
http://www.ecma-international.org
http://www.startuplessonslearned.com/2009/03/combining-agile-­development-with.html
http://www.startuplessonslearned.com/2009/03/combining-agile-­development-with.html
http://www.startuplessonslearned.com/2009/03/combining-agile-development-with.html
http://www.startuplessonslearned.com/2009/03/combining-agile-development-with.html

CHAPTER 1 BASICS

tasks are assigned to team members. New tasks cannot be added to the
sprint in progress; they can be added only at the sprint meetings.

An essential part of the Scrum methodology is the daily scrum
meeting, hence the name. Each scrum is a 5-to 15-minute-long meeting,
often conducted in a hallway. In scrum meetings, each team member
answers three questions:

1. What have you done since yesterday?
2. What are you going to do today?
3. Do you need anything from other team members?

Like many Agile frameworks (Kanban, XP, SAFE), Scrum offers
flexibility to change project requirements during development, which
is a great improvement over the Waterfall methodology, especially in
situations of high uncertainty (i.e., in startups). JavaScript is used in the UI
were a lot of these changes often happen. You'll see or already see a lot of
front-end teams adopting Scrum and Agile.

The advantage of Scrum methodology is that it is effective in situations
where it is hard to plan ahead of time, and also in situations where a
feedback loop is used as the main decision-making authority.

More about Scrum can be read at the following sources:

e Scrum Guide in PDF (http://www.scrumguides.

org/docs/scrumguide/v1l/scrum-guide-us.pdf)
e Scrum.org (http://www.scrum.org)

e Succeeding with Agile by Mike Cohen (Addison-Wesley,
2010)

28

http://www.scrumguides.org/docs/scrumguide/v1/scrum-guide-us.pdf
http://www.scrumguides.org/docs/scrumguide/v1/scrum-guide-us.pdf
http://www.scrumguides.org/docs/scrumguide/v1/scrum-guide-us.pdf
http://scrum.org
http://www.scrum.org

CHAPTER 1 BASICS

Test-Driven Development

Test-driven development (TDD) consists of the following steps:

1. Write failing automated test cases for new features,
tasks, or enhancement by using assertions that are
either true or false.

2. Write code to successfully pass the test cases.

3. Refactor code if needed, and add functionality while
keeping the test cases passed.

4. Repeat until all tasks are complete.

Tests can be split into functional and unit testing. The latter is when a
system tests individual units, methods, and functions with dependencies
mocked up, whereas the former (also called integration testing) is when a
system tests a slice of a functionality, including dependencies.

There are several advantages of TDD:

o Fewer bugs and defects
e More efficient codebase

¢ Confidence that code works and doesn’t break the old
functionality

Continuous Deployment and Integration

Continuous deployment (CD) is a set of techniques to rapidly deliver new
features, bug fixes, and enhancements to the customers. CD includes
automated testing and automated deployment. Using CD, manual
overhead is decreased and feedback loop time is minimized. Basically, the
faster a developer can get the feedback from the customers, the sooner the
product can pivot, which leads to more advantages over the competition.

29

CHAPTER 1 BASICS

Many startups deploy multiple times in a single day in comparison to the
6-to 12-month release cycle that is still typical for corporations and big
companies.

The advantages of the CD approach include decreased feedback loop
time and manual labor overhead.

There are Continuous Delivery, Continuous Deployment and
Continuous Integration. There are differences between them but ideally
you want to have all three for a faster deployment.

Some of the most popular solutions for continuous integration include
the following:

e Jenkins (https://jenkins.io): An extendable open
source continuous integration server

e CircleCI (https://circleci.com): Ship better code,
faster

e Travis CI(https://travis-ci.org): Ahosted
continuous integration service for the open source
community

Pair Programming

Pair programming is a technique whereby two developers work together
in one environment. One of the developers is a driver, and the other is an
observer. The driver writes code, and the observer assists by watching and
making suggestions. Then they switch roles. The driver has a more tactical
role of focusing on the current task. In contrast, the observer has a more
strategic role, overseeing “the bigger picture” and finding bugs and ways to
improve an algorithm.

30

https://jenkins.io
https://jenkins.io
https://circleci.com
https://circleci.com
https://travis-ci.org
https://travis-ci.org

CHAPTER 1 BASICS

The following are the advantages of paired programming:

o Pairs result in shorter and more effcient codebase, and
introduce fewer bugs and defects.

e Asanadded bonus, knowledge is passed among
programmers as they work together. However, conflicts
between developers are possible, and not uncommon.

Back-End Definitions

The backend is another name for the server. It’s everything after the
browser. It includes server platforms like PHP, Python, Java, Ruby, and of
course Node.js, as well as databases and other technologies.

Luckily, with modern back-end-as-a-service solutions (BaaS) you can
bypass the back-end development entirely. With just a single <script> tag
included, you can get a real-time database with the ability to put some
logic into it like access level control (ALC), validation, and so on. There are
a lot of services offered different levels of BaaS. The most popular and
easy-to-use ones are Firebase and Parse (https://firebase.google.com
and http://parseplatform.org).

In those cases where you still need your own custom server code,
Node.js is the weapon of choice!

Node.js

Node.js is an open source, event-driven asynchronous I/O technology for
building scalable and efficient web servers. Node.js consists of Google’s V8
JavaScript engine and a bunch of C++ modules. A cloud company Joyent
(now acquired by Samsung) maintained Node.js in the beginning, but now
the open-source Node foundation oversees it.

31

https://firebase.google.com
http://parseplatform.org

CHAPTER 1 BASICS

The purpose and use of Node.js is to have non-blocking I/O which
makes things faster. Non-blocking I/0 is not new. It exists in NIO for Java,
in Twisted for Python and in EventMachine for Ruby. The big difference is
that in Node.js non-blocking I/O was built from the get-go and thus simple
to use, while in other languages its a complex afterthought.

Funny enough, JavaScript wasn’t even the first language for Node.js.
The JavaScript implementation of Node.js was the third one after attempts
at using Ruby and C++ programming languages.

Node.js is not in itself a framework like Ruby on Rails; it's more
comparable to the pair of PHP and Apache. I'll provide a list of the top
Node.js frameworks in Chapter 6.

The following are the advantages of using Node.js:

o Developers have high likelihood of familiarity with
JavaScript due to its status as a de facto standard for
web and mobile development.

e Using one language for front-end and back-end
development speeds up the coding process. A
developer’s brain doesn’t have to switch between
different syntaxes, a so-called context switch. The
learning of methods and classes goes faster.

o With Node.js, you could prototype quickly and go
to market to do your customer development and
customer acquisition early. This is an important
competitive advantage over other companies that use
less agile technologies (e.g., PHP and MySQL).

e Node.js is built to support real-time applications by
utilizing web sockets.

Node.js evolves fast. For the current state of Node.js (as of this writing),
refer to the official Node.js blog at https://nodejs.org/en/blog.

32

https://nodejs.org/en/blog

CHAPTER 1 BASICS

NoSQL and MongoDB

MongoDB, from huMONGOus, is a high-performance, no-relationship
database for huge quantities of data (ht tps: //mongodb. com). The NoSQL

concept came out when traditional relational database management systems

(RDBMSs) were unable to meet the challenges of huge amounts of data.

Here are the advantages of using MongoDB:

Scalability: Due to a distributed nature, multiple
servers and data centers can have redundant data.

High performance: MongoDB is very effective for
storing and retrieving data, partially owing to the
absence of relationships between elements and
collections in the database.

Flexibility: A key-value store is ideal for prototyping
because it doesn’t require developers to know the
schema and there is no need for fixed data models or
complex migrations.

Cloud Computing

Cloud computing consists of the following components:

Infrastructure as a Service (IaaS), including Rackspace
and Amazon Web Services

Platform as a Service (PaaS), including Heroku and
Microsoft Azure

Back end as a Service (BaaS), the newest, coolest kid on
the block, including Compose and Firebase

Software as a Service (SaaS), including Google Apps
and Salesforce.com

33

https://mongodb.com
http://salesforce.com

CHAPTER 1 BASICS

Cloud application platforms provide the following advantages:

o Scalability; for example, they can spawn new instances
in a matter of minutes

o Ease of deployment; for example, to push to Heroku
youcanjustuse $ git push

o Pay-as-you-go plans where users add or remove
memory and disk space based on demands

e Add-ons for easier installation and configuration of
databases, app servers, packages, and so on

e Security and support

Paa$ and BaasS are ideal for prototyping, building minimal viable
products (MVP), and for early-stage startups in general.
Here is the list of the most popular Paa$ solutions:

e Heroku (https://heroku.com)

e AWS Elastic Beanstalk (https://aws.amazon.comn/

elasticbeanstalk)

e Microsoft Azure (https://azure.microsoft.com)

HTTP Requests and Responses

Each HTTP Request and Response consists of the following components:

e Header: Information about encoding, length of the
body, origin, content type, and so on

e Body: Content, usually parameters or data, that is
passed to the server or sent back to a client

34

https://heroku.com
https://heroku.com
https://aws.amazon.com/elasticbeanstalk
https://aws.amazon.com/elasticbeanstalk
https://aws.amazon.com/elasticbeanstalk
https://azure.microsoft.com
https://azure.microsoft.com

CHAPTER 1 BASICS

In addition, the HTTP Request contains these elements:

e Method: There are several methods, with the most
common being GET, POST, PUT, and DELETE

e URL: Protocol, host, port, path; for example, https://

webaplog.com/es6

e Query string: Everything after a question mark in the
URL (e.g., ?2g=rpjss&page=20)

RESTful API

RESTful (REpresentational State Transfer) APIs became popular due to the
demand in distributed systems to become stateless because stateless apps
are better to scale. This turned into a demand for each transaction/request
to include enough information about the state of the client. In a sense, this
standard is stateless because no information about the clients’ states is
stored on the server, thus making it possible for each request to be served
by a different system.

Here are some of the distinct characteristics of RESTful APIs:

o It has better scalability support due to the fact that
different components can be independently deployed
to different servers.

o [Itis easier to use than to use Simple Object Access
Protocol (SOAP) because of the simpler verb and noun
structure in REST, that’s no need for a verb in the URL.

e Ituses HTTP methods such as GET, POST, DELETE,
PUT, OPTIONS, and so on.

35

https://webaplog.com/es6
https://webaplog.com/es6

CHAPTER 1 BASICS

Table 1-1 is an example of a simple Create, Read, Update, and Delete
(CRUD) RESTful API for Message Collection.

Table 1-1. An Example of a CRUD RESTful API

Method URL Meaning

GET /messages.json Return list of messages in JSON format

PUT /messages.json Update/replace all messages and return
status/error in JSON

POST /messages.json Create new message and return its ID in
JSON format

GET /messages/{id}.json Return message thathasID {id} in
JSON format

PUT /messages/{id}.json Replace message thathasID {id} with
payload

PATCH /messages/{id}.json Update message that has ID {id} with
payload

DELETE /messages/{id}.json Delete message thathasID {id}

REST is not a protocol; it is an architecture in the sense that it’s more
flexible than SOAP, which is a protocol. Therefore, REST API URLs could
looklike /messages/list.html or /messages/list.xml in case we
want to support these formats. But most of the time, developers just use
JSON without any extensions: /messages and /messages/ {id}.

PUT and DELETE are idempotent methods, which means that if the
server receives two or more similar requests, the end result will be the
same. On the other hand, the GET method is nullipotent because the read
operation is safe on repeats. However, POST is not idempotent because it
will affect state and cause side effects on repeats.

We will use REST in the next chapters for building Node.js backend
and Backbone client.

36

CHAPTER 1 BASICS

Summary

This concludes the first chapter. In this chapter we've covered some of the
core concepts of web development. They’ll be a solid foundation for the
rest of the book. I'm sure some of the concepts were familiar to you:

« HTML
o CSS

e JavaScript types and objects

o Agile
e Node.js
e NoSQL

o HTTP Request
e RESTful API

Nevertheless, it’s good to brush up on them because they are
numerous and vast. Theory is not that useful or interesting without
understanding how it applies and benefits the actual code. Therefore, we'll
move swiftly to the technical setup to get you to the coding projects fast.

37

CHAPTER 2

Setup

One of my most productive days was throwing away 1,000
lines of code.

—Ken Thompson

In this chapter, we'll cover the following topics:
o Suggestions for the toolset
o Step-by-step installation of local components
o Preparation for the use of cloud services

The proper setup is absolutely crucial to your productive development.
You need to have everything ready when you embark on a long journey,
right? The two important things to install are dependencies and the
toolset. Dependencies are absolutely necessary and technologies like
Node.js or MongoDB. Moreover, the toolset is highly recommended
because it will make you more productive. They enable the server-side
code and persistence, respectively. In addition to that, in the cloud section,
we cover setup of the services for deployment and development. They
will enable you to keep your code under version control and deploy itin a
scalable manner.

© Azat Mardan 2018 39
A.Mardan, Full Stack JavaScript, https://doi.org/10.1007/978-1-4842-3718-2_2

https://en.wikipedia.org/wiki/Ken_Thompson

CHAPTER2 SETUP

Local Setup

Local setup is what we use on our development machines when we work
on a project. It includes anything from folders, browsers, editors, and
HTTP servers to databases. Figure 2-1 shows an example of the initial
development environment setup.

Development Folder

If you don’t have a specific development folder for your web development
projects, you could create a Development folder in the Documents folder
(path will be Documents/Development). To work on the code example,
create a fullstack-javascript folder inside your web development
projects folder; for example, if you create a fullstack-javascript
folder inside of the Development folder, the path will be Documents/
Development/fullstack-javascript. You could use the Finder app on
macOS or the following terminal commands on Posix (macOS X/Linux)
systems:

cd ~/Documents
mkdir Development

$
$
$ cd Development
$

mkdir fullstack-javascript

[] [~ fullstack-javascript — bash
Azots-Air:~ azot$ cd ~/Documents

Azcts-Air:Documents arot$ mkdir Development
Azots-Air:Documents azot$ cd Development/
Azots-Alr:Development azot$ mkdir fullstock-jovoscript
Azots-Air:Development czot$ cd fullstock-jovescript/
Azats-Air:fullstock- jovescript azotd

Figure 2-1. Initial development environment setup

40

CHAPTER2 SETUP

Tip To open macOS Finder app in the current directory from
Terminal, just type and run the $ open. command. On Windows,
Terminal is command prompt.

To get the list of files and folders, use this UNIX/Linux command:
$ 1s

or to display hidden files and folders, like.git, use this:
$ 1ls -lah

Another alternativeto $ 1sis$ 1s -alt.The difference between the
-lah and the -alt options is that the latter sorts items chronologically and
the former sorts them alphabetically.

You can use the Tab key to autocomplete names of the files and folders.

Later, you could copy examples into the fullstack-javascript
folder as well as create apps in that folder.

Tip Another useful thing is to have the New Terminal at Folder
option in Finder on macOS. To enable it, open your System
Preferences (you could use Command + Space, a.k.a. Spotlight,

for it). Find Keyboard and click it. Open Keyboard Shortcuts and click
Services. Select the New Terminal at Folder and New Terminal Tab at
Folder check boxes. Close the window (optional).

41

CHAPTER2 SETUP

Browsers

I recommend downloading the latest version of the WebKit or Gecko

browser of your choice:

Chrome (https://www.google.com/chrome)

(recommended)
e Safari(https://www.apple.com/safari)

e Firefox (https://www.mozilla.org/en-US/

firefox/new)

Whereas Chrome (Figure 2-2) and Safari already come with built-in
developer tools, you'll need the Firebug plug-in for Firefox.

B Chemms ide fdn Vew istery Sochmaks Sirdes el e 0 weiii G
-

 Cvame b =

* R L e—. -

c rome s it w_ o

Get a fast, free web browser

Figure 2-2. Chrome Developer Tools in action

42

https://www.google.com/chrome
https://www.google.com/chrome
https://www.apple.com/safari
http://www.apple.com/safari)
https://www.mozilla.org/en-US/firefox/new
https://www.mozilla.org/en-US/firefox/new
https://www.mozilla.org/en-US/firefox/new

CHAPTER2 SETUP

Firebug and developer tools allow developers to do many things,

including these:

Debug JavaScript

Manipulate HTML and DOM elements
Modify CSS on the fly

Monitor HTTP requests and responses
Run profiles and inspect heap dumps

See loaded assets such as images, CSS, and JS files

There are some great Chrome Developer Tools (DevTools) tutorials,

such as the following:

Explore and Master Chrome DevTools (https://
discover-devtools.codeschool.com)with Code
School

Chrome DevTools videos (https://developers.

google.com/chrome-developer-tools/docs/videos)

Chrome DevTools overview (https://developers.

google.com/chrome—developer—tools)

IDEs and Text Editors

One of the best things about JavaScript is that you don’t need to compile

the code. Because JS lives in and is run in a browser, you can do debugging

right there, in a browser! It’s an interpreted language, not a compiled one.

Therefore, I highly recommend a lightweight text editor instead of a full-

blown integrated development environment, or IDE, but if you are already

familiar and comfortable with the IDE of your choice like Eclipse (http://

www.eclipse.org), NetBeans (https://netbeans.org), or Aptana

(http://aptana.com), feel free to stick with it.

43

https://discover-devtools.codeschool.com
https://discover-devtools.codeschool.com
https://developers.google.com/chrome-developer-tools/docs/videos
https://developers.google.com/chrome-developer-tools/docs/videos
https://developers.google.com/chrome-developer-tools
https://developers.google.com/chrome-developer-tools
http://www.eclipse.org
http://www.eclipse.org
https://netbeans.org
http://aptana.com

CHAPTER2 SETUP

Here is a list of the most popular text editors and IDEs used in web
development:

e VS Code(https://www.visualstudio.com/
features/node-js-vs): Node.js tools for the famous
Visual Studio environment from a small Redmond,
Washington-based software startup company.

e Atom(https://atom.io): A web editor built on web
technologies from the creators of GitHub, the world’s
largest code storage and collaboration space.

e Sublime Text (https://www.sublimetext.com):
macOS and Windows versions are available. This is an
even better alternative to TextMate, with an unlimited
evaluation period.

e Coda (http://panic.com/coda): All-in-one editor
with FTP browser and preview, has support for
development with and on an iPad.

e Aptana Studio (http://aptana.com): Full-sized IDE
with a built-in terminal and many other tools.

e WebStorm (http://www.jetbrains.com/webstorm):
Feature-rich IDE that allows for Node.js debugging. It
is developed by JetBrains and marketed as the smartest
JavaScript IDE.

Please, please, please don’t use Vim, TextEdit or Notepad++! Having
code coloring and parentheses matching will make a great difference when
typing and debugging.

44

https://www.visualstudio.com/features/node-js-vs
http://www.visualstudio.com/features/node-js-vs)
http://www.visualstudio.com/features/node-js-vs)
https://atom.io
https://atom.io
https://www.sublimetext.com
https://www.sublimetext.com
http://panic.com/coda
http://panic.com/coda
http://aptana.com
http://aptana.com
http://www.jetbrains.com/webstorm
http://www.jetbrains.com/webstorm

CHAPTER2 SETUP

Version Control Systems

A version control system is a must-have even in projects with a single
developer because such a system keep all the history which makes it easy
to restore code or revert changes. Git is the most popular version control
system.

Also, many cloud services (e.g., Heroku) require Git for deployment.
I also highly recommend getting used to Git and Git terminal commands
instead of using Git visual clients and apps with a GUI: GitX (http://
gitx.frim.nl), Gitbox (http://www.gitboxapp.comn), or GitHub for
Desktop (https://desktop.github.com).

Subversion is a nondistributed version control system. This article
compares Git vs. Subversion: https://git.wiki.kernel.org/index.
php/GitSvnComparison.

Here are the steps to install and set up Git on your machine:

1. Download the latest version for your OS at

https://git-scm.com/downloads.

2. Install Git from the downloaded \ * . dmg package;
that is, run the \ * . pkg file and follow the wizard.

3. Find the Terminal app by using Command + Space,
a.k.a. Spotlight, on macOS. For Windows you could
use PuTTY (http://www.chiark.greenend.org.
uk/~sgtatham/putty)or Cygwin (http://www.

cygwin.com)

4. Inyour terminal, type these commands, substituting
“John Doe” and johndoe@example.com with your
name and e-mail:

S git config --global user.name
"John Doe"
$ git config --global user.email

johndoef@example.com

45

http://gitx.frim.nl
http://gitx.frim.nl
http://www.gitboxapp.com
https://desktop.github.com
https://git.wiki.kernel.org/index.php/GitSvnComparison
https://git.wiki.kernel.org/index.php/GitSvnComparison
https://git-scm.com/downloads
http://www.chiark.greenend.org.uk/~sgtatham/putty
http://www.chiark.greenend.org.uk/~sgtatham/putty
http://www.cygwin.com
http://www.cygwin.com

CHAPTER 2 SETUP
5. To check the installation, run this command:
S git version

6. You should see something like this in your terminal
window (your version might vary; in my case it’s
1.8.3.2):

git version 2.14.3 (Apple Git-98)

Generating SSH keys and uploading them to SaaS/PaaS web sites will
be covered later.

Local HTTP Servers

Although you can do most of the front-end development without a local
HTTP server, it is needed for loading files with HTTP Requests/AJAX calls.
Also, it’s just good practice in general to use a local HTTP server. This way,
your development environment is as close to the production environment
as possible.

I recommend you use Node-based tools as static web servers. They
lack GUISs, but they are simple and fast. You can install them with npm
(comes with Node.js; instructions are later in this chapter):

e node-static (https://github.com/cloudhead/
node-static): Static file server with built-in caching.
Run npm i -g node-static toinstall.

e http-server (https://www.npmjs.com/package/
http-server): Zero-configuration command-line

HTTP server. Run npm i -g htt-server to install.

46

https://github.com/cloudhead/node-­static
https://github.com/cloudhead/node-static
https://github.com/cloudhead/node-static
https://www.npmjs.com/package/http-­server
http://www.npmjs.com/package/http-server)
http://www.npmjs.com/package/http-server)

CHAPTER2 SETUP

If you prefer something with GUIs to a command-line interface (CLI),
you might want to consider the following modifications of the Apache web
server. MAMP, MAMP Stack, and XAMPP have intuitive GUIs that allow
you to change configurations and host file settings.

e XAMPP (https://www.apachefriends.org):
Apache distribution containing MySQL, PHP and Perl
for Windows, macOS, Linux, and Solaris.

e MAMP (https://www.mamp.info): Apache, MySQL,
and PHP personal web server for macOS.

e MAMP Stack (https://bitnami.com/stack/mamp):
Another Apache, MySQL, and PHP stack for macOS.

Database: MongoDB

The following steps are better suited for macOS/Linux-based systems, but
with some modification they can be used for Windows systems as well (i.e.,
$PATH variable, Step 3). Here I describe the MongoDB installation from
the official package, because I found that this approach is more robust and
leads to less conflicts. However, there are many other ways to install it on
macOS (https://docs.mongodb.com/manual/tutorial/install-
mongodb-on-os-x), for example using Brew, as well as on other systems

(http://docs.mongodb.com/manual/installation).

1. Download MongoDB from http://www.mongodb.
com/download-center#community. For the latest
Apple laptops, like MacBook, select macOS X 64-bit
version. The owners of older Macs should browse
the link at http://dl.mongodb.com/dl/osx/
1386

47

https://www.apachefriends.org
https://www.apachefriends.org
https://www.mamp.info
https://www.mamp.info
https://bitnami.com/stack/mamp
https://bitnami.com/stack/mamp
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x
http://docs.mongodb.com/manual/installation
http://www.mongodb.com/download-center#community
http://www.mongodb.com/download-center#community
http://dl.mongodb.com/dl/osx/i386
http://dl.mongodb.com/dl/osx/i386

CHAPTER2 SETUP

Tip To figure out the architecture type of your processor, type the $
uname -p at the command line.

2. Unpack the package into your web development
folder (~/Documents/Development or any other).
If you want, you could install MongoDB into the
/usr/local/mongodb folder.

3. Optional: If you would like to access MongoDB
commands from anywhere on your system, you need
to add your mongodb path to the $PATH variable. For
macOS, open system /etc/paths file with:

sudo vi /etc/paths

or, if you prefer VS Code:

code /etc/paths

And add this line to the /etc/paths file:
/usr/local/mongodb/bin

4. Create a data folder; by default, MongoDB uses
/data/db. Please note that this might be different
in new versions of MongoDB. To create it, type and
execute the following commands in the terminal:

$ sudo mkdir -p /data/db
$ sudo chown id -u /data/db

If you prefer to use a path other than /data/db
you could specify it using the --dbpath option to
mongod (the main MongoDB service).

48

CHAPTER 2

Go to the folder where you unpacked MongoDB.
That location should have a bin folder in it. From
there, type the following command in your terminal:

$./bin/mongod

If you see something like the following (and as in
Figure 2-3) it means that the MongoDB database
server is running:

MongoDB starting: pid =7218
port=27017...

By default, it’s listening at http: //
localhost:27017.If you go to your browser and
type http://localhost:28017 youshould be able
to see the version number, logs, and other useful
information. In this case the MondoDB server is
using two different ports (27017 and 28017): One is
primary (native) for the communications with apps
and the other is a web-based GUI for monitoring
and statistics. In our Node.js code we’ll be using
only 27017. Don’t forget to restart the Terminal
window after adding a new path to the SPATH
variable.

SETUP

49

CHAPTER2 SETUP

806 Terminal — mongod — 122x30

i

Last login: Sun Aug 25 17:29:16 on ttysodd
-Air:~ arot$ mongod

for help ond stortup options

131:00

:31:00 worning: 32-bit servers don't hove journaling encbled by defoult. Plecse use --journal if you mont dur

un!
~N~NT

-

:31:00 [initondlisten] MongoD8 storting : pids738 port=27T817 dbpoth=/data/db/ 3Z-bit host=Azats-Air.locol
[initondlisten
[initondlisten] ** NOTE: This is o development version (2.3.9) of MongoDB.
[initondlisten] ** Mot r d for pr ion

[imitondlisten
[initondlisten] ** NOTE: This is o 32 bit MongoD8 binory.

[imitondlisten] ** 32 bit builds ore limited to less thon 2GB of data (or less with --journol).
[imitondlisten] ** Mote thot journaling defoults to off for 32 bit ond is currently off.
[imitondlisten] ** See http://wem mongodd . org/disploy/DOCS/I2ebit

[initondlisten
[imitondlisten] ** WARNING: soft rlimits too lom, Mumber of files is 256, should be ot least 10090
[imitondlisten
[imitondlisten] db version v2.3.0, pdfile version 4.5

[imitondlisten] git version: 8606c3b316da2fffc1001e665442006790511d26

[initondlisten] build info: Dorwin bs-osx-106-1386-1.1ccol 10.8.@ Dorwin Kernel Version 10.8.0: Tue Ju
1; root:xnu-1584.15,.3-1/RELEASE_I386 1386 BOOST_LIB_VERSIOM=1_49

[initondlisten] cptions:

[imitondlisten] Uncble to check for journol files due to: boost::filesystes::directory_iterctor::const
¢ "/deta/db/ journol®

[websvr] odmin web console moiting for connections on port 28017

[imitondlisten] waiting for connections on port 27017

B R s s e RS S R b e e s e R
NNNNNNNNNNNNNNNNY
L L L L
P S A e A e S s R e
g2zeezeeeeeeeesese

I EE-EREEEEEEIIRREELEGEL

3
¥

EE EEEEEEEEEEREsEeyesy
ROBRANRNROXNARNRNRNR BN

SU¥
22

£%3
oo
::‘,E.
iif""
2

Figure 2-3. Starting up the MongoDB server

Now, to take it even further, we can test to determine
if we have access to the MongoDB console/shell,
which will act as a client to this server. This means
that we’ll have to keep the terminal window with the
server open and running.

7. Open another terminal window at the same folder
and execute:

$./bin/mongo

You should see something like “MongoDB shell

version...”
8. Then type and execute:

> db.test.save({ a: 1 })

> db.test.find ()

50

CHAPTER2 SETUP

If you see that your record is being saved, then
everything went well (Figure 2-4).

800, ___ Terminal — mongo — 79x14
Last login: Sun Aug 25 17:39:33 on ttys0e@ L
Azats-Air:~ ozot$ mongo

MongoD8 shell version: 2.3.0

connecting to: test

Nelcome to the MongoD8 shell.

For interoctive help, type “help®.

For more comprehensive documentation, see
http://docs .mongodb .org/

Questions? Try the support group
http://groups . google. com/group/mongodb-user

> db.test.save({ o: 1})

> db.test.findQ)

{ "-id" : Objectld("S21016906421004063190F%), "* : 1}

>

Figure 2-4. Running MongoDB client and storing sample data

Commands find and save do exactly what you might think they do.
The official MongoDB website has the detailed instructions for
installing MongoDB on macOS at: http: //docs.mongodb.com/manual/

tutorial/install-mongodb-on-os-x.TK

Note MAMP and XAMPP applications come with MySQL—an
open source traditional SQL database—and phpMyAdmin—a web
interface for MySQL database.

On macOS (and most UNIX systems), to close the process use Control
+ C. If you use Control + Z it will put the process to sleep (or detach the
terminal window); in this case, you might end up with the lock on data files
and will have to use the ki11 command or Activity Monitor, and manually
delete the locked file in the data folder. In vanilla Mac.

Terminal Command +. is an alternative to Control + C.

51

http://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x
http://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x

CHAPTER2 SETUP

Required Components

The following are required technologies. Please make sure you have them
before proceeding to the next chapter.

1. Node.js: We need it for build tools and back-end
apps. Get the version that has LTS even if the
number is lower than the current NON-LTS version,
because the LTS versions have longer support
period: https://nodejs.org.

2. npm: The Node.js package manager that comes
bundled with Node.js (no need to install anything
extra).

3. Browser JS libraries: We need them for front-end
apps.
I highly recommend installing other optional but useful components:

1. nvm: The Node.js version manager, which allows to
switch between Node.js versions quickly.

2. Compass: A desktop client GUI app for working
with MongoDB as a replacement of the Mongo
shell/REPL. https://www.mongodb.com/

products/compass

Node.js Installation

Node.js is available at ht tps: //nodejs.org/#download (Figure 2-5).
The installation is trivial: Download the archive and run the * . pkg
package installer. To check the installation of Node.js, you could type and

execute:

$ node -v

52

https://nodejs.org
http://www.mongodb.com/products/compass
http://www.mongodb.com/products/compass
https://nodejs.org/#download

CHAPTER2 SETUP

T use v8.11.1 for this book and tested all examples with v8.11.1. If you
use another version, do so at your own risk. I cannot guarantee that the
examples will run.

Assuming you have 8.11.1, it should show something similar to this:
v8.11.1.

If you want to switch between multiple versions of Node.js, there are
solutions for that:

e nvm(https://github.com/creationix/nvm):
Node.js Version Manager

e Nave(https://github.com/isaacs/nave): Virtual
environments for Node.js

e n(https://github.com/t73/n): Node.js version

management

The Node.js package already includes npm—Node.js Package Manager
(https://npmjs.org). We'll use npm extensively to install Node.js
modules.

53

https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/isaacs/nave
https://github.com/isaacs/nave
https://github.com/tj/n
https://github.com/tj/n
https://npmjs.org
https://npmjs.org
https://npmjs.org

CHAPTER2 SETUP

n-de

HOME ABOUT DOWNLOADS DOCS GET INVOLVED SECURITY NEWS FOUNDATION

Node.js® is a JavaScript runtime built on Chrome's V8 JavaScript engine. Node.js uses an
event-driven, non-blocking I/O model that makes it lightweight and efficient. Node.js'
package ecosystem, npm, is the largest ecosystem of open source libraries in the world.

Important March 2018 security upgrades now available

Download for macOS (x64)

8.11.1LTS 9.10.1 Current
Recommended For Most Users Latest Features
Other Downloads | Changelog | APIDocs Other Downleads | Changelog | APl Docs

Or have a look at the LTS schedule.

Sign up for Node.js Everywhere, the official Node.js Weekly Newsletter.

Figure 2-5. Node.js home page that shows LTS and non-LTS versions

Browser JavaScript Libraries

Front-end JavaScript libraries are downloaded and unpacked from their
respective web sites. Those files are usually put in the Development folder
(e.g., ~/Documents/Development) for future use. Often, there is a choice
between the minified production version (more on that in the AMD and
Require.js section of Chapter 4) and a version that is extensively rich
development comments.

Another approach is to hot-link these scripts from CDNs such as
Google Hosted Libraries (https://developers.google.com/speed/
libraries/devguide), CDNJS (https://cdnjs.com), Microsoft Ajax
Content Delivery Network (https://docs.microsoft.com/en-us/
aspnet/ajax/cdn/overview), and others. By doing so the apps will be
faster for some users, but won’t work locally at all without the Internet.

54

https://developers.google.com/speed/libraries/devguide
https://developers.google.com/speed/libraries/devguide
https://developers.google.com/speed/libraries/devguide
https://cdnjs.com
https://docs.microsoft.com/en-us/aspnet/ajax/cdn/overview
https://docs.microsoft.com/en-us/aspnet/ajax/cdn/overview

CHAPTER2 SETUP

Speaking of dependencies, I recommend downloading the following
libraries that will be used in the book’s project. To keep things simple, we
will use just simple . js or.min. js files and not the npm packages:

o Bootstrap is a CSS/Less framework. It’s available at

https://getbootstrap.com.
e jQueryisavailable at https://jquery.com.
e Backbone.js is available at ht tps: //backbonejs.org.
e Underscore.jsis available at ht tps: //underscorejs.org.

e Require.jsis available at https://requirejs.org.

Less App

Less as a front-end interpreter is available at lesscss.org. You could unpack
itinto your development folder (~/Documents/Development) or any
other folder.

The Less App is a macOS application for “on-the-fly” compilation of
Less to CSS. It’s available at incident57.com/less.

Cloud Setup

The cloud setup discussed in the following sections will allow you to keep
your code under version control and deploy it in a scalable manner.

SSH Keys

For GitHub repositories, developers have to enter username and password
every time with HTTPS URLs (looks like https://github.com/azat-
co/fullstack-javascript.git), unless they use a keychain. SSH keys

55

https://getbootstrap.com
https://jquery.com
https://backbonejs.org
https://underscorejs.org
https://requirejs.org
http://lesscss.org
http://incident57.com/less
https://github.com/azat-co/fullstack-javascript.git
https://github.com/azat-co/fullstack-javascript.git

CHAPTER2 SETUP

provide a secure connection without the need to enter a user name and
password every time. The SSH URLs look like git@github.com:azat-
co/fullstack-javascript.git.

To generate SSH keys for GitHub on macOS/UNIX machines, do the
following:

1. Check for existing SSH keys:

S cd ~/.ssh
$ 1s -lah

2. Ifyousee some fileslike id rsa (please refer to
Figure 2-6 for an example), you could delete them
or back them up into a separate folder by using the

following commands:

$ mkdir key backup
$ cp id rsa* key backup

$ rm id rsa*

3. Now generate a new SSH key pair using the
ssh-keygen command, assuming you are in the
~/ .sshfolder:

$ ssh-keygen -t rsa -C

“your email@youremail.com”

4. Answer the questions; it is better to keep the default
name of id rsa. Then copy the content of the
id_rsa.pub file to your clipboard (Figure 2-6):

$ pbcopy < ~/.ssh/id rsa.pub

56

CHAPTER2 SETUP

-alr-mﬁssh-bm-t rsa -C mlom"
Generoting public/privete rso key pair.
Enter file in which to sove the key (/Users/azot/.ssh/id_rsa):
Created directory '/Users/azot/.ssh'.

Enter passphrase (espty for no passphrase):

Enter some passphrase ogain:

Your identificotion has been saved in /Users/ozat/.ssh/id_rsa.
Your public key has been saved in /Users/azot/.ssh/id_rsa.pub.
The key fingerprint is:
«uﬁauuaunnnuuawﬁmum

+==[RSA 2048]----+
I o0 I
| e I
| DU |
. .0 I
| +05 |
I. E* . =0 |
lo ++ =+ 1
lo +o0 . I
| T N 1
B e E T

Azats-Air:~ azot$ open id_rso.pub

The file /Users/azot/id_rso.pub does not exist.

Azats-Air:~ arot$ open ~/.ssh/id_rso.pub

Mo applicotion knows how to open /Users/ozat/.ssh/id_rsa.pub.
Azots-Air:~ azot$ pbcopy < ~/.ssh/id_rso.pub

Azots-Air:~ ozot$

Figure 2-6. Generating RSA key for SSH and copying public key to
clipboard

5. Alternatively, open id rsa.pub file in the default
editor:

$ edit id rsa.pub
Orin VS Code (recommended):

$ code id rsa.pub

57

CHAPTER2 SETUP

GitHub

The next steps will show how to connect to GitHub (think of it as a
versioned code storage) using SSH and SSH keys:

1. After you have copied the public key, go to
https://github.com, login, go to your account
settings, select SSH Key, and add the new SSH key.
Assign a name, such as the name of your computer,
and paste the value of your public key.

2. To checkifyou have an SSH connection to GitHub,
type and execute the following command in your
terminal:

$ ssh -T git@github.com
If you see something like this:

Hi your-GitHub-username! You've successfully
authenticated, but GitHub does not provide shell

access.

then everything is set up.

3. The first time you connect to GitHub, you may
receive a message “Authenticity of Host ... Can’t Be
Established warning” Please don’t be alarmed with
such a message. It confirms that the host you are
trying to connect to is trusted. Simply proceed by
answering “Yes” as shown in Figure 2-7.

58

https://github.com

CHAPTER2 SETUP

HO6 Terminal — bash — 96x13

Last login: Sun Aug 25 18:47:31 on ttys@ L
Azots-Air:~ azotd ssh -T gitfgithub.com

The authenticity of host 'github.com (204,232,175, 2

RSA key fingerprint is 16:27:0c:05:76:28:2d:36:63:1b:56:4d:eb:df :06:48.
Are you sure you wont to continue connecting (yes/no)

Worning: Permonently odded 'github,com,204,232.175.99' (RSA) to the list of knomn hosts.

Identity odded: /Users/azot/.ssh/id.rso (/Users/oxot/.ssh/id_rsa)
Hi olex-d3vl You've successfully outhenticoted, but GitHub does not provide shell occess.
Azots-Air:~ azot$

Figure 2-7. Testing SSH connection to GitHub for the first time

If for some reason you have a different message, please repeat Steps
3 and 4 from the previous section on SSH keys or reupload the content of
your * . pub file to GitHub.

Warning Keep your id rsa file private and don't share it

with anybody!

More instructions are available at GitHub: Generating SSH Keys
(https://helpgithub.com/articles/generating-ssh-keys). TK

Windows users might find the SSH key generator feature in PuTTY
useful.

Microsoft Azure

Here are the steps to set up a Microsoft Azure account:

1. You'll need to sign up for Microsoft Azure Web Site
and Virtual Machine previews. Currently Microsoft
has a 90-day free trial available at https://azure.

microsoft.com/en-us.

2. Enable Git Deployment and create a user name
and password, then upload the SSH public key to
Microsoft Azure.

59

https://helpgithub.com/articles/generating-ssh-keys
https://helpgithub.com/articles/generating-ssh-keys
https://azure.microsoft.com/en-us
https://azure.microsoft.com/en-us

CHAPTER2 SETUP

3. Install the Node.js SDK, which is available at
https://azure.microsoft.com/en-us/

develop/nodejs. TK
4. To checkyour installation type:
$ azure -v

You should see something like this:

Microsoft Azure: Microsoft's Cloud Platform...

Tool Version 0.6.0

5. Login to Microsoft Azure Portal at https://

azure.microsoft.com (Figure 2-8).

Wl Windows Azure

About you

Mobile verification
PR

ot s
Payment information
Agreement

e— . -

T e

Figure 2-8. Registering on Microsoft Azure

6. Select New, then select Web Site, and Quick Create.
Type the name that will serve as the URL for your
web site, and click OK.

60

https://azure.microsoft.com/en-us/develop/nodejs
https://azure.microsoft.com/en-us/develop/nodejs
https://azure.microsoft.com
https://azure.microsoft.com

CHAPTER2 SETUP

Go to this newly created web site’s Dashboard and
select Set Up Git Publishing. Come up with a user
name and password. This combination can be
used to deploy to any web site in your subscription,
meaning that you do not need to set credentials for
every web site you create. Click OK.

On the follow-up screen, it should show you the Git
URL to push to, something like this:

https://azatazure@azat.scm.azurewebsites.

net/azat.git

You will also see instructions on how to proceed
with deployment. We'll cover them later.

Advanced user option: Follow this tutorial to
create a virtual machine and install MongoDB on
it: Install MongoDB on a virtual machine running
CentOS Linux in Microsoft Azure (https://www.
windowsazure.com/en-us/manage/linux/

common—tasks/mongodb—on—a—linux—vm)

Heroku

Heroku is a polyglot agile application deployment platform (see https://

www . heroku. com). Heroku works similarly to Microsoft Azure in the sense

that you can use Git to deploy applications. There is no need to install

Virtual Machine for MongoDB because Heroku has a MongoHQ add-on

(https://addons.heroku.com/mongohq).

61

https://azatazure@azat.scm.azurewebsites.net/azat.git
https://azatazure@azat.scm.azurewebsites.net/azat.git
https://www.windowsazure.com/en-us/manage/linux/common-tasks/mongodb-on-a-linux-vm
https://www.windowsazure.com/en-us/manage/linux/common-tasks/mongodb-on-a-linux-vm
https://www.windowsazure.com/en-us/manage/linux/common-tasks/mongodb-on-a-linux-vm
https://www.windowsazure.com/en-us/manage/linux/common-tasks/mongodb-on-a-linux-vm
https://www.windowsazure.com/en-us/manage/linux/common-tasks/mongodb-on-a-linux-vm
https://www.heroku.com
https://www.heroku.com
https://addons.heroku.com/mongohq
https://addons.heroku.com/mongohq

CHAPTER2 SETUP

To set up Heroku, follow these steps:

1. Signupathttps://heroku.com Currently they
have a free account; to use it, select all options as
minimum (0) and database as shared.

2. Download Heroku Toolbelt at (https://
toolbelt.heroku.com). Toolbeltis a package of
tools; that is, libraries that consist of Heroku, Git,
and Foreman (https://github.com/ddollar/
foreman). For users of older Macs, get this client
(https://github.com/heroku/heroku) directly.
If you utilize another OS, browse Heroku Client
GitHub (https://github.com/heroku/heroku).

3. After the installation is done, you should have
access to the heroku command. To check it and log
in to Heroku, type:

S heroku login

It will ask you for Heroku credentials (user name
and password), and if you've already created the
SSH key, it will automatically upload it to the
Heroku web site (Figure 2-9).

8no Terminal — bash — 86x14

Lost login: Sun Aug 25 21:04:33 on ttyseo® C]
Azats-Air:~ azat$ od ~/Domnloods/heroku-client/bin

Azats-Air:bin azaot$./heroku login

Enter your Heroku credentiols.

Email: olex.méil.boxfgmail.com

Password (typing will be hidden):

Authentication successful.

Azats-Air:bin ozot$

Figure 2-9. The response to the successful $ heroku login command

62

https://heroku.com
https://toolbelt.heroku.com
https://toolbelt.heroku.com
https://github.com/ddollar/foreman
https://github.com/ddollar/foreman
https://github.com/heroku/heroku
https://github.com/heroku/heroku

CHAPTER2 SETUP

4. If everything went well, to create a Heroku
application inside of your specific project folder, you
should be able to run this command:

$ heroku create

More instructions for getting started with Node.js and other languages
are available from Heroku at https://devcenter.heroku.com/start

Summary

In this chapter, we've covered the technical setup of the version control
system, cloud clients, and the installation of various tools and libraries.
We'll use these libraries and tools throughout the book, for this reason it’s
important to have them installed and ready to go. In addition, the chapter
provided a few links to external resources that will help you understand
and learn web development tools better. One of the most useful of such
resources is DevTools.

You must be dying to get started with the actual coding. The wait is
over. Meet the first full stack JavaScript code in the next chapter.

63

https://devcenter.heroku.com/start

PART li

Front-End Prototyping

CHAPTER 3

Getting Data from
Backend Using jQuery
and Parse

There are two ways of constructing a software design: One way
is to make it so simple that there are obviously no deficiencies,
and the other way is to make it so complicated that there are
no obvious deficiencies. The first method is far more difficult.

—Tony Hoare

This chapter covers the following topics:

Definitions of JSON, AJAX, and CORS
Overview of main jQuery functions
Bootstrap scaffolding

Main Less components

Mlustrations of JSONP calls on OpenWeatherMap API
example

Parse overview

© Azat Mardan 2018 67
A.Mardan, Full Stack JavaScript, https://doi.org/10.1007/978-1-4842-3718-2_3

https://en.wikipedia.org/wiki/Tony_Hoare

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

o Explanations on how to build a Message Board front-
end-only application with jQuery and Parse

e Step-by-step instructions on deployment to Microsoft
Azure and Heroku

e Updating and deleting of messages

This chapter is a basic introduction to front-end web development.
It covers things important to front-end development of apps such as
Bootstrap and Less. These amazing libraries allow developers to have a
nice user interface in no time.

This chapter also covers the terminology and explains JSON, AJAX, and
CORS. We then explore the example of a weather app.

We use Parse as our backend to streamline things and make development
faster while still keeping it realistic. The cornerstone of this chapter is a
persistent message board application built with Parse and jQuery.

Definitions

Before anything else, let’s clarify some terms. They are important enough
for us to pause and get familiar with them. If these are familiar to you, you
might want to skip ahead.

JavaScript Object Notation

Here is the definition of JavaScript Object Notation (JSON) from http: //

WWW.Jjson.org.

JavaScript Object Notation, or JSON, is a lightweight data-
interchange format. It is easy for humans to read and write. It
is easy for machines to parse and generate. It is based on a
subset of the JavaScript Programming Language, Standard
ECMA-262 (http://www.ecma-international.org/publi-
cations/files/ECMA-ST/Ecma-262.pdf).

68

http://www.json.org/
http://www.json.org/
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

JSON is a text format that is completely language independent
but uses conventions that are familiar to programmers of the
C-family of languages, including C, C++, C#, Java, JavaScript,
Perl, Python, and many others. These properties make JSON
an ideal data-interchange language.

JSON has become a standard for transferring data between different
components of web and mobile applications and third-party services.
JSON is also widely used inside the applications as a format for
configuration, locales, translation files, or any other data.

A typical JSON object looks like this:

"a": "value of a",

"b": "value of b"

—

We have an object with key/value pairs. Keys are on the left and values
are on the right side of colons (:). In computer science terminology,
JSON is equivalent to a hash table, a keyed list, or an associative array
(depending on the particular language). The only big difference between
JSON and JS object literal notation (native JS objects) is that JSON is more
stringent and requires double quotes (") for key identifiers and string
values. Both types can be serialized into a string representation with Jscn.
stringify () and deserialized with JSON. parse (), assuming we have a
valid JSON object in a string format.

However, every member of an object can be an array, primitive, or
another object; for example:

{

"posts": [{
"title": "Get your mind in shape!",
"votes": ,

69

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

"comments": [
"nice!",
"good link"
1, Ao
"title": "Yet another post",
"votes": ,
"comments": []
31

"totalPosts":

—

In this example, we have an object with the posts property. The value of
the posts property is an array of objects, each of which has title, votes,
and comments keys. The votes property holds a number primitive, whereas
comments is an array of strings. We cannot have functions as fields. JSON is
strictly a data structure. (We can have functions in JS objects though.)

JSON is much more flexible and compact than XML or other data
formats, as outlined in this article: “JSON: The Fat-Free Alternative to XML’
(www.json.org/xml.html). Conveniently, MongoDB uses a JSON-like
format called Binary JSON (http://bsonspec.org) (BSON), discussed
further in the Chapter 7 section BSON.

AJAX

Asynchronous JavaScript and XML (AJAX) is used on the client side
(browser) to send and receive data from the server by utilizing an
XMLHttpRequest object in JavaScript language. Despite the name, the
use of XML is not required, and JSON is often used instead. That’s why
developers almost never say AJAX anymore. Keep in mind that HTTP
requests could be made synchronously, but it’s not a good practice to do
so. The most typical example of a sync request would be the <script> tag
inclusion.

70

http://www.json.org/xml.html
http://www.json.org/xml.html
http://bsonspec.org

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

Cross-Domain Calls

For security reasons, the implementation of an XMLHTTPRequest object
does not allow for cross-domain calls, that is when a client-side code and
a server-side one are on different domains. There are methods to work
around this issue.

One of them is to use JSONP (https://en.wikipedia.org/wiki/
JSONP), JSON with padding/prefix. It’s basically a dynamic manipulation
via DOM-generated <script> tags. The <script> tags don’t fall into the
same domain limitation. The JSONP request includes the name of a callback
function in a request query string. For example, the jQuery.ajax () function
automatically generates a unique function name and appends it to the
request (which is one string broken into multiple lines for readability):

https://graph.facebook.com/search
?type=post
&§1imit=20
&g=Gatsby
&callback=jQueryl6207184716751798987 1368412972614
& =1368412984735

The second approach is to use cross-origin resource sharing (CORS:
https://www.w3.org/TR/cors), which is a better solution, but it
requires control over the server side to modify response headers. We
use this technique in the final version of the Message Board example
application, which we build throughout the book. Here is an example of a
CORS server response header:

Access-Control-Allow-Crigin: *

More about CORS is available on the Resources tab of the Enable CORS
website (https://enable-cors.org/resources.html)and in the
article “Using CORS” by Monsur Hossain (https://www.html5rocks.
com/en/tutorials/cors). You can test CORS requests at http://
test-cors.orgqg.

71

https://en.wikipedia.org/wiki/JSONP
﻿https://en.wikipedia.org/wiki/JSONP
﻿https://en.wikipedia.org/wiki/JSONP
https://www.w3.org/TR/cors
https://www.w3.org/TR/cors
https://enable-cors.org/resources.html
https://enable-cors.org/resources.html
https://enable-cors.org/resources.html
https://www.html5rocks.com/en/tutorials/cors
https://www.html5rocks.com/en/tutorials/cors
http://test-cors.org/
http://test-cors.org/

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

If some server does not support CORS but you want to use its API,
then you can use this amazing proxy service https://cors-anywhere.
herokuapp . com. To use it, simple append your non-CORS API URL to
the https://cors-anywhere.herokuapp.com/. For example, to fetch
the weather forecast Montevideo, Uruguay via the proxy, use this URL in
fetch (), XHR or other browser library (won’t work when just navigating
in the browser and may not work because of the invalidated API key in the
future): https://cors-anywhere.herokuapp.com/https://api.
openweathermap.org/data/2.5/forecast?g=montevideo, uyé&
appid=cb7c76071b4d2f7f2baf9dd426181785&units=metric.

jQuery Functions

Throughout the book we’ll be using jQuery (http://jquery.com)

for DOM manipulations, HTTP Requests, and JSONP calls. React is

a more modern technology and I wrote one of the biggest and most
comprehensive books on it called React Quickly (Manning, 2017). But
jQuery is still very popular and wide-spread. I can even say that jQuery
became a de facto standard of the web development because of a
straightforward yet versatile and powerful API and a rich collection of UI
widgets. jQuery uses the $ object or function, which is a selector and which
provides a simple yet efficient way to access any HTML DOM element

on a page by its ID, class, tag name, attribute value, structure, or any
combination thereof. The syntax is very similar to CSS, where we use # for
id and. for class selection. For example:

$('#main') .hide ()
$S('p.large') .attr('style', 'color:red")

S('"#main') .show () .html ('<div>new div</div>")

72

https://cors-anywhere.herokuapp.com
https://cors-anywhere.herokuapp.com
https://cors-anywhere.herokuapp.com/
https://cors-anywhere.herokuapp.com/
https://api.openweathermap.org/data/2.5/forecast?q=montevideo,uy&appid=cb7c76071b4d2f7f2baf9dd426181785&units=metric
https://api.openweathermap.org/data/2.5/forecast?q=montevideo,uy&appid=cb7c76071b4d2f7f2baf9dd426181785&units=metric
https://api.openweathermap.org/data/2.5/forecast?q=montevideo,uy&appid=cb7c76071b4d2f7f2baf9dd426181785&units=metric
http://jquery.com

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

Here is the list of most commonly used jQuery API functions, full

description for which are available at http://api.jquery.com:

find (): Selects elements based on the provided
selector string

hide () Hides an element if it was visible
show () Shows an element if it was hidden

html () Gets or sets an inner HTML (content) of an
element

append () Injects an element into the DOM after the
selected element

prepend () Injects an element into the DOM before the
selected element

on () Attaches an event listener to an element
off () Detaches an event listener from an element

css () Gets or sets the style attribute value of an

element
attr () Gets or sets any attribute of an element
val () Gets or sets the value attribute of an element

text () Gets the combined text of an element and its
children

each () Iterates over a set of matched elements

Most jQuery functions act not only on a single element, on which they

are called, but on a set of matched elements if the result of the selection

has multiple items. This is a common pitfall that leads to bugs, and it

usually happens when a jQuery selector is too broad.

73

http://api.jquery.com/

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

Also, jQuery has many available plug-ins and libraries that provide a
rich user interface or other functionality. For example:

e jQueryUl (http://jqueryui .com)

e jQuery Mobile (http://jquerymobile.com)

Bootstrap

This section explains how to set up the Bootstrap scaffolding for the projects
in the book. What is Bootstrap? Bootstrap (http://getbootstrap.com),
or Twitter Bootstrap, is a collection of CSS/Less rules and JavaScript plug-
ins for creating a good user interface and user experience without spending
a lot of time on such details as rounded-edge buttons, cross-compatibility,
responsiveness, and so on. This collection or framework is perfect for rapid
prototyping of your ideas. Nevertheless, due to its ability to be customized,
Bootstrap is also a good foundation for serious projects. The source code is
written in Less (http://lesscss.org), but plain CSS can be downloaded
and used as well.

Here is a simple example of using Bootstrap scaffolding for the version
v4.0.0-alpha. The structure of the project should look like this:

/01l-bootstrap
-index.html
/css
-bootstrap.css
-bootstrap.min.css
(other files if needed)
/Js
-bootstrap.js
-bootstrap.min.js

-npm.Js

74

http://jqueryui.com
http://jqueryui.com
http://jquerymobile.com
http://jquerymobile.com
http://getbootstrap.com
http://getbootstrap.com
http://lesscss.org
http://lesscss.org

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE
First let’s create the index.html file with proper tags:

<!DOCTYPE html>
<html lang="en">

<head>

</head>

<body>

</body>
</html>

Include the Bootstrap library as a minified CSS file:

<!DOCTYPE html>
<html lang="en">
<head>
<link
type="text/css"
rel="stylesheet"
href="css/bootstrap.min.css" />
</head>
<body>
</body>
</html>

Apply scaffolding with container-fluid and row-fluid classes:

<body>
<div class="container-fluid">
<div class="row-fluid">
</div> *<!--row-fluid -->%
</div> *<!-- container-fluid -->*

</body>

75

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

Bootstrap uses a 12-column grid. The size of an individual cell could

be specified by classes col-size-N, for example, col-sm-1, col-1g-1,

col-md-6. There are also classes of fset-size-N, for example, of fset-

md-3, of fset-1g-1, ... of fset-sm-6, to move cells to the right.

76

We'll use the col-md-12 and hero-unit classes for the main content
block:

<div class="row-fluid">
<div class="col-md-12">
<div id="content">
class="row-fluid">
<div class="col-md-12">

<div class="hero-unit">

<hl>
Welcome to Super
Simple Backbone
Starter Kit
</hl>
<p>
This is your home page.
To edit it just modify
the <i>index.html</i> file!
</p>
<p>
<a
class="btn btn-primary btn-large"
href="http://twitter.github.com/bootstrap"
target=" blank">
Learn more

</p>

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

</div> *<!-- hero-unit -->%
</div> *<!-- col-md-12 —-->%
</div> *<!-- row-fluid -->%*
</div> *<!-- content -->%*
</div> *<!-- col-md-12 —-->%

</diwv> *<!-- row-fluid -->%*

This is the full source code of the index.html from the 1-bootstrap
folder (http://bit.1ly/2JCbSTv):

<!DCCTYPE html>
<html lang="en">
<head>
<link type="text/css" rel="stylesheet" href="css/
bootstrap.css" />
</head>
<body >
<div class="container-fluid">
<div class="row-fluid">
<div class="col-md-12">
<div id="content">
<div class="row-fluid">
<div class="col-md-12">
<div class="hero-unit">
<hl>Welcome to Super Simple Backbone
Starter Kit</hl>
<p>This is your home page. To edit it
just modify <i>index.html</i> file!</p>
<p><a class="btn btn-primary btn-
large" href="http://twitter.github.com/
bootstrap" target=" blank" >Learn more
</p>

</div> *<!-- hero-unit -->%*

77

http://bit.ly/2JCbSTv
http://bit.ly/2JCbSTv)

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

</div> *<!-- col-md-12 —-->*
</div> *<!-— row-fluid —-->%*
</div> *<!-- content -->%
</div> *<!-- col-md-12 —->*
</div> *<!-— row-fluid —-->%*
</div> *<!-- container-fluid —-->%*
</body>
</html>

This example is available for downloading and pulling from the GitHub
public repository athttps://github.com/azat-co/fullstack-
javascript under the 01-bootstrap folder (http://bit.1ly/2JCbSTv).

CSSis not a real programming language. It does not have a
dependency mechanism, variables or functions. That’s why some
developers invented CSS frameworks and a lot of developers use them
to much success over plain CSS. Their frameworks allow for a better
CSS reuse and composition. Here are some other useful tools—CSS
frameworks and CSS preprocessors—worth checking out:

e Compass: CSS framework (https://compass-style.org)

o Sass: Extension of CSS3 and analog to Less (https://

sass—lang. com)
e Blueprint: CSS framework (https://blueprintcss.io)

o Foundation: Responsive front-end framework

(https://foundation.zurb.com)

e Bootswatch: Collection of customized Bootstrap
themes (http://bootswatch.com)

o WrapBootstrap: Marketplace for customized Bootstrap
themes (https://wrapbootstrap.com)

To work with the Bootstrap source files or its theme files, you need to

use Less or Sass.

78

https://github.com/azat-co/fullstack-javascript
https://github.com/azat-co/fullstack-javascript
http://bit.ly/2JCbSTv
http://bit.ly/2JCbSTv)
https://compass-style.org
https://compass-style.org
https://sass-lang.com
https://sass-lang.com
https://sass-lang.com
https://blueprintcss.io
https://blueprintcss.io
https://foundation.zurb.com
https://foundation.zurb.com
http://bootswatch.com
http://bootswatch.com
https://wrapbootstrap.com
https://wrapbootstrap.com

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

Less

Less is a dynamic stylesheet language. Less has variables, mix-ins, and
operators that make it faster for developers to reuse CSS rules. Sometimes,
and in this case, it’s true that less is more and more is less. A browser
cannot interpret Less syntax, so Less source code must be compiled to CSS

in one of three ways:
1. Inthe browser by the Less JavaScript library

2. On the server side by language or framework;
for example, for Node.js there is the Less module

(https://www.npmjs.com/package/less)

3. Locally on your machine by command line
(installed with npm by running $ npm install -g
less), or a desktop app such as WinLess (http://
winless.org), CodeKit (https://codekitapp.
com/index.html), SimpLess (https://github.
com/Paratron/SimpLESS)

The browser option (on the fly compilation) is suitable for a
development environment but suboptimal for a production environment.

Less Variables

Variables reduce redundancy and allow developers to change values
quickly by having them in one canonical place, and we know that in design
(and styling) we often have to change values very frequently.

79

https://www.npmjs.com/package/less
http://www.npmjs.com/package/less)
http://winless.org
http://winless.org
http://winless.org
https://codekitapp.com/index.html
https://codekitapp.com/index.html
https://codekitapp.com/index.html
https://github.com/Paratron/SimpLESS
https://github.com/Paratron/SimpLESS
https://github.com/Paratron/SimpLESS

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

We sometimes have some Less code with the variable marked by the
@ sign, such asin Gcolor:

@color: ;
#header f{

color: (@color;
}
h2 {

color: @color;

—

This code will be compiled to the equivalent in CSS:

#header {

color: ;
}
h2 {

color: ;

—

The benefit is that in Less, you need to update the color value in only
one place versus two in CSS. This is abstraction at its best.

Less Mix-ins

This section is about mix-ins. They are like functions in JavaScript. The
syntax for a mix-in is the same as for creating a class selector. For example,

thisis a .border mix-in:

.border ¢{
border-top: dotted black;
border-bottom: solid black;

—

80

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

#menu a {
color: ;

.border;

—

.post a f{
color: red;

.border;

—

That converts into this CSS, in which the .border is replaced with the

actual styles, not the name:

.border {
border-top: dotted
border-bottom: solid
}
#menu a {
color: ;
border-top: dotted
border-bottom: solid
}
.post a f{
color: red;
border-top: dotted
border-bottom: solid

—

black;
black;

black;
black;

black;
black;

Even more useful is to pass a parameter to a mix-in. This enables

developers to create even more versatile code. For example, . rounded-

corners is a mix-in that can change size based on the value of the

parameter radius:

81

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

.rounded-corners (@radius:) |
border-radius: @radius;
-webkit-border-radius: (@radius;

-moz-border-radius: @radius;

1
J

#header {

.rounded-corners;

}

#footer f{

.rounded-corners () ;

—~

That code will compile into this in CSS:

#header {
border-radius: ;
-webkit-border-radius: ;
-moz-border-radius: ;

1
J

#footer f{
border-radius: ;
-webkit-border-radius: ;

-moz-border-radius: ;

—

Whether you use mix-ins without parameters or with multiple
parameters, they are great at creating abstractions and enabling better
code reuse.

Less Operations

Less supports operations. With operations, we can perform math functions
on numbers, colors, or variables. This is useful for sizing, colors, and other
number-related styles.

82

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

Here is an example of an operator in Less where we perform
multiplication and addition:

@the-border: ;
@base-color: ;

Qred: ;

#header f{
color: @base-color * 3;
border-left: (@the-border;
border-right: @the-border * 2;

1
J

#footer f{
color: @base-color + ;
border-color: desaturate (@red,) ;

That code compiles in this CSS in which the compiler substituted
variables and operations for the results of the expressions:

#header {
color: ;
border-left: ;
border-right: ;

1
J

#footer f{
color: ;

border-color: ;

As you can see, Less dramatically improves the reusability of plain
CSS. It’s a time saver in large projects, as you can create Less modules and
reuse them in multiple apps.

83

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

Other important Less features (http://lesscss.org/#docs)include
the following:

e Pattern matching

¢ Nested rules Functions
o Namespaces

e Scope

o Comments

o Importing

An Example Using a Third-Party API
(OpenWeatherMap) and jQuery

In this section we will look at a Weather app example. It is a standalone
example that is not a part of the main Message Board application
introduced in this chapter and covered in detail in later chapters.

The goal of the Weather app is to just illustrate the combination of
jQuery, JSONP, and REST API technologies. The idea of this weather
application is to show you an input field for the city name and buttons for
metric and imperial systems (C or F degrees). The first view of the Weather
application is shown in Figure 3-1. The view has the input field for the city
name and two buttons for metric and imperial forecasts (Figure 3-1).

84

http://lesscss.org/#docs
http://lesscss.org/#docs

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

® O ® /[icaost:8080/codef03-wea! X | Ninja
i 2 @ localh 080/code/03-weather] b+
Weather App

Enter city name to get the weather forecast

Enter the city name

Get forecast in metric
Get forecast in imperial
Nothing to show yet

Azat Mardan (@azat_co)

Figure 3-1. Weather App has a text input field and two buttons for
the forecasts

Once you enter the city name and click one of the buttons, the app will
fetch the forecast from OpenWeatherMap. Depending on which button
you press, the app will fetch the forecast in metric (C) or imperial (F)
degrees. For example, I live in the heart of all the tech innovations, San
Francisco, and we use imperial F degrees here, so my result will be similar
to the one shown in Figure 3-2. The forecast will be for several days with a
3-hour difference between predictions.

85

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

©® © @ /[iocalnost8080/code/03-wea: X || Ninja
&« C | ® localhost:8080/code/03-weather/ b+
Weather App

Enter city name to get the weather forecast

San Francisco

Get forecast in metric
Get forecast in imperial

Weather Forecast for San Francisco, US
2018-04-01 18:00:00: 61.11

2018-04-01 21:00:00: 63.01
2018-04-02 00:00:00: 62.28
2018-04-02 03:00:00: 57.2

2018-04-02 06:00:00: 53.23

2018-04-02 09:00:00: 52.03

2018-04-02 12:00:00: 52.2

Figure 3-2. Weather App show the forecast for San Francisco

Note that this example uses OpenWeatherMap API 2.5. The API
requires an authentication (an app ID) for REST calls. You can get the
necessary keys at https://openweathermap.org/appid. The API
documentation is available at ht tps: //openweathermap.org/api. If
you are starting the weather app from the code folder of the repository for
this book, then make sure you update the API key, because the key in the
provided code may be my key and it may not work in the future.

In this example, we’ll use jQuery’s $.ajax () function. It has the
following syntax:

const request = $.ajax({
url: url,
dataType: 'Jsonp',
data: {g: cityName, appid: appId, units: units},
jsonpCallback: 'fetchbata',
type: 'GET'

86

https://openweathermap.org/appid
https://openweathermap.org/appid
https://openweathermap.org/api

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

}).fail (function (error) {
console.error (error)
alert ('Error sending request')

H)

In the code fragment of the ajax () function just shown, we used the
following parameters:

e url isan endpoint of the API.

e dataType is the type of data we expect from the server;
for example, json, xm1, jsonp (JSON with padding—
format for servers that don’t support CORS).

e dataisthe data to be sent to the server.

e jsonpCallbackisaname of the function, in a string
format, to be called after the request comes back; by
default jQuery will create a name.

e typeisthe HTTP method of the request; for example,
GET, POST.

There is also a chained method . fai1, which has logic for what to do
when the request has an error (i.e., it fails).

For more parameters and examples of the ajax () function, go to
http://api.jquery.com/jQuery.ajax.

To assign our function to a user-triggered event, we need to use the
click () function from the jQuery library. The syntax is very simple:

S('"#btn') .click (function () {

—

87

http://api.jquery.com/jQuery.ajax

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

$ ("#btn') is ajQuery object that points to an HTML element in the
DOM with the element ID (id) of btn.

To make sure that all of the elements we want to access and use are in
the DOM, we need to enclose all of the DOM manipulation code inside of
the following jQuery function:

$ (document) . ready (function () {

—

This is a common mistake with dynamically generated HTML
elements. They are not available before they have been created and
injected into the DOM.

We must put the event handlers for the buttons in the $ (document) .
ready () callback. Otherwise, the code might try to attach an event listener
to a non-existing DOM element. The $ (document) . ready () callback
ensures that the browser rendered all the DOM elements.

$ (document) .ready (function () {
S('.btn-metric').click (function() ¢
prepareData ('metric")
})
S('.btn-imperial').click (function () {
prepareData ('imperial')
})

H)

We use classes instead of IDs, because classes are more flexible (
you cannot have more than one ID with the same name). Here’s the HTML
code for the buttons:

88

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

<div class="row">
<div class="span6t offsetl">
<input type="button" class="btn-primary btn
btn-metric" value="Get forecast in metric"/>
<div class="span6t offsetl">
<input type="button" class="btn-danger btn
btn-imperial" value="Get forecast in imperial"/>
</div>
<div class="span3">
<p id="info"></p>
</div>

</div>

The last container with the ID info is where we’ll put the forecast.

The idea is simple: We have button and event listeners to do something
once a user clicks the buttons. The aforementioned buttons call the
prepareData () method. This is its definition:

const openWeatherAppId = 'GET-YOUR-KEY-AT-CPENWEATHERMAP'
const openWeatherUrl = 'http://api.openweathermap.org/
data/2.5/forecast’

const prepareData = function (units) {

let cityName = $('#city-name') .val ()
if (cityName && cityName != '"){
cityName = cityName.trim()

getData (openWeatherUrl, cityName, openWeatherAppId,
units)

}

else {

alert ('Please enter the city name')

—

89

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

The code should be straightforward. We get the value of the city name
from the input box (ID city-name). Then, we check that the city name is
NOT empty, and call getData (). This function getData () will make the
XHR request to the server (Open Weather API). You've already seen an
example of the $.ajax request. Please note that the callback function is
named fetchbData. This function will be called after the browser gets the
response from the OpenWeatherMap API. Needless to say, we must pass
the city name, app ID, and units as follows:

function getData (url, cityName, appId, units) {
const request = $.ajax({

url: url,

dataType: 'Jsonp',

data: {
q: cityName,
appid: appld,
units: units

}y

jsonpCallback: 'fetchbata',
type: 'GET'

}).fail (function (error) {
console.error (error)
alert ('Error sending request')

H)

—

The JSONP fetching function magically (thanks to jQuery) makes
cross-domain calls by injecting <script> tags and appending the callback
function name to the request query string.

At this point, we need to implement fetchData and update the
view with the forecast. The console. 1og is useful to look up the data
structure of the response; that is, where fields are located. The city name

90

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

and country will be displayed above the forecast to make sure the location
found is the same as the one we requested in the input box.

function fetchData (forecast) {
console.log(forecast)
let html = "',
cityName = forecast.city.name,

country = forecast.city.country

Now we form the HTML by iterating over the forecast and
concatenating the string:

html += "<h3> Weather Forecast for S${cityName},

S{country}</h3>"

forecast.list.forEach (function (forecastEntry, index, list) {
html += "<p>S{forecastEntry.dt txt}:

$S{forecastEntry.main.temp}</p>"

Finally, we get a jQuery object for the divwith ID 10g, and inject the
HTML with the city name and the forecast:

S('#log') .html (html)

In a nutshell, there is a button element that triggers prepareData (),
which calls getData (), in the callback of which is fetchbata (). If you
found that confusing, here’s the full code of the index.htm1 file:

<!DCCTYPE html>

<html lang="en">

<head>
<link type="text/css" rel="stylesheet" href="css/
bootstrap.css" />
<script src="js/jquery.js" type="text/javascript">

</script>

91

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

<meta name="viewport" content="width=device-width,
initial-scale=1.0">
<style type="text/css">
.row f{
padding-top: ;
}

</style>

<script>
const openWeatherAppId = 'GET-YOUR-KEY-AT-
CPENWEATHERMAP'
const openWeatherUrl = 'http://api.openweathermap.

org/data/2.5/forecast’

const prepareData = function (units) {

// Replace loading image

let cityName = $('#city-name') .val/()

// Make ajax call, callback

if (cityName && cityName != '"){
cityName = cityName.trim()
getData (openWeatherUrl, cityName,
openWeatherAppId, units)

}

else ¢

alert ('Please enter the city name')

—

$ (document) . ready (function () {

S('.btn-metric').click (function() ¢{
prepareData ('metric')

1)

92

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

S('.btn-imperial') .click (function () {
prepareData ('imperial')

H)

—~
N

function getData (url, cityName, appld, units) {
const request = $.ajax ({
url: url,
dataType: "Jjsonp",
data: {g: cityName, appid: appId, units: units},
jsonpCallback: "fetchbata',
type: "GET"
}).fail (function (error) {
console.error (error)
alert ('"Error sending request')

})

function fetchData (forecast) {
console.log (forecast)
let html = "'
let cityName = forecast.city.name

let country = forecast.city.country

html += "<h3> Weather Forecast for S${cityName},
S{country}</h3>"
forecast.list.forEach (function (forecastEntry,
index, list) {

html += "<p>S{forecastEntry.dt txt}:

S{forecastEntry.main.temp}</p>"

—
~

93

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

S('"#1log') .html (html)

</script>
</head>
<body>

<div class="container">

<div class="row">
<div class="span4 offset3">
<h2>Weather App</h2>
<p>Enter city name to get the weather
forecast</p>
</div>
<div class="span6t offsetl">
<input class="span4" type="text"
placeholder="Enter the city name"
id="city-name" value=""/>
</div>
</div>
<div class="row">
<div class="span6 offsetl">
<input type="button" class="btn-primary
btn btn-metric" value="Get forecast in
metric"/>
<div class="span6t offsetl">
<input type="button" class="btn-danger
btn btn-imperial" value="Get forecast in
imperial™/>
</div>

</div>

94

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

<div class="row">
<div class="span6t offsetl">
<div id="log">Nothing to show yet</div>
</div>

</div>

<div class="row">
<hr/>
<p>Azat Mardan (<a href="http://twitter.com/
azatmardan">@azatmardan)</p>

</div>

</div>
</body>
</html>

Try launching it and see if it works with or without the local HTTP
server (just opening index.html in the browser). It should not work
without an HTTP server because of its reliance on JSONP technology. You
can get node-static or http-server command-line tools as described
in Chapter 2.

The source code is available in the 03-weather folder and on GitHub
(https://github.com/azat-co/fullstack-javascript/tree/
master/code/03-weather).

This example was built with OpenWeatherMap API v2.5 and might not
work with later versions. Also, you need the API key called app ID. You can
get the necessary keys at https://openweathermap.org/appid. If you
feel that there must be a working example, please submit your feedback
to the GitHub repository for the book’s projects (https://github.com/
azat-co/fullstack-javascript).

jQuery is a good library for getting data from the RESTful servers.
Sometimes we are not just reading the data from the servers; we also want
to write it. This way the information persists and can be accessed later.
Parse will allow you to save your data without friction.

95

https://github.com/azat-co/fullstack-javascript/tree/master/code/03-weather
https://github.com/azat-co/fullstack-javascript/tree/master/code/03-weather
https://github.com/azat-co/fullstack-javascript/tree/master/code/03-weather
https://openweathermap.org/appid
https://github.com/azat-co/fullstack-javascript
https://github.com/azat-co/fullstack-javascript
https://github.com/azat-co/fullstack-javascript

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

Parse

Parse (https://parseplatform.org)isa platform that is a feature-
rich backend with convenient API and libraries. One of them is parse-
server that allows developers to focus on building their client apps (web
or mobile) instead of spending time on the backend. Developers can
substitute Parse for a database and a server. In other words, with Parse,
there’s no need to build your own server or to maintain a database!

Parse started as a means to support mobile application development.
Nevertheless, with the REST API and the JavaScript SDK, Parse can be used
in any web and desktop applications for data storage (and much more),
making it ideal for rapid prototyping.

To create a local instance of Parse simply install two npm modules:

parse-server and mongodb-runner using npm:
npm i —-g parse-server mongodb-runner

Then launch the MongoDB database with mongodb-runner start.
You'll see this message:

N Starting a MongoDB deployment to test against...V/
Downloaded MongoDB
. Starting a MongoDB deployment to test against...

That’s it. You can create your own backend locally with the next
command, which take API key and ID and points to the local DB:

Create your back-end Parse server application. Feel free to use your
own values for appId and masterKey. Copy the Application ID and the
master key into the front-end project files, such as 03-parse-sdk/app.Js,
because you'll need to use the exact same value on the frontend in order

96

https://parseplatform.org
https://parseplatform.org

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

to be able to access your back-end server. In other words, we'll need these
keys to access our data collection at Parse.

We'll create a simple application that will save values to the
collections using the Parse JavaScript SDK. (A collection is like a table
in the traditional SQL/relational database). The final solution is in the
03-parse-sdk folder. Our application will consist of an index.htm1 file
and an app . js file. Here is the structure of our project folder:

/03-parse-sdk
-index.html
-app.Jjs
-jquery.js

-boostrap.css

The sample is available in the 03-parse-sdk folder on GitHub
(https://github.com/azat-co/fullstack-javascript/tree/
master/code/03-parse-sdk), but you are encouraged to type your own
code from scratch. To start, create the index.html file:

<html lang="en'">

<head>

Include the minified jQuery library from the local file. You can download
itfrom https://jquery.comand save it into the folder. Versions 2, 3 or
higher should work fine.

<script
type="text/javascript"
src=
"jquery.js">

</script>

97

https://github.com/azat-co/fullstack-javascript/tree/master/code/03-parse-sdk
https://github.com/azat-co/fullstack-javascript/tree/master/code/03-parse-sdk
https://github.com/azat-co/fullstack-javascript/tree/master/code/03-parse-sdk
https://jquery.com

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

Include the Parse JavaScript SDK library v1.11.1 from this location
https://unpkg.com/parse@l.11.1/dist/parse.js or from code for
this book (http://bit.1ly/2uEjekR):

<script src="parse-1.11.1.js"></script>
Include our app. s file and the Bootstrap library (v4 or higher):

<script type="text/javascript" src="app.Jjs"></script>
<link type="text/css" rel="stylesheet" href="css/
bootstrap.css" />

</head>

<body>
<!--— We'll do something here -->

</body>

</html>

The <body> of the HTML page consists of the <textarea> element.
We'll use it to enter JSON:

<body>
<div class="container-fluid">
<div class="row-fluid">
<div class="col-md-12">
<div id="content'">
<div class="row-fluid">
<div class="col-md-12">
<div class="hero-unit">
<hl>Parse JavaScript SDK demo</hl>
<textarea cols="60" rows="7">{
"name": "John",
"text": "hi"

}</textarea>

98

https://unpkg.com/parse@1.11.1/dist/parse.js
http://bit.ly/2uEjekR)

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

The indentation of the <textarea>looks out of whack because this
element preserves white space and we don’t want to have it when we
process that string into JSON.

After the input area, there’s a button that will trigger the saving to

Parse:
<p><a class="btn btn-primary btn-large
btn-save" >Save object</p>
<pre class="log"></pre>
Go to <a href="http://parseplatform.org/"
target=" blank">Parse to check the data.

</div> *<!-— hero-unit —->%*
</div> *<!-- col-md-12 -->*
</div> *<!-- row-fluid -->*
</div> *<!-- content -->%
</div> *<!-- col-md-12 -->*
</div> *<!-- row-fluid -->*
</div> *<!-- container-fluid —-->%*
</body>
</html>

Create the app. js file and use the $ (document) . ready function to
make sure that the DOM is ready for manipulation:

$ (document) .ready (function () {

Change parseApplicationldand parseJavaScriptKey to values for
your own Parse server (you define them when you start the Parse server):

const parseApplicationId = 'APPLICATICN ID'

const parseJavaScriptKey 'MASTER KEY'

99

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

Because we've included the Parse JavaScript SDK library, we now have
access to the global object Parse. We initialize a connection with the keys,
and create a reference to a Test collection:

Parse.initialize (parseApplicationId, parseJavaScriptKey)

Parse.serverURL = 'http://localhost:1337/parse’

Next, create the collection object. It’s like a model for our data. The
name is Test but it can be any string value.

const Test = Parse.Cbject.extend('Test')
const test = new Test ()

const query = new Parse.Query(Test)

The next step is to implement the code to save an object with the
keys name and text to the Parse Test collection. We are going to use

test.save ():
test.save (obj, {success, error})

But before we can call save (), we must get the data from the DOM
(browser element textarea). The next few statements deal with getting
your JSON from the <textarea> and parsing it into a normal JavaScript
object. The try/catch is crucial because the JSON structure is very rigid.
You cannot have any extra symbols. Each time there’s a syntax error, it will
break the entire app. Therefore, we need to account for erroneous syntax:

try {
const data = JSCN.parse($('textarea').val())
} catch (e) {

alert ('Invalid JSON")

100

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

Conveniently, the save () method accepts the callback parameters
success and error just like the jQuery.ajax () function. To get
a confirmation, we'll just have to look at the 10g container (<pre
class="log"></pre>) on the page:

test.save (data, {
success: (result) => {
console.log('Parse.com object is saved: ', result)

S('.log'").html (JSON.stringify(result, null, 7))

1
I

error: (error) => {
console.log(Error! Parse.com object is not saved:

S{error}’)

—
~

It's important to know why we failed to save an object. That’s why
there’s an error callback.

We will also implement a method to get all objects from Test. We will
use query. find (). Just so you don’t have to click the GitHub link (or
type it from the book) to look up the full source code of the app . s file, I
provide it here:

const parseApplID = 'APPLICATION ID'
const parseRestKey = 'MASTER KEY'
const apiBase = “http://localhost:1337/parse’

$ (document) . ready (function () {
getMessages ()
S("#send') .click (function () {
const $sendButton = $(this)
$sendButton.html ('<img src="img/spinner.gif"
width="20"/>")

101

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

const username = $('input[name=username] ') .val ()

const message = $('input[name=message] ') .val()

$.ajax ({
url: “${apiBase}/classes/MessageBoard’,

headers: {
'X-Parse-Application-Id"':

'X-Parse-REST-API-Key': parseRestKey

parselApplD,

1
I

contentType: 'application/json',

dataType: 'Jjson',
processData: false,
data: JSCON.stringify ({
'username’': username,
'message': message
I
type: 'POST',
success: function() {
console.log('sent')
getMessages ()
SsendButton.html ('SEND'")
by
error: function() {
console.log('error")

SsendButton.html ('SEND")

—~

function getMessages () {
S.ajax ({

url: “${apiBase}/classes/MessageBoard?1imit=1000",

102

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

headers: {
'X-Parse-Application-Id': parseApplD,
'X-Parse-REST-API-Key': parseRestKey

y

contentType: 'application/json',

dataType: 'json',

type: 'GET',

success: (data) => {
console.log('get')
updateView (data)

by

error: () => {

console.log('error'")

—~

function updateView (messages) {
// messages.results = messages.results.reverse ()
const table = $('.table tbody')
table.html (%)
$.each (messages.results, (index, value) => {
const trEl = (<tr><td>
S{value.username}
</td><td>
$S{value.message}
</td></tr>")
table.append (trEl)
})

console.log (messages)

103

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

To run the app, start your local web server at the project folder and
navigate to the address (e.g., http://localhost:8080) in your browser. Or you
can start the static web server from my book repository. The difference is
that you'll have to provide the path code/03-parse-sdk if you start from
the book repository folder (root). If you start from the project folder then
you do not provide the path because the index.html file is right in the
project folder. Note that if you get a 401 Unauthorized error from Parse,
that’s probably because you have the wrong API key. Make sure you use
the same key in your JavaScript as you used when you started the parse-
server from the command line. Of course, if you haven’t started your
parse-serve, do so now because you cannot connect to a server if it's
not running.

If everything was done properly, you should be able to see the Test
collection in Parse’s Data Browser populated with values “John” and “hi”
(Figure 3-3). Also, you should see the proper message with the newly
created ID. Parse automatically creates object IDs and timestamps, which
will be very useful in our Message Board application.

104

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

® © ® /[localhosti8080/code/03-pars X |1\ ==

€ C | @ localhost:B080/code/03-parse-sdk/ T

_Parse JavaScript SDK demo

‘{

[
{
“name": "John",
"text": “hi",
“createdAt": “2018-04-01T18:59:18.573Z",
“updatedAt": “2018-04-01T18:59:18.573Z",
“objectId": "8pLRNFFxK8"

"name”: "John",
"teat”: "hi"
}

v

“name"”: “John",
"text": "hi",
“createdAt": “2018-04-81T18:59:22.7722",
“updatedAt": “2018-04-81T18:59:22.7722",
“objectId": “XawG5tsfMC"
}
|

Go to Parse.com to check the data.

Figure 3-3. Clicking the “Save object” button will send the object to
the backend, which will save it to the database

If you press on the “Get objects” green button, then you'll get all the
objects which are stored in the database. How to confirm that this data
is actually stored in the database and won’t disappear when we close the
browser? Simply close the browser and open it again. If you're still not
convinced, use Mongo shell/REPL (mongo), my web-based tool mongoui

105

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

(npm i -g mongoui) or desktop app Compass (Figure 3-4) to go to the
local MongoDB database instance and the Test collection. There will be
the data just sitting and looking at you.

MongoDB Compass Community - localhost:2701 7 /test. Test

My Cluster 4 localhost:27017 | STANDALONE MongeDB 3.6.3 Community
test. Test pocuuents 3 Y850 56 moexes 1
Documents
» OPTIONS m kol
WEW| IS UST | 06 TABLE Displaying documents 1- 30f3 80 C

© 2018-04-81 11:59:18.573
t 2018-04-01 11:59:18.573

reated_at: 2018-04-01 11:58:22.772
_updated_at: 7018-04-81 11:59:22,772

s @ 08

reated_at: 2018-04-21 12:13:108.513
At 2018-04-81 12:13:18.539

Figure 3-4. Compass shows in MongoDB the data which was sent
Jfrom the browser

Parse also has thorough instructions for the various parts of the
platform, including its server and client libraries: http://docs.
parseplatform.org. You can deploy parse-server into the cloud or
your own data center. Parse supports containers too.

With Parse, which is a one command (parse-server), we call browser
JavaScript methods and wheyeee, we work with the database straight from
the browser!

Let’s move on to the Message Board app.

106

http://docs.parseplatform.org/
http://docs.parseplatform.org/

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

Message Board with Parse Overview

The Message Board will consist of an input field, a list of messages, and
a “SEND” button (see Figure 3-5). We need to display a list of existing
messages and be able to submit new messages. We'll use Parse as a
backend for now, and later switch to Node.js with MongoDB.

® O ® /[jocalhost:8080fcodef03-boar % ||\ Ninja

Message Board with Parse REST API
Username Message

Azat Hi

Bob Hello!

Messages

Gesmams Hossas =

Figure 3-5. The messages and the new message form with the
"SEND” button

107

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

® O ® /[ocalhostB080/code/03-boar X || Ninja
<« c @ -8080/code/03-board-parse-rest) r 3
Message Board with Parse REST API
Username Message
Azat Hi
Bob Hello!
Messages
Usemame Message m
[x @] Eements Console Sources Network Performance Memory Application Security Audiis x
® ® = F | View IZ = [Groupbyframe | _| Preservelog @ Disablecache [/ Offine Online ¥
Fiar Hige dataURLs A1 [55) JS GSS Img Media Font Doc WS Manifest Other
Narne |* Headers Preview | Response Timing
| MessageBoard limit=1000 | =4}
—— /parsafclasses ¥ results: [{objectld: “"tbAmbwnSng", username: “Azat™, message: “Hi®, crestedAt: “I018-94-917
T imit=1000 v@: {objectld: "thAmhwnOng", usernane: "Azat®, message: “Hi", createddAt: "2018-24-21T17:43
assageBoara?i s %
createcAt: “2016-84-21T17:43:10. 8217
fparse/classes eessage: ¥
objectld: *tbArhwrOng™
updatecAt: "201B-24-B1T17:43:10.08212"
usernase: “Azat"
vi "DOBINbANIF", usernane: "Bob”, message: "Hello!™, cresteddt: "2018-84-81T17
818-04-91T17:46:45, 8702"
meS5IQE: lot"
objectld: “D0BINGrN3{"
updatecAt: “201B-24-R1T17:46:45.0702"
usernase: “Bob"
2./ 8 requests | 1.3 KB/ 338 KB transferred | Finish: ...

Figure 3-6. The GET XHR calls fetches all the first 1000 messages
form the backend

You can get a free copy of the parse-server from npm. It’s just an open
source library which you can run anywhere. Unlike the previous example
in which we used the Parse SDK, in this example we will be making our
own AJAX/XHR calls to the backend. This will prepare us for switching to

our own backend.

108

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

After installing Parse server (npm i -g parse-server), launch
it with the app ID and the key. Write them down in invisible ink on a
newspaper. You will need them later. There are a few ways to use Parse:

e REST API: We're going to use this approach with the
jQuery example.

e JavaScript SDK: We just used this approach in our
preceding Test example, and we’ll use it in the
Backbone.js example later.

Using the REST API is a more generic approach. Parse provides
endpoints that we can request with the $.ajax () method from the jQuery
library. The description of available URLs and methods can be found at
http://docs.parseplatform.org.

Message Board with Parse: REST APl and
jQuery Version

The full code is available in the 03-board-parse-rest (https://github.
com/azat-co/fullstack-javascript/tree/master/code/03-
board-parse-rest) folder, but I encourage you to try to write your own
application first.

We'll use Parse’s REST API and jQuery. Parse supports different origin
domain AJAX calls, so we won’t need JSONP.

When you decide to deploy your back-end application, which will act
as a substitute for Parse, on a different domain you’ll need to use either
JSONP on the front end or custom CORS headers on a backend. This topic
is covered later in the book.

109

http://docs.parseplatform.org/
https://github.com/azat-co/fullstack-javascript/tree/master/code/03-board-parse-rest
https://github.com/azat-co/fullstack-javascript/tree/master/code/03-board-parse-rest
https://github.com/azat-co/fullstack-javascript/tree/master/code/03-board-parse-rest

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE
Right now the structure of the application should look like this:

index.html
css/bootstrap.min.css
css/style.css
js/app.js
js/jquery.js

img/spinner.gif

Let’s create a visual representation for the Message Board app. We just
want to display a list of messages with names of users in chronological
order. Therefore, a table will do just fine, and we can dynamically create
<tr> elements and keep inserting them as we get new messages.

Create a simple HTML file i ndex . html with the following content:

e Inclusion of JS and CSS files

¢ Responsive structure with Bootstrap
e Atable of messages

e A form for new messages

Let’s start with the <head> and dependencies. We'll include CDN
jQuery, local app. js, local minified Bootstrap, and custom stylesheet

style.css:

<!DCCTYPE html>
<html lang="en">
<head>

<script src="js/jquery.js" type="text/javascript"
language="Jjavascript" ></script>
<script src="js/app.js" type="text/javascript"
language="javascript" ></script>
<link href="css/bootstrap.min.css" type="text/css"

rel="stylesheet" />

110

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

<1link href="css/style.css" type="text/css"
rel="stylesheet" />

<meta name="viewport" content="width=device-width,
initial-scale=1">

</head>

The <body> element will have typical Bootstrap scaffolding elements
defined by classes container-fluid and row-fluid

<body>
<div class="container-fluid">
<div class="row-fluid">

<hl>Message Board with Parse REST API</hl1>

The table of messages is empty, because we'll populate it
programmatically from within the JS code:

<table class="table table-bordered table-striped">
<caption>Messages</caption>
<thead>
<tr>
<th>
Username
</th>
<th>
Message
</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="2"><img src="img/spinner.gif"
width="20"/></td>
</tr>

111

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

</tbody>
</table>

</div>

Another row and here is our new message form in which the Send

button uses Bootstrap classes btn and btn-primary:

<div class="row-fluid">
<form id="new-user">
<input type="text" name="username"
placeholder="Username" />
<input type="text" name="message"
placeholder="Message" />
SEND
</form>
</div>
</div>
</body>
</html>

The table will contain our messages and the form will provide input for

new messages. Now we are going to write three main functions:
1. getMessages (): The function to get the messages

2. updateView (): The function to render the list of

messages

3. $('#send').click(...): The function that
triggers sending a new message

To keep things simple, we’ll put all of the logic in one file app . s. Of
course, itis a good idea to separate code base on the functionality when
your project grows larger.

112

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

Replace these values with your own, and be careful to use the REST
API key (not the JavaScript SDK key from the previous example):

const parseAppID = 'APPLICATION ID'
const parseRestKey = 'MASTER KEY'
const apiBase = “http://localhost:1337/parse’

Let’s start with document . ready. It will have the logic for fetching
messages, and define the Send button’s c1ick event:

$ (document) . ready (function () {
getMessages ()
$('#send') .click (function () {

Let’s save the button object:
const $sendButton = $(this)

We should show a spinner image (“Loading...”) on the button because
the request might take some time and we want users to see that our app is
working, not just freezing for no apparent reason.

$sendButton.html ('<img src="img/spinner.gif"
width="20"/>")
const username = $('input[name=username] ') .val ()

const message = $('input[name=message] ') .val/()

When we submit a new message (a POST request), we make the HTTP
call with the jQuery.ajax function. A full list of parameters for the ajax
function is available at http://api.jquery.com/jQuery.ajax. The
most important ones are URL, headers, and type parameters.

113

http://api.jquery.com/jQuery.ajax

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

$.ajax ({
url: “${apiBase}/classes/MessageBoard",
headers: {
'X-Parse-Application-TId': parseRApplD,
'X-Parse-REST-API-Key': parseRestKey
b

contentType: 'application/json',
The type of the data is JSON:

dataType: 'Json',

processData: false,

data: JSON.stringify ({
'username': username,
'message': message

1)y

type: 'PCST',

success: function() {

console.log('sent")

Assuming that our POST request to Parse saved the new message
(success), we now want to get the updated list of messages that will
include our message, and replace the spinner image with text as it was
before someone clicked the button:

getMessages ()
SsendButton.html ('SEND")
y
error: function() ¢{
console.log('error')

SsendButton.html ('SEND'")

—~
—

114

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

To summarize, clicking the Send button will send a POST request to
the Parse REST API and then, on successful response, get messages calling
the getMessages () function.

The getMessages () method to fetch messages from our remote REST
API server also uses the jQuery.ajax function. The URL has the name of
the collection (MessageBoard) and a query string parameter that sets the
limit at 1,000:

function getMessages () f{
$S.ajax ({
url: “${apiBase}/classes/MessageBoard?1limit=1000",

We need to pass the keys in a header:

headers: {
'X-Parse-Application-Id': parseApplD,
'X-Parse-REST-API-Key': parseRestKey
}y
contentType: 'application/json',
dataType: 'Jjson',
type: 'GET',

If the request is completed successfully (status 200/ ok or similar), we

call the updateview () function:

success: (data) => {
console.log('get')

updateView (data)

s

error: () => {

console.log('error")

—

—
N

115

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

Then, on successful response, it will call the updateview () function,
which clears the table tbody and iterates through results of the response using
the $.each () jQuery function (http://api.jquery.com/jQuery.each).

This function is rendering the list of messages that we get from the
server:

function updateView (messages) {

We use the jQuery selector . table tbody to create an object
referencing that element. Then we clean all the i nnerHTML of that

element:

const table=$('.table tbody")
table.html ('")

We use the jQuery.each () function to iterate through every message.
The following code creates HTML elements (and the jQuery object of those
elements) programmatically:

$.each (messages.results, (index, value) => f{
const trEl = (<tr><td>
S{value.username}
</td><td>
S{value.message}
</td></tr>")
table.append (trEl)

H)

In a sense trE1 is a string with HTML for each message or row in the
message board. The next line appends (injects after) the table’s tbody
element our row.

Here is another way to dynamically create an HTML element
(e.g., div) using jQuery:

S('<div>")

116

http://api.jquery.com/jQuery.each)

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

For your reference, here is the entire app . js:

const parseAppID = 'APPLICATION ID'
const parseRestKey = 'MASTER KEY'
const apiBase = “http://localhost:1337/parse’

$ (document) . ready (function () {
getMessages ()
S("#send') .click (function () {
const $sendButton = $(this)
$sendButton.html ('<img src="img/spinner.gif"

width="20"/>")

const username = $('input[name=username] ') .val ()
const message = $('input[name=message] ') .val/()
S.ajax ({

url: “${apiBase}/classes/MessageBoard’,

headers: {
'X-Parse-Application-Id': parseApplD,
'X-Parse-REST-API-Key': parseRestKey
s
contentType: 'application/json',
dataType: 'json',
processData: false,
data: JSCON.stringify ({
'username': username,
'message': message
1)y
type: 'POST',
success: function () {
console.log('sent')
getMessages ()
SsendButton.html ('SEND")

117

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

error: function() {
console.log('error'")

SsendButton.html ('SEND'")

—~

function getMessages () {
$S.ajax ({
url: “${apiBase}/classes/MessageBoard?1limit=1000",

headers: {
'X-Parse-Application-Id': parseApplD,
'X-Parse-REST-API-Key': parseRestKey

y

contentType: 'application/json',

dataType: 'json',

type: 'GET',

success: (data) => {
console.log('get')
updateView (data)

by

error: () => {

console.log('error'")

—~

function updateView (messages) {

const table = $('.table tbody')

table.html (%)
$.each (messages.results, (index, value) => {
const trEl = (" <tr><td>

118

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

S{value.username}
</td><td>
${value.message}
</td></tr>")

table.append (trEl)

1)

console.log (messages)

—

Try running the code with your local HTTP server. You should see the
messages (obviously, there should be no messages for the very first time)
and by clicking the button be able to post new ones.

This is fine if all you need to do is develop the app on your local
machine, but what about deploying it to the cloud? To do that, we’ll need
to apply version control with Git first.

Pushing to GitHub

To create a GitHub repository, go to https://github. com, login, and
create a new repository. There will be an SSH address; copy it. In your
terminal window, navigate to the project folder that you would like to push
to GitHub.

1. Create alocal Gitand . git folder in the root of the
project folder:

$ git init

2. Add all of the files to the repository and start
tracking them:

$ git add .

119

https://github.com

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE
3. Make the first commit:
$ git commit -am "initial commit"
4. Add the GitHub remote destination:
$ git remote add your-github-repo-ssh-url
It might look something like this:

S git remote add origin git@github.

com:azat-co/simple-message-board.git

5. Now everything should be set to push your local Git
repository to the remote destination on GitHub with

the following command:
S git push origin master

6. Youshould be able to see your files at under your
account and repository https://github.com/
YOUR_USERNAME/YOUR_REPC_NAME

Later, when you make changes to the file, there is no need to repeat all
of these steps. Just execute:

$ git add
$ git commit -am "some message"

$ git push origin master
If there are no new untracked files you want to start tracking, use this:

$ git commit -am "some message"

$ git push origin master
To include changes from individual files, run:

$ git commit filename -m "some message"

$ git push origin master

120

https://github.com/YOUR_USERNAME/YOUR_REPO_NAME
https://github.com/YOUR_USERNAME/YOUR_REPO_NAME

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

To remove a file from the Git repository, use:

$ git rm filename

For more Git commands, see:

$ git --help

Deploying applications with Microsoft Azure or Heroku is as simple

as pushing code and files to GitHub. The last three steps (4-6) would be

substituted with a different remote destination (URL) and a different alias.

Deployment to Microsoft Azure

You should be able to deploy to Microsoft Azure with Git using this

procedure.

1.

Go to the Microsoft Azure Portal at https://
portal.azure.com, login with your Live ID, and
create a web site if you haven’t done so already.
Enable Set Up Git Publishing by providing a user
name and password (they should be different
from your Live ID credentials). Copy your URL
somewhere.

Create a local Git repository in the project folder that
you would like to publish or deploy:

$ git init

Add all of the files to the repository and start
tracking them:

$ git add .
Make the first commit:
$ git commit -am "initial commit"

121

https://portal.azure.com
https://portal.azure.com

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

5. Add Microsoft Azure as a remote Git repository
destination:

$ git remote add azure your-url-for-

remote-repository
In my case, this command looked like this:

$ git remote add
> azure https://azatazure@azat.scm.

azurewebsites.net/azat.git

6. Push your local Git repository to the remote
Microsoft Azure repository, which will deploy the
files and application:

S git push azure master

As with GitHub, there is no need to repeat the first few steps when
you have updated the files later, as we already should have a local Git
repository in the form of a . git folder in the root of the project folder.

Deployment of Weather App to Heroku

The only major difference from deploying to Azure is that Heroku uses
Cedar Stack, which doesn’t support static projects, including plain HTML
applications like our Weather app. In the folder of the project that you
would like to publish or deploy to Heroku, create a file i ndex.php on the
same level as index.html, with the following content:

<?php echo file get contents('index.html'); 2>

For your convenience, the index.php file is already included in

weather.

122

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

There is an even simpler way to publish static files on Heroku with
Cedar Stack. To make Cedar Stack work with your static files, all you need
to do is to type and execute the following commands in your project folder:

$ touch index.php
$ echo 'php flag engine off' > .htaccess

Alternatively, you could use the Ruby Bamboo stack. In this case, you
would need the following structure:

-project folder
-config.ru
/public

-index.html
-/css

app.Jjs

The path in index.html to CSS and other assets should be relative;
for example, css/style.css. The config. ru file should contain the
following code:

use Rack::Static,
:urls => ["/stylesheets", "/images"],

:root => "public"

run lambda { |env|

[

'Content-Type' => 'text/html',
'Cache-Control' => 'public, max-age=86400"

1
I

File.open('public/index.html', File::RDONLY)

—

123

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

For more details, you can refer to https://devcenter.heroku.com/
articles/static-sites-ruby. Onceyou have all of the support files for
Cedar Stack or Bamboo, follow these steps:

1. Create alocal Git repository and . git folder if you
haven’t done so already:

$ git init
2. Addfiles:
$ git add .
3. Commit files and changes:
$ git commit -m "my first commit"

4. Create the Heroku Cedar Stack application and add
the remote destination:

$ heroku create

If everything went well, it should tell you that the
remote destination has been added and the app has
been created, and give you the app name.

5. To look up the remote destination type and execute
(optional):

S git remote show
6. Deploy the code to Heroku with:
S git push heroku master

Terminal logs should tell you whether or not the
deployment went smoothly.

124

https://devcenter.heroku.com/articles/static-sites-ruby
https://devcenter.heroku.com/articles/static-sites-ruby

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE
7. To open the app in your default browser, type:
$ heroku open
or just go to the URL of your app, something like
http://yourappname-NNNN.herokuapp.com
8. To look at the Heroku logs for this app, type:
$ heroku logs
To update the app with the new code, repeat the following steps only:

$ git add -A
$ git commit -m "commit for deploy to heroku"

$ git push -f heroku

You'll be assigned a new application URL each time you create a new

Heroku app with the command: $ heroku create.

Updating and Deleting Messages

In accordance with the REST API, an update on an object is performed via
the PUT method and a delete is performed with the DELETE method. Both
of them can easily be performed with the same §Query.ajax () function
that we've used for GET and pPCsT, as long as we provide an ID of an object
on which we want to execute an operation. The ID can be stored in the
DOM. Try it yourself. Replace the method type and add ID to the URL
such as:

S.ajax ({
type: 'PUT',

url: “${apiBase}/classes/MessageBoard/${id} ",

125

CHAPTER 3 GETTING DATA FROM BACKEND USING JQUERY AND PARSE

headers: {
'X-Parse-Application-Id': parseApplD,
'X-Parse-REST-API-Key': parseRestKey

y

contentType: 'application/json',
dataType: 'json',
processData: false,

data: JSCN.stringify ({

'username': username,
'message': message
1)y
success: function() {

console.log('sent")
getMessages ()
SsendButton.html ('SEND'")

y

error: function() ¢{
console.log('error")

SsendButton.html ('SEND")

—

—
~

Summary

This chapter was a handful. Hopefully you got some helpful ideas about
JSON, AJAX, and cross-domain calls. Remember, when accessing servers
you’ll need to make sure they support CORS or JSONP.

We've covered some of the meatiest Less features and worked with
Parse to persist the data. We also deployed our app to the cloud using the

Git version system.

126

CHAPTER 4

Intro to Backbone.js

Code is not an asset. It’s a liability. The more you write, the
more you'll have to maintain later.

—Unknown

This chapter will demonstrate:

e Setting up a Backbone.js app from scratch and
installing dependencies

o Working with Backbone.js collections

o Backbone.js event binding

o Backbone.js views and subviews with Underscore.js
e Refactoring Backbone.js code

e AMD and Require.js for Backbone.js development

e Require.js for Backbone.js production

e Asimple Backbone.js starter kit

Backbone.js has been around for a while so it’s very mature and can
be trusted to be used in serious front- end development projects. This
framework is decidedly minimalistic and un-opinionated. You can use
Backbone.js with a lot of other libraries and modules. I think of Backbone.
js as the foundation to build a custom framework that will be tightly suited
to your particular use case.

© Azat Mardan 2018 127
A.Mardan, Full Stack JavaScript, https://doi.org/10.1007/978-1-4842-3718-2_4

CHAPTER 4 INTRO TO BACKBONE.JS

Some people are turned off by the fact that Backbone.js is un-opinionated
and minimalistic. They prefer frameworks that do more for them and enforce
a particular way of doing things (e.g., the Angular Style Guide, athttps://
github.com/johnpapa/angular-styleguide). This is totally fine with
me, and you can pursue the study of a more complex front-end framework.
They all fit nicely into the Node.js stack and the ecosystem. For the purpose
of this book, Backbone.js is ideal because it provides some much needed
sanity to the plain non-framework jQuery code, and at the same time it
doesn’t have a steep learning curve. All you need to know is a few classes and
methods, which we cover in this book. Everything else is JavaScript, not a
domain- specific language.

Setting Up a Backbone.js App from Scratch

We're going to build a typical starter Hello World application using
Backbone.js and Model-View-Controller (MVC) architecture. It might
sound like overkill in the beginning, but as we go along we’ll add more and
more complexity, including models, subviews, and collections.

Full source code for the Hello World app is available under code/04-
backbone/hello-world and on GitHub at http://bit.1ly/2LgX0Vp.

Backbone.js Dependencies

Download the following libraries:

e jQuery development source file: http://code.

jquery.com

o Underscore.js development source file: http://

underscorejs.org/underscore.js

e Backbone.js development source file: http: //

backbonejs.org/backbone. s

128

https://github.com/johnpapa/angular-styleguide
https://github.com/johnpapa/angular-styleguide
http://bit.ly/2LgXOVp
http://code.jquery.com/
http://code.jquery.com/
http://underscorejs.org/underscore.js
http://underscorejs.org/underscore.js
http://backbonejs.org/backbone.js
http://backbonejs.org/backbone.js

CHAPTER 4 INTRO TO BACKBONE.JS

Obviously by the time this book is in print, these versions won’t be the
most recent. I recommend sticking with the versions in this book, because
that’s what I used to test all the examples and projects. Using different,
newer versions might cause some unexpected conflicts.

Create an index.html file, and include these frameworks in this file
like this:

<!DCCTYPE>

<html>

<head>
<script src="jquery.js"></script>
<script src="underscore.js"></script>

<script src="backbone.js"></script>

<script>
// TODO write some awesome JS code!

</script>

</head>
<body>

</body>
</html>

We can also put <script> tags right before the </body> tag at the end
of the file. This will change the order in which scripts and the rest of the
HTML is loaded, and affect performance in large files.

Let’s define an empty Backbone.js router object router inside of a
<script>tagusing the extend ():

/ /
//

const router = Backbone.Router.extend({

129

CHAPTER 4 INTRO TO BACKBONE.JS

For now, to keep it simple (KISS-keep it stupid simple), we’ll be putting
all of our JavaScript code right into the index.html file. This is not a good
idea for real development or production code, so we’ll refactor it later.

Next, set up a special routes property inside of an extend call:

const router = Backbone.Router.extend ({
routes: f{

}

—
-

The Backbone.js routes property needs to be in the following format:
'path/:param':'action'

This will result in the filename#path/param URL triggering a
function named action (defined in the Router object). For now, we’ll add
a single home route:

const router = Backbone.Router.extend ({
routes: {

'": '"home'

—
-

This is good, but now we need to add a home function:

const router = Backbone.Router.extend ({

routes: f{
'": 'home'

}y

home: function() {

TODO render HTML

—

—
~

130

CHAPTER 4 INTRO TO BACKBONE.JS

We’ll come back to the home function later to add more logic for
creating and rendering of a view (instance of a vView class in Backbone).
Right now we should define our homeview:

const homeView = Backbone.View.extend ({

H)

It looks familiar, right? Backbone.js uses similar syntax for all of its
components: the extend function and a JSON object as a parameter to it.

There are a multiple ways to proceed from now on, but the best
practice is to use the e1 and template properties, which are special in
Backbone.js:

const homeView = Backbone.View.extend ({
el: 'body',
template: .template('Hello World")

H)

The property el is just a string that holds the jQuery selector (you can
use class name with . and id name with #). The template property has
been assigned an Underscore. js function template with just a plain text
‘Hello World:

To render our homeView we use this.Sel, which is a compiled jQuery
object referencing an element in an e1 property, and the jQuery .html ()
function to replace HTML with the this.template ()value. Here is what
the full code for our Backbone.js View looks like:

const homeView = Backbone.View.extend ({
el: 'body',
template: .template('Hello World'),
render: function () ¢{

this.S$el.html (this.template({}))

—

131

CHAPTER 4 INTRO TO BACKBONE.JS

Now, if we go back to the router we can add these two lines to the

home function:

const router = Backbone.Router.extend({

routes: {

''": 'home'
1y
initialize: function () ¢{
3y
home: function() {

this.homeView = new homeView

this.homeView.render ()

—

The first line creates the homeView object and assigns it to the
homeView property of the router object router. The second line will
call the render () method in the homeView object, triggering the
“Hello World” output.

Finally, to start a Backbone app, we call new Router inside of a
document-ready wrapper to make sure that the file’s DOM is fully loaded:

let app
$ (document) . ready (function () {
app = new router

Backbone.history.start ()
)

This time, I won'’t list the full source code of the index.html file

because it’s rather simple.
Open index.html in the browser to see if it works; that is, the “Hello

World” message should be on the page.

132

CHAPTER 4 INTRO TO BACKBONE.JS

Working with Backbone.js Collections

The full source code of this example is under 04-backbone/collections.
It’s built on top of the “Hello World” example from the “Setting Up a
Backbone.js App from Scratch” exercise, which is available for download
at GitHub (https://github.com/azat-co/fullstack-javascript/
tree/master/code/04-backbone/collections).

We should add some data to play around with, and to hydrate our
views. To do this, add this right after the <script> tag and before the
other code:

const appleData = [
{
name: 'fuji',

url: 'img/fuji.jpg'

-, e

name: 'gala',

url: 'img/gala.jpg'

—

This is our apple database, or to be more correct, our REST API
endpoint substitute, which provides us with names and image URLSs of the
apples (data models). Note that this mock data set can be easily substituted
by assigning REST API endpoints of your backend to url properties in
Backbone.js collections, models, or both, and calling the fetch () method

on them.

133

https://github.com/azat-co/fullstack-javascript/tree/master/code/04-backbone/collections
https://github.com/azat-co/fullstack-javascript/tree/master/code/04-backbone/collections
https://github.com/azat-co/fullstack-javascript/tree/master/code/04-backbone/collections

CHAPTER 4 INTRO TO BACKBONE.JS

Now to make the user experience a little bit better, we can add a new
route to the routes object in the Backbone route:

/]
/ /

routes: {

'": "home',

'apples/:appleName': 'loadApple'
by

/ /

This will allow users to go to index.html#apples/SCMENAME and
expect to see some information about an apple. This information will be
fetched and rendered by the 1cadapple function in the Backbone router

definition:

loadApple: function (appleName) {
this.appleView.render (appleName)

Have you noticed an appleName variable? It’s exactly the same name
as the one that we've used in route. This is how we can access query string
parameters (e.g., ?param=valuesg=search) in Backbone.js.

Now we'll need to refactor some more code to create a Backbone
collection, populate it with data in our appleData variable, and pass the
collection to homeView and appleview. Conveniently enough, we do it all
in the router constructor method initialize:

initialize: function|() {
const apples = new Apples|()
apples.reset (appleData)
this.homeView = new homeView ({collection: apples})

this.appleView = new appleView({collection: apples})

134

CHAPTER 4 INTRO TO BACKBONE.JS

At this point, we’re pretty much done with the Router class and it
should look like this:

const router = Backbone.Router.extend ({
routes: {
'": 'home',
'apples/:appleName': 'loadApple'
}y
initialize: function() {
const apples = new Apples()
apples.reset (appleData)
this.homeView = new homeView ({collection: apples})
this.appleView = new appleView({collection: apples})
}y
home: function () {
this.homeView.render ()
}y
loadApple: function (appleName) {
this.appleView.render (appleName)

—
~

Let’s modify our homeView a bit to see the whole database:

const homeView = Backbone.View.extend ({
el: 'body',
template: .template('Apple data: <%= data %>'"),
render: function () {
this.$el.html (this.template ({data: JSCON.
stringify(this.collection.models) }))
}

// TCDC subviews

135

CHAPTER 4 INTRO TO BACKBONE.JS

For now, we just output the string representation of the JSON object
in the browser. This is not user-friendly at all, but later we’ll improve it by
using a list and subviews.

Our apple Backbone Collection Apples isvery clean and simple:

const Apples = Backbone.Collection.extend({

H)

Backbone automatically creates models inside of a collection when
we use the fetch () or reset () functions from its API. I find using these
functions to be very useful.

appleView is not any more complex; it has only two properties:
template and render. In a template, we want to display figure, img, and
figcaption tags with specific values. The Underscore.js template engine
is handy at this task:

const appleView = Backbone.View.extend ({
template: .template (
'<figure>\
<img src="<%= attributes.url %>"/>\
<figcaption><%= attributes.name %$></figcaption>\

</figure>"),

To make a JavaScript string that has HTML tags in it more readable, we
can use the backslash line breaker escape (\) symbol, or close strings and
concatenate them with a plus sign (+). This is an example of appleview
introduced earlier, which is refactored using the latter approach:

136

CHAPTER 4 INTRO TO BACKBONE.JS

const appleView = Backbone.View.extend ({
template: .template (
'<figure>'+
+'<img src="<%= attributes.url %>"/>'+
+'<figcaption><%= attributes.name %$></figcaption>'+

+'</figure>"),

—
N

Please note the <%= and %> symbols; they are the instructions
for Undescore.js to print values in properties url and name of the
attributes object.

Finally, we're adding the render function to the appleVieuw class.

render: function (appleName) {

To get the list of apples filtered by name, there’s a where method on
the Collection class. We just need the very first item in that array, and
because arrays in JavaScript are zero-based (they start with a 0 rather than
1 index), the syntax to get the apple model by name is this:

const appleModel = this.collection.where ({name:

appleName}) [0]

Once we have our model, all we need to do is to pass the model to the
template (also called hydrating templates). The result is some HTML that
we inject into the <body>:

const appleHtml = this.template (appleModel)
$('body') .html (appleHtml)

—

137

CHAPTER 4 INTRO TO BACKBONE.JS

So we find a model within the collection via the where () method
and use [] to pick the first element. Right now, the render function is
responsible for both loading the data and rendering it. Later we’ll refactor
the function to separate these two functionalities into different methods.
For your convenience, here’s the whole app, which is in the
04-backbone/collections/index.html file and on GitHub at http://
bit.ly/2LeelL9:

<!DCCTYPE>

<html>

<head>
<script src="jquery.]js"></script>
<script src="underscore.js"></script>

<script src="backbone.js"></script>

<script>
const appleData = [
{
name: 'fuji',

url: 'img/fuji.jpg’

name: 'gala',

url: 'img/gala.jpg'

]
let app
const router = Backbone.Router.extend ({
routes: {
'+ 'home',

'apples/:appleName': 'loadApple'

138

http://bit.ly/2Lee1L9
http://bit.ly/2Lee1L9

CHAPTER 4 INTRO TO BACKBONE.JS

initialize: function() {
const apples = new Apples|()
apples.reset (appleData)
this.homeView = new homeView ({collection: apples})
this.appleView = new appleView({collection: apples})
}y
home: function () {
this.homeView.render ()
}y
loadApple: function (appleName) {
this.appleView.render (appleName)

—~
N

const homeView = Backbone.View.extend ({

el: 'body',

Il
Q.
]
art
]
o©
\

~

template: .template('Apple data: <%
render: function () f{
this.$el.html (this.template ({data: JSCON.
stringify(this.collection.models) }))

—~

})

const Apples = Backbone.Collection.extend ({

1)
const appleView = Backbone.View.extend ({
template: .template('<figure>\
<img src="<%= attributes.
urls>"/>\
<figcaption><%= attributes.
name $%$></figcaption>\

</figure>"),

139

CHAPTER 4 INTRO TO BACKBONE.JS

render: function (appleName) {
const appleModel = this.collection.where ({name:
appleName}) [U]
const appleHtml = this.template (appleModel)
$('body') .html (appleHtml)

})
$ (document) .ready (function () {
app = new router

Backbone.history.start ()
1)

</secript>
</head>
<body>

<div></div>
</body>
</html>

Open the collections/index.html file in your browser. You should
see the data from our database:

Apple data: [{"name":"fuji","url":"img/fuji.jpg"},
{"name":"gala","url":"img/gala.jpg"}1]

Nowlet'sgoto collections/index.html#apples/fuji or
collections/index.html#apples/gala in your browser. We expect to
see an image with a caption. It’s a detailed view of an item, which in this
case is an apple. Nice work!

140

CHAPTER 4 INTRO TO BACKBONE.JS

Backbone.js Event Binding

In real life, getting data does not happen instantaneously, so let’s refactor
our code to simulate it. For a better user experience (UX), we’ll also have to
show a loading icon (a spinner or AJAX loader) to users to notify them that
the information is being loaded.

It's a good thing that we have event binding in Backbone. Without it,
we would have to pass a function that renders HTML as a callback to the
data loading function, to make sure that the rendering function is not
executed before we have the actual data to display.

Therefore, when a user goes to detailed view (apples/:id) we only
call the function that loads the data. Then, with the proper event listeners,
our view will automagically (this is not a typo) update itself when there is
new data (or on a data change; Backbone.js supports multiple and even
custom events).

For your information, if you don’t feel like typing out the code (which
Irecommend), it’s in the code /04-backbone/binding/index.html file
and on GitHub at http://bit.1ly/2LhBNpx.

Let’s change the code in the router:

loadApple: function (appleName) {
this.appleView.loadApple (appleName)

—

Everything else remains the same until we get to the appleview class.
We'll need to add a constructor or an initialize method, whichisa
special word or property in the Backbone.js framework. It’s called each
time we create an instance of an object, such as const someCbj = new
SomeCbject (). We can also pass extra parameters to the initialize
function, as we did with our views (we passed an object with the key
collection and the value of apples Backbone Collection).

141

http://bit.ly/2LhBNpx

CHAPTER 4 INTRO TO BACKBONE.JS

Read more on Backbone.js constructors at http: //backbonejs.org/

#View-constructor.

/]
/ /

const appleView = Backbone.View.extend ({
initialize: function() {

// TODO: create and setup model (aka an apple)

by

We have our initialize function; now we need to create a model
that will represent a single apple and set up proper event listeners on the
model. We'll use two types of events, change and a custom event called
spinner. To do that, we are going to use the on () function, which takes
these properties: on (event, actions, context).You canread more
aboutitathttp://backbone’js.org/#Events-on

/ /
//

const appleView = Backbone.View.extend ({
initialize: function() {
this.model = new (Backbone.Model.extend ({}))
this.model.bind('change', this.render, this)

this.bind('spinner', this.showSpinner, this)

The preceding code basically boils down to two simple things:

1. Callthe render () function of the appleview object
when the model has changed.

2. Callthe showSpinner () method of the appleview
object when event spinner has been fired.

142

http://backbonejs.org/#View-constructor
http://backbonejs.org/#View-constructor
http://backbonejs.org/#Events-on

CHAPTER 4 INTRO TO BACKBONE.JS

So far, so good, right? But what about the spinner, a GIF icon? Let’s
create a new property in appleview:

templateSpinner: '<img src="img/spinner.gif"

width="30"/>",

Remember the 1oadaApple call in the router? This is how we can
implement the function in appleview:

loadApple: function (appleName) {

To show the spinner GIF image, use this. trigger to make Backbone
call the showSpinner

this.trigger ('spinner")

Next, we'll need to access the context inside of a closure. Sometimes I
like to use a meaningful name instead of this or self, so:

const view = this

Next, you would have an XHR call (e.g., $.ajax ()) to the server to
get the data. We'll simulate the real time lag when fetching data from the
remote server with:

setTimeout (function () {
view.model.set (view.collection.where ({
name:appleName
})[0].attributes)
}y)

143

CHAPTER 4 INTRO TO BACKBONE.JS

The attributes is a Backbone.js model property that gives a normal
JavaScript object with the model’s properties. To summarize, the line with
this.trigger ('spinner') will trigger the spinner event. We still have
to write the function for this event.

Theline const view = this after thatis just for scoping issues. This
give us the ability to use appleVview inside of the subsequent callbacks/
closures. And the setTimeout function is simulating a time lag of a real
remote server response. Inside of it, we assign attributes of a selected
model to our view’s model by using amode1 . set () function and amodel .
attributes property (which returns the properties of a model).

Now we can remove extra code from the render method and
implement the showSpinner function:

render: function (appleName) f{
const appleHtml = this.template (this.model)
$('body') .html (appleHtml)

1y

showSpinner: function() {

$('body') .html (this.templateSpinner)

That'’s all! Open index.html#apples/galaOr index.html#apples/
fuji in your browser and enjoy the loading animation while waiting for an
apple image to load.

Here is the full code of the index.html file (also in 04-backbone/
binding/index.html and athttp://bit.ly/2LhBNpx):

<!DCCTYPE>

<html>

<head>
<script src="jquery.js"></script>
<script src="underscore.js"></script>

<script src="backbone.js"></script>

144

http://bit.ly/2LhBNpx)

CHAPTER 4 INTRO TO BACKBONE.JS

<script>

const appleData = [

]

{

name: 'fuji',

url: 'img/fuji.jpg'
by
{

name: 'gala',

url: 'img/gala.jpg'

—~

let app

const router = Backbone.Router.extend ({

—~

routes: {
'": 'home',
'apples/:appleName': 'loadApple'

1
I

initialize: function|() {
const apples = new Apples|()
apples.reset (appleData)
this.homeView = new homeView ({collection: apples})
this.appleView = new appleView({collection:
apples})

by

home: function () {
this.homeView.render ()

by

loadApple: function (appleName) {
this.appleView.loadApple (appleName)

145

CHAPTER 4 INTRO TO BACKBONE.JS

146

const homeView = Backbone.View.extend ({

el: 'body',
template: .template('Apple data: <%= data %>'),
render: function () {
this.$el.html (this.template ({data: JSON.
stringify(this.collection.models) }))

—~

—
~

const Apples = Backbone.Collection.extend({
})
const appleView = Backbone.View.extend ({
initialize: function|() {
this.model = new (Backbone.Model.extend(f{}))
this.model.on ('change', this.render, this)
this.on('spinner', this.showSpinner, this)
by
template: .template ('<figure>\
<img src="<%= attributes.
urls>"/>\
<figcaption><%= attributes.
name $></figcaption>\
</figure>"),
templateSpinner: '<img src="img/spinner.gif"
width="30"/>",
loadApple: function (appleName) {
this.trigger ('spinner')
const view = this
setTimeout (function () f{
view.model.set (view.collection.where ({name:
appleName}) [U] .attributes)
by)

CHAPTER 4 INTRO TO BACKBONE.JS

render: function (appleName) {
const appleHtml = this.template (this.model)
$('body') .html (appleHtml)

3y

showSpinner: function () {

$('body') .html (this.templateSpinner)

—

H)

$ (document) . ready (function () {
app = new router

Backbone.history.start ()

H)

</script>
</head>
<body>

<div></div>
</body>
</html>

Backbone.js Views and Subviews
with Underscore.js

The example for this section is available in code /04-backbone/subview
and athttp://bit.ly/2LhECWH.

Subviews are Backbone Views that are created and used inside of
another Backbone View. A Subviews concept is a great way to abstract
(separate) Ul events (e.g., clicks), and templates for similarly structured
elements (e.g., apples).

A use case of a Subview might include a row in a table, an item in a list,
a paragraph, or a new line.

147

http://bit.ly/2LhEOWH

CHAPTER 4 INTRO TO BACKBONE.JS

We'll refactor our home page to show a nice list of apples. Each list
item will have an apple name and a Buy link with an onC1ick event. Let’s
start by creating a subview for a single apple with our standard Backbone
extend () function:

//
const appleltemView = Backbone.View.extend ({
tagName: '1i',
template: .template(''
+'<a href="#apples/<$=name%>"
target=" _blank">"'
+'<%=name%>"'
+' <a class="add-to-cart"
href="#">buy"),
events: {
'click .add-to-cart': 'addToCart'
}y
render: function() {
this.$el.html (this.template (this.model.attributes))
}y
addToCart: function() {
this.model.collection.trigger ('addToCart', this.
model)

—

H)
//

Now we can populate the object with tagName, template, events,
render, and addToCart properties and methods.

//
tagName: '1i',

//

148

CHAPTER 4 INTRO TO BACKBONE.JS

tagName automatically allows Backbone.js to create an HTML element
with the specified tag name, in this case <11i> for list item. This will be a
representation of a single apple, a row in our list.

/ /
s

template: .template(''
+'<a href="#apples/<%=name%>" target=" blank">'
+'<%=name%>"'

+' buy"),

The template is just a string with Underscore.js instructions. They are
wrapped in <% and %> symbols. <%= simply means print a value. The same
code can be written with backslash escapes:

/)
template: .template('\
<a href="#apples/<%$=name%>" target=" blank">\
<%=name%>\
 buy\
")

Each <11i> will have two anchor elements (<a>), links to a detailed
apple view (#apples/:appleName), and a Buy button. Now we’re going to
attach an event listener to the Buy button:

/ /
s

events: {
'click .add-to-cart': 'addToCart'
by

/7
//
//

149

CHAPTER 4 INTRO TO BACKBONE.JS
The syntax follows this rule:
event + jQuery element selector: function name

Both the key and the value (right and left parts separated by the colon)
are strings. For example:

'click .add-to-cart': 'addToCart'
or
'click #load-more': 'loadMoreData'

To render each item in the list, we’ll use the jQuery html () function on
the this. $el jQuery object, which is the <1i> HTML element based on
our tagName attribute:

/ /

render: function() {

this.$el.html (this.template (this.model.attributes))

addToCart will use the trigger () function to notify the collection
that this particular model (apple) is up for purchase by the user:

/ /
s

addToCart: function() {

this.model.collection.trigger ('addToCart', this.model)

Here is the full code of the appleItemview Backbone View class:
const appleltemView = Backbone.View.extend ({

tagName: '1i',

150

CHAPTER 4 INTRO TO BACKBONE.JS

template: .template(''
+ '<a href="#apples/<%=name%>" target=" blank">'
+ '<%=name%>'
+ ' buy
"'),
events: {
'click .add-to-cart': 'addToCart'
y
render: function() ¢{
this.Sel.html (this.template (this.model.attributes))
}y
addToCart: function () {
this.model.collection.trigger ('addToCart', this.model)

H)
//

Easy peasy! But what about the master view, which is supposed to
render all of our items (apples) and provide a wrapper container for
1i HTML elements? We need to modify and enhance our homeView.

To begin with, we can add extra properties of st ring type
understandable by jQuery as selectors to homeView:

//
el: 'body',

listEl: '.apples-list',
cartEl: '.cart-box',
//

151

CHAPTER 4 INTRO TO BACKBONE.JS

We can use properties from earlier in the template, or just hard-code
them (we’ll refactor our code later) in homeView:

/ /
/ /

template: .template('Apple data: \
<ul class="apples-list">\
\

<div class="cart-box"></div>"),

The initialize function will be called when homeVview is created
(new homeView ()). There we render our template (with our favorite
html () function), and attach an event listener to the collection, which is a
set of apple models:

initialize: function() ¢{

this.$el.html (this.template)
this.collection.on('addToCart', this.showCart, this)

The syntax for the binding event is covered in the previous section.
In essence, it is calling the showCart () function of homeView. In this
function, we append appleName to the cart (along with a line break, a

element):

/ /
s

showCart: function (appleModel) {
$ (this.cartEl) .append (appleModel.attributes.name + '
")
}y

/ /

152

CHAPTER 4 INTRO TO BACKBONE.JS

Finally, here is our long-awaited render () method, in which we
iterate through each model in the collection (each apple), create an
appleItemView for each apple, create an <11 > element for each apple,
and append that element to view.1listEl — element with a class
apples-1list inthe DOM:

//
render: function() {
view = this
// So we can use view inside of closure
this.collection.each (function (apple) {
const appleSubView = new appleltemView ({model:apple})
// Creates subview with model apple
appleSubView.render ()
// Compiles template and single apple data
$(view.listEl) .append (appleSubView. $el)
// Append jQuery object from single

// BApple to apples-list DOM element

—

//

Let’s make sure we didn’t miss anything in the homeView Backbone
View. Here’s the full code sans the inline comments:

//
const homeView = Backbone.View.extend({

el: 'body',

listEl: '.apples-1list',
cartEl: '.cart-box',
template: .template('Apple data: \

<ul class="apples-list">\
\

<div class="cart-box"></div>"),

153

CHAPTER 4 INTRO TO BACKBONE.JS

initialize: function() {
this.$el.html (this.template)
this.collection.on('addToCart', this.showCart, this)

y

showCart: function (appleModel) {
$(this.cartEl) .append (appleModel.attributes.name +

'
")

b

render: function() {
view = this

this.collection.each (function (apple) {
const appleSubView = new appleltemView ({model:
apple})
appleSubView.render ()
$(view.listEl) .append (appleSubView. Sel)

})

—

—
~

You should be able to click the Buy button and populate the cart with
the apples of your choice. Looking at an individual apple does not require
typing its name in the URL address bar of the browser anymore. We can
click the name to open a new window with a detailed view.

By using subviews, we reused the template for all of the items (apples)
and attached a specific event to each of them (see Figure 4-1). Those
events are smart enough to pass the information about the model to other

objects: views and collections.

154

CHAPTER 4 INTRO TO BACKBONE.JS
Apple data:

o fuji buy
e gala buy

gala

fuji

fuji

fuji

fuji

fuji

Figure 4-1. The list of apples rendered by subviews

Just in case, here is the full code for the subviews example, which is
also available at http://bit.1ly/2LhECWH:

<!DCCTYPE>

<html>

<head>
<script src="jquery.]js"></script>
<script src="underscore.js"></script>

<script src="backbone.js"></script>

<script>
const appleData = [
{
name: 'fuji',
url: 'img/fuji.jpg'
}y

155

http://bit.ly/2LhEOWH

CHAPTER 4 INTRO TO BACKBONE.JS

name: 'gala',

url: 'img/gala.jpg'

—~

]
let app
const router = Backbone.Router.extend ({
routes: {
'": 'home',
'apples/:appleName': 'loadApple'
}y
initialize: function() {
const apples = new Apples|()
apples.reset (appleData)
this.homeView = new homeView ({collection: apples})
this.appleView = new appleView({collection: apples})
}y
home: function() {
this.homeView.render ()
by
loadApple: function (appleName) {
this.appleView.loadApple (appleName)

—~

})

const appleltemView = Backbone.View.extend ({
tagName: '1i',
template: .template('\
<a href="#apples/<%=name%>" target=" blank">\

<%=name%>\

buy\
")

156

CHAPTER 4 INTRO TO BACKBONE.JS

events: {
'click .add-to-cart': 'addToCart'
by
render: function () {
this.S$el.html (this.template (this.model.attributes))
by
addToCart: function () {
this.model.collection.trigger ('addToCart', this.
model)

—~

})

const homeView = Backbone.View.extend ({

el: 'body',

listEl: '.apples-list',
cartkEl: '.cart-box',
template: .template('Apple data: \

<ul class="apples-list">\
\
<div class="cart-box"></div>"),

initialize: function () ¢{
this.$el.html (this.template)
this.collection.on('addToCart', this.showCart,
this)

}y

showCart: function (appleModel) {
S (this.cartEl) .append (appleModel .attributes.name +
'
")

by

render: function|() {

view = this

157

CHAPTER 4 INTRO TO BACKBONE.JS

this.collection.each (function (apple) {
const appleSubView = new appleltemView ({model:
apple})
appleSubView.render ()
$(view.listEl) .append (appleSubView. $el)

—~

})

const Apples = Backbone.Collection.extend({

H)

const appleView = Backbone.View.extend ({

initialize: function() {

this.model = new (Backbone.Model.extend({}))
this.model.on ('change', this.render, this)
this.on('spinner', this.showSpinner, this)

s

template: .template ('<figure>\
<img src="<%= attributes.
urls>"/>\
<figcaption><%= attributes.
name $></figcaption>\
</figure>"),
templateSpinner: '<img src="img/spinner.gif"
width="30"/>",
loadApple: function (appleName) {
this.trigger ('spinner')
const view = this
setTimeout (function () {
view.model.set (view.collection.where ({name:

appleName}) [0] .attributes)

158

CHAPTER 4 INTRO TO BACKBONE.JS

render: function (appleName) {
const appleHtml = this.template (this.model)
$('body') .html (appleHtml)

y

showSpinner: function() {

$('body') .html (this.templateSpinner)

—

})

$ (document) .ready (function () {
app = new router
Backbone.history.start ()

})

</script>
</head>
<body>

<div></div>
</body>
</html>

The link to an individual item, for example, collections/index.
html#apples/fuji, also should work independently, by typing it in the
browser address bar.

Refactoring Backbone.js Code

At this point you are probably wondering what the benefit is of using the
framework and still having multiple classes, objects, and elements with
different functionalities in one single file. This was done for the purpose of
adhering to the idea of keeping things simple.

159

CHAPTER 4 INTRO TO BACKBONE.JS

The bigger your application is, the more pain there is in an
unorganized code base. Let’s break down our application into multiple
files where each file will be one of these types:

e View

e Template
¢ Router

¢ Collection
e Model

Let’s write these scripts to include tags into our index.html head, or
body, as noted previously:

<script src="apple-item.view.js"></script>
<script src="apple-home.view.js"></script>
<script src="apple.view.js"></script>
<script src="apples.]js"></script>

<script src="apple-app.js"></script>

The names don’t have to follow the convention of dashes and dots, as
long as it’s easy to tell what each file is supposed to do.

Now, let’s copy our objects and classes into the corresponding files.

Our main index.html file should look very minimalistic:

<!DCCTYPE>

<html>

<head>
<script src="jquery.js"></script>
<script src="underscore.js"></script>

<script src="backbone.js"></script>

<script src="apple-item.view.js"></script>

<script src="apple-home.view.js"></script>

160

CHAPTER 4 INTRO TO BACKBONE.JS

<script src="apple.view.]js"></script>
<script src="apples.js"></script>

<script src="apple-app.js"></script>

</head>
<body>
<div></div>
</body>
</html>

The other files just have the code that corresponds to their file names.

The content of apple-item.view.js will have the appleview object:

const appleView = Backbone.View.extend ({
initialize: function() {
this.model = new (Backbone.Model.extend({}))
this.model.on('change', this.render, this)
this.on('spinner', this.showSpinner, this)

}y

template: .template ('<figure>\
<img src="<%= attributes.url %>"/>\
<figcaption><%= attributes.name %>
</figcaption>\
</figure>"),
templateSpinner: '<img src="img/spinner.gif"

width="30"/>",

loadApple: function (appleName) {
this.trigger ('spinner')
const view = this

// We'll need to access that inside of a closure

161

CHAPTER 4 INTRO TO BACKBONE.JS

setTimeout (function () {
// Simulates real time lag when fetching
// data from the remote server
view.model.set (view.collection.where ({
name: appleName
})[0].attributes)

}y)

render: function (appleName) {
const appleHtml = this.template (this.model)
S('body") .html (appleHtml)

1
I

showSpinner: function() {

S('body') .html (this.templateSpinner)

—

})
The "apple-home.view.js file has the "homeView object:

const homeView = Backbone.View.extend ({
el: 'body',

listEl: '.apples-list',
cartEl: '.cart-box',
template: .template('Apple data: \

<ul class="apples-list">\

\

<div class="cart-box"></div>"),
initialize: function() {

this.$el.html (this.template)

this.collection.on('addToCart', this.showCart, this)

162

CHAPTER 4 INTRO TO BACKBONE.JS

showCart: function (appleModel) {
$(this.cartEl) .append (appleModel.attributes.name +
'
")
}y
render: function () {
view = this // So we can use view inside of closure
this.collection.each (function (apple) {
const appleSubView = new
appleltemnView ({model:apple})
// Create subview with model apple
appleSubView.render ()
// Compiles template and single apple data
$(view.listEl) .append (appleSubView. $el)
// Append jQuery object from
// single apple to apples-list DCM element

The apple.view. js file contains the master apples list:

const appleView = Backbone.View.extend ({
initialize: function() ¢{
this.model = new (Backbone.Model.extend ({}))
this.model.on ('change', this.render, this)
this.on('spinner', this.showSpinner, this)
by
template: .template('<figure>\
<img src="<%= attributes.url %>"/>\
<figcaption><%= attributes.name %></figcaption>\
</figure>"),
templateSpinner: '<img src="img/spinner.gif"
width="30"/>",

163

CHAPTER 4 INTRO TO BACKBONE.JS

loadApple: function (appleName) {
this.trigger ('spinner')
const view = this
// We'll need to access that inside of a closure
setTimeout (function () {
// Simulates real time lag when
// fetching data from the remote server
view.model.set (view.collection.where ({
name:appleName
})[U].attributes)
}y)
by
render: function (appleName) {
const appleHtml = this.template (this.model)
S('body") .html (appleHtml)

s

showSpinner: function() {

$('body') .html (this.templateSpinner)

—~

—
—

apples.jsis an empty collection:

const Apples = Backbone.Collection.extend ({
H)

apple-app.js is the main application file with the data, the router,
and the starting command:

const appleData = [
{

name: 'fuji',

url: 'img/fuji.jpg'

164

CHAPTER 4 INTRO TO BACKBONE.JS

name: 'gala',

url: 'img/gala.jpg'

—~

]
let app

const router = Backbone.Router.extend ({

routes: {

'": 'home',

'apples/:appleName': 'loadApple'
by
initialize: function() {

const apples = new Apples|()
apples.reset (appleData)
this.homeView = new homeView ({collection: apples})
this.appleView = new appleView({collection: apples})
y
home: function () f{
this.homeView.render ()
y
loadApple: function (appleName) {
this.appleView.loadApple (appleName)

1)

$ (document) .ready (function () {
app = new router
Backbone.history.start ()

})

Now let’s try to open the application. It should work exactly the same
as in the previous Subviews example.

165

CHAPTER 4 INTRO TO BACKBONE.JS

It’s a far better code organization, but it’s still far from perfect, because
we still have HTML templates directly in the JavaScript code. The problem
is that designers and developers can’t work on the same files, and any
change to the presentation requires a change in the main code base.

We can add a few more JS files to our index.html file:

<script src="apple-item.tpl.js"></script>
<script src="apple-home.tpl.Jjs"></script>
<script src="apple-spinner.tpl.js"></script>

<script src="apple.tpl.js"></script>

Usually, one Backbone View has one template, but in the case of our
appleview—a detailed view of an apple in a separate window—we also
have a spinner, a “loading” GIF animation.

The contents of the files are just global variables that are assigned
some string values. Later we can use these variables in our views, when we
call the Underscore.js helper method . template ().

Here is the apple-item.tpl.js file:

const appleltemTpl = '\
<a href="#apples/<%$=name%>" target=" blank">\
<%=name%>\

 buy\

This is the apple-home. tpl. s file:

const appleHomeTpl = 'Apple data: \
<ul class="apples-list">\
\

<div class="cart-box"></div>"

166

CHAPTER 4 INTRO TO BACKBONE.JS
Here is the apple-spinner.tpl. s file:

const appleSpinnerTpl = '<img src="img/spinner.gif"

width="30"/>"
This is the apple.tpl. s file:

const appleTpl = '<figure>\
<img src="<%= attributes.url %>"/>\
<figcaption><%= attributes.name %>
</figcaption>\

</figure>'

Try to start the application now. The full code isathttp://bit.
ly/2LdEtEYy.

As you can see in the previous example, we used global scoped
variables (without the keyword window).

Be careful when you introduce a lot of variables into the global
namespace (window keyword). There might be conflicts and other
unpredictable consequences. For example, if you wrote an open source
library and other developers started using the methods and properties
directly, instead of using the interface, what would happen later when
you decide to finally remove or deprecate those global leaks? To prevent
this, properly written libraries and applications use JavaScript closures
(https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Closures).

Here is an example of using closure and a global variable module

definition:
; (function () {
const apple = function() {
.// Do something useful like return apple object

1

J

window.Apple = apple
FO))

167

http://bit.ly/2LdEtEy
http://bit.ly/2LdEtEy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures

CHAPTER 4 INTRO TO BACKBONE.JS

In a case when we need to access the app object (which creates a
dependency on that object):

; (function () {
let app = this.app
<<[]I

class

// Use app variable

1
J

// Equivalent of window.apple = function() {...
}O))

—

As you can see, we've created the function and called it immediately
while also wrapping everything in parentheses ().

AMD and Require.js for Backbone.js
Development

AMD allows us to organize development code into modules, manage
dependencies, and load them asynchronously. The article “Why AMD”
does a great job at explaining benefits of AMD: http://requirejs.org/
docs/whyamd.html.
Start your local HTTP server, for example, MAMP (https://www.
mamp.info)or node-static (https://npmjs.com/node-static).
Let’s enhance our code by using the Require.js library.

168

http://requirejs.org/docs/whyamd.html
http://requirejs.org/docs/whyamd.html
http://requirejs.org/docs/whyamd.html
https://www.mamp.info
https://www.mamp.info
https://www.mamp.info
https://npmjs.com/node-static

CHAPTER 4 INTRO TO BACKBONE.JS

Our index.html will shrink even more:

<!DOCTYPE>
<html>
<head>
<script src="7jquery.js"></script>
<script src="underscore.js"></script>
<script src="backbone.js"></script>
<script src="require.]js"></script>
<script src="apple-app.js"></script>
</head>
<body>
<div></div>
</body>
</html>

We only included libraries and the single JavaScript file with our

application. This file has the following structure:
require([...],function(...){...})
In a more explanatory way:

require ([

'name-of-the-module',

'name-of-the-other-module'’

1, function (referenceToModule, ...,
referenceToCtherModule) {

// Some useful code...

referenceToModule.someMethod ()

—
—

169

CHAPTER 4

names—the first parameter of the require () function—and then pass
our modules from those files to the anonymous callback function (second
argument) as variables. Inside of the main function (anonymous callback)
we can use our modules by referencing those variables. Therefore, our
apple-app.js metamorphoses into:

Basically, we tell a browser to load the files from the array of file

require ([

'apple-item.tpl', //

'apple-home.tpl',

'apple-spinner.tpl’,

'apple.tpl"',

'apple-item.view',

'apple-home.view',

'apple.view',

'apples'

function (

applelItemTpl,

appleHomeTpl,

appleSpinnerTpl,

appleTpl,

appleltemView,

homeView,

appleView,

Apples

) {

const appleData = [
{

name: 'fuji',

url: 'img/fuji.jpg'

170

INTRO TO BACKBONE.JS

Can use shim plug-in

CHAPTER 4 INTRO TO BACKBONE.JS

name: 'gala',

url: 'img/gala.jpg'

—~

]

let app

const router = Backbone.Router.extend ({
// Check if need to be required

routes: f{

'": 'home',

'apples/:appleName': 'loadApple'
}y
initialize: function () ¢{

const apples = new Apples|()
apples.reset (appleData)
this.homeView = new homeView ({collection: apples})
this.appleView = new appleView({collection: apples})
by
home: function () ¢{
this.homeView.render ()
by
loadApple: function (appleName) {
this.appleView.loadApple (appleName)

-
N

$ (document) .ready (function () {
app = new router
Backbone.history.start ()

1)

})

171

CHAPTER 4 INTRO TO BACKBONE.JS

We put all of the code inside the function that is a second argument
of require (), mentioned modules by their file names, and used
dependencies via corresponding parameters. Now we should define the
module itself. This is how we can do it with the de fine () method:

define([...],function(...) {...})

The meaning is similar to the require () function: Dependencies
are strings of file names (and paths) in the array that is passed as the first
argument. The second argument is the main function that accepts other
libraries as parameters (the order of parameters and modules in the array
is important):

define (['name-of-the-module'], function (nameCfModule) {
const b = nameCfModule.render ()

return b

—
~

Note that there is no need to append . ;s to file names. Require.js does
it automatically. The Shim plug-in is used for importing text files such as
HTML templates.

Let’s start with the templates and convert them into the Require.js
modules.

Here is the new apple-item.tpl.js file:

define (function () {
return '\
<a href="#apples/<%=name%>"
target="_blank">\
<%=name%>\
 <a class="add-to-cart"

href="#">buy\

]

172

CHAPTER 4 INTRO TO BACKBONE.JS
This is the apple-home. tpl file:

define (function () {
return 'Apple data: \
<ul class="apples-list">\
\

<div class="cart-box"></div>"'

Here is the apple-spinner.tpl.js file:

define (function () {
return '"

)
This is the apple.tpl. s file:

define (function () {
return '<figure>\
<img src="<%= attributes.url %>"/>\
<figcaption><%= attributes.name %$></figcaption>\
</figure>'

})
Here is the apple-item.view. s file:

define (function () {
return '\
<a href="#apples/<%=name%>"
target=" blank">\
<%=name%>\
 <a class="add-to-cart"

href="#">buy\

173

CHAPTER 4 INTRO TO BACKBONE.JS

In the apple-home.view. js file, we need to declare dependencies on
apple-home.tpl and apple-item.view. s files:

define(['apple-home.tpl', 'apple-item.view'], function (
appleHomeTpl,
appleltemView) {

return Backbone.View.extend ({

el: 'body',

listEl: '.apples-list',

cartEl: '.cart-box',

template: .template (appleHomeTpl),
initialize: function() {

this.$el.html (this.template)
this.collection.on('addToCart', this.showCart,
this)

1
I

showCart: function (appleModel) {
S (this.cartEl) .append (appleModel .attributes.name +
'
")
by
render: function () {
view = this // So we can use view inside of
closure
this.collection.each (function (apple) {
const appleSubView = new
appleltemnView ({model:apple})
// Create subview with model apple
appleSubView.render ()
// Compiles template and single apple data
S(view.listEl) .append (appleSubView.Sel)

174

CHAPTER 4 INTRO TO BACKBONE.JS

// Append jQuery object from
// a single apple to apples-list DOM element

The apple.view.js file depends on two templates:

define ([
'apple.tpl',
'apple-spinner.tpl'
1, function (appleTpl, appleSpinnerTpl) {
return Backbone.View.extend ({
initialize: function() {
this.model = new (Backbone.Model.extend({}))
this.model.on ('change', this.render, this)
this.on('spinner', this.showSpinner, this)
1y
template: .template(appleTpl),
templateSpinner: appleSpinnerTpl,
loadApple: function (appleName) {
this.trigger ('spinner")
const view = this
// We'll need to access that inside of a closure
setTimeout (function () {
// Simulates real time lag when
// fetching data from the remote server
view.model.set (view.collection.where ({
name:appleName
})[0].attributes)
by)
by

175

CHAPTER 4 INTRO TO BACKBONE.JS

render: function (appleName) {
const appleHtml = this.template (this.model)
$('body') .html (appleHtml)

3y

showSpinner: function () {

$('body') .html (this.templateSpinner)

[

—
N

This is the apples. s file:

define (function () {
return Backbone.Collection.extend ({})

H)

I hope you can see the pattern by now. All of our code is split into
the separate files based on the logic (e.g., view class, collection class,
template). The main file loads all of the dependencies with the require ()
function. If we need some module in a non-main file, then we can ask
foritin the define () method. Usually, in modules we want to return an
object; for example, in templates we return strings and in views we return
Backbone View classes and objects.

Try launching the example located in code/04-backbone/amd and
athttp://bit.ly/2LhEmb9. Visually, there shouldn’t be any changes. If
you open the Network tab in the Developers Tool, you can see a difference
in how the files are loaded.

The old file shown in Figure 4-2 (code/04-backbone/refactor/
index.html and http://bit.1ly/2Lfi71T)loads our JavaScript
scripts in a serial manner, whereas the new file shown in Figure 4-3
(code/04-backbone/amd/index.html) loads them in parallel.

176

http://bit.ly/2LhEmb9
http://bit.ly/2Lfi7lT)

CHAPTER 4

INTRO TO BACKBONE.JS

Figure 4-2. The old 04-backbone/refactor/index.html file

Apple data:
* fuji buy
* gl buy

) Dements Resources | Network | Sources Timeline Profiles Audits Comsole

e | Mesthed w Tree Jakier _ﬁ.m El-l‘m |Teing | icimelo siamat vl aliml bl

o> I.";::‘::I:Nﬁmembﬂua-m(hbuﬁ- GET ;:o text/heml Other (From cac.. ::: -]

-]J.au:rﬁ;mmmwm.mumh ST, ::(0 applicatia... J::m ::::: :::: -

(] Foemmaocisentron-tmsbonen ST G st RS i em -

(B e orsembion bucomen T o ot NS b -

g :::r:::::mnr_rgx-m:uma- Sl ‘z::n arplaties :ﬂma m: :::: -

j :(::::::ﬁ:;u:YJHI-MHME- i ;?:) W ::: ::: =

B resaonmeniontucsbonen T (o sekama., AR T om —

2] ::x:n‘:ummbwu-mumn 2 ;:' ephcat ™ :-:-mm ;z:: ﬁ:: =

5 frimtreecomp o S - A i —

= :::::;Tn.:::nwga.mumm CeT ::0 applicatia... J::m m: l:::: —

I e SRR S - T e -

:::;r::;usemnylua-mxumea- SET ‘2::0 M]:.E'M.‘l ’;:: ‘:;:: ——

Q:::m:umqua-muwu- =g ;o(n PO, | ar :]o::: l:::: S

J:m-:(:wm.w:::r:-uuqm e ;:n Xrisgprg Script 5 Mo che - ::: -
| nedoniicon:snon:dmaenn crr S Imaneinnn ESEREESL ttooem cac ok P

B = 4 I @ ® | cocuments Stylesheets Images Scripts XHR Fomts kets Other

177

CHAPTER 4

Apple dota:

* [uji by
* gala buy

INTRO TO BACKBONE.JS

) Elomems Resources | Neowork | Seurces Timeling Profiles Audits Console

Name.
Path Mithod Tent
| Indehtmi = 104
S jeneraBiiOAsienblyfga-backbone), Not Madifies
| aueryjs 304
28] feeneratizonsiembiyiga-backbomes: | = Mot Mod fies
underscore s 104
Z2) [CeneratiiOassembly/ga-backbomel s Not Modifier
backbomes cer 304
=] [CeneratzOAssembly/ga-backbone/: Mot Modifier
.| reauirejs 308
Ceneralssembiyfga-backboses [0 Mot Madifies
| apple-appjs ceT 304
Z2) [Cenerabiz0Assembly/ga-backbome . Not Modifies
Audge-iton-arrew=up.png 200
L (o o
200
o [555 [
Audge=icon=-atrow=lepng 200
| sctpoptognaetinamichne bikjieima o
| mudge-icen-retumn.png 200
| pioctpoptedtaeinamjchne fuikjitc/ima | 2 o
. | apple-spinneraplis 304
2L [Ceneratiz0Assemblylga-backbonel | Nox Madifiee
apple=item.tpljs 304
A jCenerancoasiembiviga-backbontr: Mot Madities
| apple-item.viewds 04
=] [CeneraBI0Assereblyfga 5 Mo M fies
pple-home.viewjs 304
IGenerati20Assembly/ga-backboae): Nt Modifies
| appletnljs 104

OFT
@ = Q= @ @ T pocuments Stvieshests

Type

[T

applicatio...

applicatio ..

applicatio...

applicatio. .

applicatio. .

Image/ong

image/ong

image/ang

applicatio. ..

agplicatio .

applicatio ..

applicatio

analicarin

Initiator

Size
Content
1728
268
1738
261K8
1728
40.4 K8
e
S4.5KB
1748
78.2KR

1728
12K8

Orom cac..

(from cac.

(from cac

(from cac...
e

748

7o
2008

iz
BI6A

1718
9518

7

Time
Latency

dms
ims
Loms
Trma
ms
10ms
S6ms
13ms
soms
L2ms
&7ms
12ms
1183
118ms
1L8ms
118ms
118ms
118ms
1L8ms
118ms
L6 ems
12ems
Ld s
7ms
L7eme
1ams
16ms
12ms

L& ms

Imaoces Scriots XHR Fomts WebSockets Other

Timeline

&

159

3T EN

Figure 4-3. The new 04-backbone/amd/index.html file

MBes

W

ma 4TTes,

Require.js has a lot of configuration options that are defined through

the requirejs.config () callin the top level of an HTML page. More

information can be found at http://requirejs.org/docs/api.

html#config.

Let’s add a bust parameter to our example. The bust argument will be

appended to the URL of each file, preventing a browser from caching the

files. This is perfect for development and terrible for production.

Add this to the apple-app. js file in front of everything else:

requirejs.config ({

urlArgs:
1)
require ([

//

178

'bust="

+

(new Date()) .getTime ()

http://requirejs.org/docs/api.html#config
http://requirejs.org/docs/api.html#config

CHAPTER 4 INTRO TO BACKBONE.JS

Notice in Figure 4-4 that each file request now has status 200 instead of
304 (not modified).

Apgle datx

+ fuil buy
+ gulo buy

) fement Resowrces | Meowork | Sources Timeline Profies Audis Console

by sathod FES e mister S T | Tnno ol vl v v i
I foniartiateon RO S b (T oba >
I oot WO F T S >
9 fuosmesiiathiosc SN S e C - T S >
L o v [T e oo < arm -
B retcemsmonra feE W st SRESMM geaae T

=] apple-homotpljattust- 136 ’ T fr sopltati... Wﬂﬂ T::: I:l::

2] a5 e SRS i >
Elp A T i

I oot s B OO e S o

) non Tem B et SEEAME Sas) liee

I i iatiapesinsiinn S oS £ T el pe

B popmainistaibisi sy el o e TRl ok

B Svariaioslonsae cer Sutcess imageipng E‘eu‘mm “:: °",; ™
] eessaptntpenceic o weew S gromac e

20 requasts | 5.8 KB transferred | 727 ms (onkosd: 743 ms, DOMConventlcaded: 451 ms)

© E G = @ @ 0 Couments Sndeshesss Images Scripis AW Fods WebSockers Oiher [

Figure 4-4. Network tab with bust parameter added

Require.js for Backbone.js Production

We'll use the Node.js package manager (npm) to install the requirejs
library (it’s not a typo; there’s no period in the name). In your project
folder, run this command in a terminal:

$ npm init

Then run
$ npm install requirejs
or add -g for global installation:

$ npm install -g requirejs

179

CHAPTER 4 INTRO TO BACKBONE.JS

Create a file named app.build.js:

appDir: "./js",
baseUrl: "./",
dir: "build",
modules: [

{

name: "apple-app"

—

—
-

Move the script files into the j s folder (appDi r property). The
builded files will be placed in the bui 1d folder (di r parameter). For
more information on the build file, check out the extensive example with

comments available at http://bit.ly/2LdFSuC.
Now everything should be ready for building one gigantic JavaScript
file that will include all of our dependencies and modules:

$ r.js -o app.build.js
or
$ node modules/requirejs/bin/r.js -o app.build.js

You should get a list of the r. § s processed files, as shown in Figure 4-5.

180

http://bit.ly/2LdFSuO

CHAPTER 4 INTRO TO BACKBONE.JS

Uglifying file: /Users/azat/ /Devel it/ G al Assembly/ga-backbone/r/build/apple-app. js

Uglifying file: murummmwmml Assenbly/ga-backbone/r/build/apple-home. tpl. js

Uglifying file: /Users/ozat/ ‘Lopment/General /r/build/apple-home.view. js

Uglifying file: /Users/ozot/ /Devel General umwm-wmmmtwmu-nm tpl.js

Uglifying file: /Users/azat/ /Devel /Generdl Assenbly/ga-backbone/r/build/apple-iten.view. j5

Uglifying file: /Users/ozot/ /Develop General 'ga r/build/apple-spinner.tpl.js

Uglifying file: /Users/azat/ /Development./ al /r/build/apple. tpl. js

Uglifying file: /Users/azct/ lop /General Assutl)ffgu-huwrmlldfowle vim.js

Uglifying file: /Users/azat/ al /r/build/apples. js

Uglifying file: /Users/azat/ /Devel /General Assenbly f,.. fr/bullds is

Uglifying file: /Users/ozat/ /Devel al b r/bulld/jquery. js

toTransport pping /Users/azats /Devel assubly/p—buckbu\efrmldfmmlw bin/r.js: Error: Line 1: Unexpe
cted token ILLEGAL

Error: Cannot parse file: /Users/azat/ /Develop /General Assesbly/ga- /build/node_modules/.bin/r.js for comments. Ski
pping it. Error is:

Error: Line 1: Unexpected token ILLEGAL

toTrensport skipping /User 1 al ly/ga-back r/build/node_modules/requirejs/bin/r.js: Error: Line

1: Unexpected token ILLEGAL

Error: Cannot parse file: /Users/azat/ Lop /General ly/ga- fr/build/node_modules/requirejs/bin/r.js for comm
ents. Skipping it. Error is:

Error: Line 1: Unexpected token ILLEGAL

Uglifying file: /Users/fazat/ /Devel fGeneral Assembly/ga-backbone/r/build/node_modules/requirejs/require. js

Uglifying file: /Users/ozot/Tx /Devel al Assembly/ga-backbone/r/bulld/require. js

Uglifying file: /Users/ozct/ /Devel /Genergl Assembly/ga-backbone/r/build/underscore. js

apple-app. js
apple-item. tpl.js
apple-home. tpl.js
apple-spinner.tpl.js
apple.tpl.is
apple-item.view.js
apple-home. view.js
apple.view. js
apples. js
apple-app. is

@ r git:(moster) x $ node_modules/requirejs/bin/r.is -0 app.build.js|
Figure 4-5. A list of the r.js processed files
Open index.html from the build folder in a browser window, and

check if the Network tab shows any improvement now with just one
request or file to load (Figure 4-6).

181

CHAPTER 4 INTRO TO BACKBONE.JS

Apple dam:
* fuji buy
+ pala buy
) Oemerts Resowrces | Network | Sowrces Tiwelie Profies Awdis Console
e [wome [$25° rvee Jeneer T i O P e o e
= ':."e:::;ﬂ&snwb‘.aa-m:-,:owe.' L i:mq. Eayaomb; | Oese Wrmem car :"m: @
FTloomoiOOORORORIN ;. o e aae I
1 m:;ntumsrm backbasep | ST :;:anm SO | e u‘::: ::: o
e e et - !
PO G = !
o GO 20 imagupeg ESBES | gacc | o
[e e [T N LN s e o o
[fome atviontivetioon BN 1 S s A e R 0 o
L I e (ST s St e e o
Q daimags fpngbas... cE Seccess imagelong i’ﬁl"‘ﬂl‘m (o cac ::: 4
i m;mm,.mw»mu.c GET. ;:r. il :Ir“:‘a Librkins ::: I =

12 requests | 8648 transturred | 555 e (anlasd 426 ms, DOMCostantLoaded: £06 ma)

D, @ 2 @ @ CD vecument Shiechests Imigel Seipls XHT Fontd Weblockets Other &5

Figure 4-6. Performance improvement with one request or file to load

For more information, check out the official r . §s documentation at
http://requirejs.org/docs/optimization.html.

The example code is available athttp: //bit.1ly/2LiMuyM and
http://bit.ly/2Lg6efx.

For uglification of JS files (which decreases the file sizes), we can use
the Uglify2 module. To install it with npm, use:

$ npm install uglify-js
Then update the app.build.js filewith the optimize: "uglify2"
property:

(1
appDir: "./js",
baseUrl: "./",
dir: "build",
optimize: "uglify2",

182

http://requirejs.org/docs/optimization.html
http://bit.ly/2LiMuYM
http://bit.ly/2Lg6efx

CHAPTER 4 INTRO TO BACKBONE.JS

modules: [

name: "apple-app"

Run r.js with:
$ node modules/requirejs/bin/r.js -o app.build.js
You should get something like this:

define ("apple-item.tpl”, [], function () {return'

<a href="#apples/<%=name%>" target=" blank"> <%=name%>
 buy
"'}),define ("apple-home.tpl", [], function () {return
'Apple data: <ul class="apples-list">

<div class="cart-box"></div>'}),define ("apple-spinner.tpl",
[1,function () {return'<img src="img/spinner.gif"
width="30"/>"'}),define ("apple.tpl", [1, function ()
{return'<figure> <img src="<%= attributes.url %>"/>
<figcaption><%= attributes.name %$></figcaption>
</figure>'}),define ("apple-item.view", ["apple-item.
tpl"], function (e) {return Backbone.View.extend ({tagName:
"1i",template: .template(e),events:{"click .add-to-car
t":"addToCart"}, render: function () {this.S$el.html (this.
template (this.model.attributes)) },addToCart: function

() fthis.model.collection.trigger ("addToCart", this.
model) }}) }),define ("apple-home.view", ["apple-
home.tpl", "apple-item.view"], function (e, t) {return
Backbone.View.extend ({el:"body",listEl:".apples-
list",cartEl:".cart-box",template: .template(e),

initialize:function() {this.$el.html (this.template), this.

183

CHAPTER 4 INTRO TO BACKBONE.JS

collection.on ("addToCart", this.showCart, this) },
showCart:function (e) {$ (this.cartEl) .append(e.attributes.
name+"
")}, render: function () {view=this, this.
collection.each (function(e) {const i=new t ({model:e});
i.render(),$(view.1listEl) .append(i.$el) })}})}),define
("apple.view", ["apple.tpl", "apple-spinner.tpl"], function (e, t)
{return Backbone.View.extend({initialize:function/()
{this.model=new (Backbone.Model.extend({})), this.model.

on ("change", this.render, this), this.on ("spinner", this.
showSpinner, this) }, template: .template(e),templateSpinner:t,
loadApple: function(e) {this.trigger ("spinner") ;const
t=this;setTimeout (function() {t.model.set (t.collection.
where ({name:e}) [U] .attributes) },) }, render: function ()
{const e=this.template (this.model);$ ("body") .html (e) },
showSpinner: function () {$ ("body") .html (this.templateSpinner)
}1) 1) ,define ("apples", [1, function () {return Backbone.
Collection.extend({})}), requirejs.config({furlArgs:"bust="
+ (new Date) .getTime () }), require (["apple-item.tpl", "apple-
home.tpl", "apple-spinner.tpl", "apple.tpl", "apple-item.
view","apple-home.view", "apple.view", "apples"], function
(e,t,i,n,a,1,p,0) fconst r,s=[{name:"fuji",url:"img/
fuji.jpg"}, {fname:"gala",url:"img/gala.jpg"}], c=Backbone.
Router.extend ({routes: {"":"home", "apples/:appleName"
:"loadApple"},initialize:function () {const e=new o;e.
reset (s),this.homeView=new 1 ({collection:e}), this.
appleView=new p({collection:e}) },home:function ()
{this.homeView.render ()}, loadApple:function (e) {this.
appleView.loadApple (e) } });$ (document) .ready (function ()
{r=new c,Backbone.history.start()})}),define("apple-

app", function () {});

184

CHAPTER 4 INTRO TO BACKBONE.JS

The file is intentionally not formatted to show how Uglify2 works

(https://npmis.com/uglify-jsandhttp://lisperator.net/

uglifyijs). Without the line break escape symbols, the code is on one line.

Also notice that variables’ and objects’ names are shortened.

Super Simple Backbone.js Starter Kit

To jump-start your Backbone.js development, consider using Super Simple
Backbone Starter Kit (http://bit.1ly/2LhjDE4) or similar projects:

Backbone Boilerplate available at http://

backboneboilerplate.com

Sample App with Backbone.js and Bootstrap available
athttp://coenraets.org/blog/2012/02/sample-
app-with-backbone-js-and-twitter-bootstrap

More Backbone.js tutorials available at http: //bit.
1ly/2LfBifE

Summary

So far we've covered how to:

Build a Backbone.js application from scratch.

Use views, collections, subviews, models, and event
binding.

Use AMD and Require.js on the example of the apple
database application.

185

https://npmjs.com/uglify-js
http://lisperator.net/uglifyjs
http://lisperator.net/uglifyjs
http://bit.ly/2LhjDE4)
http://backboneboilerplate.com
http://backboneboilerplate.com/
http://backboneboilerplate.com/
http://coenraets.org/blog/2012/02/sample-app-­with-backbone-js-and-twitter-bootstrap
http://coenraets.org/blog/2012/02/sample-app-­with-backbone-js-and-twitter-bootstrap
http://coenraets.org/blog/2012/02/sample-app-­with-backbone-js-and-twitter-bootstrap
http://bit.ly/2LfBifE
http://bit.ly/2LfBifE

CHAPTER 4 INTRO TO BACKBONE.JS

In this chapter, you've learned enough about Backbone.js to make sure
you can start using it in your web or mobile apps. Without a framework like
Backbone, your code will become exponentially more complex as it grows.
On the other hand, with Backbone or a similar MVC architecture, you can
scale the code better.

186

CHAPTER 5

Backbone.js and Parse

When in doubt—console log.

—Azat Mardan

In this chapter, we’ll explore the practical aspect of leveraging Parse for a
Backbone.js app. The chapter will illustrate the following:

e Backbone.js and Parse usage
» Modifying Message Board with Parse and JavaScript SDK
o Taking Message Board further the

If you've written some complex client-side applications, you might
have found that it’s challenging to maintain the spaghetti code of
JavaScript callbacks and UI events. Backbone.js provides a lightweight yet
powerful way to organize your logic into a Model-View-Controller (MVC)
type of structure. It also has nice features like URL routing, REST API
support, event listeners, and triggers. For more information and
step-by-step examples of building Backbone.js applications from scratch,
please refer to Chapter 4 “Intro to Backbone.js.”

© Azat Mardan 2018 187
A.Mardan, Full Stack JavaScript, https://doi.org/10.1007/978-1-4842-3718-2_5

http://azat.co/

CHAPTER5 BACKBONE.JS AND PARSE

Message Board with Parse: JavaScript SDK
and Backbone.js Version

Speaking of Message Board with jQuery that I covered earlier, it’s easy

to see that if we keep adding more and more buttons such as “DELETE,”
“UPDATE,” and other functionalities, our asynchronous callbacks will
grow more complicated. And we’ll have to know when to update the view
(i.e., the list of messages) based on whether or not there were changes to
the data. The Backbone.js Model-View-Controller (MVC) framework can
be used to make complex applications more manageable and easier to
maintain.

If you felt comfortable with the previous Message Board with jQuery
example, let’s build upon it with the use of the Backbone.js framework. We
will change the app to use Backbone but the look will remain moslty the
same (see Figure 5-1).

188

CHAPTERS5 BACKBONE.JS AND PARSE

® © @ /[y Message Board x \Tm Ninja
<« C | @ localhost:8080/code/05-board-backbeone-parse-sdk/ r
' Chat
Username Message
Azat Hi
Bob Hello!
Johny Pineappleseed Howdy

Message Board

Username Message Text m

Made by Azat (@azat_co)

[(] CElements Conscle Sources Network Performance Memory Appliication Security Audits X
| ® ® w W | Vew 3= = [Groupbyframe [Preservelog @ Disablecache |) Offine Online ¥
| [Fter ") Hidedata URLs Al [0} JS CSS Img Media Font Doc WS Manifest Other
| Name * Headers Preview Response Timing
—J /code/05-board-backbone-parse-sdk v {objectId: “3IDACKAtoTq", createdAt: "2018-84-91T22:07:46.8762"}
| home.htm! createdAt: "2818-04-01T22:07:46.8762"
fcode/05-board-backbone-parse-sdk abjecklas SHpRAtaTY
footerntmi
fcode/05-board-backbone-parse-sdk
'‘| MessageBoard
fparsa/classas

MessageBoard
fparse/classes

5/ 14 requests | 3.4 KB / 856 KB transferred | Finish:...

Figure 5-1. Message Board powered by local Parse server

Next we'll go step by step, creating a Message Board application using
Backbone.js and Parse JavaScript SDK. If you feel familiar enough with it,
you could download the Super Simple Backbone Starter Kitat http://bit.
ly/2Lh7jDE4. Integration with Backbone.js will allow for a straightforward
implementation of user actions by binding them to asynchronous updates of

the collection.

189

http://bit.ly/2LhjDE4
http://bit.ly/2LhjDE4

CHAPTER5 BACKBONE.JS AND PARSE

The application is available at ht tp: //bit.1y/2L£B9IQ, but again
you are encouraged to start from scratch and try to write your own code
using the example only as a reference.

The following shows the structure of the Message Board with Parse,
JavaScript SDK, and Backbone.js version:

/06-board-backbone-parse-sdk
-index.html
-home.html
-footer.html
-header.html
-app.js
/css

-bootstrap.css

-bootstrap.min.css
/s

-backbone.js

-jquery.js

-underscore.js
/1libs

-require.min.js

-text.js

Create a folder; in the folder create an index.html file with the
following content skeleton:

<!DOCTYPE html>
<html lang="en">

<head>

</head>

190

http://bit.ly/2LfB9IQ

CHAPTER 5 BACKBONE.JS AND PARSE
<body>
</body>
</html>

Download the necessary libraries or hot-link them from a CDN. Next
include JavaScript libraries and Bootstrap stylesheets into the <head>
element along with other important but not required meta elements.

<head>
<meta charset="utf-8" />
<title>Message Board</title>

<meta name="author" content="Azat Mardan" />
We need this for responsive behavior:

<meta name="viewport"

content="width=device-width, initial-scale=1.0" />
Link jQuery from a local file (v2.1.4 or higher):
<script src="js/jquery.js"></script>

Do the same for Underscore (v1.8.3 or higher) and Backbone (v1.2.3 or
higher):

<script src="js/underscore.js"></script>

<script src="js/backbone.js"></script>

The Parse JavaScript SDK v1.5.0 is patched, meaning it's modified to
work with the local Parse server. In this version, I commented or deleted
the /1 in the URL path. The file is in the j s folder of this project. Note this,
because other versions might not work properly with this example:

<script src="js/parse-1.5.0.7s"></script>

191

CHAPTER 5 BACKBONE.JS AND PARSE
The Bootstrap CSS inclusion requires the following:

<link type="text/css" rel="stylesheet"

href="css/bootstrap.css" />

We need to have Require]S (v2.1.22 or higher) for loading
dependencies:

<script type="text/javascript" src="libs/require.js">

</script>
And here’s our JS application inclusion:

<script type="text/javascript" src="app.js"></script>
</head>

Populate the <body> element with Bootstrap scaffolding (introduced
in Chapter 1, “Basics”):

<body>
<div class="container-fluid">
<div class="row-fluid">
<div class="col-md-12">
<div id="header">
</div>
</div>
</div>
<div class="row-fluid">
<div class="col-md-12">
<div id="content">
</div>
</div>

</div>

192

CHAPTERS5 BACKBONE.JS AND PARSE

<div class="row-fluid">
<div class="col-md-12">
<div id="footer">
</div>
</div>
</div>
</div>

</body>
Create an app . j s file and put Backbone.js views inside:
e headerView: Menu and app-common information
e footerView: Copyrights and contact links
e homeView: Home page content

We use Require.js syntax and the Shim plug-in for HTML templates:

require ([
'libs/text!header.html"',
'libs/text!home.html"',
'libs/text!footer.html'], function (
headerTpl,
homeTpl,
footerTpl) f{

The following code adds the application router with a single index route:

const ApplicationRouter = Backbone.Router.extend ({
routes: {
mwn : "home",

"*actions": "home"

193

CHAPTER 5 BACKBONE.JS AND PARSE

Before we do anything else, we can initialize views that are going to be
used across the app:

initialize: function() ¢{
this.headerView = new HeaderView ()
this.headerView.render ()
this.footerView = new FooterView ()
this.footerView.render ()

s

This code takes care of the home route:

home: function () {
this.homeView = new HomeView ()

this.homeView.render ()

—

H)

The header Backbone View is attached to the #header element and
uses the headerTpl template:

HeaderView = Backbone.View.extend ({
el: '#header',
templateFileName: 'header.html',
template: headerTpl,
initialize: function() {

1
I

render: function() f{
console.log(this.template)
$(this.el) .html (.template (this.template))

—
-

194

CHAPTERS5 BACKBONE.JS AND PARSE

To render the HTML, we use the jQuery.html () function:

FooterView = Backbone.View.extend ({
el: '"#footer',
template: footerTpl,
render: function() {

this.Sel.html(.template (this.template))

})

The home Backbone View definition uses the #content DOM
element:

HomeView = Backbone.View.extend ({
el: '#content',
template: homeTpl,
initialize: function() {
1y
render: function() {
$(this.el) .html (.template (this.template))

H)

To start an app, we create a new instance and call Backbone.

history.start():

app = new ApplicationRouter ()

Backbone.history.start ()

195

CHAPTER 5 BACKBONE.JS AND PARSE

The full code of the app. s file is shown here:

require ([

'libs/text!header.html',
// Example of a shim plugin use
'libs/text!home.html"',
'libs/text!footer.html'],

function (
headerTpl,
homeTpl,
footerTpl) {

const ApplicationRouter = Backbone.Router.extend ({

routes: {

' ': '"home',
'*actions': 'home'

1y

initialize: function() {

this.headerView = new HeaderView ()
this.headerView.render ()
this.footerView = new FooterView ()
this.footerView.render ()

1y

home: function () {
this.homeView = new HomeView ()

this.homeView.render ()

—

1)

HeaderView = Backbone.View.extend(f{
el: '#header',
templateFileName: 'header.html',
template: headerTpl,
initialize: function() {

1
Ir

196

CHAPTERS5 BACKBONE.JS AND PARSE

render: function() {

console.log(this.template)

$(this.el) .html (.template (this.template))

—

—
N

FooterView = Backbone.View.extend ({
el: '"#footer',
template: footerTpl,
render: function() {

this.$el.html(.template (this.template))

—

—
N

HomeView = Backbone.View.extend ({
el: '#content',
template: homeTpl,
initialize: function () ¢{
1y

render: function() {

$(this.el) .html (.template (this.template))

—
N

app = new ApplicationRouter ()
Backbone.history.start ()
1)

The code above displays templates. All views and routers are inside,

requiring the module to make sure that the templates are loaded before we

begin to process them.

197

CHAPTER5 BACKBONE.JS AND PARSE

Here is what home . htm1 looks like:
o Atable of messages
e Underscore.js logic to output rows of the table
e Anewmessage form

Let’s use the Bootstrap library structure (with its responsive
components) by assigning row-fluid and col-md-12 classes:

<div class="row-fluid" id="message-board">
<div class="col-md-12">
<table class="table table-bordered table-striped">
<caption>Message Board</caption>
<thead>
<tr>
<th class="span2">Username</th>
<th>Message</th>
</tr>
</thead>
<tbody>

This part has Underscore.js template instructions, which are just some
JS code wrapped in <% and %> marks. Right away we are checking that the
mode1s variable is defined and not empty:

<

o

if (typeof models != 'undefined' &&
models.length > 0) {

_.each() is aniterator function from the UnderscoreJS TK library
(http://underscoreijs.org/#each), which does exactly what it sounds
like—iterates through elements of an object/array:

__.each (models, function (value, key, list) { %>

<tr>

198

http://underscorejs.org/#each

CHAPTERS5 BACKBONE.JS AND PARSE

Inside of the iterator function we have the argument value thatis
a single model from models. We can access attributes of the Backbone
model with model.attributes.attributeName. To output variables in
Underscore, we use <$= NAME $>instead of <¢ CCODE %>:

<td><%= value.attributes.username %></td>
<td><%= value.attributes.message %$></td>
</tr>

<% 1)

o\

1
J

But what if models is undefined or empty? In this case, we print a
message that says that there’s no messages yet. It goes into the e1se block.
We use colspan=2 to merge two cells into one:

else { %>
<tr>
<td colspan="2">No messages yet</td>

</tr>
We close the table and other HTML tags:

<$}%>
</tbody>
</table>
</div>

</div>

For the new message form, we also use the row-f1luid class and then
add <input> elements:

<div class="row-fluid" id="new-message">
<div class="col-md-12">

<form class="well form-inline">

199

CHAPTER 5 BACKBONE.JS AND PARSE

The <input> element must have the name username because that’s
how we find this element and get the username value in the JavaScript code:

<input type="text"
name="username"
class="input-small"

placeholder="Username" />

Analogous to the username <input> tag, the message text tag needs to
have the name. In this case, it's message:

<input type="text" name="message"
class="input-small"

placeholder="Message Text" />

Lastly, the “SEND” button must have the ID of send. This is what we
use in the events property of the Backbone’s HomeView class:

SEND
</form>
</div>

</div>
For your convenience, here’s the full code of the home . htm1 template file:

<div class="row-fluid" id="message-board">
<div class="col-md-12">
<table class="table table-bordered table-striped">
<caption>Message Board</caption>
<thead>
<tr>
<th class="span2">Username</th>
<th>Message</th>
</tr>
</thead>

200

CHAPTER 5 BACKBONE.JS AND PARSE

<tbody>
<% 1f (typeof models != 'undefined' && models.
length>0) {

__.each (models, function (value,key, list) { %>
<tr>
<td><%= value.attributes.username %$></td>

<td><%= value.attributes.message %$></td>

</tr>
<% 1)
}
else { %>
<tr>
<td colspan="2">No messages yet</td>
</tr>
<%}%>
</tbody>
</table>
</div>
</div>
<div class="row-fluid" id="new-message">
<div class="col-md-12">
<form class="well form-inline">
<input type="text"
name="username"
class="input-small"
placeholder="Username" />
<input type="text" name="message"
class="input-small"

placeholder="Message Text" />

201

CHAPTER 5 BACKBONE.JS AND PARSE

SEND
</form>
</div>

</div>

Now we can add the following components:
o Parse collection
e Parse model
e Send/add message event
o Getting/displaying messages functions

The following is a Backbone-compatible model/class Parse.Cbject
from Parse JS SDK. It has a mandatory c1assName attribute. This is the
name of the collection. We define the model with extend ():

Message = Parse.Cbject.extend({

className: 'MessageBoard'

—
-

Next is the Backbone-compatible collection class/object
Parse.Collection from Parse JavaScript SDK that points to the just
created Message model using the mode1 property:

MessageBoard = Parse.Collection.extend ({

model: Message

—
~

The HomeView object needs to have the c1ick event listener on the
“SEND” button:

HomeView = Backbone.View.extend ({
el: '#content',

template: homeTpl,

202

CHAPTERS5 BACKBONE.JS AND PARSE

events: {
'click #send': 'saveMessage'

by

When we create HomeView, let’s also create a collection and attach
event listeners to it:

initialize: function () ¢{
this.collection = new MessageBoard()
this.collection.bind('all', this.render, this)
this.collection.fetch ()
this.collection.on('add', function (message) {
message.save (null, {
success: function (message) {
console.log('saved ' + message)
}y
error: function (message) {

console.log('error'")

)

console.log('saved' + message)

Next is the definition of saveMessage () calls for the “SEND” button
click event that goes on the same HomeView object as a property:

saveMessage: function () {

Firstly, we get the form object by its ID (#new-message) because it’s
more effective and readable to use a stored object rather than use jQuery
selector every time.

const newMessageForm = $('#new-message')

203

CHAPTER5 BACKBONE.JS AND PARSE

The next two lines will get the values of the input fields with names

username and message:

const username = newMessageForm.
find (' [name="username"] ") .val ()
const message = newMessageForm.

find (' [name="message"]"') .val()

Once we have the values of a new message (text and author), we can
invoke this.collection.add ():

this.collection.add ({
'username': username,
'message': message

})

}y

Last, we output the collections by using . template with the template
from this.template, and then invoking it with the data coming from

this.collection:

render: function () ¢{
$(this.el) .html(.template (this.template)
(this.collection))

}

The end result of our manipulations in app . § s might look something
like this:

require ([
'libs/text!header.html"',
'libs/text!home.html',
'"libs/text!footer.html'], function (
headerTpl,

204

CHAPTERS5 BACKBONE.JS AND PARSE

homeTpl,
footerTpl) {

Parse.initialize ('your-parse-app-id',

'your-parse-js—-sdk-key"')

const ApplicationRouter = Backbone.Router.extend ({

routes: {
' ': "home',
'*actions': 'home'

}y

initialize: function() {
this.headerView = new HeaderView ()
this.headerView.render ()
this.footerView = new FooterView ()
this.footerView.render ()

}y

home: function() {
this.homeView = new HomeView ()

this.homeView.render ()

1)

HeaderView = Backbone.View.extend ({
el: '#header',
templateFileName: 'header.html',
template: headerTpl,
initialize: function() {
by
render: function() f{

S (this.el) .html(.template(this.template))

205

CHAPTER5 BACKBONE.JS AND PARSE

FooterView = Backbone.View.extend ({
el: "#footer',
template: footerTpl,
render: function() {

this.Sel.html(.template (this.template))

})

Message = Parse.Cbject.extend ({
className: 'MessageBoard'

})

MessageBoard = Parse.Collection.extend ({

model: Message

—~
N

HomeView = Backbone.View.extend ({
el: '#content',
template: homeTpl,
events: {

'click #send': 'saveMessage'

by

initialize: function() {
this.collection = new MessageBoard()
this.collection.bind('all', this.render, this)
this.collection.fetch()
this.collection.on('add', function (message) f{
message.save (null, {
success: function (message) {

console.log('saved ' + message)

by

206

CHAPTERS5 BACKBONE.JS AND PARSE

error: function (message) {

console.log('error'")

)
console.log('saved' + message)

})

s

saveMessage: function() {
const newMessageForm = $('#new-message')
const username = newMessageForm.
find (' [name="username"]"') .val ()
const message = newMessageForm.
find (' [name="message"]") .val ()

this.collection.add({

'username': username,
'message’': message
1)

}I

render: function() {

$(this.el) .html (.template (this.template) (this.

collection))

}
})

window.app = new ApplicationRouter ()

Backbone.history.start ()

—~
N

Again, the full source code of the Backbone.js and Parse Message
Board application is available at http://bit.1y/2LfB9IQ.

207

http://bit.ly/2LfB9IQ

CHAPTER5 BACKBONE.JS AND PARSE

Taking Message Board Further

Once you are comfortable that your front-end application works well locally,
with or without a local HTTP server like MAMP or XAMPP, deploy it to
Microsoft Azure or Heroku. In-depth deployment instructions are described
in Chapter 1, “Getting Data from Backend Using jQuery and Parse’.

In the last two examples, Message Board had very basic functionality.
You could enhance the application by adding more features.

I created a list of additional features for intermediate level developers

to implement as an exercise:

e Sortthe list of messages through the updateat
attribute before displaying it.

e Add a “Refresh” button to update the list of messages.

o Save the username after the first message entry in a
runtime memory or in a session.

e Add an up-vote button next to each message, and store
the votes.

e Add a down-vote button next to each message, and
store the votes.

Here are a few recommended additional features for advanced level
developers:

e Add aUser collection.
o Prevent the same user from voting multiple times.

e Add user sign-up and log-in actions by using Parse

functions.

208

CHAPTERS5 BACKBONE.JS AND PARSE

e Add a “Delete Message” button next to each message
created by a user.

¢ Add an “Edit Message” button next to each message
created by a user.

Summary

This short chapter gives you yet another way of building apps with nothing
but JavaScript (and HTML and CSS, obviously). With Parse or a similar
back-end-as-a-service (BaaS) solution, it is straightforward to persist the
data without having to code your own backend. Baa$ solutions take it a
step further by allowing for access-level controls, authentications,
server-side logic, and third-party integrations.

In addition to leveraging Parse in this chapter, we saw how Backbone
can be flexible in terms of allowing you to overload its classes to build
your own custom ones. This is a way to use Backbone to build your own
framework. This is what we did at DocuSign when I worked there; we had
base Backbone models and extended them for custom use cases. We even
shared Backbone models between the server and the browser, allowing for
faster data loading. Speaking of the server JavaScript, in the next chapter
we'll explore how to write JavaScript on the server with Node.js.

209

PART il

Back-End Prototyping

CHAPTER 6

Intro to Node.|s

Any fool can write code that a computer can understand.
Good programmers write code that humans can understand.

—Martin Fowler

In this chapter, we’ll cover the following:
o Building “Hello World” in Node.js
e Node.js core modules
o npm Node.js package manager
e Message Board with Node.js: memory store version
e Unit testing Node.js

Node.js is a non-blocking platform for building web applications.
It uses JavaScript, so it’s a centerpiece in our full stack JavaScript
development. We'll start by building our “Hello World” app and then we’ll

cover core modules and npm. Then, we deploy our “Hello World” app to
the cloud.

© Azat Mardan 2018

213
A.Mardan, Full Stack JavaScript, https://doi.org/10.1007/978-1-4842-3718-2_6

https://en.wikipedia.org/wiki/Martin_Fowler

CHAPTER6 INTRO TO NODE.JS

Building “Hello World” in Node.js

To check if you have Node.js installed on your computer, type and execute
this command in your terminal:

S node -v

Get the version 8 or higher. If you don’t have Node.js installed, or
if your version is older (behind or lower), you can download the latest
version athttp://nodejs.org/#download. You can use one of these
tools for version management (i.e., switching between Node.js versions):

e n:https://npmjs.com/n
e nave:https://npmjs.com/nave
e nvm:https://npmjs.com/nvm

e nvm-windows:https://github.com/coreybutler/

nvm-windows

As usual, you could copy the example code at http://bit.ly/
2Lbvxzr, Or write your own program from scratch. If you wish to do the
latter, create a folder he11o for your “Hello World” Node.js application.
Then create a file server.js and line by line type the code below.

This line will load the core ht tp module for the server (more on the
modules later):

const http = require('http')

We'll need a port number for our Node.js server. To get it from the
environment or assign 1337 if the environment is not set, use:

const port = process.env.PORT | |

This will create a server, and a callback function will contain the
response handler code:

const server = http.createServer((req, res) => {

214

http://nodejs.org/#download
https://npmjs.com/n
https://npmjs.com/nave
https://npmjs.com/nvm
https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows
http://bit.ly/2Lbvxzr
http://bit.ly/2Lbvxzr

CHAPTER 6 INTRO TO NODE.JS

To set the right header and status code, use:
res.writeHead (;, {'Content-Type': 'text/plain'})
To output “Hello World” with the line end symbol, use:

res.end('Hello World\n')
b
To set a port and display the address of the server and the port
number, use:

server.listen (port, () => {

console.log('Server is running at %s:%s ',

server.address () .address, server.address () .port)

From the folder in which you have server. s, launch in your terminal

the following command:

$ node server.js

Open http://localhost:1337 or http://127.0.0.1:1337 or any other
address you see in the terminal as a result of the console. log () function,
and you should see “Hello World” in a browser. To shut down the server,

press Control + C.

Note The name of the main file could be different from server.s
(e.0., index.js Or app.7s). In case you need to launch the app. s
f”B,jUStUSG $ node app.Js.

215

CHAPTER6 INTRO TO NODE.JS

Node.js Core Modules

Unlike other programming technologies, Node.js doesn’t come with a
heavy standard library. The core modules of Node.js are a bare minimum
and the rest can be cherry-picked via the npm Node.js package manager
registry. The main core modules, classes, methods, and events include:

e http (https://nodejs.org/api/http.html):
Module for working with HTTP protocol

e util (https://nodejs.org/api/util.html): Module
with various helpers

e querystring (https://nodejs.org/api/querystring.
html): Module for parsing query strings from the URI

e url(https://nodejs.org/api/url.html): Module
for parsing URI information

e fs(https://nodejs.org/api/fs.html): Module for
working with the file system

These are the most important core modules. Let’s take a look
at each of them.

http

This is the main module responsible for the Node.js HTTP server. Here are
the main methods:

e http.createServer (): Returnsa new web
server object

e http.listen (): Begins accepting connections on the
specified port and hostname

216

https://nodejs.org/api/http.html
https://nodejs.org/api/http.html
https://nodejs.org/api/util.html
https://nodejs.org/api/util.html
https://nodejs.org/api/querystring.html
https://nodejs.org/api/querystring.html
https://nodejs.org/api/querystring.html
https://nodejs.org/api/url.html
https://nodejs.org/api/url.html
https://nodejs.org/api/fs.html
https://nodejs.org/api/fs.html

CHAPTER 6 INTRO TO NODE.JS

e http.ServerRequest (): Passes incoming requests to
request handlers

e data: Emitted when a piece of the message body is
received

e end: Emitted exactly once for each request

e request.method (): The request method

as a string
e request.url (): Request URL string

e http.ServerResponse (): Provides response/output
of request handlers initiated by an HTTP server—not
by the user

e response.writeHead (): Sends aresponse header
to the request

e response.write (): Sends aresponse body

e response.end (): Sends and ends a response body

util
This module provides a utility for debugging:

e util.inspect (): Returns a string representation of an
object, which is useful for debugging

217

CHAPTER6 INTRO TO NODE.JS

querystring

This module provides utilities for dealing with query strings. Some of the
methods include:

e querystring.stringify ():Serializes an objectto a
query string

e querystring.parse (): Deserializes a query string to
an object

url

This module has a utility for URL resolution and parsing:

e url.parse (): Takes a URL string, and returns an object
which has URL information broken down into parts

fs

fs handles file system operations such as reading and writing to/from files.
There are synchronous and asynchronous methods in the library. Some of
the methods include:

e fs.readFile (): Reads file asynchronously
e fs.writeFile (): Writes data to file asynchronously

There is no need to install or download core modules. To include them
in your application, all you need is to follow the syntax:

const http = require('http')

218

CHAPTER 6 INTRO TO NODE.JS

The lists of non-core modules can be found at:
o npmjs.org: Node.js Package Manager registry

e Nipster (http://eirikb.github.io/nipster): npm
search tool for Node.js

e node-modules (http://node-modules.com): npm
search engine

If you would like to know how to code your own modules, take a look at
Chapter 12 “Modularizing Your Code and Publishing Node.js Modules to
npm” of Practical Node.js, 2nd Edition: http://bit.1ly/2LkG0zZk.

npm Node.js Package Manager

Node.js Package Manager, or npm, manages dependencies and installs
modules for you. Node.js installation comes with npm, whose web site is
npm;js.org.

package.json contains meta information about our Node.js
application such as a version number; author name; and, most important,
what dependencies we use in the application. All of that information is in
the JSON formatted object, which is read by npm.

If you would like to install packages and dependencies specified in

package. json, type:
$ npm install

A typical package. json file might look like this:

"name": "Blerg",

"description": "Blerg blerg blerg.",
"version": "0.0.1",

"author": f{

219

https://npmjs.org/
http://eirikb.github.io/nipster)
http://node-modules.com
https://doi.org/10.1007/978-1-4842-3718-2_12
http://bit.ly/2LkG0Zk
http://npmjs.org/

CHAPTER6 INTRO TO NODE.JS

"name" : "John Doe",
"email"™ : "john.doe@gmail.com"
1y
"repository": f{
"type": "git",
"url": "http://github.com/johndoe/blerg.git"
}y
"engines": [

"node >= 0.6.2"

1,

"scripts": {
"start": "server.js"
by
"license" : "MIT",
"dependencies": f{
"express": ">= 2.5.6",
"mustache": "0.4.0",
"commander": "0.5.2"
}y
"bin" : {
"blerg" : "./cli.js"

-

—

While most of the properties in the package . json example above
like description and name are self-explanatory, others deserve more
explaining. The dependencies property is an object, and each item has
the name on the left side and the version number on the right side. For
example, this statement tells npm to use Express.js version 2.5.6 or lower

(earlier):

"express": "<= 2.5.6"

220

CHAPTER 6 INTRO TO NODE.JS

The version can be exact (recommended). For example, this statement
locks the version of Express.js at 2.5.6.:

"express": "2.5.6,"

The versions can be specified to be greater-than (>), less-than (<), or
any/wildcard (*). For example, this statement tell npm to use any version
which usually means npm will get the latest stable version:

llexpressll: Wk

A wild card is a great way to blow up your app in production with new
untested dependencies: therefore not recommended.

The bin property is for command-line utilities. It tells the system what
file to launch. And the scripts object has scripts that you can launch with
$ npm run SCRIPT NAME.The start and test scripts are exceptions.
You can run them with $ npm startand$ npm test.

To update a package to its current latest version or the latest version
that is allowable by the version specification defined in package. json,
use:

$ npm update name-of-the-package
Or for single module installation:
$ npm install name-of-the-package

The only module used in this book’s examples—and which does not
belong to the core Node.js package—is mongodb. We'll install it in the next
chapter.

However, Heroku will need package . json to run npm on the server.
The easiest way to create package. json is to execute:

$ npm init -y

221

CHAPTER6 INTRO TO NODE.JS

Deploying “Hello World” to PaaS

For Heroku and Microsoft Azure deployment, we’ll need a Git repository.
To create it from the root of your project, type the following command in
your terminal:
$ git init

Git will create a hidden . git folder. Now we can add files and make

the first commit:

$ git add .

$ git commit -am "first commit"

Tip To view hidden files on the macOS Finder app, execute this
command in a terminal window:

defaults write com.apple.finder AppleShowAllFiles -bool true

To change the flag back to hidden:

defaults write com.apple.finder AppleShowAllFiles -bool false

Deploying to Microsoft Azure

In order to deploy our “Hello World” application to Microsoft Azure,
we must add a Git remote destination that belongs to Azure. You could
copy the URI/URL from the Microsoft Azure Portal, and use it with this
command:

$ git remote add azure YCUR AZURE URI

222

CHAPTER 6 INTRO TO NODE.JS
Now we should be able to make a push with this command:
$ git push azure master

If everything went okay, you should see success logs in the terminal
and “Hello World” in the browser of your Microsoft Azure Web Site URL.
To push changes, just execute:

$ git add .
$ git commit -m "changing to hello azure"

$ git push azure master

A more meticulous guide can be found in the tutorial http: //bit.1ly/
2LbXQ01.

Deploying to Heroku

For Heroku deployment, we need to create two extra files: Procfile and
package.json. You could get the source code from http://bit.1ly/
2Lbvxzr OI write your own one.

The structure of the “Hello World” application looks like this:

/06-hello
-package.json
-Procfile

-server.js

Procfile is a mechanism for declaring what commands are run by
your application’s dynos on the Heroku platform. Basically, it tells Heroku
what processes to run. Procfile has only one line in this case:

web: node server.js

223

http://bit.ly/2LbXQOi
http://bit.ly/2LbXQOi
http://bit.ly/2Lbvxzr
http://bit.ly/2Lbvxzr

CHAPTER6 INTRO TO NODE.JS

For this example, we keep package. json simple:

"name": "node-example",
"version": "0.0.1",

"dependencies": f{

1
I

"engines": {

"node": ">=0.6.x"

—

After we have all of the files in the project folder, we can use Git to
deploy the application. The commands are pretty much the same as with
Microsoft Azure except that we need to add Git remote, and create Cedar
Stack with:

$ heroku create
After it’s done, we push and update with:

$ git push heroku master
$ git add .
$ git commit -am "changes :+1:"

$ git push heroku master

If everything went okay, you should see success logs in the terminal
and “Hello World” in the browser of your Heroku app URL.

224

CHAPTER 6 INTRO TO NODE.JS

Message Board with Node.js: Memory Store
Version

The first version of the Message Board back-end application will store
messages only in runtime memory storage for the sake of the KISS
principle—keep it simple stupid (http://azat.co/blog/kiss). That
means that each time we start/reset the server, the data will be lost.
We'll start with a simple test case first to illustrate the Test-Driven
Development approach. The full code is available at the book’s GitHub
repository in the code/06-test folder: http://bit.ly/2LcnHWv.

Unit Testing Node.js

We should have two methods:

1. Getall of the messages as an array of JSON
objects for the GET /message endpoint using the
getMessages () method

2. Add a new message with properties name and
message for the POST /messages route via the

addMessage () function

We'll start by creating an empty mb-server. s file. After it’s there, let’s
switch to tests and create the test. js file with the following content:

const http = require('http')
const assert = require('assert')
const querystring = require('querystring')

const util = require('util')
const messageBoard = require('./mb-server')

assert.deepEqual (' [{"name":"John", "message":"hi"}]"',

messageBoard.getMessages ())

225

http://azat.co/blog/kiss
http://bit.ly/2LcnHWv

CHAPTER6 INTRO TO NODE.JS

assert.deepEqual ('{"name":"Jake","message":"gogo"}"',

messageBoard.addMessage ("name=Jake&message=gogo'))
assert.deepEqual (' [{"name":"John", "message":"hi"}, {"name":
"Jake", "message":"gogo"}]"',

messageBoard.getMessages ())

Please keep in mind that this is a very simplified comparison of strings
and not JavaScript objects. So every space, quote, and case matters. You
could make the comparison “smarter” by parsing a string into a JSON
object with:

JSCON.parse (str)

For testing our assumptions, we use the core Node.js module assert. It
provides a bunch of useful methods like equal (), deepEqual (), etc.

More advanced libraries include alternative interfaces with TDD and/
or BDD approaches:

e expect.js(https://www.npmjs.com/expect.js):
Minimalistic BDD-style assertion library: for example,

expect (user.name) .to.eql ('azat')

e should (https://www.npmjs.com/should and
http://shouldjs.github.io): BDD-style assertion
library that works by modifying Object.prototype:

for example, user.name.should.be.eql ('azat")

For more Test-Driven Development and cutting-edge automated
testing, you could use the following libraries and modules:

e mocha (https://www.npmjs.com/mocha and
https://mochajs.org): Feature-rich testing
framework (my default choice)

e jasmine (https://www.npmjs.com/jasmine
https://jasmine.github.io): BDD testing framework
with built-in assertion and spy (for mocking) libraries

226

http://nodejs.org/api/assert.html
http://www.npmjs.com/expect.js)
http://www.npmjs.com/should
http://shouldjs.github.io
http://www.npmjs.com/mocha
https://mochajs.org
http://www.npmjs.com/jasmine
https://jasmine.github.io

CHAPTER 6 INTRO TO NODE.JS

e vows (https://www.npmjs.com/vows and http://
vowsjs.org): BDD framework for Node.js tailored to
testing asynchronous code

e chai (https://www.npmjs.com/chaijs and
http://chaijs.com): BDD/TDD assertion library
that can be paired with a testing framework and has its
own versions of Should, Expect, and Assert

e tape (https://www.npmjs.com/tape): A
minimalistic TAP (Test Anything Protocol) library

e Jjest (https://www.npmjs.com/jest and https://
jestjs.io): Jasmine-and-Expect-like testing library
with automatic mocks

You could copy the “Hello World” script into the mb-server. js file for
now or even keep it empty. If we run test. js by the terminal command:

$ node test.js
we should see an error, probably something like this one:
TypeError: Cbject #<Cbject> has no method 'getMessages'

That's totally fine, because we haven’t written the getMessages ()
method yet. So let’s do it and make our application more useful by adding
two new methods: to get the list of the messages for Chat and to add a new
message to the collection.

Here’s the mb-server. s file with the global exports object:

exports.getMessages = function() f{
return JSON.stringify (messages)

/ Qutput array of messages as a string/text

227

http://www.npmjs.com/vows
http://vowsjs.org
http://vowsjs.org
http://www.npmjs.com/chaijs
http://chaijs.com
http://www.npmjs.com/tape)
http://www.npmjs.com/jest
https://jestjs.io
https://jestjs.io

CHAPTER6 INTRO TO NODE.JS

exports.addMessage = function (data) {
messages.push (querystring.parse (data))
// To convert string into JavaScript object we use
parse/deserializer
return JSON.stringify(querystring.parse(data))

// Cutput new message in JSON as a string

—~

We import dependencies:

const http = require('http')

// Loads http module

const util= require('util')

// Usefull functions

const querystring = require('querystring')

// Loads querystring module, we'll need it to serialize

and deserialize objects and query strings

And set the port. If it’s set in the environment variable PORT (e.g.,
$ PORT=3000 node server.js), we use that value; and if it’s not set, we
use a hard-coded value of 1337:

const port = process.env.PORT | |

So far, nothing fancy, right? To store the list of messages, we’ll use an
array:

const messages=[]
// This array will hold our messages
messages.push ({
'name': 'John',
'message': 'hi'
)
// Sample message to test list method

228

CHAPTER 6 INTRO TO NODE.JS

Generally, fixtures like dummy data belong to the test/spec files and
not to the main application code base.

Our server code will look slightly more interesting. For getting the list
of messages, according to REST methodology, we need to make a GET
request. For creating/adding a new message, it should be a POST request.
Soin our createServer object, we should add req.method () and
reqg.url () to check for an HTTP request type and a URL path.

Let’s load the http module:

const http = require('http')

We'll need some of the handy functions from the ut il and
querystring modules (to serialize and deserialize objects and query
strings):

const util= require('util')
// Usefull functions
const querystring = require ('querystring')

ds querystring module, we'll need it to serialize

and deserialize objects and query strings
To create a server and expose it to outside modules (i.e., test.s):

exports.server=http.createServer (function (reqg, res) {

// Creates server

Inside of the request handler callback, we should check if the request
method is POST and the URL is messages/create.json:

if (reg.method == 'POST' && req.url == '/messages/
create.json') {
// If method is PCST and URL is messages/ add message

to the array

229

CHAPTER6 INTRO TO NODE.JS

If the condition above is true, we add a message to the array. However,
data must be converted to a string type (with encoding UTF-8) prior to the
adding, because it is a type of Buf fer:

let message = "'
reqg.on('data', function (data, msg) {
console.log(data.toString('utf-8"))
message=exports.addMessage (data.toString ('utf-8"))
// Data 1is type of Buffer and must be converted to
string with encoding UTF-8 first
// Adds message to the array

—
-

These logs will help us to monitor the server activity in the terminal:

reqg.on('end', function() {

console.log('message', util.inspect (message, true,
null))

console.log('messages:', util.inspect (messages,
true, null))

// Debugging output into the terminal
The output should be in a text format with a status of 200 (okay):

res.writeHead (, {'Content-Type': 'text/plain'})

// Sets the right header and status code
We output a message with a newly created object ID:

res.end (message)
// Cutput message, should add object id
)

230

CHAPTER 6 INTRO TO NODE.JS

If the method is GET and the URL is /messages/1list.json, outputa
list of messages:

} else if (reqg.method == 'GET' && req.url == '/messages/
list.json') {
// If method is GET and URL is /messages output list of

messages
Fetch a list of messages:

const body = exports.getMessages ()

// Body will hold our output
The response body will hold our output:

res.writeHead (, |
'Content-Length': body.length,
'Content-Type': 'text/plain'

1)

res.end (body)

The next e1se is for when there’s not a match for any of the previous
conditions. This sets the right header and status code:

} else {
res.writeHead (, {'Content-Type': 'text/plain'})

// Sets the right header and status code

In case it’s neither of the two endpoints above, we output a string with
aline end symbol:

res.end('Hello World\n'")

// Outputs string with line end symbol

—

231

CHAPTER6 INTRO TO NODE.JS

Start the server:

—
-

.listen (port)

// Sets port and IP address of the server
Now, we should set a port and IP address of the server:
console.log('Server running at http://127.0.0.1:%s/', port)

We expose methods for the unit testing in test.js (exports
keyword), and this function returns an array of messages as a string/text:

exports.getMessages = function() f{

return JSON.stringify (messages)

—

addMessage () converts a string into a JavaScript object with the
parse () deserializer method from querystring:

exports.addMessage = function (data) f{

messages.push (querystring.parse (data))
We also return a new message in a JSON-as-a-string format:

return JSON.stringify(querystring.parse(data))

—

Here is the full code of mb-server.js minus the comments. It’s also
available in the code/06-test folder.

const http = require('http'")

// Loads http module

const util= require('util')

// Usefull functions

const querystring = require('querystring')

// Loads querystring module, we'll need it to serialize

and deserialize objects and query strings

232

https://github.com/azat-co/fullstack-javascript/tree/master/code/06-test

CHAPTER6 INTRO TO NODE.JS

const port = process.env.PORT | |

const messages=[]
// This array will hold our messages
messages.push ({
'name': 'John',
'message': 'hi'
})
// Sample message to test list method
exports.server=http.createServer (function (req, res) f{
// Creates server
if (reqg.method == 'POST' && req.url == '/messages/

create.json') f{

// If method is POST and URL is messages/ add message

to the array
let message = "
reqg.on('data', function (data, msg) {

console.log(data.toString ('utf-8"))

message=exports.addMessage (data.toString ('utf-8"))

// Data is type of Buffer and must be converted to

string with encoding UTF-8 first
// Adds message to the array
})

reg.on('end', function() {

console.log('message', util.inspect (message, true,

null))
console.log('messages:', util.inspect (messages,
true, null))

// Debugging output into the terminal

res.writeHead (, {'Content-Type': 'text/plain'})

// Sets the right header and status code

res.end (message)

CHAPTER6 INTRO TO NODE.JS

// Cutput message, should add object id
})

} else
if (reqg.method == 'GET' && reqg.url == '/messages/list.
json') {

// If method is GET and URL is /messages output list of
messages

const body = exports.getMessages ()

// Body will hold our output

res.writeHead (, {

'Content-Length': body.length,

'Content-Type': 'text/plain’
})
res.end (body)
} else {
res.writeHead (, {'Content-Type': 'text/plain'})

// Sets the right header and status code
res.end('Hello World\n'")
// Cutputs string with line end symbol

}) .listen (port)
// Sets port and IP address of the server
console.log('Server running at http://127.0.0.1:%s/', port)

exports.getMessages = function () {

return JSON.stringify (messages)

// Cutput array of messages as a string/text
}
exports.addMessage = function (data) {

messages.push (querystring.parse (data))

234

CHAPTER 6 INTRO TO NODE.JS

parse/deserializer
return JSCON.stringify(querystring.parse (data))

Cutput new message in JSON as a string

—

To check it, go to http://localhost:1337/messages/list.json. You
should see an example message. Alternatively, you could use the terminal

command to fetch the messages:
$ curl http://127.0.0.1:1337/messages/list.json
To make the POST request by using a command-line interface:

$ curl -d "name=BOB&message=test" http://127.0.0.1:1337/

messages/create.json

And you should get the output in a server terminal window and a new
message “test” when you refresh http://localhost:1337/messages/list.json.
Needless to say, all three tests should pass.

Your application might grow bigger with more methods, URL paths
to parse, and conditions. That is where frameworks come in handy. They
provide helpers to process requests and other nice things like static file
support, sessions, etc. In this example, we intentionally didn’t use any
frameworks like Express.js or Restify but there are many powerful and
useful frameworks for Node. Here’s the list of the most popular and

notable Node.js frameworks:

e Derby(http://derbyjs.com): MVC framework
makes it easy to write real-time, collaborative
applications that run in both Node.js and browsers

o Express.js (http://expressis.com): The most robust,
tested and used Node.js framework

235

http://derbyjs.com/
http://derbyjs.com
http://expressjs.com/
http://expressjs.com

CHAPTER6 INTRO TO NODE.JS

Restify (http://restify.com): Lightweight
framework for REST API servers

e Sails(http://sailsjs.org): MVC Node.js framework
with rich scaffolding

e hapi(https://hapijs.com): Node.js framework built
on top of Express.js

e Connect(https://github.com/senchalabs/
connect): Middleware framework for Node.js, shipping
with over 18 bundled middlewares and a rich selection
of third-party middleware

e GeddyJS (http://geddyijs.org): Simple, structured
MVC web framework for Node.js

e Compound]S (http://compoundjs.com)
(exRailsway]JS): Node.js MVC framework based on
Express.js

e Towerjs (http://tower.github.io): Full stack web
framework for Node.js and the browser

e Meteor (https://www.meteor.com): Open source
platform for building top-quality web apps in a fraction
of the time

For a list of hand-picked Node.js frameworks, take a look at
http://nodeframeworks.com.

Next, [will explain a few ways to improve the REST API application.
These are your assignments to give you more practice and make the

learning more effective:

o Improve existing test cases by adding object
comparison instead of a string one

e Move the seed datato test.js frommb-server.js

236

http://restify.com/
http://restify.com
http://sailsjs.org/
http://sailsjs.org
https://hapijs.com/
https://hapijs.com
https://github.com/senchalabs/connect/
https://github.com/senchalabs/connect
https://github.com/senchalabs/connect
http://geddyjs.org/
http://geddyjs.org
http://compoundjs.com/
http://compoundjs.com
http://tower.github.io/
http://tower.github.io
https://www.meteor.com/
https://www.meteor.com
http://nodeframeworks.com/

CHAPTER 6 INTRO TO NODE.JS

e Add test cases to support your frontend (e.g., up vote,
user login)

¢ Add methods to support your frontend (e.g., up-vote,
user login)

e Generate unique IDs for each message and store them
in a Hash instead of an Array

o Install Mocha and refactor test. js so it uses this
library

So far we've been storing our messages in the application memory, so
each time the application is restarted, we lose our messages. To fix it, we
need to add persistence (more permanent store), and one of the best ways
is to use a database like MongoDB, introduced in the next chapter.

Summary

In this chapter we’ve covered important topics that will lay the foundation
for all of your future Node.js development. This chapter taught the

“Hello World” application in Node.js, listed of some of its most important
Node.js core modules, explained the npm workflow, covered test-driven
development practice, and provided detailed commands for deployment
of Node.js apps to the Heroku and Microsoft Azure cloud services.

237

CHAPTER 7

Intro to MongoDB

What is Oracle? A bunch of people. And all of our products
were just ideas in the heads of those people - ideas that people
typed into a computer, tested, and that turned out to be the
best idea for a database or for a programming language.

—Larry Ellison

In this chapter, we'll explore the following topics:
e MongoDB shell
e MongoDB Native Node.js Driver
e MongoDB on Heroku with MongoLab
e Message Board: MongoDB version

MongoDB is a NoSQL document-store database. It is scalable and
performant. It has no schema so all the logic and relationships are
implemented in the application layer. You can use object-document
mappers (ODMs) like Waterline or Mongoose for that schema, validation
and business logic implementation in Node.js.

What'’s good about MongoDB in addition to its scaling and performance
is that MongoDB uses a JavaScript interface, which completes the full stack
JavaScript stack puzzle of browser, server, and the database layers. With
MongoDB we can use one language for all three layers. The easiest way to get
started with MongoDB is to use its shell, a.k.a. REPL (read-eval-print-loop).

© Azat Mardan 2018 239
A.Mardan, Full Stack JavaScript, https://doi.org/10.1007/978-1-4842-3718-2_7

https://en.wikipedia.org/wiki/Larry_Ellison

CHAPTER 7 INTRO TO MONGODB

MongoDB Shell

If you haven’t done so already, please install the latest version of MongoDB
from https://www.mongodb.com/download-center. For more
instructions, please refer to the “Database: MongoDB” section in
Chapter 2. You might have to create a data folder per the instructions.

Now from the folder where you unpacked the archive, launch the
mongod service with:

$./bin/mongod

You should be able to see information in your terminal and in the
browser at localhost:28017.

For the MongoDB shell, or mongo, launch in a new terminal window
(important!) and at the same folder this command:

$./bin/mongo

You should see something like this, depending on your version of the
MongoDB shell ($ mongo -version or after $ mongo):

MongoDB shell version: 3.0.6

connecting to: test

To test the database, use the JavaScript-like interface and commands

save and find:

> db.test.save({ a: 1 })

> db.test.find ()

Again, more detailed step-by-step instructions are available in the
“Database: MongoDB” section of Chapter 2.

The following are some other useful MongoDB shell commands, which
I've referenced in a MongoDB and Mongoose cheatsheet that you can
download in PDF for free at https://gum.co/mongodb/git-874e6fb4

240

http://www.mongodb.com/download-center
https://gum.co/mongodb/git-874e6fb4

CHAPTER 7 INTRO TO MONGODB

or view online at http: //bit.1ly/2LatwWtP. Here's the short version of

the reference:

> show dbs: Show databases on the server
> use DB NAME: Select database DB NAME

> show collections:Show collections in the
selected database

> db.COLLECTION NAME.find ():Perform the find
query on collection with the COLLECTICN NAME name
to find any items

> db.COLLECTION NAME.find ({" id": ObjectId
("549d9a3081d0f07866fdaacé") }): Perform the find
query on collection with the COLLECTION NAME name
to find item with ID 549d9a3081d0£07866fdaac6

> db.COLLECTION NAME.find ({"email": /
gmail/}): Perform the find query on collection with
the COLLECTION NAME name to find items with e-mail
property matching /gmail/ regular expression, e.g.,
bob@gmail.com or john@gmail.in

> db.COLLECTION NAME.update (QUERY OBJECT,
SET_OBJECT): Perform the update query on collection
with the COLLECTION NAME name to update items that
match QUERY COBJECT with SET OBJECT

> db.COLLECTION NAME.remove (QUERY OBJECT):
Perform remove query for items matching QUERY
OBJECT criteria on the COLLECTION NAME collection

> db.COLLECTION NAME.insert (OBJECT): Add
OBJECT to the collection with the COLLECTION NAME

name

241

http://bit.ly/2LatWtP

CHAPTER 7 INTRO TO MONGODB

So starting from a fresh shell session, you can execute these commands
to create a document, change it, and remove it:

help

show dbs

use board

show collections
db.messages.remove () ;

var a = db.messages.findCne () ;
printjson(a);

a.message = "hi";

a.name = "John";
db.messages.save (a) ;
db.messages.find ({});
db.messages.update ({name: "John"}, {Sset: {message: "bye"}});

db.messages.find ({name: "John"});

vV V V vV vV V V V V V V V V V

db.messages.remove ({name: "John"});

MongoDB uses a special data format called BSON that has special
types and one of them is Object ID. Let’s cover it briefly next.

BSON Object ID

Binary JSON, or BSON, is a special data type that MongoDB utilizes. It is
like JSON in notation but has support for additional, more sophisticated
data types such as buffer or date.

A word of caution about BSON’s Object ID: ObjectId in MongoDB
shell and many other MongoDB driver is an equivalent to ObjectIDin
MongoDB Native Node.js Driver. Make sure to use the proper case and
don’t confuse the two, otherwise you'll get an error.

242

CHAPTER 7 INTRO TO MONGODB
For example, in a Node.js code with the native driver use ObjectID ():

const mongodb = require ('mongodb')
const ObjectID = mongodb.ObjectID
collection.findCne ({_ id: new ObjectID(idString)}, console.log)

On the other hand, in the MongoDB shell and many other MongoDB
libraries like Mongoose, we employ ObjectId (). The following is the
MongoDB shell code:

db.messages.findOne ({ id: ObjectId(idStr)});
The following is a Node.js code with Mongoose:

const mongoose = require ('mongoose')
const ObjectId = mongoose.Schema.Types.ObjectId

const Car = new Schema ({ driver: ObjectId })

Note Mongoose is a very powerful library for Node.js and
MongoDB. It has validation, pre and post hooks, schemas and many
more features. | wrote a whole chapter on Mongoose in my new book
Practical Node.js, 2nd Edition (Apress, 2018). Get and read my book
to learn more about Mongoose at: nhttp://bit.1ly/2ndcNL3 and
https://github.com/azat-co/practicalnode.

MongoDB Native Driver

We'll use MongoDB Native Node.js Driver (https://github.com/
christkv/node-mongodb-native) to access MongoDB from Node.js
applications. This will add persistence to Node.js apps meaning apps will
save and retrieve data from a permanent location instead of relying on an
ephemeral in-memory store. To install MongoDB Native Node.js Driver, use:

$ npm install mongodb
243

http://bit.ly/2LdCNL3
https://github.com/azat-co/practicalnode
https://github.com/christkv/node-mongodb-native
https://github.com/christkv/node-mongodb-native

CHAPTER 7 INTRO TO MONGODB

Keep in mind that the preceding command is to install the driver

library, not the database. I taught many workshops and in almost every

one of them there would be a person who would confuse installing

mongodb using npm with installing a database. Don’t be this person.

We need both, the database and the npm library. I already covered the

database installation. If you have any issue with installing the driver,

read the details are at https://mongodb.github.io/node-mongodb-

native.

Don’t forget to include the dependency in the package . json file as

well, either with -sE or manually, so that you have the file resembling this:

{

—

"name": "node-example",

"version": "0.0.1",

"dependencies": {
"mongodb":"3.x",

}y

"engines": {

Hnoden. H>:8 x"

—

Alternatively, for your own development you could use other mappers,

which are available as an extension of the Native Driver:

e mongoskin (https://npmjs.org/node-mongoskin):
Future layer for node-mongodb-native

e mongoose (https://npmjs.org/mongoose and
http://mongoose]js.com): Asynchronous JavaScript
driver with optional support for modeling

244

https://mongodb.github.io/node-mongodb-native
https://mongodb.github.io/node-mongodb-native
https://npmjs.org/node-mongoskin
https://npmjs.org/mongoose
http://mongoosejs.com

CHAPTER 7 INTRO TO MONGODB

e mongolia(https://npmjs.org/mongolia):
Lightweight MongoDB ORM/driver wrapper

e monk (https://npmjs.org/monk): Tiny layer that
provides simple yet substantial usability improvements
for MongoDB usage within Node.js

This small example will test if we can connect to a local MongoDB
instance from a Node.js script. Create a Node.js file app . js. After we
install the library with npm, we can include the mongodb library in our

app . s file:
const util = require('util')
const mongodb = require ('mongodb')

This is one of the ways to establish a connection to the MongoDB
server in which the db variable will hold a reference to the database at a
specified host and port:

const Db = mongodb.Db

const Connection = mongodb.Connection
const Server = mongodb.Server

const host = '127.0.0.1"

const port =
const db = new Db ('test', new Server (host,port, {}))

To actually open a connection:

db.open ((error, connection) => {
// Do something with the database here
db.close ()

245

https://npmjs.org/mongolia
https://npmjs.org/monk

CHAPTER 7 INTRO TO MONGODB

To check that we have the connection, we need to handle error. Also,
let’s get the admin object with db . admin () and fetch the list of databases
with 1istDatabases ():

const db = new Db ('test', new Server (host, port, {}))
db.open((error, connection) => {
console.log('error: ', error)

const adminDb = db.admin ()

adminDb.listDatabases ((error, dbs) => {
console.log('error: ', error)
console.log('databases: ', dbs.databases)
db.close ()

H)

})

If we run it with $ node app.js, it should output “connected” in the
terminal. When you’re in doubt and need to check the properties of an
object, there is a useful method in the ut i1 module:

console.log(util.inspect (db))

Now you might want to set up the database in the cloud and test the
connection from your Node.js script.

MongoDB on Heroku: MongoLab

Now that you've made the application that displays “connected” work
locally, it’s time to slightly modify it and deploy it to the Heroku Paa$
(cloud). The database will also be in the cloud. I recommend using the
MongoLab add-on, which provides ready-to-use MongoDB instances
that integrate well with Heroku apps (https://elements.heroku.com/
addons/mongolab). MongoLab (or mLab) also has a very convenient
browser- based GUI to look up and manipulate the data and collections.

246

https://elements.heroku.com/addons/mongolab
https://elements.heroku.com/addons/mongolab

CHAPTER 7 INTRO TO MONGODB

Note You might have to provide your credit card information to
use MongoLab even if you select the free version. You should not be
charged for a free plan, though.

In order to connect to the database server, there is a database connection
URL (a.k.a. MongoLab URL/URI), which is a way to transfer all of the
necessary information to make a connection to the database in one string.

The database connection string MONGOLAB_URT has the following format:

mongodb://user:pass@server NAME.mongolab.com:PORT/db name

You could either copy the MongoLab URL string from the Heroku web
site (and hard-code it) or get the string from the Node.js process.env
object:

process.env.MONGCLAB URI
or
const connectionUri = url.parse(process.env.MCNGOLAB URI)

The global object process gives access to environment variables
via process.env. Heroku and Heroku add-ons like mLabs use these
environment variables to pass database host names and ports, passwords,
API keys, port numbers, and other system information that shouldn’t be
hard-coded into the main logic.

To make our code work both locally and on Heroku, we can use the
logical OR operator | | and assign a local host and port if environment
variables are undefined:

const port = process.env.PORT | |
const dbConnUrl = process.env.MONGOLAB URI | |
'mongodb://127.0.0.1:27017/test"

247

CHAPTER 7 INTRO TO MONGODB

Here is our updated cross-environment-ready app . j s file
(http://bit.ly/2LeezQT).Iadded a method to get the list of collections
listCollections instead of getting the list of the databases (we have
only one database in MongoLab right now):

const util = require('util')
const url = require('url')
const client = require ('mongodb').MongoClient

const dbConnUrl = process.env.MONGOLAB URI ||
'mongodb://127.0.0.1:27017/test"

console.log('db server: ', dbConnUrl)

client.connect (dbConnUrl, {}, (error, db) => {
console.log('error: ', error)
db.listCollections () .toArray((err, collections) => {
console.log('error: ', error)
console.log('collections: ', collections)
db.close ()

})

—
~

Following the modification of app . j s by addition of MONGOLAB URI,
we can now initialize the Git repository, create a Heroku app, add the
MongoLab add-on to it, and deploy the app with Git.

Utilize the same steps as in the previous examples to create a new Git
repository:

$ git init
$ git add

$ git commit -am 'initial commit'
Create the Cedar Stack Heroku app:

S heroku create

248

http://bit.ly/2LeezQT

CHAPTER 7 INTRO TO MONGODB

If everything went well you should be able to see a message that tells
you the new Heroku app name (and URL) along with a message that the
Heroku remote destination was added. Having remote in your local Git
project is crucial because that’s you'll deploy the app to Heroku. You can
always check a list of remotes by executing this command from the root of
our project:

$ git remote show

Add-ons work on a per app basis not on a per account basis. To install
the free MongoLab on the existing Heroku app (), use:

$ heroku addons:create mongolab:sandbox

Or log on to Heroku (https://elements.heroku.com/addons/
mongolab) with your Heroku credentials and choose MongoLab Free for
that particular Heroku app, if you know the name of that app.

The project folder needs to have Procfile and package. json.

You can copy them from code/07-db-connect-heroku or
http://bit.ly/2LeezQT.

Now you can push your code to Heroku with:

$ git push heroku master

Enjoy seeing the logs that tell you that the deploy was successful. For
additional logs and debugging, use this command:

$ heroku logs
The result will be something like this:

2019-12-01T12:34:51.438633+00:00 appl[web.1l]: db server:
mongodb://heroku cxgh54g6:9d76gspc45v899144smébn790c@
ds035617.mongolab.com: 34457 /heroku _cxgh54g6
2019-12-01T12:34:53.264530+00:00 appl(web.l]: error: null
2019-12-01T12:34:53.236398+00:00 applweb.1l]: error: null

249

https://elements.heroku.com/addons/mongolab
https://elements.heroku.com/addons/mongolab
http://bit.ly/2LeezQT

CHAPTER 7 INTRO TO MONGODB

2019-12-01T12:34:53.271775+00:00 app[web.1l]: collections:
[{ name: 'system.indexes', options: {} },
2019-12-01T712:34:53.271778400:00 applweb.1l]: { name:
'test', options: { autolIndexId: true }

bl

So far you have implemented a local app . j s file (code/07-db-
connect/app.jsoOrhttp://bit.ly/2LhLrzm). You enhanced it to work
in the cloud (code/07-db-connect-heroku/app.js or
http://bit.ly/2Lgx5Dy). Youlearned how to build Node.js programs
which work with MongoDB. Great work!

Let’s enhance the latest app . § s file by adding an HTTP server. After
you get the app. js and the modified app . j s files working, you modify the
app.js to add a server so that the “connected” message will be displayed
in the browser instead of the terminal window. To do so, we’ll wrap the
server object instantiation in a database connection callback. The final
implementation is in the file code /07-db-server/app. s or at the
book’s GitHub repository: http://bit.ly/2LcTd6K.

Supplemental video which walks you through the implementation and
demonstrates the project: http://bit.1ly/10nrmwr.

const util = require('util')

const url = require('url')

const http = require('http')

const mongodb = require ('mongodb')

const client = require ('mongodb').MongoClient

const port = process.env.PORT | |
const dbConnUrl = process.env.MONGOLAB URT | |
'mongodb://@127.0.0.1:27017/test"

250

http://bit.ly/2LhLrZm
http://bit.ly/2LgX5Dy
http://bit.ly/2LcTd6K
http://bit.ly/1Qnrmwr

CHAPTER 7 INTRO TO MONGODB

client.connect (dbConnUrl, {}, function(error, db) {
console.log('error: ', error)
db.listCollections () .toArray (function (error,
collections) {
console.log('error: ', error)
console.log('collections: ', collections)
const server = http.createServer (function
(request, response) { // Creates server
response.writeHead (, {'Content-Type': 'text/
plain'}) // Sets the right header and status code
response.end(util.inspect (collections))
// Cutputs string with line end symbol
)
server.listen (port, function() {
console.log('Server is running at %s:%s ',
server.address () .address, server.address () .port)

// Sets port and IP address of the server

After the deployment you should be able to open the URL provided by
Heroku and see the list of collections. If it'’s a newly created app with an
empty database, there would be no collections. You can create a collection
using the MongoLab web interface in Heroku, then check in your app. You

can use Mongo shell to connect to mLab too, e.g.,

mongo =—--username alice --password dolphin --host

mongodb0.herokuserverapp.com —--port 28015

251

CHAPTER 7 INTRO TO MONGODB

Message Board: MongoDB Version

We should have everything set up for writing the Node.js application that
will work both locally and on Heroku. The source code is available in the
folder code/07-board-api-mongoand athttp://bit.ly/2LbCtfX.
The structure of the application is as simple as:

/07-board-api-mongo
web.]js
Procfile

package.json

This is what web . § s looks like; first we include our libraries:

const http = require('http')

const util = require('util')

const querystring = require ('querystring')
const client = require ('mongodb') .MongoClient

Then put out a magic string to connect to MongoDB:

const uri = process.env.MCNGCLAB URI || 'mongodb:
//@127.0.0.1:27017/messages’

Note The URI/URL format contains the optional database name
in which our collection will be stored. Feel free to change it to
something else: for example, rpjs Or test.

We put all the logic inside of an open connection in the form of a
callback function:

client.connect (uri, (error, db) => {

if (error) return console.error (error)

252

http://bit.ly/2LbCtfX

CHAPTER7 INTRO TO MONGODB
We are getting the collection with the next statement:
const collection = db.collection('messages")

Now we can instantiate the server and set up logic to
process our endpoints/routes. We need to fetch the documents on GET

/messages.json:

const app = http.createServer ((request, response) => {
if (request.method === 'GET' && request.url ===
'/messages.json') {
collection.find() .toArray((error,results) => {
response.writeHead (,{ '"Content-Type': 'text/
plain'})

console.dir (results)
response.end (JSON.stringify (results))

1)
On the POST /messages.json, we insert the document:

} else if (request.method === 'POST' && request.url ===
'/messages.json') f{
request.on('data', (data) => {

collection.insert (querystring.parse (data.

toString ('utf-8")), {safe:true}, function (error,

obj) A
if (error) throw error
response.end (JSCN.stringify (obj))

})

—
~

} else ¢

253

CHAPTER 7 INTRO TO MONGODB

This will be shown in the event that the client request does not match
any of the conditions above. This is a good reminder for us when we try to
go to http://localhost:1337 instead of http://localhost:1337/messages.json
and there are no messages:

response.end ('Supported endpoints: \n/messages.
json\n/messages.json')
}
)
const port = process.env.PORT ||
app.listen (port)

H)

Note We don’t have to use additional words after the collection/entity
name; that is, instead of /messages. json it’s perfectly fine to have
just /messages for all the HTTP methods such as GET, POST, PUT, and
DELETE. The main reason why many developers and | use . json is 0
be explicit with the format that needs to be returned back. Another way
to be explicit is to use accept header sett0 application/json. If you
change the endpoints to just /messages in your Node.js application
code, make sure you update URLs in the provided CURL commands
and the supplied Message Board front-end code.

To test via CURL terminal commands run:

[{"username":"BOB", "message":"test"," id":"5ledc

ad45862430000000001"}]

Or open your browser at the http://locahost:1337/messages.json
location.

254

CHAPTER 7 INTRO TO MONGODB

It should give you an empty array ([1), which is fine. Then POST a new
message:

$ curl -d "username=BOB&message=test" http://

localhost:5000/messages.json

Now we must see a response containing an ObjectID of a newly
created element, for example:

[{"username":"BOB", "message":"test"," id":"5ledc

ad45862430000000001"}]

Your Object1d will be different.

If everything works as it should locally, try to deploy it to Heroku.

To test the application on Heroku, you could use the same CURL
commands (https://curl.haxx.se/docs/manpage.html),
substituting http://localhost or http://127.0.0.1 with your unique Heroku
app’s host/URL:

$ curl http://your—-app-name.herokuapp.com/messages.json
$ curl -d "username=BOB&message=test" http://your-app-

name.herokuapp.com/messages.json

It’s also nice to double check the database either via Mongo shell:
$ mongo terminal command and then use twitter-clone anddb.
messages.find (); or via Compass (http://bit.1ly/2Lft30s),
my tool mongoui (https://github.com/azat-co/mongoui),
mongo-express (https://npmjs.org/mongo-express) or in case of
MongoLab through its web interface accessible at the Heroku website.

If you would like to use another domain name instead of
http://your-app-name.herokuapp.com, you'll need to do two things:

1. Tell Heroku your domain name:

$ heroku domains:add www.your-domain-name.com

255

https://curl.haxx.se/docs/manpage.html
http://bit.ly/2Lft3Qs
https://github.com/azat-co/mongoui
https://npmjs.org/mongo-express
http://your-app-name.herokuapp.com/

CHAPTER 7 INTRO TO MONGODB

2. Add the CNAME DNS record in your DNS manager to
pointtohttp://your-app-name.herokuapp.com.

Custom domains will hide the fact that your application is hosted
on Heroku. For more information on custom domains can be found at

https://devcenter.heroku.com/articles/custom-domains.

Tip For more productive and efficient development we should
automate as much as possible; that is, use tests instead of CURL
commands Use HTTP libraries such as axios, superagent Of
request 10 test your REST APIs. They are a timesaver for such tasks.
There is a chapter on the Mocha library and Node.js testing in my
other best-selling book Practical Node.js, 2nd Edition (Apress, 2018):
http://bit.ly/2LdcNL3 and https://github.com/azat-co/

practicalnode.

Summary

In this chapter we covered the MongoDB database and its shell.

MongoDB uses an extended version of JSON, which is called BSON. Then
we switched to Node.js with the native MongoDB driver. Many other
MongoDB Node.js libraries depend on the native driver and build on top
of it. For this reason, it’s good to know it. To use MongoDB on Heroku,

we utilized the MongoLab add-on (the magical MONGCLAB URT). Finally,
we used the acquired knowledge to add database store (persistence) to the
Message Boards application.

256

http://your-app-name.herokuapp.com/
https://devcenter.heroku.com/articles/custom-domains
http://bit.ly/2LdCNL3
https://github.com/azat-co/practicalnode
https://github.com/azat-co/practicalnode

CHAPTER 8

Putting Frontend and
Backend Together

Debugging is twice as hard as writing the code in the first
place. Therefore, if you write the code as cleverly as possible,
you are, by definition, not smart enough to debug it.

—Brian W. Kernighan

In this chapter, we'll cover:

Adding CORS for a different-domain deployment
Message Board Ul

Message Board API

Deployment to Heroku

Same-domain deployment server

Deployment to Amazon Web Services

© Azat Mardan 2018 257
A.Mardan, Full Stack JavaScript, https://doi.org/10.1007/978-1-4842-3718-2_8

https://en.wikipedia.org/wiki/Brian_Kernighan

CHAPTER 8 PUTTING FRONTEND AND BACKEND TOGETHER

Now, it’s a good time to configure our front-end and back-end
applications so they could work together. There are a few ways to do it:

o Different-domain deployment: deploy two separate
apps (Heroku apps) for front-end and back-end apps.
Developers need to be implement CORS or JSONP to
mitigate cross-domain request issues.

o Same-domain deployment: deploy frontend and
backend on the same webapp. Developers need to
implement a static Node.js server to serve static assets
for the front-end application. This approach is not
recommended for serious production applications.

I cover both approaches in this in detail in this chapter starting with
the recommended approach —different-domain deployment.

Adding CORS for Different-Domain
Deployment

This is, so far, the best practice for the production environment. Back-end
applications are usually deployed at the http://app. or http://api.
subdomains.

One way to make a different domain deployment work is to overcome
the same-domain limitation of AJAX technology with JSONP:

const request = $.ajax({
url: url,
dataType: 'Jsonp',
data: {...},
jsonpCallback: 'fetchbhata,
type: 'GET'

258

CHAPTER 8 PUTTING FRONTEND AND BACKEND TOGETHER

The other, and better, way to do it is to add the cross-origin resource
sharing or CORS support on the server (https://mz1.1la/2LcH917).
It will require to add the OPTIONS method request handler and special
headers to other request handlers to the Node.js server app before the
output/response. This is a special header that needs to be added to all
request handlers. The origin is the domain but can be open to anything

with *:

response.writeHead (,
'Access-Control-Allow-Crigin': origin,
'Content-Type': 'text/plain',

'Content-Length': body.length
H)

or origin value can be locked to only your front-end app location

(recommended):

res.writeHead (, |
'Access-Control-Allow-Crigin',

'your-fe-app-domain-name',

—
-

We need a new response (route or request handler) with the OPTIONS
method to tell the client (browser) what methods are supported on
the server. The OPTIONS request can be implemented in the following

manner:

259

https://mzl.la/2LcH9lZ

CHAPTER 8 PUTTING FRONTEND AND BACKEND TOGETHER

if (request.method=="OPTICNS") {
response.writeHead ("204", "No Content", f{
"Access-Control-Allow-Crigin": origin,
"Access—-Control-Allow-Methods":
"GET, PCST, PUT, DELETE, CPTICNS",

"Access—-Control-Allow-Headers": "content-type,
accept",
"Access—-Control-Max—-Age": , // In seconds

"Content-Length":
1)

response.end () ;

—~

Message Board Ul

Our front-end application used Parse.com as a replacement for a back-
end application. Now we can switch to our own backend by replacing the
endpoints along with making a few other painless changes. Let me walk
you through them.

In the beginning of the app . js file, uncomment the first line for
running locally, or replace the URL values with your Heroku or Microsoft
Azure back-end application public URLs:

// const URL = 'http://localhost:1337/"

const URL ='http://your-app-name.herokuapp.com/"'

Most of the code in app . § s and the folder structure remained intact
from the code/05-board-backbone- parse-sdk project (http://
bit.ly/2LfB910Q), with the exception of replacing Parse models and

260

http://bit.ly/2LfB9IQ
http://bit.ly/2LfB9IQ

CHAPTER 8 PUTTING FRONTEND AND BACKEND TOGETHER

collections with original Backbone.js ones. So go ahead and type or copy
the Require]S block for loading of the dependencies (templates in this
case):

require ([

'libs/text!header.html',
'libs/text!home.html',
'libs/text!footer.html'],
function (

headerTpl,

homeTpl,

footerTpl) {

The ApplicationRouter, HeaderView, and FooterView are the
same as in the code/05-board- backbone-parse-sdk project soIwon't
list them here again.

We need to change the model and collection to this from using Parse.
Cbject and Parse.Collection. Those are the places where Backbone.
js looks up for REST API URLs corresponding to the specific collection and
model:

Message = Backbone.Model.extend ({
url: URL + 'messages.json'

H)

MessageBoard = Backbone.Collection.extend (f{
model: Message,
url: URL + 'messages.json'

H)

Next is the HomeView where most of the logic resides. made a few
enhancements to the rendering process, which is a good illustration of
what you can do with events in Backbone. First, create the view and define

261

CHAPTER 8 PUTTING FRONTEND AND BACKEND TOGETHER

the element selector, template (loaded via RequireJS and text plug-in), and
event for the SEND button:

HomeView = Backbone.View.extend ({
el: '#content',
template: homeTpl,
events: {
'click #send': 'saveMessage'

s

Now, in the constructor of the view, set the homeView to this so we
can use this later by the name inside of the callbacks/closures or use
fat arrow functions () =>{} (otherwise, this can mutate inside of the
callbacks/closures):

initialize: function() {

const homeView = this

Next, I attach an event listener re fresh that will do the rendering.
Prior to that we had the a11 event, which wasn’t very good, because it
triggered re-rendering multiple times on the addition of each message.
The reason is that fetch () triggers add () as many times as there are
messages (10, 100, 1000, etc.). So if we use the 211 event listener for
render (), our app will unnecessarily render multiple times. A better way
is to use a custom event re fresh that we will trigger manually and only in
the appropriate places (you'll see them later). This will prevent multiple
re-rendering.

The following code creates the collection, creates the refresh event
and starts the fetch request to populate the messages from the backend:

homeView.collection = new MessageBoard()
homeView.collection.bind('refresh', homeView.render,
homeView)

homeView.collection.fetch ({

262

CHAPTER 8 PUTTING FRONTEND AND BACKEND TOGETHER

The fetch method will perform a GET XHR request, and it has

success and error callbacks (indentation removed):

success: function(collection, response, options) {

console.log('Fetched ', collection)

The next line will trigger rendering only after all the messages are in

the collection (and came from the server response):

collection.trigger ('refresh')

1
I

error: function () {

console.error ('Error fetching messages')

—

—~
—

This event listener will be triggered by the “SEND” button as well as by
the fetch (). To avoid persisting existing records with message. save (),
we add the check for the message.attributes. id.In other words, if
this is an existing message and it comes from the server (fetch), then it
will have id and we stop the execution flow. Otherwise, we persist the

message and trigger rendering on success:

homeView.collection.on('add', function (message) {
if (message.attributes. id) return false
message.save (null, {
success: function (message) {
homeView.collection.trigger ('refresh'")
console.log('Saved ', message)

1
I

error: function (message) {

console.log('error'")

—

263

CHAPTER 8 PUTTING FRONTEND AND BACKEND TOGETHER

The rest of the HomeView object is the same as in the 05-board-
parse-sdk project. In the saveMessage we get the values of the username
and the message text and add the new message object to the collection
with collection.add (). This will call the event listener add, which we

implemented in the initialize.

saveMessage: function() {
const newMessageForm = $('#new-message')
const username = newMessageForm.
find (' [name="username"] ") .val ()
const message = newMessageForm.
find (' [name="message"]") .val ()
this.collection.add ({
'username': username,
'message': message
})

by

Last, we write or copy the render method that takes the template and
the collection, then injects the resulting HTML into the element with ID
content (this.el):

render: function() {
console.log('Home view rendered')
S(this.el) .html(.template(this.template)

(this.collection))

—
-

app = new ApplicationRouter ()
Backbone.history.start ()
)

264

CHAPTER 8 PUTTING FRONTEND AND BACKEND TOGETHER

Here is the full source code of the code/08-board-ui/app. js file
(http://bit.ly/2LaHhCp):

const URL 'http://localhost:1337/"'

// const URL ='http://your-app-name.herokuapp.com/"'

require ([
'libs/text!header.html"',
'libs/text!home.html"',
'libs/text!footer.html'],
function (
headerTpl,
homeTpl,

footerTpl) {

const ApplicationRouter Backbone.Router.extend ({

{

'home',

routes:

'*actions': 'home'

1
I

function ()

{

initialize:

this.headerView
this.headerView
this.footerView

this.footerView

1
I

function ()

{

home :

this.homeView

new HeaderView ()

.render ()

new FooterView ()

.render ()

new HomeView ()

this.homeView.render ()

—
~

265

http://bit.ly/2LaHhCp)

CHAPTER 8 PUTTING FRONTEND AND BACKEND TOGETHER

const HeaderView = Backbone.View.extend ({
el: '#header',
templateFileName: 'header.html',
template: headerTpl,
initialize: function() {
by
render: function() {

$(this.el) .html(.template (this.template))

—~
-

const FooterView = Backbone.View.extend ({
el: '"#footer',
template: footerTpl,
render: function() {
this.Sel.html(.template(this.template))
})
const Message = Backbone.Model.extend ({
url: URL + 'messages.json'
})
const MessageBoard = Backbone.Collection.extend ({
model: Message,

url: URL + 'messages.json'

—
~

const HomeView = Backbone.View.extend ({
el: '#content',
template: homeTpl,
events: {

'click #send': 'saveMessage'

266

CHAPTER 8 PUTTING FRONTEND AND BACKEND TOGETHER

initialize: function() {
this.collection = new MessageBoard()
this.collection.bind('all', this.render, this)
this.collection.fetch ()
this.collection.on('add', function (message) {
message.save (null, {
success: function (message) {
console.log('saved ' + message)
by
error: function (message) {

console.log('error")

)
console.log('saved' + message)

})

3y

saveMessage: function() {
const newMessageForm=$ ('#new-message')
const username=newMessageForm.
find (' [name="username"]"') .val()
const message=newMessageForm.
find (' [name="message"] ") .val ()
this.collection.add ({
'username': username,
'message': message
})
by
render: function () {

console.log(this.collection)

267

CHAPTER 8 PUTTING FRONTEND AND BACKEND TOGETHER

$(this.el).html(.template(this.template,

this.collection))

H)

window.app = new ApplicationRouter ()

Backbone.history.start ()

This is it. For your reference, the front-end app source code is in the
code/08-board-ui folder and on GitHub at http://bit.1ly/2LfD1Bo.
I'won'’t list it here because we had only a few changes comparing with the
Parse SDK project. The next piece of the puzzle is the backend.

Message Board API

The back-end Node.js application source code is in code/08-board-api
and athttp://bit.1ly/2LbVY84, which has this structure:

/08-board-api
-web.js
-Procfile

-package.json

The procfile file is for the Heroku deployment, and the package . json
file is for project metadata as well as for Hekoru deployment.

The web . s file is very similar to the 08-board-api, but has
CORS headers and OPTIONS request handler code. The file starts with
importation of dependencies:

const http = require('http')

const util = require('util')
const querystring = require('querystring')
const client = require('mongodb') .MongoClient

268

http://bit.ly/2LfD1Bo
http://bit.ly/2LbVY84

CHAPTER 8 PUTTING FRONTEND AND BACKEND TOGETHER
Then we set the MongoDB connection string:

const uri = process.env.MONGOLAB URI ||
'mongodb://@127.0.0.1:27017/messages’
/ /MONGOLAB URI=mongodb://user:pass@server.mongohqg.

com:port/db name

We connect to the database using the stringand client.connect
method. It's important to handle the error and finish the execution flow
with return if there’s an error:

client.connect (uri, function (error, db) {

if (error) return console.error (error)

After we are sure that there were no errors (otherwise the execution
flow won't come to the next line), we select the collection, which is

messages in this case:
const collection = db.collection('messages"')

The server code follows. We create the server instance and set up the
origin variable based on the information from the request. This value will
be in the Access-Control-Allow-COrigin header. The idea is that the
response will have the value of the client’s URL:

const app = http.createServer (function (request,
response) {

const origin = (request.headers.origin || '*'")

269

CHAPTER 8 PUTTING FRONTEND AND BACKEND TOGETHER

Check the HTTP method value in request .method. If it's OPTIONS,
which we must implement for CORS, we start writing headers to the

response object:

if (request.method == '"CPTICNS') f{
response.writeHead ('204'", 'No Content', {

'Access-Control-Allow-Crigin': origin,
The next header will tell what methods are supported:

'Access-Control-Allow-Methods':
'"GET, PCST, PUT, DELETE, OPTIONS',

'Access—-Control-Allow-Headers': 'content-type,
accept',
'Access-Control-Max-Age': , // In seconds

'Content-Length':
1)

response.end ()

We are done with OPTIONS, but we still need to implement GET
and POST:

} else if (request.method === 'GET' && request.url ===
'/messages.json') {
collection.find() .toArray (function (error,results) {
if (error) return console.error (error)

const body = JSON.stringify(results)

We need to add a few headers to the response of the GET:

response.writeHead (, 1
'Access-Control-Allow-Crigin': origin,
'Content-Type': 'text/plain',

'Content-Length': body.length
H)

270

CHAPTER 8 PUTTING FRONTEND AND BACKEND TOGETHER

console.log('LIST OF OBJECTS: ')
console.dir (results)
response.end (body)

1)
Last but not least, we process POST:

} else if (request.method === 'POST' &&
request.url === '/messages.json') {
request.on('data', function(data) {
console.log ('RECEIVED DATA:")

console.log(data.toString('utf-8"))

We need to parse data to get the object so later we can save it into the
database. The next line often causes bugs because front-end apps send
data in one format and the server parses another. Please make sure to use
the same format on the browser and server:

collection.insert (JSON.parse (data.
toString ('utf-8")),
{safe:true}, function(error, obj) f{
if (error) return console.error(error)
console.log ('OBJECT IS SAVED: ')
console.log (JSON.stringify (obj))
const body = JSON.stringify (ob7j)

We add the headers again. Maybe we should write a function and call
it instead of writing the headers manually. Wait, Express.js is actually will
do some of it for us, but that’s a topic for another book (read my book Pro
Expressjsathttp://amzn.to/1D6qigk). The following code supplies the
CORS headers for the response:

response.writeHead (PR
'Access-Control-Allow-Crigin': origin,
'Content-Type': 'text/plain',

271

http://proexpressjs.com/
http://amzn.to/1D6qiqk

CHAPTER 8 PUTTING FRONTEND AND BACKEND TOGETHER

'Content-Length': body.length
)

response.end (body)

const port = process.env.PORT ||
app.listen (port)

})

Here is the source code of web . js, our Node.js application
implemented with CORS headers:

const http = require('http')

const util = require('util')
const querystring = require('querystring')
const client = require('mongodb').MongoClient

const uri = process.env.MONGOLAB URI ||
'mongodb://@127.0.0.1:27017/messages’
//MCONGCLAB URI = mongodb://user:pass@server.mongohq.

com:port/db name

client.connect (uri, function (error, db) {
if (error) return console.error (error)
const collection = db.collection('messages"')
const app = http.createServer (function (request,
response) {
const origin = (request.headers.origin || '"*'")
if (request.method == 'CPTIONS') {
response.writeHead ('204', 'No Content', f{
'Access-Control-Allow-Crigin': origin,

'Access-Control-Allow-Methods':

272

CHAPTER 8 PUTTING FRONTEND AND BACKEND TOGETHER

"GET, POST, PUT, DELETE, COPTICNS',

'Access—-Control-Allow-Headers': 'content-type,
accept',
'"Access-Control-Max-Age': , // Seconds.

'Content-Length':
H)
response.end ()
} else if (request.method === 'GET' &&
request.url === '/messages.json') {
collection.find() .toArray (function (error,results)
if (error) return console.error(error)
const body = JSON.stringify (results)
response.writeHead (;1
'Access-Control-Allow-Crigin': origin,
'Content-Type': 'text/plain',
'Content-Length': body.length
1)
console.log('LIST CF OBJECTS: ')
console.dir (results)
response.end (body)
})
} else if (request.method === 'POST' &&
request.url === '/messages.json') {
request.on('data', function(data) f{
console.log ('RECEIVED DATA:'")
console.log(data.toString('utf-8"))
collection.insert (JSCN.parse (data.
toString ('utf-8")),
{safe:true}, function (error, obj) {
if (error) return console.error (error)
console.log ('OBJECT IS SAVED: ')

console.log (JSON.stringify (obj))

{

273

CHAPTER 8 PUTTING FRONTEND AND BACKEND TOGETHER

const body = JSON.stringify (ob7j)

response.writeHead (,
'Access-Control-Allow-Crigin': origin,
'Content-Type': 'text/plain',

'Content-Length': body.length
)
response.end (body)
})

})

—

})
const port = process.env.PCRT ||

app.listen (port)

—
~

Deployment to Heroku

For your convenience, I placed the front-end app in code /08-board-ui
andathttp://bit.ly/2LfD1Bo. I also saved the the back-end app with
CORS in the code/08-board-api folder, and uploaded to http://bit.
1y/2LbVY84.

By now, you probably know what to do, but as a reference, below are
the steps to deploy these examples to Heroku. We'll start with the API. In
the 08-board-api folder, execute the following code ($ heroku loginis
optional):
git init
git add
git commit -am "first commit"
heroku login
heroku create

heroku addons:create mongolab:sandbox

v vr N »r »r W W»

git push heroku master

274

http://bit.ly/2LfD1Bo
http://bit.ly/2LbVY84
http://bit.ly/2LbVY84

CHAPTER 8 PUTTING FRONTEND AND BACKEND TOGETHER

Watch the terminal messages. If the API is successfully deployed,
you can test it with CURL or Postman. Then copy the URL from Heroku
(e.g., https://guarded-waters—-1780.herokuapp.com) and paste it
into the code/08-board-ui/app. js file, assigning the value to the URL
variable. Then, in the code/08-board-ui folder, execute:

git init

git add .

git commit -am "first commit"
heroku create

git push heroku master

v »n v U »n

heroku open

That’s it. By now you should be able to see Message Board running
in the cloud with the UI (front-end browser app) on one domain and the
API (backend) on another. In high-trafficked apps, the API will be hiding
behind a load balancer, so you can have multiple API servers on a single
IP/URL. This way they’ll handle more traffic and the system will become
more resilient. You can take out, restart, or deploy on APIs one at a time
with zero downtime.

Same-Domain Deployment Server

The same-domain deployment is not recommended for serious production
applications, because static assets are better served with web servers
like Nginx (not Node.js I/O engine), and separating APIs makes for less
complicated testing, increased robustness, and quicker troubleshooting/
monitoring. However, the same app/domain approach could be used for
staging, testing, development environments, and/or tiny apps.

The idea is that the API serves static files for the browser app as well,
not just handling dynamic requests to its routes. So you can copy the

275

CHAPTER 8 PUTTING FRONTEND AND BACKEND TOGETHER

code/08-board-api code into a new folder code/08-board-web (or
getting my copy from GitHub). The beginning of the new server file is the
same; we have GET and POST logic (this time CORS is not needed). The
last condition in the chain of i f/e1se needs to process the static files.
Here’s how we can do a new response/request handler for static assets:

const http = require('http'),
url = require('url'),

path = require('path'),

fs = require('fs'),

port = process.env.PORT | | ,
staticFolder = 'public',

client = require('mongodb') .MongoClient

const uri = process.env.MONGCLAB URI | |
'mongodb://@127.0.0.1:27017/messages"'
//MONGCLAB URI=mongodb://user:pass@server.mongohqg.

com:port/db name

client.connect (uri, function(error, db) f{
if (error) return console.error (error)

const collection = db.collection('messages')

http.createServer (function (request, response) {

const origin = (request.headers.origin || '*")
if (request.method == '"CPTICNS') ¢{

//
} else if (request.method === 'GET' &&
request.url === '"/messages.json') {

//
} else if (request.method === 'PCST' &&
request.url === '"/messages.json') {

//
} else {

276

CHAPTER 8 PUTTING FRONTEND AND BACKEND TOGETHER

const uri = url.parse(request.url) .pathname
console.log('Processing URI: ', uri)
if (uri == " || uri == '"/'") uri = 'index.html'
filename = path.join(dirname, staticFolder, uri)
console.log('Processing file: ', filename)
try {

stats = fs.statSync (filename)

} catch (error) {
if (error) {
console.error (error)
response.writeHead (;|
'Content-Type': 'text/plain'})
response.write ('404 Not Found\n')

return response.end()

}

if(!stats.isFile()) {
response.writeHead (, {
'Content-Type': 'text/plain'})

response.write ('404 Not Found\n')

return response.end()

—~

else ¢{
const file = fs.readFileSync(filename)
if (!file) ¢
response.writeHead (,
{'Content-Type': 'text/plain'})
response.write(err + '\n'")

return response.end ()

—

277

CHAPTER 8 PUTTING FRONTEND AND BACKEND TOGETHER

const extname = path.extname (filename)
const contentType = 'text/html'
switch (extname) {

case '.js':

contentType 'text/javascript'
break

case '.css':

contentType 'text/css'
break

case '.json':
contentType = 'application/Jjson'
break

case '.png':

contentType 'image/png'
break

case '.jpg':

case '.jpeg':

contentType 'image/jpg
break

T .

case '.wav

contentType 'audio/wav

break
}
response.writeHead (, {
'Content-Type': contentType,
'Content-Length': file.length
1)

response.end(file)

—

}
}) .listen (port)

278

CHAPTER 8 PUTTING FRONTEND AND BACKEND TOGETHER

console.log('Static file server running at\n '+
' => http://localhost:' + port + '/\nCTRL + C to

shutdown')

—
~

Let me take you through this implementation line-by-line. We use the
url module (https://npmjs.org/url) to parse the path name from
the URL. The path name is everything after the domain; for example, in
http://webapplog.com/es6 the path name is /es6. This will be our

folder and file names.
const uri = url.parse(request.url) .pathname

It’s good to have some logging to know that our system is working as it
should:

A\l

console.log('Processing path: ', uri)

The next line deals with the root URI; that is, when you go to the
website and the path is empty or a slash, you'll get index.html. In our
app, let’s follow the convention and serve the index.html file by default
(if it exists):

if (uri == " " || uri == "/'") uri = 'index.html'

The path.join () method will make this code cross-platform by
creating a string with the proper slashes depending on the OS: that is, \ or /
as separator. You can see the resulting path and file name in the logs:

filename = path.join(_ dirname, staticFolder, uri)

A\l

console.log('Processing file: ', filename)

279

https://npmjs.org/url
http://webapplog.com/es6

CHAPTER 8 PUTTING FRONTEND AND BACKEND TOGETHER

I always say never use synchronous functions in Node.js, unless you
have to. This is such a case. Without the synch methods, we’ll get racing
conditions on our files, meaning some will load faster than the others and

cause conflicts:

stats = fs.statSync (filename)
if (error) {

console.error (error)

Obviously, if the file doesn’t exist we want to send 404 Not Found:

response.writeHead (, |
'Content-Type': 'text/plain'})
response.write ('404 Not Found\n')

return response.end()

}

Let’s make sure the requested resource is the file. If it's not the file, you
can implement adding index.html as we did for the root. I don’t have this
code here. Our front-end app only needs to include files so this code will

serve the files!

if(!stats.isFile()) ¢{
response.writeHead (P
'Content-Type': 'text/plain'})

response.write ('404 Not Found\n')
return response.end()

} else ¢

Finally, we read the file. We use the synchronous function again for the

reasons mentioned above.

const file = fs.readFileSync(filename)
if (!file) {
response.writeHead (, {'Content-Type':

"text/plain'})

280

CHAPTER 8 PUTTING FRONTEND AND BACKEND TOGETHER

response.write (err + '\n'")
return response.end ()

}

I know that the JavaScript guru Douglas Crockford dislikes switch,
but we’ll use it here to determine the right content type for the response
header. Most browsers will understand the content type okay if you omit
the Content-Type header, but why not go the extra mile?

const extname = path.extname (filename)
const contentType = 'text/html'
switch (extname) {

case '.js':

contentType 'text/javascript'
break

case '.css':
contentType = 'text/css'
break

case '.json':

contentType 'application/json'
break

case '.png':

contentType 'image/png’
break

case '.jpg':

case '.Jjpeg':
contentType = 'image/jpg'
break

case '.wav':

contentType 'audio/wav'
break
}

response.writeHead (, |

'Content-Type': contentType,

281

CHAPTER 8 PUTTING FRONTEND AND BACKEND TOGETHER
Another header that we send back with the response is Content-Length:

'Content-Length': file.length
})

response.end(file)

—

—

So this piece of code goes into the request handler of the server, which
is inside of the database connect call. Just like the Russian Matreshka
dolls. Confusing? Just refer to the full source code at http://bit.
1y/2LdCK20.

Another, more elegant way is to use Node.js frameworks such as
Connect or Express; because there is a special static middleware for JS
and CSS assets. But those frameworks deserve a book on their own.

Now that you've mastered the basics of Node.js, MongoDB, Backbone.
js, and Heroku, there’s one bonus step to take: deployment to the cloud.
Check out the cloud solution Amazon Web Services known as EC2
(Infrastructure as a Service category of cloud computing).

Deployment to Amazon Web Services

Cloud is eating the world of computing. You can say that cloud has taken
the world of IT by storm. There are private and public clouds. AWS,
probably the most popular choice among the public cloud options, offers
Elastic Compute Cloud (EC2) in the infrastructure as a Service (IaaS)
category of cloud solutions. The advantages of using an IaaS such as AWS
EC2 over PaaS-like Heroku are as follows:

o It’s more configurable (any services, packages, or
operation systems).

282

http://bit.ly/2LdCK20
http://bit.ly/2LdCK20

CHAPTER 8 PUTTING FRONTEND AND BACKEND TOGETHER

o It’s more controllable. There are no restrictions or

limitations.

o It’s cheaper to maintain. PaaS can quickly cost a fortune
for high-performance resources.

In this tutorial, we’ll be using the 64-bit Amazon Linux AMI (http://
aws.amazon.com/amazon-1linux-ami)with CentOS (http://aws.
amazon.com/amazon-linux-ami).

Assuming you have your EC2 instance up and running, SSH into it and
install all system updates with yum:

$ sudo yum update

You can try installing Node.js with yum. It should be available
in the Extra Packages for Enterprise Linux repository (https://
fedoraproject.org/wiki/EPEL):

$ sudo yum install nodejs npm

This might take a while. Answer with y as the process goes. In the end,
you should see something like this (your results may vary):

Installed: nodejs.i686 0:0.10.26-1.el6
npm.noarch 0:1.3.6-4.el6Dependency Installed:
...Dependency Updated:...Complete!

You probably know this, but just in case, to check installations, type the
following:

$ node -V

$ npm -v

If the yum Node.js installation fails, see if you have EPEL (just see if the
command below says epel):

$ yum repolist

283

http://aws.amazon.com/amazon-linux-ami
http://aws.amazon.com/amazon-linux-ami
http://aws.amazon.com/amazon-linux-ami)
http://aws.amazon.com/amazon-linux-ami)
https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL

CHAPTER 8 PUTTING FRONTEND AND BACKEND TOGETHER
If there’s no epel, run:

$ rpm -Uvh http://download-i2.fedoraproject.org/pub/
epel/6/1386/epel-release-6-8.noarch.rpm

Then, try to install both Node.js and npm again with:
$ sudo yum install nodejs npm --enablerepo=epel

Alternatively, you can compile Node.js from the source. To do so,
install the C++ compiler (again with yum):

$ sudo yum install gcc-c++ make
Same with openSSL:
$ sudo yum install openssl-devel
Then install Git with yum:
$ sudo yum install git
Finally, clone the Node.js repository straight from GitHub:
$ git clone git://github.com/joyent/node.git
And build Node.js:

cd node
git checkout v0.10.12
./configure

make

vr U»r W 0 U

sudo make install

Note For a different version of Node.js, you can list all versions with
s git tag -1 and check out the one you need.

284

CHAPTER 8 PUTTING FRONTEND AND BACKEND TOGETHER
To install npm, run:

$ git clone https://github.com/isaacs/npm.git
$ cd npm

$ sudo make install

Once you have Git and npm and Node.js, you are good to deploy your
code (manually). Pull the code from the repository. You might need to
provide credentials or upload your SSH keys to AWS. Then start the Node.
js server with pm2 (https://npmjs.com/pm2 and https://pm2.1io) or
similar process manager. pm2 is good because it has a lot of features not
only to keep the process running but also to scale it as show in Figure 8-1.
pm2 also has load balancing.

To install pm2:

$ npm i -g pm2
To start your application:
$ pm2 start app.js
To list all running processes:

$ pm2 list

[joni] ~/keymetrics/PM2 $ pm2 list

App name id pid status restart uptime] watching

26076 online 0
online 0
online sl
online :]

(1]
online]
online] 4.465 enabled

o

API
API
API
API
Worker
Mailer
Front

OMNMNMNRKN
[NENR VAN

o
- -
u

enabled

SN WN -

Figure 8-1. pm2 running multiple Node.js processes

285

https://npmjs.com/pm2
https://pm2.io

CHAPTER 8 PUTTING FRONTEND AND BACKEND TOGETHER

That’s pretty much all you need to do. Ideally, you want to automate
the deployment. Also, you might want to add some d. init orupstart
scripts to launch your pm2 or another process manager automatically.

Steps for other OSs on AWS are similar. You would use their package
manager to install Node.js, Git, and npm, then get the code (Git or rsync)
and launch it with the process manager. You don’t need the process
manager. You can launch with node itself, but it’s better to use some
process manager.

Now, while the Node.js app is running, executing $ netstat -apn |
grep 80, the remote machine should show the process. For example, for a
Node.js app listening on port 80:

tcp 0 O 0.0.0.0:80 0.0.0.0:~* LISTEN 1064/node

On the EC2 instance, either configure the firewall to redirect
connections (e.g., port to Node.js 3000, but this is too advanced for our
example) or disable the firewall (okay for our quick demonstration and
development purposes):

$ service iptables save
$ service iptables stop

$ chkconfig iptables off

In the AWS console, find your EC2 instance and apply a proper rule to
allow for inbound traffic; for example:

Protocol: TCPPort Range: 80Source: 0.0.0.0/0

And from your local machine, that is, your development computer, you
can either use the public IP address or the public DNS (the Domain Name
System) domain, which is found and copied from the AWS console under
that instance’s description. For example,

$ curl XXX.XXX.XXX.XXX -v

286

CHAPTER 8 PUTTING FRONTEND AND BACKEND TOGETHER

It’s worth mentioning that AWS supports many other operating
systems via its AWS Marketplace (https://aws.amazon.com/
marketplace). Although AWS EC2 is a very popular and affordable
choice, there are other alternatives as well: Google Cloud (https://
cloud.google.com), Microsoft Azure (https://azure.microsoft.
com), IBM Cloud (https://www.ibm.com/cloud), and others.

Summary

This chapter presented the descriptions of different deployment
approaches, the final version of the Message Board application, and its
deployment with two approaches: on different domains and on the same
domains. We covered deployment using the Git and Heroku command-
line interfaces to deploy to PaaS. And we worked through examples of
installing and building a Node.js environment on AWS EC2 and running
Node.js apps on AWS with CentOS.

287

https://aws.amazon.com/marketplace
https://aws.amazon.com/marketplace
https://cloud.google.com
https://cloud.google.com
https://azure.microsoft.com
https://azure.microsoft.com
http://www.ibm.com/cloud)

CHAPTER 9

Conclusion

I hope you've enjoyed this book. I intended it to be small on theory but

big on practice and to give you an overview of multiple technologies,

frameworks, and techniques used in modern agile web development, such

as the following:

jQuery, JSON, and AJAX/XHR
Bootstrap, CSS, and Less
Backbone.js, AMD, and Require.js
Node.js, REST API, and Parse
MongoDB and BSON

AWS, Heroku, and MongoLab

If you want to explore any of these topics in greater depth, check out

the appendix, “Further Reading,” for additional references (or do a Google

search).

Practical aspects of this book included building multiple versions of

the Message Board app:

jQuery and Parse JavaScript REST API
Backbone.js and Parse JavaScript SDK
Backbone.js and Node.js

Backbone.js and Node.js and MongoDB

© Azat Mardan 2018 289
A.Mardan, Full Stack JavaScript, https://doi.org/10.1007/978-1-4842-3718-2_9

CHAPTER9 CONCLUSION

The Message Board app has all the foundation of a typical web/mobile
app: fetching data, displaying it, and submitting new data. Other examples
include:

e jQuery and OpenWeatherMap REST API (Chapter 3)
e Parse Save JSON (Chapter 3)

e Node.js “Hello World” (Chapter 6)

e MongoDB “Print Collections” (Chapter 7)

e Backbone.js “Hello World” (Chapter 4)

o Backbone.js apple database application (Chapter 4)

Please submit a GitHub issue if you have any feedback, comments, or
suggestions or have found typos, bugs, mistakes, or other errata: https://
github.com/azat-co/fullstack-javascript/issues.

Other ways to connect are via @azatmardan (https://twitter.com/
azatmardan), https://webapplog.com,andhttp://azat.co.

In case you enjoyed Node.js and want to find out more about building
production web services with Express.js—a de facto standard for Node.js
web apps—take a look at my other top-rated books Pro Express.js, Practical
Node.js 2nd Edition, and React Quickly.

290

https://github.com/azat-co/fullstack-javascript/issues
https://github.com/azat-co/fullstack-javascript/issues
https://twitter.com/azatmardan
https://twitter.com/azatmardan
https://webapplog.com
http://azat.co

APPENDIX

Further Reading

You have reached the end of the book but your learning is just starting.
This appendix provides a list of JavaScript blog posts, articles, e-books,
books, and other resources to help you continue your exploration of full
stack JavaScript.

Free JavaScript and Node Resources

e Node University Blog: https://node.university/blog

e ES6/ES2015 Cheatsheet: https://gumroad.com/1/
LDWVU/git—-1CC81D40

e MongoDB and Mongoose Cheatsheet: https://
gumroad.com/1/mongodb/git-874e6fb4

o Express.js 4 Cheatsheet: https://gumroad.com/1/
NQiQ/git—-874E6FB4

e React Cheatsheet: https://gumroad.com/1/IJRtw/
git-FB2C5E22

e JavaScript For Cats (an introduction for new
programmers): http://jsforcats.com

e Superhero.js (a comprehensive collection of JS
resources): http://superherojs.con

© Azat Mardan 2018 291
A.Mardan, Full Stack JavaScript, https://doi.org/10.1007/978-1-4842-3718-2

https://doi.org/10.1007/978-1-4842-3718-2
https://node.university/blog
https://gumroad.com/l/LDwVU/git–1CC81D40
https://gumroad.com/l/LDwVU/git–1CC81D40
https://gumroad.com/l/mongodb/git–874e6fb4
https://gumroad.com/l/mongodb/git–874e6fb4
https://gumroad.com/l/NQiQ/git–874E6FB4
https://gumroad.com/l/NQiQ/git–874E6FB4
https://gumroad.com/l/IJRtw/git-FB2C5E22
https://gumroad.com/l/IJRtw/git-FB2C5E22
http://jsforcats.com
http://superherojs.com

APPENDIX

FURTHER READING

MDN JavaScript Guide: https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Guide

MDN JavaScript Reference: https://developer.
mozilla.org/en-US/docs/Web/JavaScript/

Reference

Felix’s Node.js Style Guide: https://github.com/
felixge/node-style-guide

Good JavaScript Books

Good

292

React Quickly: Painless web apps with React, JSX,
Redux, and GraphQL by Azat Mardan (Manning
Publications, 2017)

JavaScript: The Good Parts by Douglas Crockford
(O'Reilly Media, 2008)

JavaScript: The Definitive Guide, Sixth Edition, by David
Flanagan (O’Reilly Media, 2011)

Secrets of the JavaScript Ninja, Second Edition, by
John Resig, Bear Bibeault, and Josip Maras (Manning
Publications, 2016)

Pro JavaScript Techniques, Second Edition, by John
Resig, Russ Ferguson, and John Paxton (Apress, 2015)

Eloquent JavaScript, Third Edition, by Marijn
Haverbeke (No Starch Press, 2018)

Node.js Books

Pro Express.js by Azat Mardan (Apress, 2014)

Practical Node.js, Second Edition, by Azat Mardan
(Apress, 2018)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
https://github.com/felixge/node-style-guide
https://github.com/felixge/node-style-guide

APPENDIX FURTHER READING

e Node.js in Action, Second Edition, by Alex Young,
Bradley Meck, and Mike Cantelon (Manning
Publications, 2017)

o Express.js Deep API Reference, by Azat Mardan
(Apress, 2014)

Interactive Online Classes and Courses

e Node University: https://node.university

e Introduction to NodeJS on edX: https://www.edx.

org/course/introduction-to-nodejs-0

Startup Books and Blogs

o Hackers & Painters by Paul Graham (O’Reilly
Media, 2010)

e The Lean Startup by Eric Ries (Currency, 2011)

e The Startup Owner’s Manual by Steve Blank and Bob
Dorf (K & S Ranch, 2012)

o The Entrepreneur’s Guide to Customer Development
by Brant Cooper and Patrick Vlaskovits (Cooper-
Vlaskovits, 2010)

¢ Venture Hacks: http://venturehacks.com

e Webapplog (https://webapplog.com)

293

https://node.university
https://www.edx.org/course/introduction-to-nodejs–0
https://www.edx.org/course/introduction-to-nodejs–0
http://venturehacks.com
https://webapplog.com

Index

A

Agile methodologies

CD and integration, 29

pair programming, 30

scrum, 27

test-driven development, 29
Agile web development, 289-290
Amazon Web Services (AWS), 282
Asynchronous JavaScript and

XML (AJAX), 70

B

Backbone.js

AMD. and Require.js, 168-179

code base
apple-home.view.js file, 162
apples.js, 164
appleView object, 161
apple.view.js file, 163
index.html file, 160, 166
module definition, 167
.template() method, 166
types, 159

collections
fetch() method, 133
homeView and

appleView, 134-136

© Azat Mardan 2018

index.html file, 138-140
loadApple function, 134
source code, 133
where() method, 138
definition, 128
dependencies, 128
development kit, 185
event binding
constructors, 142
index.html file, 144-147
loadApple function, 143
model.set() function, 144
on() function, 142
render() function, 142
setTimeout function, 144
showSpinner() method, 142
UX, 141
framework, 127
render() method, 132
Require.js (see Require.js)
views and subviews (see
Underscore.js)
Back-end-as-a-service solutions
(BaaS), 31
Back-end development
cloud computing, 33
HTTP request and response, 34
MongoDB, 33

295

A.Mardan, Full Stack JavaScript, https://doi.org/10.1007/978-1-4842-3718-2

https://doi.org/10.1007/978-1-4842-3718-2

INDEX

Back-end development (cont.)
Node.js, 31
NoSQL, 33
RESTful API, 35

Bootstrap, 74

C

Cascading Style Sheets (CSS), 12
Cloud computing, 33
Cloud setup

code, 55

GitHub, 58

Heroku, 61

Microsoft Azure, 59

SSH keys, 55
Command-line interface (CLI), 47
Continuous deployment (CD), 29
Cross-domain calls, 71

D, E

DELETE method, 125

F G
fetch()/reset() functions, 136
Front-end and back-end
applications, 257
Amazon Web Services, 282
collection.add(), 264
different-domain
deployment, 258
fetch method, 263
Heroku, 274

296

HomeView file, 261
Message Board API, 268
Message Board UI, 260
message.save(), 263
OPTIONS method, 259
path.join() method, 279
render() function, 262
same-domain deployment, 275
source code, 265-267
steps, 258

Front-end web development
browser, 4
cascading style sheets, 12
components, 5
definition, 4
HyperText markup language, 8
JS (see JavaScript (JS))
mobile development, 6
server applications, 4
web request cycle, 5

H, I

Heroku, 122

HyperText Markup Language

(HTML)

class, 10
data-name, 11
elements, 9
id attribute, 10
onclick, 11
onmouseover, 11
style, 10
tags, 8
title, 10

HyperText Transfer Protocol

(HTTP)
browser JavaScript libraries, 54
components, 52
less App, 55
MongoDB, 47
node-based tools, 46
Node.js installation, 52
XAMPP and MAMBP, 47

J, K
JavaScript (JS)

advantages of, 16

array object, 21

boolean primitives and
objects, 22

browser objects, 23

Date object, 21, 23

definition, 14

differences, 14

DOM obijects, 23

globals, 24

HTML document, 15

JSON (see JavaScript Object
Notation (JSON)

Math object, 23

Node.js conventions, 25

number object, 17

number primitives, 16

RegExp object, 19

special types, 20

string object, 18

string primitives, 18

JavaScript Object Notation (JSON)

INDEX

definition, 68
JSON.stringify(), 69
object, 69

string, 20

jQuery

ajax function, 113
app.js file, 117-119
Bootstrap, 74
btn class, 112
container-fluid and row-fluid
classes, 111
DELETE method, 125
functions, 72, 112
getMessages() function, 115
GitHub, 119-121
Heroku, 122
index.html, 110
jQuery.each() function, 116
Microsoft Azure, 121
OpenWeatherMap (see
OpenWeatherMap)
POST, 114
REST API, 109
structure of, 110
style.css, 110
updateView()
function, 115-116

Less

CSSrules, 79
mix-ins, 80
operations, 82
variables, 79

297

INDEX

match() method, 19
Message Board

app.js file, 193, 196, 204
API, 268

application, 104
Backbone.js framework, 188
Bootstrap, 192
components, 202

DOM element, 195
_.each() function, 198
extend(), 202

features, 208-209
headerTpl template, 194
home.html template file, 200
home.html, 198

home route code, 194
homeView class, 200
homeView object, 202
HTML tags, 199

index.html file, 190
JavaScript code, 200
jQuery.html() function, 195
library structure, 198
MongoDB, 252

Parse

GET XHR calls fetches, 108

REST API, 109

SEND button, 107

server, 109, 189
Require.js syntax, 193
row-fluid class, 199
saveMessage(), 203

298

single index route, 193
structure of, 190
stylesheets, 191
this.collection.add(), 204
UlI, 260
Microsoft Azure, 121
Minimal viable product
(MVP), 8
Model-View-Controller
(MVC), 128
MongoDB, 239
BSON ObjectID, 242
JavaScript interface, 239
Message Board, 252
MongoLab, 246
Native Driver, 243
shell, 240

N

Node.js, 213
core modules
fs, 218
http, 216
overview, 216

package manager/npm, 219

querystring, 218

url, 218

util, 217
deployment

Hello World, 222

Heroku, 223

message board, 225

Microsoft Azure, 222

Hello World, 214

unit testing, 225, 237
Node.js conventions, 25
Node.js installation, 52

O

OpenWeatherMap
ajax() function, 87
buttons, metric and imperial
forecasts, 84-85
classes, 88
click() function, 87
getData(), 90
index.html file, 91-95
jQuery’s $.ajax()
function, 86-87
predictions, 85-86
prepareData() method, 89

PQ

Parse
app.js file, 97-103
compass, 106
definition, 96
index.html file, 97
jQuery (see jQuery)
log container, 101
<textarea> element, 98
parseApplicationld and

parseJavaScriptKey, 99

save objects, 105
test.save(), 100

INDEX

R

Regular Expressions
(RegExps), 19
REpresentational State Transfer
(RESTful), 35
Require.js, 168
apple-app.js, 170
apple-home.tpl file, 173
apple-home.view.js file, 174
apple-item.tpl.js file, 172
apple-item.view.js file, 173
apple-spinner.tpl.s file, 173
apple.view.js file, 175
define() method, 172, 176
index.html file, 169, 176, 178
network tab, 179
production, 179
r.js processed files, 181
structure, 169

S

Scrum approach, 27
Setup
browsers, 42
cloud setup
GitHub, 58
Heroku, 61
Microsoft Azure, 59
SSH keys, 55
development folder, 40
HTTP servers, 46
IDEs and text editors, 43

299

INDEX

Setup (cont.) homeView, 151-153
initial development html() function, 150
environment, 40 render() method, 153
version control system, 45 showCart() function, 152

strings, 150
subviews, 154-159
tagName function, 149

T

Test-driven development (TDD), 29

\'

Version control system, 45

U

Underscore.js
addToCart, 150
appleltemView function, 150 W, X; Y! Z
extend() function, 148 WebKitGecko browser, 42

300

	Table of Contents
	About the Author
	Acknowledgments
	Preface
	Introduction
	Part I: Quick Start
	Chapter 1: Basics
	Front-End Definitions
	Web Request Cycle
	Mobile Development
	HyperText Markup Language
	class
	id
	style
	title
	data-name
	onclick
	onmouseover

	Cascading Style Sheets
	JavaScript
	Number Primitives
	Number Object
	String Object
	String Primitives
	RegExp Object
	Special Types
	JSON
	Array Object
	Data Object
	Boolean Primitives and Objects
	Date Object
	Math Object
	Browser Objects
	DOM Objects
	Globals
	JavaScript and Node.js Conventions

	Agile Methodologies
	Scrum
	Test-Driven Development
	Continuous Deployment and Integration
	Pair Programming

	Back-End Definitions
	Node.js
	NoSQL and MongoDB
	Cloud Computing
	HTTP Requests and Responses
	RESTful API

	Summary

	Chapter 2: Setup
	Local Setup
	Development Folder
	Browsers
	IDEs and Text Editors
	Version Control Systems

	Local HTTP Servers
	Database: MongoDB
	Required Components
	Node.js Installation
	Browser JavaScript Libraries
	Less App

	Cloud Setup
	SSH Keys

	GitHub
	Microsoft Azure
	Heroku
	Summary

	Part II: Front-End Prototyping
	Chapter 3: Getting Data from Backend Using jQuery and Parse
	Definitions
	JavaScript Object Notation
	AJAX
	Cross-Domain Calls

	jQuery Functions
	Bootstrap
	Less
	Less Variables
	Less Mix-ins
	Less Operations

	An Example Using a Third-Party API (OpenWeatherMap) and jQuery
	Parse
	Message Board with Parse Overview
	Message Board with Parse: REST API and jQuery Version
	Pushing to GitHub

	Deployment to Microsoft Azure
	Deployment of Weather App to Heroku
	Updating and Deleting Messages
	Summary

	Chapter 4: Intro to Backbone.js
	Setting Up a Backbone.js App from Scratch
	Backbone.js Dependencies
	Working with Backbone.js Collections
	Backbone.js Event Binding
	Backbone.js Views and Subviews with Underscore.js
	Refactoring Backbone.js Code
	AMD and Require.js for Backbone.js Development
	Require.js for Backbone.js Production
	Super Simple Backbone.js Starter Kit
	Summary

	Chapter 5: Backbone.js and Parse
	Message Board with Parse: JavaScript SDK and Backbone.js Version
	Taking Message Board Further
	Summary

	Part III: Back-End Prototyping
	Chapter 6: Intro to Node.js
	Building “Hello World” in Node.js
	Node.js Core Modules
	http
	util
	querystring
	url
	fs

	npm Node.js Package Manager
	Deploying “Hello World” to PaaS
	Deploying to Microsoft Azure
	Deploying to Heroku
	Message Board with Node.js: Memory Store Version
	Unit Testing Node.js

	Summary

	Chapter 7: Intro to MongoDB
	MongoDB Shell
	BSON Object ID
	MongoDB Native Driver
	MongoDB on Heroku: MongoLab
	Message Board: MongoDB Version
	Summary

	Chapter 8: Putting Frontend and Backend Together
	Adding CORS for Different-Domain Deployment
	Message Board UI
	Message Board API
	Deployment to Heroku
	Same-Domain Deployment Server
	Deployment to Amazon Web Services
	Summary

	Chapter 9: Conclusion

	Appendix: Further Reading
	Free JavaScript and Node Resources
	Good JavaScript Books
	Good Node.js Books
	Interactive Online Classes and Courses
	Startup Books and Blogs

	Index

