
Full Stack 
JavaScript

Learn Backbone.js,  
Node.js, and MongoDB
—
Second Edition
—
Azat Mardan



Full Stack JavaScript
Learn Backbone.js,  

Node.js, and MongoDB

Second Edition

Azat Mardan



Full Stack JavaScript: Learn Backbone.js, Node.js, and MongoDB

ISBN-13 (pbk): 978-1-4842-3717-5  ISBN-13 (electronic): 978-1-4842-3718-2
https://doi.org/10.1007/978-1-4842-3718-2

Library of Congress Control Number: 2018962263

Copyright © 2018 by Azat Mardan 

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of 
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, 
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or 
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar 
methodology now known or hereafter developed. Exempted from this legal reservation are brief 
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the 
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the 
work. Duplication of this publication or parts thereof is permitted only under the provisions of the 
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be 
obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright 
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol 
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images 
only in an editorial fashion and to the benefit of the trademark owner, with no intention of 
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they 
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are 
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of 
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for 
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with 
respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring 
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the 
sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM 
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions 
and licenses are also available for most titles. For more information, reference our Print and eBook 
Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to 
readers on GitHub via the book’s product page, located at www.apress.com/9781484237175. For more 
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Azat Mardan
San Francisco, California, USA

https://doi.org/10.1007/978-1-4842-3718-2


To my parents, Almas and Alsu, who bought  
me my first computer, and let me use the phone  

line for dial-up Internet.



v

Table of Contents

Part I: Quick Start ������������������������������������������������������������������������1

Chapter 1:  Basics����������������������������������������������������������������������������������3

Front-End Definitions ��������������������������������������������������������������������������������������������4

Web Request Cycle ������������������������������������������������������������������������������������������5

Mobile Development ����������������������������������������������������������������������������������������6

HyperText Markup Language ���������������������������������������������������������������������������8

Cascading Style Sheets ���������������������������������������������������������������������������������12

JavaScript ������������������������������������������������������������������������������������������������������14

Agile Methodologies ��������������������������������������������������������������������������������������������27

Scrum ������������������������������������������������������������������������������������������������������������27

Test-Driven Development ������������������������������������������������������������������������������29

Continuous Deployment and Integration �������������������������������������������������������29

Pair Programming������������������������������������������������������������������������������������������30

Back-End Definitions ������������������������������������������������������������������������������������������31

Node�js �����������������������������������������������������������������������������������������������������������31

NoSQL and MongoDB ������������������������������������������������������������������������������������33

Cloud Computing �������������������������������������������������������������������������������������������33

About the Author ���������������������������������������������������������������������������������xi

Acknowledgments �����������������������������������������������������������������������������xiii

Preface �����������������������������������������������������������������������������������������������xv

Introduction ��������������������������������������������������������������������������������������xvii



vi

HTTP Requests and Responses ���������������������������������������������������������������������34

RESTful API ����������������������������������������������������������������������������������������������������35

Summary�������������������������������������������������������������������������������������������������������������37

Chapter 2:  Setup ���������������������������������������������������������������������������������39

Local Setup ���������������������������������������������������������������������������������������������������������40

Development Folder ��������������������������������������������������������������������������������������40

Browsers �������������������������������������������������������������������������������������������������������42

IDEs and Text Editors �������������������������������������������������������������������������������������43

Version Control Systems ��������������������������������������������������������������������������������45

Local HTTP Servers ���������������������������������������������������������������������������������������������46

Database: MongoDB ��������������������������������������������������������������������������������������47

Required Components �����������������������������������������������������������������������������������52

Node�js Installation ����������������������������������������������������������������������������������������52

Browser JavaScript Libraries ������������������������������������������������������������������������54

Less App ��������������������������������������������������������������������������������������������������������55

Cloud Setup ���������������������������������������������������������������������������������������������������������55

SSH Keys �������������������������������������������������������������������������������������������������������55

GitHub �����������������������������������������������������������������������������������������������������������������58

Microsoft Azure ���������������������������������������������������������������������������������������������������59

Heroku�����������������������������������������������������������������������������������������������������������������61

Summary�������������������������������������������������������������������������������������������������������������63

Part II:  Front-End Prototyping����������������������������������������������������65

Chapter 3:  Getting Data from Backend Using jQuery and Parse ���������67

Definitions �����������������������������������������������������������������������������������������������������������68

JavaScript Object Notation ����������������������������������������������������������������������������68

AJAX ��������������������������������������������������������������������������������������������������������������70

Cross-Domain Calls ���������������������������������������������������������������������������������������71

Table of ConTenTsTable of ConTenTs



vii

jQuery Functions �������������������������������������������������������������������������������������������������72

Bootstrap�������������������������������������������������������������������������������������������������������������74

Less ���������������������������������������������������������������������������������������������������������������������79

Less Variables ������������������������������������������������������������������������������������������������79

Less Mix-ins ��������������������������������������������������������������������������������������������������80

Less Operations ���������������������������������������������������������������������������������������������82

An Example Using a Third-Party API (OpenWeatherMap) and jQuery ������������������84

Parse �������������������������������������������������������������������������������������������������������������������96

Message Board with Parse Overview ���������������������������������������������������������������107

Message Board with Parse: REST API and  jQuery Version ��������������������������109

Pushing to GitHub ����������������������������������������������������������������������������������������119

Deployment to Microsoft Azure �������������������������������������������������������������������������121

Deployment of Weather App to Heroku �������������������������������������������������������������122

Updating and Deleting Messages ���������������������������������������������������������������������125

Summary�����������������������������������������������������������������������������������������������������������126

Chapter 4:  Intro to Backbone�js ��������������������������������������������������������127

Setting Up a Backbone�js App from Scratch �����������������������������������������������������128

Backbone�js Dependencies �������������������������������������������������������������������������������128

Working with Backbone�js Collections ��������������������������������������������������������������133

Backbone�js Event Binding ��������������������������������������������������������������������������������141

Backbone�js Views and Subviews with Underscore�js ��������������������������������������147

Refactoring Backbone�js Code ��������������������������������������������������������������������������159

AMD and Require�js for Backbone�js Development �������������������������������������������168

Require�js for Backbone�js Production ��������������������������������������������������������������179

Super Simple Backbone�js Starter Kit ���������������������������������������������������������������185

Summary�����������������������������������������������������������������������������������������������������������185

Table of ConTenTsTable of ConTenTs



viii

Chapter 5:  Backbone�js and Parse ����������������������������������������������������187

Message Board with Parse: JavaScript SDK and Backbone�js Version �������������188

Taking Message Board Further �������������������������������������������������������������������������208

Summary�����������������������������������������������������������������������������������������������������������209

Part III:  Back-End Prototyping �������������������������������������������������211

Chapter 6:  Intro to Node�js����������������������������������������������������������������213

Building “Hello World” in Node�js ����������������������������������������������������������������������214

Node�js Core Modules ���������������������������������������������������������������������������������������216

http ��������������������������������������������������������������������������������������������������������������216

util ���������������������������������������������������������������������������������������������������������������217

querystring ��������������������������������������������������������������������������������������������������218

url ����������������������������������������������������������������������������������������������������������������218

fs������������������������������������������������������������������������������������������������������������������218

npm Node�js Package Manager ������������������������������������������������������������������������219

Deploying “Hello World” to PaaS �����������������������������������������������������������������������222

Deploying to Microsoft Azure ����������������������������������������������������������������������������222

Deploying to Heroku ������������������������������������������������������������������������������������������223

Message Board with Node�js: Memory Store Version ����������������������������������225

Unit Testing Node�js �������������������������������������������������������������������������������������225

Summary�����������������������������������������������������������������������������������������������������������237

Chapter 7:  Intro to MongoDB ������������������������������������������������������������239

MongoDB Shell ��������������������������������������������������������������������������������������������������240

BSON Object ID �������������������������������������������������������������������������������������������������242

MongoDB Native Driver �������������������������������������������������������������������������������������243

MongoDB on Heroku: MongoLab �����������������������������������������������������������������������246

Message Board: MongoDB Version �������������������������������������������������������������������252

Summary�����������������������������������������������������������������������������������������������������������256

Table of ConTenTsTable of ConTenTs



ix

Chapter 8:  Putting Frontend and Backend Together �������������������������257

Adding CORS for Different-Domain Deployment �����������������������������������������������258

Message Board UI ���������������������������������������������������������������������������������������������260

Message Board API �������������������������������������������������������������������������������������������268

Deployment to Heroku ��������������������������������������������������������������������������������������274

Same-Domain Deployment Server ��������������������������������������������������������������������275

Deployment to Amazon Web Services ���������������������������������������������������������������282

Summary�����������������������������������������������������������������������������������������������������������287

Chapter 9:  Conclusion �����������������������������������������������������������������������289

 Appendix: Further Reading ���������������������������������������������������������������291

 Free JavaScript and Node Resources ���������������������������������������������������������������291

 Good JavaScript Books �������������������������������������������������������������������������������������292

 Good Node�js Books ������������������������������������������������������������������������������������������292

 Interactive Online Classes and Courses ������������������������������������������������������������293

 Startup Books and Blogs �����������������������������������������������������������������������������������293

Index �������������������������������������������������������������������������������������������������295

Table of ConTenTsTable of ConTenTs



xi

Azat Mardan has over 18 years of experience 

in web, mobile, and software development. 

With a Bachelor’s degree in Informatics and 

a Master of Science degree in Information 

Systems Technology, Azat possesses deep 

academic knowledge as well as extensive 

practical experience. Azat is an experienced 

software engineer, author, and educator. He 

has published 16 books and counting.

Currently, Azat works as a Software 

Engineering Leader at Indeed.com, the number one job search site. Before 

Azat worked as a Technology Fellow at Capital One Financial Corporation, 

a top 10 USA bank. Even before that, Azat was a Team Lead at DocuSign, 

where his team rebuilt 50 million user products (DocuSign web app) using 

the tech stack of Node.js, Express.js, Backbone.js, CoffeeScript, Jade, Stylus, 

and Redis.

Recently, he worked as a senior engineer at the curated social media 

news aggregator web site, Storify.com (now part of Adobe), which 

is used by BBC, NBC, CNN, the White House, and others. Storify runs 

everything on Node.js unlike other companies. It’s the maintainer of the 

open source library jade browser.

Before that, Azat worked as a CTO/Cofounder at Gizmo—an enterprise 

cloud platform for mobile marketing campaigns, and has undertaken the 

prestigious 500 Startups business accelerator program.

About the Author

http://docusign.com/
http://storify.com/
http://npmjs.org/jade-browser
http://www.crunchbase.com/company/gizmo
http://500.co/


xii

Azat also has past experience developing mission-critical applications 

for government agencies in Washington, DC, including the National 

Institutes of Health, the National Center for Biotechnology Information, 

and the Federal Deposit Insurance Corporation, as well as for Lockheed 

Martin.

Azat is a frequent attendee at Bay Area tech meet-ups and hackathons 

(AngelHack hackathon ’12 finalist with team FashionMetric.com, which 

went on to raise venture capital from Mark Cuban and TechStars).

In addition, Azat teaches technical classes at General Assembly, Hack 

Reactor, pariSOMA, and Marakana (acquired by Twitter) to much acclaim.

In his spare time, he writes about technology on his blog: Webapplog.

com, which was a number one in “express.js tutorial” Google search results 

for some time.

Azat is also the author of Pro Express.js, Practical Node.js, Node Program 

(http://nodeprogram.com/) and others. Azat is the creator of open 

source Node.js projects, including ExpressWorks, mongoui, and HackHall.

You can reach Azat and say hi using one of these methods:

Twitter: @azatmardan https://twitter.com/azatmardan - Azat 

loves getting “Hi” on Twitter

LinkedIn: linkedin.com/in/azatm

Blog: webapplog.com

GitHub: github.com/azat-co/fullstack-javascript 

abouT The auThorabouT The auThor

http://nih.gov/
http://nih.gov/
http://ncbi.nlm.nih.gov/
http://fdic.gov/
http://lockheedmartin.com/
http://lockheedmartin.com/
http://angelhack.com/
http://fashionmetric.com/
http://generalassemb.ly/
http://hackreactor.com/
http://hackreactor.com/
http://parisoma.com/
http://marakana.com/
http://webapplog.com/
http://webapplog.com/
http://expressjsguide.com/assets/img/expressjs-tutorial.png
http://proexpressjs.com/
http://practicalnodebook.com/
http://nodeprogram.com/
http://nodeprogram.com/
http://npmjs.org/expressworks
http://npmjs.org/mongoui
http://hackhall.com/
https://twitter.com/azatmardan
http://linkedin.com/in/azatm
http://webapplog.com/
https://github.com/azat-co/fullstack-javascript


xiii

Acknowledgments

I would like to thank the team of early Node contributors bringing 

JavaScript to the servers. Without them, the full stack JavaScript 

development wouldn’t be possible.

Thank you to the supporters of my Kickstarter campaign to write the 

second edition of this book and do so in the open on GitHub. Without 

you I probably would have not worked on this release so hard and maybe 

not worked at all. You are AWESOME because you made this new edition 

a reality and not only that but you have made this edition and previous 

edition available on GitHub for the entire world to read and learn Node 

which is the greatest technology for building web applications ever.

In particular, very great many thanks to individual Kickstarter 

supporters (who will soon get the signed print books and other rewards or 

maybe already have them): Matthew Amacker, Jordan Horiuchi, Tim Chen, 

Alexey Bushnev, Aleksey Maksimov, Maurice van Cooten, Ryan, Ng Yao 

Min, Kommana Karteek, Elias Yousef, Arhuman, Javier Armendariz, Dave 

Anderson, Edithson Abelard. You guys are brilliant!

I cannot not mention the biggest supporter DevelopIntelligence,  

which is one of the best if not the best tech training companies in the world 

(http://www.developintelligence.com). So if you need to train your 

software engineers in… anything! Then email them. Seriously, Develop 

Intelligence has been around for 10+ years, and they have great teachers 

with great technical classes. I was one of their instructors so I know. :)

I’m grateful to my copy and content editors at Apress, specifically to 

James Markham, Louise Corrigan, Teresa Horton, and Karen Jameson. 

They accomplished an amazing feat by bringing this book to life in a span 

of a few weeks.

http://www.developintelligence.com/


xiv

Also, I’m grateful to the students of Hack Reactor, Marakana, 

pariSOMA, and General Assembly where I taught and used early Full Stack 

JavaScript (or its parts) training material.

Once again, big thanks goes to Develop Intelligence who backed my 

effort to open source the manuscript of this book and allowed me to work 

in the open with early readers. I taught many corporate workshop on 

React, Node, cloud, and JavaScript to clients of Develop Intelligence. If you 

wants a world-class on-site tech training, go to developintelligence.com 

and book the class.

aCknowledgmenTsaCknowledgmenTs

http://hackreactor.com/
http://marakana.com/
http://parisoma.com/
http://generalassemb.ly/


xv

Preface

I’m writing this as I’m sitting at the San Francisco airport waiting for 

my flight to Portland, Oregon, for the biggest Node.js conference. I’ll be 

speaking there about Node.js. It’s scary and funny at the same time to 

think that I started to learn Node only three years ago. Yes, I remember 

how I decided that the best way to learn is to teach others. For this reason I 

started teaching my first Node classes and writing this book. The book was 

mostly for me, so I could remember how to push Heroku or how to create 

Node servers that talk to MongoDB. It was called Rapid Prototyping with 

JS back then. Three years sped away; I published a few more Node books 

as well as released several Node apps in production; and in 2014, Apress 

approached me wanting to publish an updated edition under a new title. 

I can't believe this is the second editon of the book. It's 2018 and a lot of 

thing changes. I am glad for the evolution of JavaScript and innovation in 

the Node.js space.

The main reason I bet my time and energy on JavaScript and Node 

in the first place is that I felt both intuitively and logically the potential of 

the full stack JavaScript. The one language to rule the whole stack across 

all the layers. Logically I understood the code reuse, expressiveness, and 

performance advantages of Node.js and the ever-increasing importance 

of front-end development with MVC-like frameworks such as Backbone. 

Intuitively, I just freaking fell in love with JavaScript both on the browser 

and on the server.

Yes, I used JavaScript for many years but it was more pain than fun. 

Not anymore. I was able to get a sense of what’s going on at the front end 

while at the same time getting all the power and flexibility on the server. 

My brain started to think 5, maybe 10 times faster than before because I 



xvi

started to remember all the obscure methods from Array or String objects. 

I stopped having Mozilla Developer Network or Google open next to my 

code editor. And what a relief when you don’t need to wait for the compiler 

each time that you want to test something really quickly.

The airline crew announced my boarding. I need to get on the plane, 

but I hope this easy, beginner-friendly manual will open the world of 

full stack JavaScript and cloud computing. Jump on board this amazing 

technology with me.

PrefaCePrefaCe



xvii

Introduction

The kind of programming that C provides will probably 
remain similar absolutely or slowly decline in usage, but rela-
tively, JavaScript or its variants, or XML, will continue to 
become more central.

— Dennis Ritchie

In this introduction, we cover:

• Reasons behind full stack JavaScript development in 

general and for the writing of this book

• What to expect and what not to expect, and what are 

the prerequisites

• Suggestions on how to use the book and examples

• Explanation of the book’s notation format

Full Stack JavaScript is a hands-on book that introduces you to 

rapid software prototyping using the latest cutting-edge web and mobile 

technologies including Node.js, MongoDB, Twitter Bootstrap, LESS, 

jQuery, Parse.com, Heroku, and others.

 Why This Book?
This book was borne out of frustration. I have been in software engineering for 

many years, and when I started learning Node.js and Backbone.js, I learned 

the hard way that their official documentation and the Internet lack good 

quick start guides and examples. Needless to say, it was virtually impossible to 

find all of the tutorials for JS-related modern technologies in one place.

https://en.wikipedia.org/wiki/Dennis_Ritchie
http://nodejs.org/
http://mongodb.org/
http://twitter.github.com/bootstrap
http://lesscss.org/
http://jquery.com/
http://parse.com/
http://heroku.com/


xviii

The best way to learn is to do, right? Therefore, I used the approach 

of small, simple examples (that is, quick start guides) to expose myself to 

the new cool tech. After I was done with the basic apps, I needed some 

references and organization. I started to write this manual mostly for 

myself, so I could understand the concepts better and refer to the samples 

later. Then StartupMonthly and I taught a few two-day intensive classes 

on the same subject—helping experienced developers to jump-start 

their careers with only-one-language development, that is, JavaScript. 

The manual we used was updated and iterated many times based on the 

feedback received. The end result is this book.

 Why Go Full Stack JavaScript?
The reasons I love developing with full stack JavaScript, or as others call it 

universal or isomorphic JavaScript, are numerous:

• Code reuse: I can share my libraries, templates, and 

models between the browser and the server.

• No context switch: My brain learns and thinks faster, 

leaving me more time to work on the actual tasks at 

hand.

• Great ecosystem: npm!

• Vibrant community: They are approachable and eager 

to help.

• Great masters: A treasure chest of knowledge and 

best practices has accumulated through the years of 

browser JavaScript.

• Tons of tutorials and good books: JavaScript is the 

most popular language, hence more people are 

writing about it.

InTroduCTIonInTroduCTIon

http://startupmonthly.org/


xix

• No compilation: Development is faster with interpreted 

platforms.

• Good performance: Node’s non-blocking I/O is fast.

• Evolving standard: EMCA is constantly pushing new 

and better versions of JavaScript.

I’m sure I’ve missed a few points, but you got the idea. Whatever the 

drawbacks of ES5 (the language most of us know as JavaScript) are, they 

were fixed in ES6/ES2015 and newer versions. The future for JavaScript is 

so bright we all will have to code with sunglasses on.

 What to Expect
Full Stack JavaScript readers should expect a collection of quick start 

guides, tutorials, and suggestions (for example, Git workflow). There is a lot 

of coding and not much theory. All the theory we cover is directly related 

to some of the practical aspects and is essential for better understanding of 

technologies and specific approaches to dealing with them (for example, 

JSONP and cross-domain calls).

In addition to coding examples, the book covers virtually all setup and 

deployment step by step.

You’ll learn on the examples of the Message Board application 

starting with front-end components. There are a few versions of these 

applications, but by the end of the book we’ll put the front end and back 

end together and deploy to the production environment. The Message 

Board application contains all of the necessary components typical for a 

basic web app, and building it will give you enough confidence to continue 

developing on your own, apply for a job/promotion, or build a startup!

InTroduCTIonInTroduCTIon



xx

 Who This Book Is For
The book is designed for advanced-beginner and intermediate-level web 

and mobile developers: somebody who has been (or still is) an expert in 

other languages like Ruby on Rails, PHP, Perl, Python, or/and Java. He/she 

is the type of developer, who quickly wants to learn more about JavaScript 

and Node.js-related techniques for building web and mobile application 

prototypes. The target reader doesn’t have time to dig through voluminous 

(or tiny, at the other extreme) official documentation. The goal of Full 

Stack JavaScript is not to make an expert out of a reader, but to help him/

her to start building apps as soon as possible.

As the full title indicates, Full Stack JavaScript: Learn Backbone.js, Node.

js and MongoDB is about turning your idea into a functional prototype in 

the form of a web or mobile application as fast as possible. This approach 

adheres to the Lean Startup methodology; therefore, this book would be 

more valuable to startup founders, but big companies’ employees will also 

find it useful, especially if they plan to add new skills to their resumes.

 What This Book Is Not
Full Stack JavaScript is neither a comprehensive book on several 

frameworks, libraries, or technologies (or just a particular one), nor a 

reference for all the tips and tricks of web development. Examples similar 

to ones in this book might be publicly available online.

More importantly, if you’re not familiar with fundamental programming 

concepts like loops, if/else statements, arrays, hashes, objects, and functions, 

you should be aware that you won’t find them covered in Full Stack 

JavaScript. Additionally, it would be challenging to follow the examples.

Many volumes of great books have been written on fundamental 

topics — the list of such resources is at the end of the book in the chapter 

“Further Reading.” The purpose of Full Stack JavaScript is to give agile 

tools without replicating theory of programming and computer science.

InTroduCTIonInTroduCTIon

http://theleanstartup.com/


xxi

 Prerequisites
I recommend the following prerequisites to get the full advantage of the 

examples and materials covered in this book:

• Knowledge of fundamental programming concepts 

such as objects, functions, data structures (arrays, 

hashes), loops (for, while), and conditions (if/else, 

switch)

• Basic web development skills including, but not limited 

to, HTML and CSS

• Using macOS or UNIX/Linux systems for this book’s 

examples (and for web development in general), 

although it’s still possible to hack your way on a 

Windows-based system

• Access to the Internet

• 5-20 hours of time

• A credit/debit card, which is required by some cloud 

services even for free accounts

 How to Use the Book
The digital version of this book comes in two formats:

 1. PDF: Suited for printing; opens in Adobe Reader, 

Mac OS X Preview, iOS apps, and other PDF viewers.

 2. mobi: Suited for Kindles of all generations as well 

as desktop and mobile Amazon Kindle apps and 

Amazon Cloud Reader; to copy to devices use 

Whispernet or a USB cable, or e-mail it to yourself.

InTroduCTIonInTroduCTIon



xxii

Links to web resources are provided throughout the book. In the 

e-book version, the table of contents has local hyperlinks that allow 

you to jump to any part or chapter of the book. This is very useful for 

referring to certain parts of content later; for example, if you want to 

look up how to deploy to Heroku, you can quickly jump to the needed 

commands.

I encourage you to take notes and highlight text as you read it 

studiously. It will improve your retention of the material.

There is a summary in the beginning of each chapter describing in 

a few short sentences what examples and topics the particular chapter 

covers.

Each project comes with a YouTube screencast video. I recommend 

watching the videos to improve your comprehension. You can watch 

the videos first or read the text first. The videos are supplemental, so 

it’s not a big deal if you are reading the digital book offline or the print 

book and don’t have the ability to watch the video. The text covers 

everything in the videos. The reason I recorded the screencasts is 

because people learn differently; some prefer text and others videos. 

This way, you can take advantage of both media as well as see certain 

development steps in action.

For faster navigation between parts, chapters, and sections of the book, 

please use the book’s navigation pane, which is based on the Table of 

Contents (the screenshot is below). 

InTroduCTIonInTroduCTIon



xxiii

The Table of Contents pane in the Mac OS X Preview app

 Examples
All of the source code for examples used in this book is available in the 

book itself for the most part, as well as at the book’s Apress.com product 

page (www.apress.com/9781484237175) and in a public GitHub 

repository (https://github.com/azat-co/fullstack-javascript). 

You can also download files as a ZIP archive or use Git to pull them. More 

InTroduCTIonInTroduCTIon

https://www.apress.com/9781484237175
https://github.com/azat-co/fullstack-javascript
https://github.com/azat-co/fullstack-javascript/archive/master.zip


xxiv

on how to install and use Git will be covered later in the book. The source 

code files, folder structure, and deployment files should work locally and/

or remotely on PaaS solutions—that is, Windows Azure and Heroku—with 

minor or no modifications.

Source code that is in the book is technically limited by the platform 

to the width of about 70 characters. I tried my best to preserve the best 

JavaScript and HTML formatting styles, but from time to time you might 

see backslashes (\). There is nothing wrong with the code. Backslashes are 

line escape characters, and if you copy-paste the code into the editor, the 

example should work just fine. Please note that code in GitHub and in the 

book might differ in formatting.

Last, let me (and others) know if you spot any bugs, by submitting 

an issue to GitHub! Please, don’t send me bug reports in an e-mail, 

because posting to a public forum like GH Issue will help others, prevent 

duplicates, and keep everything organized.

 Notation
This is what source code blocks look like:

var object = {};

object.name = "Bob";

Terminal commands have a similar look but start with a dollar sign:

$ git push origin heroku

$ cd /etc/

$ ls

Inline file names, path/folder names, quotes, and special words/names 

are italicized, while command names (e.g., mongod and emphasized 

words, such as Note, are bold.

InTroduCTIonInTroduCTIon

https://github.com/azat-co/fullstack-javascript/issues


xxv

 Terms
For the purposes of this book, we’re using some terms interchangeably. 

Depending on the context, they might not mean exactly the same thing. 

For example, function = method = call, attribute = property = member = 

key, value = variable, object = hash = class, list = array, framework = library 

= module.

Additionally, “full stack” is listed as “fullstack” within code snippets.

InTroduCTIonInTroduCTIon



Quick Start

PART I



3© Azat Mardan 2018 
A. Mardan, Full Stack JavaScript, https://doi.org/10.1007/978-1-4842-3718-2_1

CHAPTER 1

Basics

I think everyone should learn how to program a computer, 
because it teaches you how to think. I view computer science 
as a liberal art, something everyone should learn to do.

—Steve Jobs

In this chapter, we’ll cover these topics:

• Overview of HTML, CSS, and JavaScript syntaxes

• Brief introduction to Agile methodology

• Advantages of cloud computing, Node.js, and 

MongoDB

• Descriptions of HTTP requests/responses and RESTful 

API concepts

In this chapter we will brush up on the fundamental concepts before 

moving forward. If you are an experienced web developer, then feel free 

to skip this chapter. If you are new to web development, then pay extra 

attention. Why? Maybe you have heard and are familiar with some terms, 

but wonder what they actually mean. Another good reason is that this 

chapter will cover the RESTful API in a very beginner-friendly manner. REST 

is used in virtually all modern web architectures, and we’ll use it in the book 

a lot. There is one last reason: You’ll look smart at a cocktail party or in front 

of your colleagues and your boss by acing the hodpodge of web acronyms.



4

 Front-End Definitions
Front end is a term for browser applications. A browser is called a client 

because in networking we use client-server communication. Users interact 

with a client to make requests to a server, which sends back responses. 

Thus frontend refers to browser or client applications. A client can be a 

mobile application as well.

Very rarely in some conversations (by some rather old-school Java 

architects), “front end” is used to define server applications. This is very 

confusing. The only excuse I can make for this usage is that these server 

apps are facing the browser requests first rather than some other server 

applications. Or, depending on the context, these server applications act as 

static web servers to the browser application. To have everything clear and 

precise, for this book we assume that when we mention front end it is the 
browser applications and their code.

Front-end development, or front-end web development, implies 

the usage of various technologies. Each of them individually is not too 

complex, but the sheer number of them makes beginners timid. For 

example, technologies used include Cascading Style Sheets (CSS), 

Hypertext Markup Language (HTML), Extensible Markup Language 

(XML), JavaScript (JS), JavaScript Object Notation (JSON), Uniform 

Resource Identifier (URI), Hypertext Transfer Protocol (HTTP), Secure 

Sockets Layer (SSL), Transport Layer Security (TLS), Transmission Control 

Protocol/Internet Protocol (TCP/IP), Internet Relay Chat (IRC), Remote 

Procedure Call (RPC), GraphQL, ES, and many other technologies (my 

next books will be called Swimming in Acronym Soup).

In addition to the low-level technologies, there are numerous 

frameworks, tools, and libraries; for example, React, jQuery,  Backbone.js,  

Angular.js, Webpack, Grunt, and so on. Please don’t confuse front-end 

frameworks with back-end frameworks: The front-end frameworks run on 

the browser whereas the back-end ones run on the server.

Chapter 1  BasiCs



5

To build a web application developers have to have multiple things. In 

a nutshell, front-end web development consists of these components:

 1. HTML or templates that compile to HTML

 2. Stylesheets to make HTML pretty

 3. JavaScript to add interactivity or some business logic 

to the browser app

 4. Some hosting (AWS, Apache, Heroku, etc.)

 5. Build scripts to prepare code, manage 

dependencies, and do pretty much anything that’s 

needed

 6. Logic to connect to the server (typically via XHR 

requests and RESTful API)

Now you know what a job that has the title of front-end developer 

entails. The great payback to mastering this hodgepodge is the ability to 

express your creativity by building beautiful and useful apps.

Before we start building, let’s cover a bird’s-eye view of the web request 

cycle.

 Web Request Cycle
This section is important for someone very new to the web development. 

The whole World Wide Web or the Internet is about communication 

between clients and servers. This communication happens by sending 

requests and receiving responses. Typically browsers (the most popular 

web clients) send requests to servers. Behind the scenes, servers send their 

own requests to other servers. Those requests are similar to the browser 

requests. The language of requests and responses is HTTP(S). Let’s explore 

the browser request in more details.

Chapter 1  BasiCs



6

The browser request consists of the following steps:

 1. A user types a URL or follows a link in his or her 

browser (also called the client).

 2. The browser makes an HTTP request to the server.

 3. The server processes the request, and if there are 

any parameters in a query string or body of the 

request, it takes them into account.

 4. The server updates, gets, and transforms data in the 

database.

 5. The server responds with an HTTP response 

containing data in HTML, JSON, or other formats.

 6. The browser receives the HTTP response.

 7. The browser renders an HTTP response to the user in 

HTML or any other format (e.g., JPEG, XML, JSON).

Mobile applications act in the same manner as regular web sites, only 

instead of a browser there is a native app. Mobile apps (native or HTML5) are 

just another type of client. Other minor differences between mobile and web 

include data transfer limitation due to carrier bandwidth, smaller screens, 

and the more efficient use of local storage. Most likely you, my reader, are 

a web developer aspiring to use your web chops in mobile. With JavaScript 

and HTML5 it’s possible, so it’s worth covering mobile development closer.

 Mobile Development
Is mobile going to overtake web and desktop platforms? Maybe, but it’s 

around 2020 and the web traffic is still around 50%. Moreover, the mobile 

development development field is still somewhat hard and slow compared 

to the web one. That’s good if you are a native mobile developer, but most of 

Chapter 1  BasiCs



7

us are not. There’s a bigger gap in talent compared to web. The gap is closing. 

With React Native, you can write once in JavaScript and reuse code on iOS and 

Android. You can build Windows and macOS desktop apps with JavaScript 

using Electron. There are other approaches to mobile and desktop that 

leverage JavaScript as well.

These are the approaches to mobile development, each with its own 

advantages and disadvantages:

 1. Native: Native iOS, Android, Blackberry apps built 

Objective-C, Swift, or Java.

 2. Abstracted native: Native apps built with JavaScript, 

React Native (https://facebook.github.io/ 

react-native), NativeScript, Appcelerator 

(https://www.appcelerator.com), Xamarin, 

(https://xamarin.com), Smartface (https://

www.smartface.io), or similar tools, and then 

compiled into native Objective-C or Java.

 3. Responsive: Mobile websites tailored for smaller 

screens with responsive design, CSS frameworks 

like Bootstrap (https://twitter.github.

io/bootstrap) or Foundation (https://

foundation.zurb.com), regular CSS, or different 

templates. You might use some JavaScript 

frameworks for the development like Backbone.js, 

Angular.js, Ember.js, or React.js.

 4. Hybrid: HTML5 apps which consist of HTML, CSS, 

and JavaScript, and are usually built with frameworks 

like Sencha Touch (https://www.sencha.com/

products/touch), Trigger.io (https://trigger.

io), or Ionic (https://ionicframework.com) 

Chapter 1  BasiCs

https://facebook.github.io/react-native
https://facebook.github.io/react-native
https://facebook.github.io/react-native
https://www.appcelerator.com
https://www.appcelerator.com
https://xamarin.com
https://xamarin.com
https://www.smartface.io
https://www.smartface.io
https://www.smartface.io
https://twitter.github.io/bootstrap
https://twitter.github.io/bootstrap
https://twitter.github.io/bootstrap
https://foundation.zurb.com
https://foundation.zurb.com
https://foundation.zurb.com
https://www.sencha.com/products/touch
http://www.sencha.com/products/touch)
http://www.sencha.com/products/touch)
https://trigger.io
https://trigger.io
https://trigger.io
https://ionicframework.com
https://ionicframework.com


8

and then wrapped into a native app with PhoneGap 

(https://phonegap.com). As in the third approach, 

you probably will want to use a JavaScript framework 

for the development such as Backbone.js, Angular.js, 

Ember.js, or React.js.

My personal favorites are the second and fourth approaches, which 

are abstracted and hybrid ones. The second approach doesn’t require a 

different code base. A minimal viable product (MVP) can be built across 

multiple platforms by sharing a lot of the code. I recommend React Native. 

Check out my book and course React Native Quickly  (https://node.

university/p/react-native-quickly) to get started with mobile 

development using the abstracted approach.

The fourth approach is more powerful and provides more scalable  

(in a development sense) UIs. This is better suited for complex apps.  

Code reuse between cross-platform mobile and web is easy because most 

of the times you’re writing in JavaScript.

 HyperText Markup Language
HTML is not a real programming language in itself. It is a set of markup 

tags that describe the content and present it in a structured and formatted 

way. We cannot code much logic into HTML. There are no variables or 

loops. HTML is the language of the web because it is ubiquitous and used 

by all clients (browsers) to interpret the data to users.

HTML tags consist of a tag name inside of the angle brackets (<>). In 

most cases, tags surround the content, with the end tag having a forward 

slash before the tag name. Tags create hierarchy of content. Each tag has a 

meaning, purpose, and a default display representation in a browser. For 

example, there are tags for headings, paragraphs, bullet points, images, 

links, and many more items.

Chapter 1  BasiCs

https://phonegap.com
https://phonegap.com
https://amzn.to/2H2Rhbk
https://node.university/p/react-native-quickly
https://node.university/p/react-native-quickly
https://node.university/p/react-native-quickly


9

In this example, each line is an HTML element:

<h2>Overview of HTML</h2>

<div>HTML is a ...</div>

<link rel="stylesheet" type="text/css" href="style.css" />

An HTML document itself is an element of the <html> tag, and all 

other elements such as head, body, h2, and p are children of that <html> 

tag. The tag head is for metadata of the page—info of the page itself, 

not visible to the user content, while body is for the content (visible to 

the user). Developers use four-space indentation to signify and mark 

the nested elements. The element link is two levels nested in the html 

element. (It includes/imports the CSS style.)

<!DOCTYPE html>

<html lang="en">

    <head>

         <link rel="stylesheet" type="text/css" 

href="style.css"/>

    </head>

    <body>

        <h2>Overview of HTML</h2>

        <p>HTML is a ...</p>

    </body>

</html>

Notice that the closing tags have a slash (/) inside the angle brackets 

(<>), but before the name of the tag, e.g., </html>. This is important 

for proper rendering (interpretation and displaying) of elements by the 

browser.

There are different flavors and versions of HTML, such as DHTML, 

XHTML1.0, XHTML1.1, XHTML2, HTML4, and HTML5. This comic 

strip does a good job of explaining the differences: Misunderstanding 

Markup: XHTML 2/HTML 5 (https://bit.ly/2N5WTUl). Before HTML5 

Chapter 1  BasiCs

https://coding.smashingmagazine.com/2009/07/29/misunderstanding-markup-xhtml-2-comic-strip
https://coding.smashingmagazine.com/2009/07/29/misunderstanding-markup-xhtml-2-comic-strip
https://bit.ly/2N5WTUl


10

web developers had to use the appropriate version, but now just write 

<!DOCTYPE html> and modern browsers will understand your markup.

Any HTML element can have attributes. You already saw link with 

rel, type, and href. Attributes are typically extra information that is not 

directly visible by the user. Attributes are not content and they are different 

in this sense from nested elements, which are content. The most important 

attributes which are applicable to almost all elements and tags are class, 

id, style, and data-name. Then there are event attributes such as 

onclick, onmouseover, onkeyup, and so on.

 class

The class attribute defines a class that is used for styling in CSS or 

Domain Object Model (DOM) manipulation; for example:

<p class="normal">...</p>

 id

The id attribute defines an ID that is similar in purpose to element class, 

but it has to be unique; for example:

<div id="footer">...</div>

 style

The style attribute defines inline CSS to style an element; for example:

<font style="font-size:20px">...</font>

 title

The title attribute specifies additional information that is usually 

presented in tooltips by most browsers; for example:

<a title="Up-vote the answer">...</a>

Chapter 1  BasiCs



11

 data-name

The data-name attribute allows for metadata to be stored in the DOM;  

for example:

<tr data-token="fa10a70c–21ca–4e73-aaf5-

d889c7263a0e">...</tr>

 onclick

The onclick attribute calls inline JavaScript code when a click event 

happens; for example:

<input type="button"

  onclick="validateForm();">...</a>

 onmouseover

The onmouseover attribute is similar to onclick but for mouse hover 

events; for example:

<a onmouseover="javascript:

  this.setAttribute(‘css’,‘color:red’)">

  ...

</a>

Other HTML element attributes for inline JavaScript code are as 

follows:

• onfocus: When the browser focuses on an element

• onblur: When the browser focus leaves an element

• onkeydown: When a user presses a keyboard key

• ondblclick: When a user double-clicks the mouse

• onmousedown: When a user presses a mouse button

Chapter 1  BasiCs



12

• onmouseup: When a user releases a mouse button

• onmouseout: When a user moves mouse out of the 

element area

• oncontextmenu: When a user opens a context menu

The full list of such events and a browser compatibility table are 

presented in “Event compatibility tables” (https://www.quirksmode.

org/dom/events/index.html).

We’ll use classes extensively with the Bootstrap framework (https://

getbootstrap.com), but the use of inline CSS and JavaScript code is 

generally a bad idea, so we’ll try to avoid it. However, it’s good to know the 

names of the JavaScript events because they are used all over the place in 

jQuery, Backbone.js, and, of course, plain JavaScript. To convert the list 

of attributes to a list of JS events, just remove the prefix on; for example, 

onclick attribute means click event.

More information is available at MDN: Getting Started with JS 

(https://developer.mozilla.org/en-US/docs/JavaScript/

Getting_Started)

 Cascading Style Sheets
CSS provides a way to format and present content. An HTML document can 

have an external stylesheet included in it by a <link> tag, as shown in the 

previous examples, or it can have CSS code directly inside of a <style> tag:

<style>

  body {

    padding-top: 60px; /* 60px to make some space */

  }

</style>

Chapter 1  BasiCs

https://www.quirksmode.org/dom/events/index.html
https://www.quirksmode.org/dom/events/index.html
https://www.quirksmode.org/dom/events/index.html
https://getbootstrap.com
https://getbootstrap.com
https://getbootstrap.com
https://developer.mozilla.org/en-US/docs/JavaScript/Getting_Started
https://developer.mozilla.org/en-US/docs/JavaScript/Getting_Started
https://developer.mozilla.org/en-US/docs/JavaScript/Getting_Started


13

Each HTML element can have id attributes, class attributes, or both:

<div id="main" class="large">

  Lorem ipsum dolor sit amet,

  Duis sit amet neque eu.

</div>

In CSS we access elements by their id, class, tag name, and in some 

edge cases, by parent–child relationships or element attribute value.

This sets the color of all the paragraphs (<p> tag) to gray ( #999999 in 

red-blue-green code):

p {

  color: #999999;

}

This sets padding of a <div> element with the id attribute of main:

div#main {

  padding-bottom: 2em;

  padding-top: 3em;

}

This sets the font size to 14 pixels for all elements with a class 

attribute large:

.large {

  font-size: 14pt;

}

This hides <div>, which are direct children of the <body> element:

body > div {

  display: none;

}

Chapter 1  BasiCs



14

This sets the width to 150 pixels for input for which the name attribute 

is email:

input[name="email"] {

  width: 150px;

}

More information about CSS is available at Wikipedia (https://

en.wikipedia.org/wiki/Cascading_Style_Sheets) and MDN 

(https://developer.mozilla.org/en-US/docs/Web/CSS).

CSS3 is an upgrade to CSS that includes new ways of doing things such 

as rounded corners, borders, and gradients, which were possible in regular 

CSS only with the help of PNG/GIF images and by using other tricks.

For more information refer to CSS3.info (http://css3.info), 

and CSS3 vs. CSS comparison article on Smashing (http://coding.

smashingmagazine.com/2011/04/21/css3-vs-css-a-speed-

benchmark).

 JavaScript
JavaScript (JS) was crafted in 1995 at Netscape as LiveScript. Guess what 

other technology got its start in 1995? Java. It was very hyped and popular, 

so the LiveScript developers renamed it JavaScript. But Java and JavaScript 

are very different; they are like ham and hamster. JavaScript has the 

same relationship with Java as a hamster has with a ham. So please don’t 

confuse one with another. JavaScript is interpreted and run by a JavaScript 

engine (Google Chrome V8 or Microsoft Chakra or SpiderMonkey) from 

plain text. Java is compiled to bytecode that is run by the Java Virtual 

Machine. There are differences in syntax, memory usage, typing, and 

pretty much anything else.

For most beginner programmers, it’s easier to get started with 

JavaScript than with any other language. JavaScript has a very expressive 

language and very little setup overhead (just open your browser and 

Chapter 1  BasiCs

https://en.wikipedia.org/wiki/Cascading_Style_Sheets
https://en.wikipedia.org/wiki/Cascading_Style_Sheets
https://en.wikipedia.org/wiki/Cascading_Style_Sheets
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
http://css3.info
http://css3.info
http://coding.smashingmagazine.com/2011/04/21/css3-vs-css-a-speed-benchmark
http://coding.smashingmagazine.com/2011/04/21/css3-vs-css-a-speed-benchmark
http://coding.smashingmagazine.com/2011/04/21/css3-vs-css-a-speed-benchmark
http://coding.smashingmagazine.com/2011/04/21/css3-vs-css-a-speed-benchmark


15

start coding). JavaScript is the only native language that runs in the 

browsers (until we have WebAssembly, but who wants to do that?). This 

fact alone makes JS the most popular language by the number of runtime 

environments. Moreover, JavaScript is omnipresent. It can be used almost 

anywhere!

These days, JavaScript is used for both client-side and server-side web 

development, as well as in desktop application development, drones, 

Internet of Things (IoT), and other things. This is the main focus of this 

book because with JavaScript you can develop across all the layers.

If you are a beginner programmer, then just learn JavaScript and 

you won’t need to learn any other languages. You can use JavaScript for 

everything like frontend, backend, database, and DevOps, and that will 

make you a full stack JavaScript developer, my friend!

Let’s start with JavaScript in HTML. Putting JS code into a <script> 

tag is the easiest way to use JavaScript in an HTML document:

<script type="text/javascript" language="javascript">

  alert("Hello world!") //simple alert dialog window

</script>

Be advised that mixing HTML and JS code is not a good idea, so to 

separate them we can move the code to an external file, and include it by 

setting the source attribute src="filename.js" on a <script> tag; for 

example, for the app.js resource:

<script src="js/app.js" type="text/javascript"

  language="javascript">

</script>

Note that the closing <script/> tag is mandatory even with an empty 

element like we have where we include the external source file. In other 

words, just typing <script src="js/app.js"...> will not suffice.

Chapter 1  BasiCs



16

Ways, ways back when dinosaurs roamed the world, browsers knew 

how to parse and run VBScript (Microsoft Visual Basic script, the same as 

you use in Excel spreadsheets). Hence, developers were required to specify 

what the type of script is this: JavaScript, VB, or something else (Java, Flash, 

and other front-end losers). Luckily, now the modern browsers default 

to JS because that is the only thing they can run, and because that’s the 

only thing commonly used by developers. Thus, the type and language 

attributes over the years became optional in modern browsers due to the 

overwhelming dominance of JavaScript.

Other ways to run JavaScript include the following:

• The inline approach already covered

• WebKit browser Developer Tools and FireBug consoles

• The interactive Node.js shell

One of the advantages of the JavaScript language is that it’s loosely 

typed. This loose or weak typing, as opposed to strong typing (https://

en.wikipedia.org/wiki/Strong_typing) in languages like C and 

Java, makes JavaScript a better programming language for prototyping. 

The following sections introduce some of the main types of JavaScript 

objects/classes. I wrote “objects/classes” because JavaScript doesn’t have 

classes per se. In JS, objects inherit from objects, which is called prototypal 

inheritance. Confusing? Wait until you see other types of inheritance, 

because there are several different ways to implement inheritance.

Going back to types, JavaScript primitive types have wrapper objects/

classes that provide extra functionality and static methods. Each primitive 

has a object/class.

 Number Primitives

Number primitives are numerical values; for example:

const num = 1

Chapter 1  BasiCs

https://en.wikipedia.org/wiki/Strong_typing) 
https://en.wikipedia.org/wiki/Strong_typing) 


17

The way we define variables is with either var, const or let. const 

and let respect scopes created by logical blocks (functions, loops, and 

conditions), where as var does not. The const declaration will prevent 

reassignment. If a developer omits var, const or let, then bad things will 

happen such as leaking variables to the global scope and name collisions.

The old way was to use var. I immediately raise a red flag when I 

perform a job interview and I see a candidate use var. It was responsible 

for quite a lot of weird bugs, so only developers who are unskilled, not 

aware of ES2015/ES6 or those who learned JavaScript from w3schools.

com would use the var statement in our day and age. To learn about 10 

main features of ES2015/ES6 that every web developer should know, read 

this concise but full of examples post: https://webapplog.com/es6. 

For ES7 and ES8 features, I recommend this eloquent blog post from Node 

University: https://node.university/blog/1621685/es7es8.

 Number Object

The Number https://developer.mozilla.org/en-US/docs/

JavaScript/Reference/Global_Objects/Number object and its 

methods provide added functionality for working with numerical values 

(int and floats). For example, developers can create a Number object with 

new:

const numObj = new Number('123') // Number object

const num = numObj.valueOf() // number primitive

const numStr = numObj.toString() // string representation

console.log(numObj === 123) // false

Notice the last line, the number object is not triple equals the number 

primitive. ( === checks for equality in value and type.) This is because 

primitive and the object are of different types. Conveniently, JavaScript can 

Chapter 1  BasiCs

http://w3schools.com
http://w3schools.com
https://webapplog.com/es6
https://node.university/blog/1621685/es7es8
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Number


18

automatically convert the types to something similar with double equals 

(==). Thus, the following code will be print/output true:

const numObj = new Number('123') // Number object

console.log(numObj === 123) // false

The Number method has useful methods such as parseInt() that is 

used to convert values from strings to numbers:

17 === "17" // false

17 === Number.parseInt("17", 10) // true

 String Object

The String object has a lot of useful methods, like length, match(), and so 

on; for example, to create a String object use new:

const strObj = new String("abcde") // String object

const str = strObj.valueOf() // string primitive

strObj.match(/ab/)

str.match(/ab/) // both call will work

 String Primitives

String primitives are sequences of characters inside of single quotes (') or 

double quotes ("); for example, we can define a string primitive simply by 

using single quotes:

const str = 'React Quickly' // single quotes

const str1 = "React Quickly" // double quotes

console.log(str === str1) // true

const newStr = "abcde".substr(1,2) // newStr is bc

Chapter 1  BasiCs



19

In JavaScript, double quotes don’t have any special power in addition 

to defining strings unlike other languages where double quotes signify 

interpolation. In my opinion, we should get rid of single quotes and just 

use double quotes because it will remove a lot of arguments about what 

quotes to use. Typically, developers prefer single quotes because then they 

can use double quotes inside for HTML attributes values. The downside is 

that you can’t use an apostrophe inside of a single quote string unless you 

escape it with a backslash (\).

'it\'s crazy' // valid string

'it's crazy' // INVALID string

For convenience, JavaScript automatically wraps string primitives with 

String object methods. This is why string primitives have fancy methods 

like substr too. The triple equals will return false though, because String 

objects and string primitives are not the same types.

 RegExp Object

Regular Expressions or RegExps are patterns of characters used in finding 

matches, replacing, and testing of strings.

const pattern = /[A-Z]+/

'ab'.match(pattern) // null

'AB'.match(pattern) // ["AB"]

The match() method returns an array of matches (["AB"]). If all you 

need is a Boolean true/false, then simply use pattern.test(str). For 

example:

const str = 'A'

const pattern = /[A-Z]+/

pattern.test(str) // true

Chapter 1  BasiCs



20

 Special Types

When in doubt (when debugging), you can always call typeof obj. For 

example,

const obj = {}

console.log(typeof obj) // object

const a = 1

console.log(typeof a) // number

Here are some of the special types used in JS:

• NaN: Not a number

• null: Null, nada, zip

• undefined: Undeclared variable

• function: Function

 JSON

The JSON library allows us to parse and serialize JavaScript objects; for 

example, we can take a valid JSON string, convert it to a JS object, add a 

new field c, and then convert the object back into the string stringObj2 

and a pretty string stringObj3 (with spaces and new lines):

const stringObj = '{"a": 1, "b": "hi"}'

const obj = JSON.parse(stringObj)

obj.c = 2

const stringObj2 = JSON.stringify(obj)

console.log(stringObj2) //  JSON string {"a":1,"b":"hi", 

"c":2}

const stringObj3 = JSON.stringify(obj, null, 2)  

// make the string pretty with spaces and new lines

console.log(stringObj2) // prettified JSON string

Chapter 1  BasiCs



21

 Array Object

Arrays are zero-index-based lists. In JavaScript arrays are objects that 

have sequential indices as keys. The are two way to create an array: Array 

object and array literal. For example:

const arr = new Array() // Array object

const arr = ['apple', 'orange', 'kiwi'] // Array literay

Each array inherits all Array methods. The Array object has a lot 

of very useful methods, like indexOf(), map(), slice(), and join(). 

Knowing and using these methods will save you hours of coding and 

debugging. Make sure that you’re familiar with them!

 Data Object

I really like JavaScript because it’s so easy to create an object. In Java, on 

the other hand, developers have to define a class, maybe an interface too, 

then have getters and setters in the class, then instantiate the class into an 

object. In JavaScript, developers just type {} and boom, they got an object! 

Using curly brackets ({}) is called object literal. For example, here’s an 

object with name, url, and price fields:

const obj = {

  name: 'Gala',

  url: 'img/gala100x100.jpg',

  price: 129

}

or developers can use the Object object:

const obj = new Object({a: 1})

Chapter 1  BasiCs



22

But I don’t recommend using the Object object. Literal is more 

eloquent.

Object has useful methods such as Object.keys(), Object.

entries() and Object.values().

Objects are passed as reference. It better to clone them with Object.

assign(), otherwise, modifying the original will modify all the references.

const obj1 = {a:1}

const obj2 = obj1 // Reference

console.log(obj2) // { a: 1 }

obj1.a = 2

console.log(obj2) // Changed { a: 2 }

const obj3 = Object.assign({}, obj1) // Clone

console.log(obj3) // { a: 2 }

obj1.a = 3

console.log(obj3) // Unchanged { a: 2 }

Every object inherits from Object. Inheritance is done by prototypes, 

class or function factories. I’ll provide more on inheritance patterns later.

 Boolean Primitives and Objects

Just as with String and Number, Boolean object supports and an 

alternative to the primitive boolean. I do not recommend using Boolean 

object, only primitive. Here are the usages:

const bool1 = true

const bool2 = false

const boolObj = new Boolean(false)

console.log(bool2 === boolObj) // false

console.log(bool2 == boolObj) // true

Chapter 1  BasiCs



23

 Date Object

The Date objects allow us to work with dates and time; for example:

const timestamp = Date.now() // 1368407802561

const d = new Date() //Sun May 12 2013 18:17:11  

GMT-0700 (PDT)

 Math Object

The Math object has methods for mathematical constants and functions 

such as floor(), random(), round(), sqrt() and so on; for example:

const x = Math.floor(3.4890)

const ran = Math.round(Math.random()*100)

 Browser Objects

Browser objects give us access to a browser and its properties like URLs; 

for example:

window.location.href = 'http://rapidprototypingwithjs.com'

console.log('test')

 DOM Objects

DOM objects or DOM nodes are the browser interface to the DOM 

elements rendered on the page. They have properties such as width, height, 

position, and so on, and, of course, inner content, which can be another 

element or text. To get a DOM node, you can use its ID; for example:

const transactionsContainer = document.

createElement('div')

transactionsContainer.setAttribute('id', 'main')

Chapter 1  BasiCs



24

const content = document.createTextNode('Transactions')

transactionsContainer.appendChild(content)

document.body.appendChild(transactionsContainer)

const main = document.getElementById('main')

console.log(main, main.offsetWidth, main.offsetHeight)

 Globals

In addition to classes such as String, Array, Number, and Math, which 

have a lot of useful methods, you can call the following methods known as 

globals, meaning you can invoke them from anywhere in your code:

• encodeURI: Encodes a Uniform Resource Identifier 

(URI) to give you a URL, e.g., encodeURI('http://

www.webapplog.com/js is awesome')

• decodeURI: Decodes a URI

• encodeURIComponent: Encodes URI for URL 

parameters (don’t use it for the entire URL string)

• decodeURIComponent: Decodes the fragment

• isNaN: Determines whether a value is a number or not

• JSON: Parsing (parse()) and serializing 

(stringify()) of JSON data

• parseFloat: Converts a string to a floating number

• parseInt: Converts a string to a number

• Intl: Language-specific string comparison methods

• Error: An error object that you can use to instantiate 

your own error objects; for example, throw new 

Error('This book rocks!')

• Date: Various methods to work with dates

Chapter 1  BasiCs

http://www.webapplog.com/js
http://www.webapplog.com/js


25

 JavaScript and Node.js Conventions

JavaScript uses a number of style conventions. One of them is camelCase, 

in which you type multiple words as one word, capitalizing the first 

character of the each except the first word.

Semicolons are optional. Names starting with an underscore (_) are 

private methods or attributes, but not because they are protected by the 

language. We use the underscore simply to alert the developers not to use 

the methods and attributes, because they may change in the future.

JavaScript supports numbers only up to 53 bits in size. Check out large 

numbers’ libraries if you need to deal with numbers larger than that.

Another important distinction of JS is that it’s a functional and 

prototypal language. Typical syntax for function declaration looks like this:

function Sum(a,b) {

  const sum = a + b

  return sum

}

console.log(Sum(1, 2))

Functions in JavaScript are first-class citizens due to the functional 

programming nature of the language. Therefore, functions can be used as 

other variables or objects; for example, functions can be passed to other 

functions as arguments:

const f = function (str1){

  return function(str2){

  return str1 + ' ' + str2

  }

}

const a = f('hello')

const b = f('goodbye')

console.log((a('Catty'))

console.log((b('Doggy'))

Chapter 1  BasiCs



26

Another way to define a function is to use a fat arrow syntax. The 

difference is that a fat arrow will not use a name, so developers need to 

store the function in a variable.

const Sum = (a,b) => {

  const sum = a + b

  return sum

}

console.log(Sum(1, 2))

Another difference is that fat arrow function syntax preserves the value 

of this from the outer scope, which in a way makes the fat arrow syntax 

equivalent to using a bind method bind(this) on a regular function.

const Sum = function(a, b) {

  const sum = a + b

  return sum

}.bind(this)

Of course, in the Sum example we never use this so there’s no need. 

But when you use classes and inheritance, you’ll use this a lot because it’s 

the way to refer to the class instance and its methods and attributes/fields/

properties.

Speaking of instances, classes and inheritance, if you want to be a good 

full stack developer, then it’s very important to know that there are several 

ways to instantiate an object in JS:

• Classical inheritance (http://www.crockford.com/

javascript/inheritance.html) pattern

• Pseudo-classical inheritance (http://javascript.

info/class-patterns) pattern

• Functional inheritance pattern

Chapter 1  BasiCs

http://www.crockford.com/javascript/inheritance.html
http://www.crockford.com/javascript/inheritance.html
http://www.crockford.com/javascript/inheritance.html
http://javascript.info/class-patterns
http://javascript.info/class-patterns
http://javascript.info/class-patterns


27

For further reading on inheritance patterns, check out “Inheritance 

Patterns in JavaScript” (http://bolinfest.com/javascript/

inheritance.php) and Inheritance revisited (https://developer.

mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_

prototype_chain).

Mozilla Developer Network has the best JavaScript and DOM 

references (https://developer.mozilla.org/en-US/docs/

JavaScript/Reference). Also, the VS Code editor shows autocomplete 

prompts and documentation hints. (No matter what, please stop using 

Notepad++.)

As for the ECMAScript specification (standard for JavaScript and 

Node), visit: http://www.ecma-international.org.

 Agile Methodologies
In modern web development, in addition to full stack JavaScript most 

teams use Agile. The Agile software development methodology evolved 

due to the fact that traditional methods like Waterfall weren’t good 

enough in situations of high unpredictability; that is, when the solution 

is unknown (http://www.startuplessonslearned.com/2009/03/

combining-agile- development-with.html). Agile goes hand-in-hand 

with Scrum/sprint, test-driven development, continuous deployment, 

paired programming, and other practical techniques, many of which were 

borrowed from extreme programming.

 Scrum
In regard to management, the Agile methodology often uses the Scrum 

approach. The Scrum methodology is a sequence of short cycles, and each 

cycle is called a sprint. One sprint usually lasts from one to two weeks. A 

typical sprint starts and ends with a sprint planning meeting where new 

Chapter 1  BasiCs

http://bolinfest.com/javascript/inheritance.php
http://bolinfest.com/javascript/inheritance.php
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/JavaScript/Reference
https://developer.mozilla.org/en-US/docs/JavaScript/Reference
http://www.ecma-international.org
http://www.startuplessonslearned.com/2009/03/combining-agile-development-with.html
http://www.startuplessonslearned.com/2009/03/combining-agile-development-with.html
http://www.startuplessonslearned.com/2009/03/combining-agile-development-with.html
http://www.startuplessonslearned.com/2009/03/combining-agile-development-with.html


28

tasks are assigned to team members. New tasks cannot be added to the 

sprint in progress; they can be added only at the sprint meetings.

An essential part of the Scrum methodology is the daily scrum 

meeting, hence the name. Each scrum is a 5-to 15-minute-long meeting, 

often conducted in a hallway. In scrum meetings, each team member 

answers three questions:

 1. What have you done since yesterday?

 2. What are you going to do today?

 3. Do you need anything from other team members?

Like many Agile frameworks (Kanban, XP, SAFE), Scrum offers 

flexibility to change project requirements during development, which 

is a great improvement over the Waterfall methodology, especially in 

situations of high uncertainty (i.e., in startups). JavaScript is used in the UI 

were a lot of these changes often happen. You’ll see or already see a lot of 

front-end teams adopting Scrum and Agile.

The advantage of Scrum methodology is that it is effective in situations 

where it is hard to plan ahead of time, and also in situations where a 

feedback loop is used as the main decision-making authority.

More about Scrum can be read at the following sources:

• Scrum Guide in PDF (http://www.scrumguides.

org/docs/scrumguide/v1/scrum-guide-us.pdf)

• Scrum.org (http://www.scrum.org)

• Succeeding with Agile by Mike Cohen (Addison-Wesley, 

2010)

Chapter 1  BasiCs

http://www.scrumguides.org/docs/scrumguide/v1/scrum-guide-us.pdf
http://www.scrumguides.org/docs/scrumguide/v1/scrum-guide-us.pdf
http://www.scrumguides.org/docs/scrumguide/v1/scrum-guide-us.pdf
http://scrum.org
http://www.scrum.org


29

 Test-Driven Development
Test-driven development (TDD) consists of the following steps:

 1. Write failing automated test cases for new features, 

tasks, or enhancement by using assertions that are 

either true or false.

 2. Write code to successfully pass the test cases.

 3. Refactor code if needed, and add functionality while 

keeping the test cases passed.

 4. Repeat until all tasks are complete.

Tests can be split into functional and unit testing. The latter is when a 

system tests individual units, methods, and functions with dependencies 

mocked up, whereas the former (also called integration testing) is when a 

system tests a slice of a functionality, including dependencies.

There are several advantages of TDD:

• Fewer bugs and defects

• More efficient codebase

• Confidence that code works and doesn’t break the old 

functionality

 Continuous Deployment and Integration
Continuous deployment (CD) is a set of techniques to rapidly deliver new 

features, bug fixes, and enhancements to the customers. CD includes 

automated testing and automated deployment. Using CD, manual 

overhead is decreased and feedback loop time is minimized. Basically, the 

faster a developer can get the feedback from the customers, the sooner the 

product can pivot, which leads to more advantages over the competition. 

Chapter 1  BasiCs



30

Many startups deploy multiple times in a single day in comparison to the 

6-to 12-month release cycle that is still typical for corporations and big 

companies.

The advantages of the CD approach include decreased feedback loop 

time and manual labor overhead.

There are Continuous Delivery, Continuous Deployment and 

Continuous Integration. There are differences between them but ideally 

you want to have all three for a faster deployment.

Some of the most popular solutions for continuous integration include 

the following:

• Jenkins (https://jenkins.io): An extendable open 

source continuous integration server

• CircleCI (https://circleci.com): Ship better code, 

faster

• Travis CI (https://travis-ci.org): A hosted 

continuous integration service for the open source 

community

 Pair Programming
Pair programming is a technique whereby two developers work together 

in one environment. One of the developers is a driver, and the other is an 

observer. The driver writes code, and the observer assists by watching and 

making suggestions. Then they switch roles. The driver has a more tactical 

role of focusing on the current task. In contrast, the observer has a more 

strategic role, overseeing “the bigger picture” and finding bugs and ways to 

improve an algorithm.

Chapter 1  BasiCs

https://jenkins.io
https://jenkins.io
https://circleci.com
https://circleci.com
https://travis-ci.org
https://travis-ci.org


31

The following are the advantages of paired programming:

• Pairs result in shorter and more effcient codebase, and 

introduce fewer bugs and defects.

• As an added bonus, knowledge is passed among 

programmers as they work together. However, conflicts 

between developers are possible, and not uncommon.

 Back-End Definitions
The backend is another name for the server. It’s everything after the 

browser. It includes server platforms like PHP, Python, Java, Ruby, and of 

course Node.js, as well as databases and other technologies.

Luckily, with modern back-end-as-a-service solutions (BaaS) you can 

bypass the back-end development entirely. With just a single <script> tag 

included, you can get a real-time database with the ability to put some 

logic into it like access level control (ALC), validation, and so on. There are 

a lot of services offered different levels of BaaS. The most popular and  

easy-to-use ones are Firebase and Parse (https://firebase.google.com  

and http://parseplatform.org).

In those cases where you still need your own custom server code, 

Node.js is the weapon of choice!

 Node.js
Node.js is an open source, event-driven asynchronous I/O technology for 

building scalable and efficient web servers. Node.js consists of Google’s V8 

JavaScript engine and a bunch of C++ modules. A cloud company Joyent 

(now acquired by Samsung) maintained Node.js in the beginning, but now 

the open-source Node foundation oversees it.

Chapter 1  BasiCs

https://firebase.google.com
http://parseplatform.org


32

The purpose and use of Node.js is to have non-blocking I/O which 

makes things faster. Non-blocking I/O is not new. It exists in NIO for Java, 

in Twisted for Python and in EventMachine for Ruby. The big difference is 

that in Node.js non-blocking I/O was built from the get-go and thus simple 

to use, while in other languages its a complex afterthought.

Funny enough, JavaScript wasn’t even the first language for Node.js. 

The JavaScript implementation of Node.js was the third one after attempts 

at using Ruby and C++ programming languages.

Node.js is not in itself a framework like Ruby on Rails; it’s more 

comparable to the pair of PHP and Apache. I’ll provide a list of the top 

Node.js frameworks in Chapter 6.

The following are the advantages of using Node.js:

• Developers have high likelihood of familiarity with 

JavaScript due to its status as a de facto standard for 

web and mobile development.

• Using one language for front-end and back-end 

development speeds up the coding process. A 

developer’s brain doesn’t have to switch between 

different syntaxes, a so-called context switch. The 

learning of methods and classes goes faster.

• With Node.js, you could prototype quickly and go 

to market to do your customer development and 

customer acquisition early. This is an important 

competitive advantage over other companies that use 

less agile technologies (e.g., PHP and MySQL).

• Node.js is built to support real-time applications by 

utilizing web sockets.

Node.js evolves fast. For the current state of Node.js (as of this writing), 

refer to the official Node.js blog at https://nodejs.org/en/blog.

Chapter 1  BasiCs

https://nodejs.org/en/blog


33

 NoSQL and MongoDB
MongoDB, from huMONGOus, is a high-performance, no-relationship 

database for huge quantities of data (https://mongodb.com). The NoSQL 

concept came out when traditional relational database management systems 

(RDBMSs) were unable to meet the challenges of huge amounts of data.

Here are the advantages of using MongoDB:

• Scalability: Due to a distributed nature, multiple 

servers and data centers can have redundant data.

• High performance: MongoDB is very effective for 

storing and retrieving data, partially owing to the 

absence of relationships between elements and 

collections in the database.

• Flexibility: A key-value store is ideal for prototyping 

because it doesn’t require developers to know the 

schema and there is no need for fixed data models or 

complex migrations.

 Cloud Computing
Cloud computing consists of the following components:

• Infrastructure as a Service (IaaS), including Rackspace 

and Amazon Web Services

• Platform as a Service (PaaS), including Heroku and 

Microsoft Azure

• Back end as a Service (BaaS), the newest, coolest kid on 

the block, including Compose and Firebase

• Software as a Service (SaaS), including Google Apps 

and Salesforce.com

Chapter 1  BasiCs

https://mongodb.com
http://salesforce.com


34

Cloud application platforms provide the following advantages:

• Scalability; for example, they can spawn new instances 

in a matter of minutes

• Ease of deployment; for example, to push to Heroku 

you can just use $ git push

• Pay-as-you-go plans where users add or remove 

memory and disk space based on demands

• Add-ons for easier installation and configuration of 

databases, app servers, packages, and so on

• Security and support

PaaS and BaaS are ideal for prototyping, building minimal viable 

products (MVP), and for early-stage startups in general.

Here is the list of the most popular PaaS solutions:

• Heroku (https://heroku.com)

• AWS Elastic Beanstalk (https://aws.amazon.com/

elasticbeanstalk)

• Microsoft Azure (https://azure.microsoft.com)

 HTTP Requests and Responses
Each HTTP Request and Response consists of the following components:

• Header: Information about encoding, length of the 

body, origin, content type, and so on

• Body: Content, usually parameters or data, that is 

passed to the server or sent back to a client

Chapter 1  BasiCs

https://heroku.com
https://heroku.com
https://aws.amazon.com/elasticbeanstalk
https://aws.amazon.com/elasticbeanstalk
https://aws.amazon.com/elasticbeanstalk
https://azure.microsoft.com
https://azure.microsoft.com


35

In addition, the HTTP Request contains these elements:

• Method: There are several methods, with the most 

common being GET, POST, PUT, and DELETE

• URL: Protocol, host, port, path; for example, https://

webaplog.com/es6

• Query string: Everything after a question mark in the 

URL (e.g., ?q=rpjs&page=20)

 RESTful API
RESTful (REpresentational State Transfer) APIs became popular due to the 

demand in distributed systems to become stateless because stateless apps 

are better to scale. This turned into a demand for each transaction/request 

to include enough information about the state of the client. In a sense, this 

standard is stateless because no information about the clients’ states is 

stored on the server, thus making it possible for each request to be served 

by a different system.

Here are some of the distinct characteristics of RESTful APIs:

• It has better scalability support due to the fact that 

different components can be independently deployed 

to different servers.

• It is easier to use than to use Simple Object Access 

Protocol (SOAP) because of the simpler verb and noun 

structure in REST, that’s no need for a verb in the URL.

• It uses HTTP methods such as GET, POST, DELETE, 

PUT, OPTIONS, and so on.

Chapter 1  BasiCs

https://webaplog.com/es6
https://webaplog.com/es6


36

REST is not a protocol; it is an architecture in the sense that it’s more 

flexible than SOAP, which is a protocol. Therefore, REST API URLs could 

look like /messages/list.html or /messages/list.xml in case we 

want to support these formats. But most of the time, developers just use 

JSON without any extensions: /messages and /messages/{id}.

PUT and DELETE are idempotent methods, which means that if the 

server receives two or more similar requests, the end result will be the 

same. On the other hand, the GET method is nullipotent because the read 

operation is safe on repeats. However, POST is not idempotent because it 

will affect state and cause side effects on repeats.

We will use REST in the next chapters for building Node.js backend 

and Backbone client.

Table 1-1. An Example of a CRUD RESTful API

Method URL Meaning

Get /messages.json return list of messages in JsON format

pUt /messages.json Update/replace all messages and return 

status/error in JsON

pOst /messages.json Create new message and return its iD in 

JsON format

Get /messages/{id}.json return message that has iD {id} in 

JsON format

pUt /messages/{id}.json replace message that has iD {id} with 

payload

patCh /messages/{id}.json Update message that has iD {id} with 

payload

DeLete /messages/{id}.json Delete message that has iD {id}

Table 1-1 is an example of a simple Create, Read, Update, and Delete 

(CRUD) RESTful API for Message Collection.

Chapter 1  BasiCs



37

 Summary
This concludes the first chapter. In this chapter we’ve covered some of the 

core concepts of web development. They’ll be a solid foundation for the 

rest of the book. I’m sure some of the concepts were familiar to you:

• HTML

• CSS

• JavaScript types and objects

• Agile

• Node.js

• NoSQL

• HTTP Request

• RESTful API

Nevertheless, it’s good to brush up on them because they are 

numerous and vast. Theory is not that useful or interesting without 

understanding how it applies and benefits the actual code. Therefore, we’ll 

move swiftly to the technical setup to get you to the coding projects fast.

Chapter 1  BasiCs



39© Azat Mardan 2018 
A. Mardan, Full Stack JavaScript, https://doi.org/10.1007/978-1-4842-3718-2_2

CHAPTER 2

Setup

One of my most productive days was throwing away 1,000 
lines of code.

—Ken Thompson

In this chapter, we’ll cover the following topics:

• Suggestions for the toolset

• Step-by-step installation of local components

• Preparation for the use of cloud services

The proper setup is absolutely crucial to your productive development. 

You need to have everything ready when you embark on a long journey, 

right? The two important things to install are dependencies and the 

toolset. Dependencies are absolutely necessary and technologies like 

Node.js or MongoDB. Moreover, the toolset is highly recommended 

because it will make you more productive. They enable the server-side 

code and persistence, respectively. In addition to that, in the cloud section, 

we cover setup of the services for deployment and development. They 

will enable you to keep your code under version control and deploy it in a 

scalable manner.

https://en.wikipedia.org/wiki/Ken_Thompson


40

 Local Setup
Local setup is what we use on our development machines when we work 

on a project. It includes anything from folders, browsers, editors, and 

HTTP servers to databases. Figure 2-1 shows an example of the initial 

development environment setup.

 Development Folder
If you don’t have a specific development folder for your web development 

projects, you could create a Development folder in the Documents folder 

(path will be Documents/Development). To work on the code example, 

create a fullstack-javascript folder inside your web development 

projects folder; for example, if you create a fullstack-javascript 

folder inside of the Development folder, the path will be Documents/

Development/fullstack-javascript. You could use the Finder app on 

macOS or the following terminal commands on Posix (macOS X/Linux) 

systems:

$ cd ~/Documents

$ mkdir Development

$ cd Development

$ mkdir fullstack-javascript

Figure 2-1. Initial development environment setup

Chapter 2  Setup



41

Tip to open macOS Finder app in the current directory from 
terminal, just type and run the $ open. command. On Windows, 
terminal is command prompt.

To get the list of files and folders, use this UNIX/Linux command:

$ ls

or to display hidden files and folders, like.git, use this:

$ ls -lah

Another alternative to $ ls is $ ls -alt. The difference between the 

-lah and the -alt options is that the latter sorts items chronologically and 

the former sorts them alphabetically.

You can use the Tab key to autocomplete names of the files and folders.

Later, you could copy examples into the fullstack-javascript 

folder as well as create apps in that folder.

Tip another useful thing is to have the New terminal at Folder 
option in Finder on macOS. to enable it, open your System 
preferences (you could use Command + Space, a.k.a. Spotlight,  
for it). Find Keyboard and click it. Open Keyboard Shortcuts and click 
Services. Select the New terminal at Folder and New terminal tab at 
Folder check boxes. Close the window (optional).

Chapter 2  Setup



42

 Browsers
I recommend downloading the latest version of the WebKit or Gecko 

browser of your choice:

• Chrome (https://www.google.com/chrome) 

(recommended)

• Safari (https://www.apple.com/safari)

• Firefox (https://www.mozilla.org/en-US/

firefox/new)

Whereas Chrome (Figure 2-2) and Safari already come with built-in 

developer tools, you’ll need the Firebug plug-in for Firefox.

Figure 2-2. Chrome Developer Tools in action

Chapter 2  Setup

https://www.google.com/chrome
https://www.google.com/chrome
https://www.apple.com/safari
http://www.apple.com/safari)
https://www.mozilla.org/en-US/firefox/new
https://www.mozilla.org/en-US/firefox/new
https://www.mozilla.org/en-US/firefox/new


43

Firebug and developer tools allow developers to do many things, 

including these:

• Debug JavaScript

• Manipulate HTML and DOM elements

• Modify CSS on the fly

• Monitor HTTP requests and responses

• Run profiles and inspect heap dumps

• See loaded assets such as images, CSS, and JS files

There are some great Chrome Developer Tools (DevTools) tutorials, 

such as the following:

• Explore and Master Chrome DevTools (https://

discover-devtools.codeschool.com) with Code 

School

• Chrome DevTools videos (https://developers.

google.com/chrome-developer-tools/docs/videos)

• Chrome DevTools overview (https://developers.

google.com/chrome-developer-tools)

 IDEs and Text Editors
One of the best things about JavaScript is that you don’t need to compile 

the code. Because JS lives in and is run in a browser, you can do debugging 

right there, in a browser! It’s an interpreted language, not a compiled one. 

Therefore, I highly recommend a lightweight text editor instead of a full- 

blown integrated development environment, or IDE, but if you are already 

familiar and comfortable with the IDE of your choice like Eclipse (http://

www.eclipse.org), NetBeans (https://netbeans.org), or Aptana 

(http://aptana.com), feel free to stick with it.

Chapter 2  Setup

https://discover-devtools.codeschool.com
https://discover-devtools.codeschool.com
https://developers.google.com/chrome-developer-tools/docs/videos
https://developers.google.com/chrome-developer-tools/docs/videos
https://developers.google.com/chrome-developer-tools
https://developers.google.com/chrome-developer-tools
http://www.eclipse.org
http://www.eclipse.org
https://netbeans.org
http://aptana.com


44

Here is a list of the most popular text editors and IDEs used in web 

development:

• VS Code (https://www.visualstudio.com/

features/node-js-vs): Node.js tools for the famous 

Visual Studio environment from a small Redmond, 

Washington- based software startup company.

• Atom (https://atom.io): A web editor built on web 

technologies from the creators of GitHub, the world’s 

largest code storage and collaboration space.

• Sublime Text (https://www.sublimetext.com): 

macOS and Windows versions are available. This is an 

even better alternative to TextMate, with an unlimited 

evaluation period.

• Coda (http://panic.com/coda): All-in-one editor 

with FTP browser and preview, has support for 

development with and on an iPad.

• Aptana Studio (http://aptana.com): Full-sized IDE 

with a built-in terminal and many other tools.

• WebStorm (http://www.jetbrains.com/webstorm): 

Feature-rich IDE that allows for Node.js debugging. It 

is developed by JetBrains and marketed as the smartest 

JavaScript IDE.

Please, please, please don’t use Vim, TextEdit or Notepad++! Having 

code coloring and parentheses matching will make a great difference when 

typing and debugging.

Chapter 2  Setup

https://www.visualstudio.com/features/node-js-vs
http://www.visualstudio.com/features/node-js-vs)
http://www.visualstudio.com/features/node-js-vs)
https://atom.io
https://atom.io
https://www.sublimetext.com
https://www.sublimetext.com
http://panic.com/coda
http://panic.com/coda
http://aptana.com
http://aptana.com
http://www.jetbrains.com/webstorm
http://www.jetbrains.com/webstorm


45

 Version Control Systems
A version control system is a must-have even in projects with a single 

developer because such a system keep all the history which makes it easy 

to restore code or revert changes. Git is the most popular version control 

system.

Also, many cloud services (e.g., Heroku) require Git for deployment. 

I also highly recommend getting used to Git and Git terminal commands 

instead of using Git visual clients and apps with a GUI: GitX (http://

gitx.frim.nl), Gitbox (http://www.gitboxapp.com), or GitHub for 

Desktop (https://desktop.github.com).

Subversion is a nondistributed version control system. This article 

compares Git vs. Subversion: https://git.wiki.kernel.org/index.

php/GitSvnComparison.

Here are the steps to install and set up Git on your machine:

 1. Download the latest version for your OS at 

https://git-scm.com/downloads.

 2. Install Git from the downloaded \*.dmg package; 

that is, run the \*.pkg file and follow the wizard.

 3. Find the Terminal app by using Command + Space, 

a.k.a. Spotlight, on macOS. For Windows you could 

use PuTTY (http://www.chiark.greenend.org.

uk/~sgtatham/putty) or Cygwin (http://www.

cygwin.com).

 4. In your terminal, type these commands, substituting 

“John Doe” and johndoe@example.com with your 

name and e-mail:

$ git config --global user.name  

"John Doe"

$ git config --global user.email  

johndoe@example.com

Chapter 2  Setup

http://gitx.frim.nl
http://gitx.frim.nl
http://www.gitboxapp.com
https://desktop.github.com
https://git.wiki.kernel.org/index.php/GitSvnComparison
https://git.wiki.kernel.org/index.php/GitSvnComparison
https://git-scm.com/downloads
http://www.chiark.greenend.org.uk/~sgtatham/putty
http://www.chiark.greenend.org.uk/~sgtatham/putty
http://www.cygwin.com
http://www.cygwin.com


46

 5. To check the installation, run this command:

$ git version

 6. You should see something like this in your terminal 

window (your version might vary; in my case it’s 

1.8.3.2):

git version 2.14.3 (Apple Git-98)

Generating SSH keys and uploading them to SaaS/PaaS web sites will 

be covered later.

 Local HTTP Servers
Although you can do most of the front-end development without a local 

HTTP server, it is needed for loading files with HTTP Requests/AJAX calls. 

Also, it’s just good practice in general to use a local HTTP server. This way, 

your development environment is as close to the production environment 

as possible.

I recommend you use Node-based tools as static web servers. They 

lack GUIs, but they are simple and fast. You can install them with npm 

(comes with Node.js; instructions are later in this chapter):

• node-static (https://github.com/cloudhead/

node- static): Static file server with built-in caching. 

Run npm i -g node-static to install.

• http-server (https://www.npmjs.com/package/

http- server): Zero-configuration command-line 

HTTP server. Run npm i -g htt-server to install.

Chapter 2  Setup

https://github.com/cloudhead/node-static
https://github.com/cloudhead/node-static
https://github.com/cloudhead/node-static
https://www.npmjs.com/package/http-server
http://www.npmjs.com/package/http-server)
http://www.npmjs.com/package/http-server)


47

If you prefer something with GUIs to a command-line interface (CLI), 

you might want to consider the following modifications of the Apache web 

server. MAMP, MAMP Stack, and XAMPP have intuitive GUIs that allow 

you to change configurations and host file settings.

• XAMPP (https://www.apachefriends.org): 

Apache distribution containing MySQL, PHP and Perl 

for Windows, macOS, Linux, and Solaris.

• MAMP (https://www.mamp.info): Apache, MySQL, 

and PHP personal web server for macOS.

• MAMP Stack (https://bitnami.com/stack/mamp): 

Another Apache, MySQL, and PHP stack for macOS.

 Database: MongoDB
The following steps are better suited for macOS/Linux-based systems, but 

with some modification they can be used for Windows systems as well (i.e., 

$PATH variable, Step 3). Here I describe the MongoDB installation from 

the official package, because I found that this approach is more robust and 

leads to less conflicts. However, there are many other ways to install it on 

macOS (https://docs.mongodb.com/manual/tutorial/install- 

mongodb- on-os-x), for example using Brew, as well as on other systems 

(http://docs.mongodb.com/manual/installation).

 1. Download MongoDB from http://www.mongodb.

com/download- center#community. For the latest 

Apple laptops, like MacBook, select macOS X 64-bit 

version. The owners of older Macs should browse 

the link at http://dl.mongodb.com/dl/osx/

i386

Chapter 2  Setup

https://www.apachefriends.org
https://www.apachefriends.org
https://www.mamp.info
https://www.mamp.info
https://bitnami.com/stack/mamp
https://bitnami.com/stack/mamp
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x
http://docs.mongodb.com/manual/installation
http://www.mongodb.com/download-center#community
http://www.mongodb.com/download-center#community
http://dl.mongodb.com/dl/osx/i386
http://dl.mongodb.com/dl/osx/i386


48

Tip to figure out the architecture type of your processor, type the $ 
uname -p at the command line.

 2. Unpack the package into your web development 

folder (~/Documents/Development or any other). 

If you want, you could install MongoDB into the  

/usr/local/mongodb folder.

 3. Optional: If you would like to access MongoDB 

commands from anywhere on your system, you need 

to add your mongodb path to the $PATH variable. For 

macOS, open system /etc/paths file with:

sudo vi /etc/paths

or, if you prefer VS Code:

code /etc/paths

And add this line to the /etc/paths file:

/usr/local/mongodb/bin

 4. Create a data folder; by default, MongoDB uses  

/data/db. Please note that this might be different 

in new versions of MongoDB. To create it, type and 

execute the following commands in the terminal:

$ sudo mkdir -p /data/db

$ sudo chown id -u /data/db

If you prefer to use a path other than /data/db 

you could specify it using the --dbpath option to 

mongod (the main MongoDB service).

Chapter 2  Setup



49

 5. Go to the folder where you unpacked MongoDB. 

That location should have a bin folder in it. From 

there, type the following command in your terminal:

$./bin/mongod

 6. If you see something like the following (and as in 

Figure 2- 3) it means that the MongoDB database 

server is running:

MongoDB starting: pid =7218  

port=27017...

By default, it’s listening at http://

localhost:27017. If you go to your browser and 

type http://localhost:28017 you should be able 

to see the version number, logs, and other useful 

information. In this case the MondoDB server is 

using two different ports (27017 and 28017): One is 

primary (native) for the communications with apps 

and the other is a web- based GUI for monitoring 

and statistics. In our Node.js code we’ll be using 

only 27017. Don’t forget to restart the Terminal 

window after adding a new path to the $PATH 

variable.

Chapter 2  Setup



50

Now, to take it even further, we can test to determine 

if we have access to the MongoDB console/shell, 

which will act as a client to this server. This means 

that we’ll have to keep the terminal window with the 

server open and running.

 7. Open another terminal window at the same folder 

and execute:

$./bin/mongo

You should see something like “MongoDB shell 

version…”

 8. Then type and execute:

> db.test.save( { a: 1 } )

> db.test.find()

Figure 2-3. Starting up the MongoDB server

Chapter 2  Setup



51

If you see that your record is being saved, then 

everything went well (Figure 2-4).

Figure 2-4. Running MongoDB client and storing sample data

Commands find and save do exactly what you might think they do.

The official MongoDB website has the detailed instructions for 

installing MongoDB on macOS at: http://docs.mongodb.com/manual/

tutorial/install-mongodb-on-os-x. TK

Note MaMp and XaMpp applications come with MySQL—an 
open source traditional SQL database—and phpMyadmin—a web 
interface for MySQL database.

On macOS (and most UNIX systems), to close the process use Control 

+ C. If you use Control + Z it will put the process to sleep (or detach the 

terminal window); in this case, you might end up with the lock on data files 

and will have to use the kill command or Activity Monitor, and manually 

delete the locked file in the data folder. In vanilla Mac.

Terminal Command +. is an alternative to Control + C.

Chapter 2  Setup

http://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x
http://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x


52

 Required Components
The following are required technologies. Please make sure you have them 

before proceeding to the next chapter.

 1. Node.js: We need it for build tools and back-end 

apps. Get the version that has LTS even if the 

number is lower than the current NON-LTS version, 

because the LTS versions have longer support 

period: https://nodejs.org.

 2. npm: The Node.js package manager that comes 

bundled with Node.js (no need to install anything 

extra).

 3. Browser JS libraries: We need them for front-end 

apps.

I highly recommend installing other optional but useful components:

 1. nvm: The Node.js version manager, which allows to 

switch between Node.js versions quickly.

 2. Compass: A desktop client GUI app for working  

with MongoDB as a replacement of the Mongo 

shell/REPL. https://www.mongodb.com/

products/compass

 Node.js Installation
Node.js is available at https://nodejs.org/#download (Figure 2-5).  

The installation is trivial: Download the archive and run the *.pkg 

package installer. To check the installation of Node.js, you could type and 

execute:

$ node -v

Chapter 2  Setup

https://nodejs.org
http://www.mongodb.com/products/compass
http://www.mongodb.com/products/compass
https://nodejs.org/#download


53

I use v8.11.1 for this book and tested all examples with v8.11.1. If you 

use another version, do so at your own risk. I cannot guarantee that the 

examples will run.

Assuming you have 8.11.1, it should show something similar to this: 

v8.11.1.

If you want to switch between multiple versions of Node.js, there are 

solutions for that:

• nvm (https://github.com/creationix/nvm): 

Node.js Version Manager

• Nave (https://github.com/isaacs/nave): Virtual 

environments for Node.js

• n (https://github.com/tj/n): Node.js version 

management

The Node.js package already includes npm—Node.js Package Manager 

(https://npmjs.org). We’ll use npm extensively to install Node.js 

modules.

Chapter 2  Setup

https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/isaacs/nave
https://github.com/isaacs/nave
https://github.com/tj/n
https://github.com/tj/n
https://npmjs.org
https://npmjs.org
https://npmjs.org


54

 Browser JavaScript Libraries
Front-end JavaScript libraries are downloaded and unpacked from their 

respective web sites. Those files are usually put in the Development folder 

(e.g., ~/Documents/Development) for future use. Often, there is a choice 

between the minified production version (more on that in the AMD and 

Require.js section of Chapter 4) and a version that is extensively rich 

development comments.

Another approach is to hot-link these scripts from CDNs such as 

Google Hosted Libraries (https://developers.google.com/speed/

libraries/devguide), CDNJS (https://cdnjs.com), Microsoft Ajax 

Content Delivery Network (https://docs.microsoft.com/en-us/

aspnet/ajax/cdn/overview), and others. By doing so the apps will be 

faster for some users, but won’t work locally at all without the Internet.

Figure 2-5. Node.js home page that shows LTS and non-LTS versions

Chapter 2  Setup

https://developers.google.com/speed/libraries/devguide
https://developers.google.com/speed/libraries/devguide
https://developers.google.com/speed/libraries/devguide
https://cdnjs.com
https://docs.microsoft.com/en-us/aspnet/ajax/cdn/overview
https://docs.microsoft.com/en-us/aspnet/ajax/cdn/overview


55

Speaking of dependencies, I recommend downloading the following 

libraries that will be used in the book’s project. To keep things simple, we 

will use just simple .js or.min.js files and not the npm packages:

• Bootstrap is a CSS/Less framework. It’s available at 

https://getbootstrap.com.

• jQuery is available at https://jquery.com.

• Backbone.js is available at https://backbonejs.org.

• Underscore.js is available at https://underscorejs.org.

• Require.js is available at https://requirejs.org.

 Less App
Less as a front-end interpreter is available at lesscss.org. You could unpack 

it into your development folder (~/Documents/Development) or any 

other folder.

The Less App is a macOS application for “on-the-fly” compilation of 

Less to CSS. It’s available at incident57.com/less.

 Cloud Setup
The cloud setup discussed in the following sections will allow you to keep 

your code under version control and deploy it in a scalable manner.

 SSH Keys
For GitHub repositories, developers have to enter username and password 

every time with HTTPS URLs (looks like https://github.com/azat- 

co/fullstack-javascript.git), unless they use a keychain. SSH keys 

Chapter 2  Setup

https://getbootstrap.com
https://jquery.com
https://backbonejs.org
https://underscorejs.org
https://requirejs.org
http://lesscss.org
http://incident57.com/less
https://github.com/azat-co/fullstack-javascript.git
https://github.com/azat-co/fullstack-javascript.git


56

provide a secure connection without the need to enter a user name and 

password every time. The SSH URLs look like git@github.com:azat-

co/fullstack-javascript.git.

To generate SSH keys for GitHub on macOS/UNIX machines, do the 

following:

 1. Check for existing SSH keys:

$ cd ~/.ssh

$ ls -lah

 2. If you see some files like id_rsa (please refer to 

Figure 2-6 for an example), you could delete them 

or back them up into a separate folder by using the 

following commands:

$ mkdir key_backup

$ cp id_rsa* key_backup

$ rm id_rsa*

 3. Now generate a new SSH key pair using the  

ssh-keygen command, assuming you are in the 

~/.ssh folder:

$ ssh-keygen -t rsa -C  

“your_email@youremail.com”

 4. Answer the questions; it is better to keep the default 

name of id_rsa. Then copy the content of the  

id_rsa.pub file to your clipboard (Figure 2-6):

$ pbcopy < ~/.ssh/id_rsa.pub

Chapter 2  Setup



57

 5. Alternatively, open id_rsa.pub file in the default 

editor:

$ edit id_rsa.pub

Or in VS Code (recommended):

$ code id_rsa.pub

Figure 2-6. Generating RSA key for SSH and copying public key to 
clipboard

Chapter 2  Setup



58

 GitHub
The next steps will show how to connect to GitHub (think of it as a 

versioned code storage) using SSH and SSH keys:

 1. After you have copied the public key, go to 

https://github.com, log in, go to your account 

settings, select SSH Key, and add the new SSH key. 

Assign a name, such as the name of your computer, 

and paste the value of your public key.

 2. To check if you have an SSH connection to GitHub, 

type and execute the following command in your 

terminal:

$ ssh -T git@github.com

If you see something like this:

Hi your-GitHub-username! You've successfully 

authenticated, but GitHub does not provide shell 

access.

then everything is set up.

 3. The first time you connect to GitHub, you may 

receive a message “Authenticity of Host … Can’t Be 

Established warning”. Please don’t be alarmed with 

such a message. It confirms that the host you are 

trying to connect to is trusted. Simply proceed by 

answering “Yes” as shown in Figure 2-7.

Chapter 2  Setup

https://github.com


59

If for some reason you have a different message, please repeat Steps 

3 and 4 from the previous section on SSH keys or reupload the content of 

your *.pub file to GitHub.

Warning Keep your id_rsa file private and don't share it 

with anybody!

More instructions are available at GitHub: Generating SSH Keys 

(https://helpgithub.com/articles/generating-ssh-keys). TK

Windows users might find the SSH key generator feature in PuTTY 

useful.

 Microsoft Azure
Here are the steps to set up a Microsoft Azure account:

 1. You’ll need to sign up for Microsoft Azure Web Site 

and Virtual Machine previews. Currently Microsoft 

has a 90-day free trial available at https://azure.

microsoft.com/en-us.

 2. Enable Git Deployment and create a user name 

and password, then upload the SSH public key to 

Microsoft Azure.

Figure 2-7. Testing SSH connection to GitHub for the first time

Chapter 2  Setup

https://helpgithub.com/articles/generating-ssh-keys
https://helpgithub.com/articles/generating-ssh-keys
https://azure.microsoft.com/en-us
https://azure.microsoft.com/en-us


60

 3. Install the Node.js SDK, which is available at 

https://azure.microsoft.com/en-us/

develop/nodejs. TK

 4. To check your installation type:

$ azure -v

You should see something like this:

Microsoft Azure: Microsoft's Cloud Platform... 

Tool Version 0.6.0

 5. Log in to Microsoft Azure Portal at https://

azure.microsoft.com (Figure 2-8).

Figure 2-8. Registering on Microsoft Azure

 6. Select New, then select Web Site, and Quick Create. 

Type the name that will serve as the URL for your 

web site, and click OK.

Chapter 2  Setup

https://azure.microsoft.com/en-us/develop/nodejs
https://azure.microsoft.com/en-us/develop/nodejs
https://azure.microsoft.com
https://azure.microsoft.com


61

 7. Go to this newly created web site’s Dashboard and 

select Set Up Git Publishing. Come up with a user 

name and password. This combination can be 

used to deploy to any web site in your subscription, 

meaning that you do not need to set credentials for 

every web site you create. Click OK.

 8. On the follow-up screen, it should show you the Git 

URL to push to, something like this:

https://azatazure@azat.scm.azurewebsites. 

net/azat.git

You will also see instructions on how to proceed 

with deployment. We’ll cover them later.

 9. Advanced user option: Follow this tutorial to 

create a virtual machine and install MongoDB on 

it: Install MongoDB on a virtual machine running 

CentOS Linux in Microsoft Azure (https://www.

windowsazure.com/en-us/manage/linux/

common-tasks/mongodb-on-a-linux-vm).

 Heroku
Heroku is a polyglot agile application deployment platform (see https://

www.heroku.com). Heroku works similarly to Microsoft Azure in the sense 

that you can use Git to deploy applications. There is no need to install 

Virtual Machine for MongoDB because Heroku has a MongoHQ add-on 

(https://addons.heroku.com/mongohq).

Chapter 2  Setup

https://azatazure@azat.scm.azurewebsites.net/azat.git
https://azatazure@azat.scm.azurewebsites.net/azat.git
https://www.windowsazure.com/en-us/manage/linux/common-tasks/mongodb-on-a-linux-vm
https://www.windowsazure.com/en-us/manage/linux/common-tasks/mongodb-on-a-linux-vm
https://www.windowsazure.com/en-us/manage/linux/common-tasks/mongodb-on-a-linux-vm
https://www.windowsazure.com/en-us/manage/linux/common-tasks/mongodb-on-a-linux-vm
https://www.windowsazure.com/en-us/manage/linux/common-tasks/mongodb-on-a-linux-vm
https://www.heroku.com
https://www.heroku.com
https://addons.heroku.com/mongohq
https://addons.heroku.com/mongohq


62

To set up Heroku, follow these steps:

 1. Sign up at https://heroku.com. Currently they 

have a free account; to use it, select all options as 

minimum (0) and database as shared.

 2. Download Heroku Toolbelt at (https://

toolbelt.heroku.com). Toolbelt is a package of 

tools; that is, libraries that consist of Heroku, Git, 

and Foreman (https://github.com/ddollar/

foreman). For users of older Macs, get this client 

(https://github.com/heroku/heroku) directly. 

If you utilize another OS, browse Heroku Client 

GitHub (https://github.com/heroku/heroku).

 3. After the installation is done, you should have 

access to the heroku command. To check it and log 

in to Heroku, type:

$ heroku login

It will ask you for Heroku credentials (user name 

and password), and if you’ve already created the 

SSH key, it will automatically upload it to the 

Heroku web site (Figure 2-9).

Figure 2-9. The response to the successful $ heroku login command

Chapter 2  Setup

https://heroku.com
https://toolbelt.heroku.com
https://toolbelt.heroku.com
https://github.com/ddollar/foreman
https://github.com/ddollar/foreman
https://github.com/heroku/heroku
https://github.com/heroku/heroku


63

 4. If everything went well, to create a Heroku 

application inside of your specific project folder, you 

should be able to run this command:

$ heroku create

More instructions for getting started with Node.js and other languages 

are available from Heroku at https://devcenter.heroku.com/start.

 Summary
In this chapter, we’ve covered the technical setup of the version control 

system, cloud clients, and the installation of various tools and libraries. 

We’ll use these libraries and tools throughout the book, for this reason it’s 

important to have them installed and ready to go. In addition, the chapter 

provided a few links to external resources that will help you understand 

and learn web development tools better. One of the most useful of such 

resources is DevTools.

You must be dying to get started with the actual coding. The wait is 

over. Meet the first full stack JavaScript code in the next chapter.

Chapter 2  Setup

https://devcenter.heroku.com/start


Front-End Prototyping

PART II



67© Azat Mardan 2018 
A. Mardan, Full Stack JavaScript, https://doi.org/10.1007/978-1-4842-3718-2_3

CHAPTER 3

Getting Data from 
Backend Using jQuery 
and Parse

There are two ways of constructing a software design: One way 
is to make it so simple that there are obviously no deficiencies, 
and the other way is to make it so complicated that there are 
no obvious deficiencies. The first method is far more difficult.

—Tony Hoare

This chapter covers the following topics:

• Definitions of JSON, AJAX, and CORS

• Overview of main jQuery functions

• Bootstrap scaffolding

• Main Less components

• Illustrations of JSONP calls on OpenWeatherMap API 

example

• Parse overview

https://en.wikipedia.org/wiki/Tony_Hoare


68

• Explanations on how to build a Message Board front- 

end- only application with jQuery and Parse

• Step-by-step instructions on deployment to Microsoft 

Azure and Heroku

• Updating and deleting of messages

This chapter is a basic introduction to front-end web development. 

It covers things important to front-end development of apps such as 

Bootstrap and Less. These amazing libraries allow developers to have a 

nice user interface in no time.

This chapter also covers the terminology and explains JSON, AJAX, and 

CORS. We then explore the example of a weather app.

We use Parse as our backend to streamline things and make development 

faster while still keeping it realistic. The cornerstone of this chapter is a 

persistent message board application built with Parse and jQuery.

 Definitions
Before anything else, let’s clarify some terms. They are important enough 

for us to pause and get familiar with them. If these are familiar to you, you 

might want to skip ahead.

 JavaScript Object Notation
Here is the definition of JavaScript Object Notation (JSON) from http://

www.json.org.

JavaScript Object Notation, or JSON, is a lightweight data- 
interchange format. It is easy for humans to read and write. It 
is easy for machines to parse and generate. It is based on a 
subset of the JavaScript Programming Language, Standard 
ECMA–262 (http://www.ecma-international.org/publi-
cations/files/ECMA-ST/Ecma-262.pdf).

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse

http://www.json.org/
http://www.json.org/
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf


69

JSON is a text format that is completely language independent 
but uses conventions that are familiar to programmers of the 
C-family of languages, including C, C++, C#, Java, JavaScript, 
Perl, Python, and many others. These properties make JSON 
an ideal data-interchange language.

JSON has become a standard for transferring data between different 

components of web and mobile applications and third-party services. 

JSON is also widely used inside the applications as a format for 

configuration, locales, translation files, or any other data.

A typical JSON object looks like this:

{

  "a": "value of a",

  "b": "value of b"

}

We have an object with key/value pairs. Keys are on the left and values 

are on the right side of colons (:). In computer science terminology, 

JSON is equivalent to a hash table, a keyed list, or an associative array 

(depending on the particular language). The only big difference between 

JSON and JS object literal notation (native JS objects) is that JSON is more 

stringent and requires double quotes (") for key identifiers and string 

values. Both types can be serialized into a string representation with JSON.

stringify() and deserialized with JSON.parse(), assuming we have a 

valid JSON object in a string format.

However, every member of an object can be an array, primitive, or 

another object; for example:

{

    "posts": [{

        "title": "Get your mind in shape!",

        "votes": 9,

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



70

        "comments": [

            "nice!",

            "good link"

        ]}, {

        "title": "Yet another post",

        "votes": 0,

        "comments": []

    }],

    "totalPosts": 2

}

In this example, we have an object with the posts property. The value of 

the posts property is an array of objects, each of which has title, votes, 

and comments keys. The votes property holds a number primitive, whereas 

comments is an array of strings. We cannot have functions as fields. JSON is 

strictly a data structure. (We can have functions in JS objects though.)

JSON is much more flexible and compact than XML or other data 

formats, as outlined in this article: “JSON: The Fat-Free Alternative to XML” 

(www.json.org/xml.html). Conveniently, MongoDB uses a JSON-like 

format called Binary JSON (http://bsonspec.org) (BSON), discussed 

further in the Chapter 7 section BSON.

 AJAX
Asynchronous JavaScript and XML (AJAX) is used on the client side 

(browser) to send and receive data from the server by utilizing an 

XMLHttpRequest object in JavaScript language. Despite the name, the 

use of XML is not required, and JSON is often used instead. That’s why 

developers almost never say AJAX anymore. Keep in mind that HTTP 

requests could be made synchronously, but it’s not a good practice to do 

so. The most typical example of a sync request would be the <script> tag 

inclusion.

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse

http://www.json.org/xml.html
http://www.json.org/xml.html
http://bsonspec.org


71

 Cross-Domain Calls
For security reasons, the implementation of an XMLHTTPRequest object 

does not allow for cross-domain calls, that is when a client-side code and 

a server-side one are on different domains. There are methods to work 

around this issue.

One of them is to use JSONP (https://en.wikipedia.org/wiki/

JSONP), JSON with padding/prefix. It’s basically a dynamic manipulation 

via DOM-generated <script> tags. The <script> tags don’t fall into the 

same domain limitation. The JSONP request includes the name of a callback 

function in a request query string. For example, the jQuery.ajax() function 

automatically generates a unique function name and appends it to the 

request (which is one string broken into multiple lines for readability):

https://graph.facebook.com/search

    ?type=post

    &limit=20

    &q=Gatsby

     &callback=jQuery16207184716751798987_1368412972614 

&_=1368412984735

The second approach is to use cross-origin resource sharing (CORS: 

https://www.w3.org/TR/cors), which is a better solution, but it 

requires control over the server side to modify response headers. We 

use this technique in the final version of the Message Board example 

application, which we build throughout the book. Here is an example of a 

CORS server response header:

Access-Control-Allow-Origin: *

More about CORS is available on the Resources tab of the Enable CORS 

website (https://enable-cors.org/resources.html) and in the 

article “Using CORS” by Monsur Hossain (https://www.html5rocks.

com/en/tutorials/cors). You can test CORS requests at http://

test-cors.org.

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse

https://en.wikipedia.org/wiki/JSONP
https://en.wikipedia.org/wiki/JSONP
https://en.wikipedia.org/wiki/JSONP
https://www.w3.org/TR/cors
https://www.w3.org/TR/cors
https://enable-cors.org/resources.html
https://enable-cors.org/resources.html
https://enable-cors.org/resources.html
https://www.html5rocks.com/en/tutorials/cors
https://www.html5rocks.com/en/tutorials/cors
http://test-cors.org/
http://test-cors.org/


72

If some server does not support CORS but you want to use its API, 

then you can use this amazing proxy service https://cors-anywhere.

herokuapp.com. To use it, simple append your non-CORS API URL to 

the https://cors-anywhere.herokuapp.com/. For example, to fetch 

the weather forecast Montevideo, Uruguay via the proxy, use this URL in 

fetch(), XHR or other browser library (won’t work when just navigating 

in the browser and may not work because of the invalidated API key in the 

future): https://cors-anywhere.herokuapp.com/https://api.

openweathermap.org/data/2.5/forecast?q=montevideo,uy&

appid=cb7c76071b4d2f7f2baf9dd426181785&units=metric.

 jQuery Functions
Throughout the book we’ll be using jQuery (http://jquery.com) 

for DOM manipulations, HTTP Requests, and JSONP calls. React is 

a more modern technology and I wrote one of the biggest and most 

comprehensive books on it called React Quickly (Manning, 2017). But 

jQuery is still very popular and wide-spread. I can even say that jQuery 

became a de facto standard of the web development because of a 

straightforward yet versatile and powerful API and a rich collection of UI 

widgets. jQuery uses the $ object or function, which is a selector and which 

provides a simple yet efficient way to access any HTML DOM element 

on a page by its ID, class, tag name, attribute value, structure, or any 

combination thereof. The syntax is very similar to CSS, where we use # for 

id and. for class selection. For example:

$('#main').hide()

$('p.large').attr('style','color:red')

$('#main').show().html('<div>new div</div>')

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse

https://cors-anywhere.herokuapp.com
https://cors-anywhere.herokuapp.com
https://cors-anywhere.herokuapp.com/
https://cors-anywhere.herokuapp.com/
https://api.openweathermap.org/data/2.5/forecast?q=montevideo,uy&appid=cb7c76071b4d2f7f2baf9dd426181785&units=metric
https://api.openweathermap.org/data/2.5/forecast?q=montevideo,uy&appid=cb7c76071b4d2f7f2baf9dd426181785&units=metric
https://api.openweathermap.org/data/2.5/forecast?q=montevideo,uy&appid=cb7c76071b4d2f7f2baf9dd426181785&units=metric
http://jquery.com


73

Here is the list of most commonly used jQuery API functions, full 

description for which are available at http://api.jquery.com:

• find(): Selects elements based on the provided 

selector string

• hide() Hides an element if it was visible

• show() Shows an element if it was hidden

• html() Gets or sets an inner HTML (content) of an 

element

• append() Injects an element into the DOM after the 

selected element

• prepend() Injects an element into the DOM before the 

selected element

• on() Attaches an event listener to an element

• off() Detaches an event listener from an element

• css() Gets or sets the style attribute value of an 

element

• attr() Gets or sets any attribute of an element

• val() Gets or sets the value attribute of an element

• text() Gets the combined text of an element and its 

children

• each() Iterates over a set of matched elements

Most jQuery functions act not only on a single element, on which they 

are called, but on a set of matched elements if the result of the selection 

has multiple items. This is a common pitfall that leads to bugs, and it 

usually happens when a jQuery selector is too broad.

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse

http://api.jquery.com/


74

Also, jQuery has many available plug-ins and libraries that provide a 

rich user interface or other functionality. For example:

• jQuery UI (http://jqueryui.com)

• jQuery Mobile (http://jquerymobile.com)

 Bootstrap
This section explains how to set up the Bootstrap scaffolding for the projects 

in the book. What is Bootstrap? Bootstrap (http://getbootstrap.com), 

or Twitter Bootstrap, is a collection of CSS/Less rules and JavaScript plug-

ins for creating a good user interface and user experience without spending 

a lot of time on such details as rounded-edge buttons, cross- compatibility, 

responsiveness, and so on. This collection or framework is perfect for rapid 

prototyping of your ideas. Nevertheless, due to its ability to be customized, 

Bootstrap is also a good foundation for serious projects. The source code is 

written in Less (http://lesscss.org), but plain CSS can be downloaded 

and used as well.

Here is a simple example of using Bootstrap scaffolding for the version 

v4.0.0-alpha. The structure of the project should look like this:

  /01-bootstrap

    -index.html

    /css

      -bootstrap.css

      -bootstrap.min.css

      ... (other files if needed)

    /js

      -bootstrap.js

      -bootstrap.min.js

      -npm.js

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse

http://jqueryui.com
http://jqueryui.com
http://jquerymobile.com
http://jquerymobile.com
http://getbootstrap.com
http://getbootstrap.com
http://lesscss.org
http://lesscss.org


75

First let’s create the index.html file with proper tags:

<!DOCTYPE html>

<html lang="en">

  <head>

  </head>

  <body>

  </body>

</html>

Include the Bootstrap library as a minified CSS file:

<!DOCTYPE html>

<html lang="en">

  <head>

    <link

      type="text/css"

      rel="stylesheet"

      href="css/bootstrap.min.css" />

  </head>

  <body>

  </body>

</html>

Apply scaffolding with container-fluid and row-fluid classes:

  <body>

    <div class="container-fluid">

      <div class="row-fluid">

      </div> *<!--row-fluid -->*

    </div> *<!-- container-fluid -->*

  </body>

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



76

Bootstrap uses a 12-column grid. The size of an individual cell could 

be specified by classes col-size-N, for example, col-sm-1, col-lg-1, 

col- md- 6. There are also classes offset-size-N, for example, offset-

md-3, offset-lg-1, … offset-sm-6, to move cells to the right.

We’ll use the col-md-12 and hero-unit classes for the main content 

block:

  <div class="row-fluid">

    <div class="col-md-12">

      <div id="content">

        <div class="row-fluid">

          <div class="col-md-12">

            <div class="hero-unit">

              <h1>

                Welcome to Super

                Simple Backbone

                Starter Kit

              </h1>

              <p>

                This is your home page.

                To edit it just modify

                the <i>index.html</i> file!

              </p>

              <p>

                <a

                   class="btn btn-primary btn-large"

                   href="http://twitter.github.com/bootstrap"

                  target="_blank">

                  Learn more

                </a>

              </p>

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



77

            </div> *<!-- hero-unit -->*

          </div> *<!-- col-md-12 -->*

        </div> *<!-- row-fluid -->*

      </div> *<!-- content -->*

    </div> *<!-- col-md-12 -->*

  </div> *<!-- row-fluid -->*

This is the full source code of the index.html from the 1-bootstrap 

folder (http://bit.ly/2JCbSTv):

<!DOCTYPE html>

<html lang="en">

  <head>

     <link type="text/css" rel="stylesheet" href="css/

bootstrap.css" />

  </head>

  <body >

    <div class="container-fluid">

      <div class="row-fluid">

        <div class="col-md-12">

          <div id="content">

            <div class="row-fluid">

              <div class="col-md-12">

                <div class="hero-unit">

                   <h1>Welcome to Super Simple Backbone 

Starter Kit</h1>

                   <p>This is your home page. To edit it 

just modify <i>index.html</i> file!</p>

                   <p><a class="btn btn-primary btn-

large" href="http://twitter.github.com/

bootstrap" target="_blank" >Learn more  

</a></p>

                </div> *<!-- hero-unit -->*

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse

http://bit.ly/2JCbSTv
http://bit.ly/2JCbSTv)


78

              </div> *<!-- col-md-12 -->*

            </div> *<!-- row-fluid -->*

          </div> *<!-- content -->*

        </div> *<!-- col-md-12 -->*

      </div> *<!-- row-fluid -->*

    </div> *<!-- container-fluid -->*

  </body>

</html>

This example is available for downloading and pulling from the GitHub 

public repository at https://github.com/azat-co/fullstack- 

javascript under the 01-bootstrap folder (http://bit.ly/2JCbSTv).

CSS is not a real programming language. It does not have a 

dependency mechanism, variables or functions. That’s why some 

developers invented CSS frameworks and a lot of developers use them 

to much success over plain CSS. Their frameworks allow for a better 

CSS reuse and composition. Here are some other useful tools—CSS 

frameworks and CSS preprocessors—worth checking out:

• Compass: CSS framework (https://compass-style.org)

• Sass: Extension of CSS3 and analog to Less (https://

sass-lang.com)

• Blueprint: CSS framework (https://blueprintcss.io)

• Foundation: Responsive front-end framework 

(https://foundation.zurb.com)

• Bootswatch: Collection of customized Bootstrap 

themes (http://bootswatch.com)

• WrapBootstrap: Marketplace for customized Bootstrap 

themes (https://wrapbootstrap.com)

To work with the Bootstrap source files or its theme files, you need to 

use Less or Sass.

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse

https://github.com/azat-co/fullstack-javascript
https://github.com/azat-co/fullstack-javascript
http://bit.ly/2JCbSTv
http://bit.ly/2JCbSTv)
https://compass-style.org
https://compass-style.org
https://sass-lang.com
https://sass-lang.com
https://sass-lang.com
https://blueprintcss.io
https://blueprintcss.io
https://foundation.zurb.com
https://foundation.zurb.com
http://bootswatch.com
http://bootswatch.com
https://wrapbootstrap.com
https://wrapbootstrap.com


79

 Less
Less is a dynamic stylesheet language. Less has variables, mix-ins, and 

operators that make it faster for developers to reuse CSS rules. Sometimes, 

and in this case, it’s true that less is more and more is less. A browser 

cannot interpret Less syntax, so Less source code must be compiled to CSS 

in one of three ways:

 1. In the browser by the Less JavaScript library

 2. On the server side by language or framework; 

for example, for Node.js there is the Less module 

(https://www.npmjs.com/package/less)

 3. Locally on your machine by command line 

(installed with npm by running $ npm install -g 

less ), or a desktop app such as WinLess (http://

winless.org), CodeKit (https://codekitapp.

com/index.html), SimpLess (https://github.

com/Paratron/SimpLESS)

The browser option (on the fly compilation) is suitable for a 

development environment but suboptimal for a production environment.

 Less Variables
Variables reduce redundancy and allow developers to change values 

quickly by having them in one canonical place, and we know that in design 

(and styling) we often have to change values very frequently.

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse

https://www.npmjs.com/package/less
http://www.npmjs.com/package/less)
http://winless.org
http://winless.org
http://winless.org
https://codekitapp.com/index.html
https://codekitapp.com/index.html
https://codekitapp.com/index.html
https://github.com/Paratron/SimpLESS
https://github.com/Paratron/SimpLESS
https://github.com/Paratron/SimpLESS


80

We sometimes have some Less code with the variable marked by the  

@ sign, such as in @color:

@color: #4D926F;

#header {

  color: @color;

}

h2 {

  color: @color;

}

This code will be compiled to the equivalent in CSS:

#header {

  color: #4D926F;

}

h2 {

  color: #4D926F;

}

The benefit is that in Less, you need to update the color value in only 

one place versus two in CSS. This is abstraction at its best.

 Less Mix-ins
This section is about mix-ins. They are like functions in JavaScript. The 

syntax for a mix-in is the same as for creating a class selector. For example, 

this is a .border mix-in:

.border {

    border-top: dotted 1px black;

    border-bottom: solid 2px black;

}

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



81

#menu a {

    color: #111;

    .border;

}

.post a {

    color: red;

    .border;

}

That converts into this CSS, in which the .border is replaced with the 

actual styles, not the name:

.border {

  border-top: dotted 1px black;

  border-bottom: solid 2px black;

}

#menu a {

  color: #111;

  border-top: dotted 1px black;

  border-bottom: solid 2px black;

}

.post a {

  color: red;

  border-top: dotted 1px black;

  border-bottom: solid 2px black;

}

Even more useful is to pass a parameter to a mix-in. This enables 

developers to create even more versatile code. For example, .rounded- 

corners is a mix-in that can change size based on the value of the 

parameter radius:

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



82

.rounded-corners (@radius: 5px) {

  border-radius: @radius;

  -webkit-border-radius: @radius;

  -moz-border-radius: @radius;

}

#header {

  .rounded-corners;

}

#footer {

  .rounded-corners(10px);

}

That code will compile into this in CSS:

#header {

  border-radius: 5px;

  -webkit-border-radius: 5px;

  -moz-border-radius: 5px;

}

#footer {

  border-radius: 10px;

  -webkit-border-radius: 10px;

  -moz-border-radius: 10px;

}

Whether you use mix-ins without parameters or with multiple 

parameters, they are great at creating abstractions and enabling better 

code reuse.

 Less Operations
Less supports operations. With operations, we can perform math functions 

on numbers, colors, or variables. This is useful for sizing, colors, and other 

number-related styles.

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



83

Here is an example of an operator in Less where we perform 

multiplication and addition:

@the-border: 1px;

@base-color: #111;

@red:       #842210;

#header {

  color: @base-color * 3;

  border-left: @the-border;

  border-right: @the-border * 2;

}

#footer {

  color: @base-color + #003300;

  border-color: desaturate(@red, 10%);

}

That code compiles in this CSS in which the compiler substituted 

variables and operations for the results of the expressions:

#header {

  color: #333333;

  border-left: 1px;

  border-right: 2px;

}

#footer {

  color: #114411;

  border-color: #7d2717;

}

As you can see, Less dramatically improves the reusability of plain 

CSS. It’s a time saver in large projects, as you can create Less modules and 

reuse them in multiple apps.

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



84

Other important Less features (http://lesscss.org/#docs) include 

the following:

• Pattern matching

• Nested rules Functions

• Namespaces

• Scope

• Comments

• Importing

 An Example Using a Third-Party API 
(OpenWeatherMap) and jQuery
In this section we will look at a Weather app example. It is a standalone 

example that is not a part of the main Message Board application 

introduced in this chapter and covered in detail in later chapters.

The goal of the Weather app is to just illustrate the combination of 

jQuery, JSONP, and REST API technologies. The idea of this weather 

application is to show you an input field for the city name and buttons for 

metric and imperial systems (C or F degrees). The first view of the Weather 

application is shown in Figure 3-1. The view has the input field for the city 

name and two buttons for metric and imperial forecasts (Figure 3-1).

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse

http://lesscss.org/#docs
http://lesscss.org/#docs


85

Once you enter the city name and click one of the buttons, the app will 

fetch the forecast from OpenWeatherMap. Depending on which button 

you press, the app will fetch the forecast in metric (C) or imperial (F) 

degrees. For example, I live in the heart of all the tech innovations, San 

Francisco, and we use imperial F degrees here, so my result will be similar 

to the one shown in Figure 3-2. The forecast will be for several days with a 

3-hour difference between predictions.

Figure 3-1. Weather App has a text input field and two buttons for 
the forecasts

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



86

Note that this example uses OpenWeatherMap API 2.5. The API 

requires an authentication (an app ID) for REST calls. You can get the 

necessary keys at https://openweathermap.org/appid. The API 

documentation is available at https://openweathermap.org/api. If 

you are starting the weather app from the code folder of the repository for 

this book, then make sure you update the API key, because the key in the 

provided code may be my key and it may not work in the future.

In this example, we’ll use jQuery’s $.ajax() function. It has the 

following syntax:

const request = $.ajax({

    url: url,

    dataType: 'jsonp',

    data: {q: cityName, appid: appId, units: units},

    jsonpCallback: 'fetchData',

    type: 'GET'

Figure 3-2. Weather App show the forecast for San Francisco

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse

https://openweathermap.org/appid
https://openweathermap.org/appid
https://openweathermap.org/api


87

  }).fail(function(error){

    console.error(error)

    alert('Error sending request')

  })

In the code fragment of the ajax() function just shown, we used the 

following parameters:

• url is an endpoint of the API.

• dataType is the type of data we expect from the server; 

for example, json, xml, jsonp (JSON with padding—

format for servers that don’t support CORS).

• data is the data to be sent to the server.

• jsonpCallback is a name of the function, in a string 

format, to be called after the request comes back; by 

default jQuery will create a name.

• type is the HTTP method of the request; for example, 

GET, POST.

There is also a chained method .fail, which has logic for what to do 

when the request has an error (i.e., it fails).

For more parameters and examples of the ajax() function, go to 

http://api.jquery.com/jQuery.ajax.

To assign our function to a user-triggered event, we need to use the 

click() function from the jQuery library. The syntax is very simple:

$('#btn').click(function() {

  ...

}

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse

http://api.jquery.com/jQuery.ajax


88

$('#btn') is a jQuery object that points to an HTML element in the 

DOM with the element ID (id) of btn.

To make sure that all of the elements we want to access and use are in 

the DOM, we need to enclose all of the DOM manipulation code inside of 

the following jQuery function:

$(document).ready(function(){

  ...

}

This is a common mistake with dynamically generated HTML 

elements. They are not available before they have been created and 

injected into the DOM.

We must put the event handlers for the buttons in the $(document).

ready() callback. Otherwise, the code might try to attach an event listener 

to a non-existing DOM element. The $(document).ready() callback 

ensures that the browser rendered all the DOM elements.

$(document).ready(function(){

  $('.btn-metric').click(function() {

    prepareData('metric')

  })

  $('.btn-imperial').click(function() {

    prepareData('imperial')

  })

})

We use classes instead of IDs, because classes are more flexible ( 

you cannot have more than one ID with the same name). Here’s the HTML 

code for the buttons:

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



89

<div class="row">

  <div class="span6 offset1">

     <input type="button" class="btn-primary btn  

btn-metric" value="Get forecast in metric"/>

  <div class="span6 offset1">

     <input type="button" class="btn-danger btn  

btn-imperial" value="Get forecast in imperial"/>

  </div>

  <div class="span3">

    <p id="info"></p>

  </div>

</div>

The last container with the ID info is where we’ll put the forecast.

The idea is simple: We have button and event listeners to do something 

once a user clicks the buttons. The aforementioned buttons call the 

prepareData() method. This is its definition:

const openWeatherAppId = 'GET-YOUR-KEY-AT-OPENWEATHERMAP'

const openWeatherUrl = 'http://api.openweathermap.org/

data/2.5/forecast'

const prepareData = function(units) {

  let cityName = $('#city-name').val()

  if (cityName && cityName != ''){

    cityName = cityName.trim()

     getData(openWeatherUrl, cityName, openWeatherAppId, 

units)

  }

  else {

    alert('Please enter the city name')

  }

}

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



90

The code should be straightforward. We get the value of the city name 

from the input box (ID city-name). Then, we check that the city name is 

NOT empty, and call getData(). This function getData() will make the 

XHR request to the server (Open Weather API). You’ve already seen an 

example of the $.ajax request. Please note that the callback function is 

named fetchData. This function will be called after the browser gets the 

response from the OpenWeatherMap API. Needless to say, we must pass 

the city name, app ID, and units as follows:

function getData (url, cityName, appId, units) {

  const request = $.ajax({

    url: url,

    dataType: 'jsonp',

    data: {

      q: cityName,

      appid: appId,

      units: units

    },

    jsonpCallback: 'fetchData',

    type: 'GET'

  }).fail(function(error){

    console.error(error)

    alert('Error sending request')

  })

}

The JSONP fetching function magically (thanks to jQuery) makes 

cross-domain calls by injecting <script> tags and appending the callback 

function name to the request query string.

At this point, we need to implement fetchData and update the 

view with the forecast. The console.log is useful to look up the data 

structure of the response; that is, where fields are located. The city name 

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



91

and country will be displayed above the forecast to make sure the location 

found is the same as the one we requested in the input box.

function fetchData (forecast) {

    console.log(forecast)

    let html = '',

      cityName = forecast.city.name,

      country = forecast.city.country

Now we form the HTML by iterating over the forecast and 

concatenating the string:

html += `<h3> Weather Forecast for ${cityName}, 

${country}</h3>`

forecast.list.forEach(function(forecastEntry, index, list){

     html += `<p>${forecastEntry.dt_txt}: 

${forecastEntry.main.temp}</p>`

})

Finally, we get a jQuery object for the div with ID log, and inject the 

HTML with the city name and the forecast:

$('#log').html(html)

In a nutshell, there is a button element that triggers prepareData(), 

which calls getData(), in the callback of which is fetchData(). If you 

found that confusing, here’s the full code of the index.html file:

<!DOCTYPE html>

<html lang="en">

<head>

     <link type="text/css" rel="stylesheet" href="css/

bootstrap.css" />

     <script src="js/jquery.js" type="text/javascript"> 

</script>

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



92

     <meta name="viewport" content="width=device-width, 

initial- scale=1.0">

    <style type="text/css">

        .row {

            padding-top:1.5em;

        }

    </style>

    <script>

       const openWeatherAppId = 'GET-YOUR-KEY-AT-

OPENWEATHERMAP'

       const openWeatherUrl = 'http://api.openweathermap.

org/data/2.5/forecast'

      const prepareData = function(units) {

        // Replace loading image

        let cityName = $('#city-name').val()

        // Make ajax call, callback

        if (cityName && cityName != ''){

          cityName = cityName.trim()

           getData(openWeatherUrl, cityName, 

openWeatherAppId, units)

        }

        else {

          alert('Please enter the city name')

        }

      }

    $(document).ready(function(){

      $('.btn-metric').click(function() {

        prepareData('metric')

      })

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



93

      $('.btn-imperial').click(function() {

        prepareData('imperial')

      })

    })

    function getData (url, cityName, appId, units) {

      const request = $.ajax({

        url: url,

        dataType: "jsonp",

        data: {q: cityName, appid: appId, units: units},

        jsonpCallback: "fetchData",

        type: "GET"

      }).fail(function(error){

        console.error(error)

        alert('Error sending request')

      })

    }

    function fetchData (forecast) {

      console.log(forecast)

      let html = ''

      let cityName = forecast.city.name

      let country = forecast.city.country

       html += `<h3> Weather Forecast for ${cityName}, 

${country}</h3>`

       forecast.list.forEach(function(forecastEntry,  

index, list){

         html += `<p>${forecastEntry.dt_txt}: 

${forecastEntry.main.temp}</p>`

      })

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



94

      $('#log').html(html)

    }

    </script>

</head>

<body>

    <div class="container">

        <div class="row">

            <div class="span4 offset3">

                <h2>Weather App</h2>

                 <p>Enter city name to get the weather 

forecast</p>

            </div>

            <div class="span6 offset1">

                 <input class="span4" type="text" 

placeholder="Enter the city name"

                  id="city-name" value=""/>

            </div>

        </div>

        <div class="row">

            <div class="span6 offset1">

                 <input type="button" class="btn-primary 

btn btn-metric" value="Get forecast in 

metric"/>

            <div class="span6 offset1">

                 <input type="button" class="btn-danger 

btn btn- imperial" value="Get forecast in 

imperial"/>

            </div>

        </div>

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



95

        <div class="row">

            <div class="span6 offset1">

                <div id="log">Nothing to show yet</div>

            </div>

        </div>

        <div class="row">

            <hr/>

             <p>Azat Mardan (<a href="http://twitter.com/

azatmardan">@azatmardan</a>)</p>

        </div>

    </div>

</body>

</html>

Try launching it and see if it works with or without the local HTTP 

server (just opening index.html in the browser). It should not work 

without an HTTP server because of its reliance on JSONP technology. You 

can get node-static or http-server command-line tools as described 

in Chapter 2.

The source code is available in the 03-weather folder and on GitHub 

(https://github.com/azat-co/fullstack-javascript/tree/

master/code/03-weather).

This example was built with OpenWeatherMap API v2.5 and might not 

work with later versions. Also, you need the API key called app ID. You can 

get the necessary keys at https://openweathermap.org/appid. If you 

feel that there must be a working example, please submit your feedback 

to the GitHub repository for the book’s projects (https://github.com/

azat-co/fullstack-javascript).

jQuery is a good library for getting data from the RESTful servers. 

Sometimes we are not just reading the data from the servers; we also want 

to write it. This way the information persists and can be accessed later. 

Parse will allow you to save your data without friction.

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse

https://github.com/azat-co/fullstack-javascript/tree/master/code/03-weather
https://github.com/azat-co/fullstack-javascript/tree/master/code/03-weather
https://github.com/azat-co/fullstack-javascript/tree/master/code/03-weather
https://openweathermap.org/appid
https://github.com/azat-co/fullstack-javascript
https://github.com/azat-co/fullstack-javascript
https://github.com/azat-co/fullstack-javascript


96

 Parse
Parse (https://parseplatform.org) is a platform that is a feature-

rich backend with convenient API and libraries. One of them is parse- 

server that allows developers to focus on building their client apps (web 

or mobile) instead of spending time on the backend. Developers can 

substitute Parse for a database and a server. In other words, with Parse, 

there’s no need to build your own server or to maintain a database!

Parse started as a means to support mobile application development. 

Nevertheless, with the REST API and the JavaScript SDK, Parse can be used 

in any web and desktop applications for data storage (and much more), 

making it ideal for rapid prototyping.

To create a local instance of Parse simply install two npm modules: 

parse-server and mongodb-runner using npm:

npm i -g parse-server mongodb-runner

Then launch the MongoDB database with mongodb-runner start. 

You’ll see this message:

   ◝  Starting a MongoDB deployment to test against...✓ 
Downloaded MongoDB 3.6.3

  ◟ Starting a MongoDB deployment to test against...

That’s it. You can create your own backend locally with the next 

command, which take API key and ID and points to the local DB:

parse-server --appId APPLICATION_ID --masterKey MASTER_KEY 

--databaseURI mongodb://localhost/test

Create your back-end Parse server application. Feel free to use your 

own values for appId and masterKey. Copy the Application ID and the 

master key into the front-end project files, such as 03-parse-sdk/app.js,  

because you’ll need to use the exact same value on the frontend in order 

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse

https://parseplatform.org
https://parseplatform.org


97

to be able to access your back-end server. In other words, we’ll need these 

keys to access our data collection at Parse.

We’ll create a simple application that will save values to the 

collections using the Parse JavaScript SDK. (A collection is like a table 

in the traditional SQL/relational database). The final solution is in the 

03-parse- sdk folder. Our application will consist of an index.html file 

and an app.js file. Here is the structure of our project folder:

/03-parse-sdk

  -index.html

  -app.js

  -jquery.js

  /css

    -boostrap.css

The sample is available in the 03-parse-sdk folder on GitHub 

(https://github.com/azat-co/fullstack-javascript/tree/

master/code/03-parse-sdk), but you are encouraged to type your own 

code from scratch. To start, create the index.html file:

<html lang="en">

<head>

Include the minified jQuery library from the local file. You can download 

it from https://jquery.com and save it into the folder. Versions 2, 3 or 

higher should work fine.

  <script

    type="text/javascript"

    src=

    "jquery.js">

  </script>

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse

https://github.com/azat-co/fullstack-javascript/tree/master/code/03-parse-sdk
https://github.com/azat-co/fullstack-javascript/tree/master/code/03-parse-sdk
https://github.com/azat-co/fullstack-javascript/tree/master/code/03-parse-sdk
https://jquery.com


98

Include the Parse JavaScript SDK library v1.11.1 from this location 

https://unpkg.com/parse@1.11.1/dist/parse.js or from code for 

this book (http://bit.ly/2uEjekR):

  <script src="parse-1.11.1.js"></script>

Include our app.js file and the Bootstrap library (v4 or higher):

  <script type="text/javascript" src="app.js"></script>

   <link type="text/css" rel="stylesheet" href="css/

bootstrap.css" />

</head>

<body>

  <!-- We'll do something here -->

</body>

</html>

The <body> of the HTML page consists of the <textarea> element. 

We’ll use it to enter JSON:

<body>

    <div class="container-fluid">

        <div class="row-fluid">

            <div class="col-md-12">

                <div id="content">

                    <div class="row-fluid">

                        <div class="col-md-12">

                            <div class="hero-unit">

                                 <h1>Parse JavaScript SDK demo</h1>

                                 <textarea cols="60" rows="7">{

  "name": "John",

  "text": "hi"

}</textarea>

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse

https://unpkg.com/parse@1.11.1/dist/parse.js
http://bit.ly/2uEjekR)


99

The indentation of the <textarea> looks out of whack because this 

element preserves white space and we don’t want to have it when we 

process that string into JSON.

After the input area, there’s a button that will trigger the saving to 

Parse:

                                 <p><a class="btn btn-primary btn-large 

btn-save" >Save object</a></p>

                                <pre class="log"></pre>

                                 Go to <a href="http://parseplatform.org/"  

target="_blank">Parse</a> to check the data.

                            </div> *<!-- hero-unit -->*

                        </div> *<!-- col-md-12 -->*

                    </div> *<!-- row-fluid -->*

                </div> *<!-- content -->*

            </div> *<!-- col-md-12 -->*

        </div> *<!-- row-fluid -->*

    </div> *<!-- container-fluid -->*

  </body>

</html>

Create the app.js file and use the $(document).ready function to 

make sure that the DOM is ready for manipulation:

$(document).ready(function() {

Change parseApplicationId and parseJavaScriptKey to values for 

your own Parse server (you define them when you start the Parse server):

const parseApplicationId = 'APPLICATION_ID'

const parseJavaScriptKey = 'MASTER_KEY'

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



100

Because we’ve included the Parse JavaScript SDK library, we now have 

access to the global object Parse. We initialize a connection with the keys, 

and create a reference to a Test collection:

Parse.initialize(parseApplicationId, parseJavaScriptKey)

Parse.serverURL = 'http://localhost:1337/parse'

Next, create the collection object. It’s like a model for our data. The 

name is Test but it can be any string value.

const Test = Parse.Object.extend('Test')

const test = new Test()

const query = new Parse.Query(Test)

The next step is to implement the code to save an object with the  

keys name and text to the Parse Test collection. We are going to use  

test.save():

test.save(obj, {success, error})

But before we can call save(), we must get the data from the DOM 

(browser element textarea). The next few statements deal with getting 

your JSON from the <textarea> and parsing it into a normal JavaScript 

object. The try/catch is crucial because the JSON structure is very rigid. 

You cannot have any extra symbols. Each time there’s a syntax error, it will 

break the entire app. Therefore, we need to account for erroneous syntax:

try {

  const data = JSON.parse($('textarea').val())

} catch (e) {

  alert('Invalid JSON')

}

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



101

Conveniently, the save() method accepts the callback parameters 

success and error just like the jQuery.ajax() function. To get 

a confirmation, we’ll just have to look at the log container (<pre 

class="log"></pre>) on the page:

test.save(data, {

  success: (result) => {

      console.log('Parse.com object is saved: ', result)

      $('.log').html(JSON.stringify(result, null, 2))

  },

  error: (error) => {

     console.log(`Error! Parse.com object is not saved: 

${error}`)

  }

})

It’s important to know why we failed to save an object. That’s why 

there’s an error callback.

We will also implement a method to get all objects from Test. We will  

use query.find(). Just so you don’t have to click the GitHub link (or 

type it from the book) to look up the full source code of the app.js file, I 

provide it here:

const parseAppID = 'APPLICATION_ID'

const parseRestKey = 'MASTER_KEY'

const apiBase = `http://localhost:1337/parse`

$(document).ready(function(){

  getMessages()

  $('#send').click(function(){

    const $sendButton = $(this)

     $sendButton.html('<img src="img/spinner.gif" 

width="20"/>')

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



102

    const username = $('input[name=username]').val()

    const message = $('input[name=message]').val()

    $.ajax({

      url: `${apiBase}/classes/MessageBoard`,

      headers: {

        'X-Parse-Application-Id': parseAppID,

        'X-Parse-REST-API-Key': parseRestKey

      },

      contentType: 'application/json',

      dataType: 'json',

      processData: false,

      data: JSON.stringify({

        'username': username,

        'message': message

      }),

      type: 'POST',

      success: function() {

        console.log('sent')

        getMessages()

        $sendButton.html('SEND')

      },

      error: function() {

        console.log('error')

        $sendButton.html('SEND')

      }

    })

  })

})

function getMessages() {

  $.ajax({

    url: `${apiBase}/classes/MessageBoard?limit=1000`,

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



103

    headers: {

      'X-Parse-Application-Id': parseAppID,

      'X-Parse-REST-API-Key': parseRestKey

    },

    contentType: 'application/json',

    dataType: 'json',

    type: 'GET',

    success: (data) => {

      console.log('get')

      updateView(data)

    },

    error: () => {

      console.log('error')

    }

  })

}

function updateView(messages) {

  // messages.results = messages.results.reverse()

  const table = $('.table tbody')

  table.html(“)

  $.each(messages.results, (index, value) => {

    const trEl = (`<tr><td>

      ${value.username}

      </td><td>

      ${value.message}

      </td></tr>`)

    table.append(trEl)

  })

  console.log(messages)

}

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



104

To run the app, start your local web server at the project folder and 

navigate to the address (e.g., http://localhost:8080) in your browser. Or you 

can start the static web server from my book repository. The difference is 

that you’ll have to provide the path code/03-parse-sdk if you start from 

the book repository folder (root). If you start from the project folder then 

you do not provide the path because the index.html file is right in the 

project folder. Note that if you get a 401 Unauthorized error from Parse, 

that’s probably because you have the wrong API key. Make sure you use 

the same key in your JavaScript as you used when you started the parse- 

server from the command line. Of course, if you haven’t started your 

parse-serve, do so now because you cannot connect to a server if it’s  

not running.

If everything was done properly, you should be able to see the Test 

collection in Parse’s Data Browser populated with values “John” and “hi” 

(Figure 3-3). Also, you should see the proper message with the newly 

created ID. Parse automatically creates object IDs and timestamps, which 

will be very useful in our Message Board application.

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



105

If you press on the “Get objects” green button, then you’ll get all the 

objects which are stored in the database. How to confirm that this data 

is actually stored in the database and won’t disappear when we close the 

browser? Simply close the browser and open it again. If you’re still not 

convinced, use Mongo shell/REPL (mongo), my web-based tool mongoui 

Figure 3-3. Clicking the “Save object” button will send the object to 
the backend, which will save it to the database

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



106

(npm i -g mongoui) or desktop app Compass (Figure 3-4) to go to the 

local MongoDB database instance and the Test collection. There will be 

the data just sitting and looking at you.

Parse also has thorough instructions for the various parts of the 

platform, including its server and client libraries: http://docs.

parseplatform.org. You can deploy parse-server into the cloud or 

your own data center. Parse supports containers too.

With Parse, which is a one command (parse-server), we call browser 

JavaScript methods and wheyeee, we work with the database straight from 

the browser!

Let’s move on to the Message Board app.

Figure 3-4. Compass shows in MongoDB the data which was sent 
from the browser

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse

http://docs.parseplatform.org/
http://docs.parseplatform.org/


107

 Message Board with Parse Overview
The Message Board will consist of an input field, a list of messages, and 

a “SEND” button (see Figure 3-5). We need to display a list of existing 

messages and be able to submit new messages. We’ll use Parse as a 

backend for now, and later switch to Node.js with MongoDB.

Figure 3-5. The messages and the new message form with the 
"SEND” button

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



108

You can get a free copy of the parse-server from npm. It’s just an open 

source library which you can run anywhere. Unlike the previous example 

in which we used the Parse SDK, in this example we will be making our 

own AJAX/XHR calls to the backend. This will prepare us for switching to 

our own backend.

Figure 3-6. The GET XHR calls fetches all the first 1000 messages 
form the backend

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



109

After installing Parse server (npm i -g parse-server), launch 

it with the app ID and the key. Write them down in invisible ink on a 

newspaper. You will need them later. There are a few ways to use Parse:

• REST API: We’re going to use this approach with the 

jQuery example.

• JavaScript SDK: We just used this approach in our 

preceding Test example, and we’ll use it in the 

Backbone.js example later.

Using the REST API is a more generic approach. Parse provides 

endpoints that we can request with the $.ajax() method from the jQuery 

library. The description of available URLs and methods can be found at 

http://docs.parseplatform.org.

 Message Board with Parse: REST API and  
jQuery Version
The full code is available in the 03-board-parse-rest (https://github.

com/azat-co/fullstack-javascript/tree/master/code/03-

board- parse-rest) folder, but I encourage you to try to write your own 

application first.

We’ll use Parse’s REST API and jQuery. Parse supports different origin 

domain AJAX calls, so we won’t need JSONP.

When you decide to deploy your back-end application, which will act 

as a substitute for Parse, on a different domain you’ll need to use either 

JSONP on the front end or custom CORS headers on a backend. This topic 

is covered later in the book.

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse

http://docs.parseplatform.org/
https://github.com/azat-co/fullstack-javascript/tree/master/code/03-board-parse-rest
https://github.com/azat-co/fullstack-javascript/tree/master/code/03-board-parse-rest
https://github.com/azat-co/fullstack-javascript/tree/master/code/03-board-parse-rest


110

Right now the structure of the application should look like this:

index.html

  css/bootstrap.min.css

  css/style.css

  js/app.js

  js/jquery.js

  img/spinner.gif

Let’s create a visual representation for the Message Board app. We just 

want to display a list of messages with names of users in chronological 

order. Therefore, a table will do just fine, and we can dynamically create 

<tr> elements and keep inserting them as we get new messages.

Create a simple HTML file index.html with the following content:

• Inclusion of JS and CSS files

• Responsive structure with Bootstrap

• A table of messages

• A form for new messages

Let’s start with the <head> and dependencies. We’ll include CDN 

jQuery, local app.js, local minified Bootstrap, and custom stylesheet 

style.css:

<!DOCTYPE html>

<html lang="en">

  <head>

     <script src="js/jquery.js" type="text/javascript" 

language="javascript" ></script>

     <script src="js/app.js" type="text/javascript" 

language="javascript" ></script>

     <link href="css/bootstrap.min.css" type="text/css" 

rel="stylesheet" />

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



111

     <link href="css/style.css" type="text/css" 

rel="stylesheet" />

     <meta name="viewport" content="width=device-width, 

initial- scale=1">

  </head>

The <body> element will have typical Bootstrap scaffolding elements 

defined by classes container-fluid and row-fluid:

  <body>

    <div class="container-fluid">

      <div class="row-fluid">

        <h1>Message Board with Parse REST API</h1>

The table of messages is empty, because we’ll populate it 

programmatically from within the JS code:

        <table class="table table-bordered table-striped">

          <caption>Messages</caption>

          <thead>

            <tr>

              <th>

                Username

              </th>

              <th>

                Message

              </th>

            </tr>

          </thead>

          <tbody>

            <tr>

               <td colspan="2"><img src="img/spinner.gif" 

width="20"/></td>

            </tr>

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



112

          </tbody>

        </table>

        </div>

Another row and here is our new message form in which the Send 

button uses Bootstrap classes btn and btn-primary:

      <div class="row-fluid">

        <form id="new-user">

          <input type="text" name="username"

            placeholder="Username" />

          <input type="text" name="message"

            placeholder="Message" />

          <a id="send" class="btn btn-primary">SEND</a>

        </form>

      </div>

    </div>

  </body>

</html>

The table will contain our messages and the form will provide input for 

new messages. Now we are going to write three main functions:

 1. getMessages(): The function to get the messages

 2. updateView(): The function to render the list of 

messages

 3. $('#send').click(...): The function that 

triggers sending a new message

To keep things simple, we’ll put all of the logic in one file app.js. Of 

course, it is a good idea to separate code base on the functionality when 

your project grows larger.

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



113

Replace these values with your own, and be careful to use the REST 

API key (not the JavaScript SDK key from the previous example):

const parseAppID = 'APPLICATION_ID'

const parseRestKey = 'MASTER_KEY'

const apiBase = `http://localhost:1337/parse`

Let’s start with document.ready. It will have the logic for fetching 

messages, and define the Send button’s click event:

$(document).ready(function(){

    getMessages()

    $('#send').click(function(){

Let’s save the button object:

const $sendButton = $(this)

We should show a spinner image (“Loading…”) on the button because 

the request might take some time and we want users to see that our app is 

working, not just freezing for no apparent reason.

$sendButton.html('<img src="img/spinner.gif" 

width="20"/>')

const username = $('input[name=username]').val()

const message = $('input[name=message]').val()

When we submit a new message (a POST request), we make the HTTP 

call with the jQuery.ajax function. A full list of parameters for the ajax 

function is available at http://api.jquery.com/jQuery.ajax. The 

most important ones are URL, headers, and type parameters.

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse

http://api.jquery.com/jQuery.ajax


114

$.ajax({

    url: `${apiBase}/classes/MessageBoard`,

    headers: {

        'X-Parse-Application-Id': parseAppID,

        'X-Parse-REST-API-Key': parseRestKey

    },

    contentType: 'application/json',

The type of the data is JSON:

      dataType: 'json',

      processData: false,

      data: JSON.stringify({

        'username': username,

        'message': message

      }),

      type: 'POST',

      success: function() {

        console.log('sent')

Assuming that our POST request to Parse saved the new message 

(success), we now want to get the updated list of messages that will 

include our message, and replace the spinner image with text as it was 

before someone clicked the button:

        getMessages()

        $sendButton.html('SEND')

      },

      error: function() {

        console.log('error')

        $sendButton.html('SEND')

      }

    })

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



115

To summarize, clicking the Send button will send a POST request to 

the Parse REST API and then, on successful response, get messages calling 

the getMessages() function.

The getMessages() method to fetch messages from our remote REST 

API server also uses the jQuery.ajax function. The URL has the name of 

the collection (MessageBoard) and a query string parameter that sets the 

limit at 1,000:

function getMessages() {

  $.ajax({

    url: `${apiBase}/classes/MessageBoard?limit=1000`,

We need to pass the keys in a header:

  headers: {

    'X-Parse-Application-Id': parseAppID,

    'X-Parse-REST-API-Key': parseRestKey

  },

  contentType: 'application/json',

  dataType: 'json',

  type: 'GET',

If the request is completed successfully (status 200/ok or similar), we 

call the updateView() function:

    success: (data) => {

      console.log('get')

      updateView(data)

    },

    error: () => {

      console.log('error')

    }

  })

}

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



116

Then, on successful response, it will call the updateView() function, 

which clears the table tbody and iterates through results of the response using 

the $.each() jQuery function (http://api.jquery.com/jQuery.each).

This function is rendering the list of messages that we get from the 

server:

function updateView(messages) {

We use the jQuery selector .table tbody to create an object 

referencing that element. Then we clean all the innerHTML of that 

element:

const table=$('.table tbody')

table.html('')

We use the jQuery.each() function to iterate through every message. 

The following code creates HTML elements (and the jQuery object of those 

elements) programmatically:

$.each(messages.results, (index, value) => {

  const trEl = (`<tr><td>

    ${value.username}

      </td><td>

      ${value.message}

      </td></tr>`)

  table.append(trEl)

})

In a sense trEl is a string with HTML for each message or row in the 

message board. The next line appends (injects after) the table’s tbody 

element our row.

Here is another way to dynamically create an HTML element  

(e.g., div) using jQuery:

$('<div>')

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse

http://api.jquery.com/jQuery.each)


117

For your reference, here is the entire app.js:

const parseAppID = 'APPLICATION_ID'

const parseRestKey = 'MASTER_KEY'

const apiBase = `http://localhost:1337/parse`

$(document).ready(function(){

  getMessages()

  $('#send').click(function(){

    const $sendButton = $(this)

     $sendButton.html('<img src="img/spinner.gif" 

width="20"/>')

    const username = $('input[name=username]').val()

    const message = $('input[name=message]').val()

    $.ajax({

      url: `${apiBase}/classes/MessageBoard`,

      headers: {

        'X-Parse-Application-Id': parseAppID,

        'X-Parse-REST-API-Key': parseRestKey

      },

      contentType: 'application/json',

      dataType: 'json',

      processData: false,

      data: JSON.stringify({

        'username': username,

        'message': message

      }),

      type: 'POST',

      success: function() {

        console.log('sent')

        getMessages()

        $sendButton.html('SEND')

      },

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



118

      error: function() {

        console.log('error')

        $sendButton.html('SEND')

      }

    })

  })

})

function getMessages() {

  $.ajax({

    url: `${apiBase}/classes/MessageBoard?limit=1000`,

    headers: {

      'X-Parse-Application-Id': parseAppID,

      'X-Parse-REST-API-Key': parseRestKey

    },

    contentType: 'application/json',

    dataType: 'json',

    type: 'GET',

    success: (data) => {

      console.log('get')

      updateView(data)

    },

    error: () => {

      console.log('error')

    }

  })

}

function updateView(messages) {

  const table = $('.table tbody')

  table.html(“)

  $.each(messages.results, (index, value) => {

    const trEl = (`<tr><td>

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



119

    ${value.username}

      </td><td>

      ${value.message}

      </td></tr>`)

    table.append(trEl)

  })

  console.log(messages)

}

Try running the code with your local HTTP server. You should see the 

messages (obviously, there should be no messages for the very first time) 

and by clicking the button be able to post new ones.

This is fine if all you need to do is develop the app on your local 

machine, but what about deploying it to the cloud? To do that, we’ll need 

to apply version control with Git first.

 Pushing to GitHub
To create a GitHub repository, go to https://github.com, log in, and 

create a new repository. There will be an SSH address; copy it. In your 

terminal window, navigate to the project folder that you would like to push 

to GitHub.

 1. Create a local Git and .git folder in the root of the 

project folder:

$ git init

 2. Add all of the files to the repository and start 

tracking them:

$ git add .

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse

https://github.com


120

 3. Make the first commit:

$ git commit -am "initial commit"

 4. Add the GitHub remote destination:

$ git remote add your-github-repo-ssh-url

It might look something like this:

$ git remote add origin git@github.

com:azat-co/simple-message- board.git

 5. Now everything should be set to push your local Git 

repository to the remote destination on GitHub with 

the following command:

$ git push origin master

 6. You should be able to see your files at under your 

account and repository https://github.com/

YOUR_USERNAME/YOUR_REPO_NAME

Later, when you make changes to the file, there is no need to repeat all 

of these steps. Just execute:

$ git add .

$ git commit -am "some message"

$ git push origin master

If there are no new untracked files you want to start tracking, use this:

$ git commit -am "some message"

$ git push origin master

To include changes from individual files, run:

$ git commit filename -m "some message"

$ git push origin master

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse

https://github.com/YOUR_USERNAME/YOUR_REPO_NAME
https://github.com/YOUR_USERNAME/YOUR_REPO_NAME


121

To remove a file from the Git repository, use:

$ git rm filename

For more Git commands, see:

$ git --help

Deploying applications with Microsoft Azure or Heroku is as simple 

as pushing code and files to GitHub. The last three steps (4–6) would be 

substituted with a different remote destination (URL) and a different alias.

 Deployment to Microsoft Azure
You should be able to deploy to Microsoft Azure with Git using this 

procedure.

 1. Go to the Microsoft Azure Portal at https://

portal.azure.com, log in with your Live ID, and 

create a web site if you haven’t done so already. 

Enable Set Up Git Publishing by providing a user 

name and password (they should be different 

from your Live ID credentials). Copy your URL 

somewhere.

 2. Create a local Git repository in the project folder that 

you would like to publish or deploy:

$ git init

 3. Add all of the files to the repository and start 

tracking them:

$ git add .

 4. Make the first commit:

$ git commit -am "initial commit"

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse

https://portal.azure.com
https://portal.azure.com


122

 5. Add Microsoft Azure as a remote Git repository 

destination:

$ git remote add azure your-url-for-

remote-repository

In my case, this command looked like this:

$ git remote add

> azure https://azatazure@azat.scm.

azurewebsites.net/azat.git

 6. Push your local Git repository to the remote 

Microsoft Azure repository, which will deploy the 

files and application:

$ git push azure master

As with GitHub, there is no need to repeat the first few steps when 

you have updated the files later, as we already should have a local Git 

repository in the form of a .git folder in the root of the project folder.

 Deployment of Weather App to Heroku
The only major difference from deploying to Azure is that Heroku uses 

Cedar Stack, which doesn’t support static projects, including plain HTML 

applications like our Weather app. In the folder of the project that you 

would like to publish or deploy to Heroku, create a file index.php on the 

same level as index.html, with the following content:

<?php echo file_get_contents('index.html'); ?>

For your convenience, the index.php file is already included in 

weather.

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



123

There is an even simpler way to publish static files on Heroku with 

Cedar Stack. To make Cedar Stack work with your static files, all you need 

to do is to type and execute the following commands in your project folder:

$ touch index.php

$ echo 'php_flag engine off' > .htaccess

Alternatively, you could use the Ruby Bamboo stack. In this case, you 

would need the following structure:

-project folder

  -config.ru

  /public

    -index.html

    -/css

    app.js

    ...

The path in index.html to CSS and other assets should be relative; 

for example, css/style.css. The config.ru file should contain the 

following code:

use Rack::Static,

  :urls => ["/stylesheets", "/images"],

  :root => "public"

run lambda { |env|

  [

    200,

    {

      'Content-Type' => 'text/html',

      'Cache-Control' => 'public, max-age=86400'

    },

    File.open('public/index.html', File::RDONLY)

  ]

}

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



124

For more details, you can refer to https://devcenter.heroku.com/

articles/static-sites-ruby. Once you have all of the support files for 

Cedar Stack or Bamboo, follow these steps:

 1. Create a local Git repository and .git folder if you 

haven’t done so already:

$ git init

 2. Add files:

$ git add .

 3. Commit files and changes:

$ git commit -m "my first commit"

 4. Create the Heroku Cedar Stack application and add 

the remote destination:

$ heroku create

If everything went well, it should tell you that the 

remote destination has been added and the app has 

been created, and give you the app name.

 5. To look up the remote destination type and execute 

(optional):

$ git remote show

 6. Deploy the code to Heroku with:

$ git push heroku master

Terminal logs should tell you whether or not the 

deployment went smoothly.

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse

https://devcenter.heroku.com/articles/static-sites-ruby
https://devcenter.heroku.com/articles/static-sites-ruby


125

 7. To open the app in your default browser, type:

$ heroku open

or just go to the URL of your app, something like

http://yourappname-NNNN.herokuapp.com

 8. To look at the Heroku logs for this app, type:

$ heroku logs

To update the app with the new code, repeat the following steps only:

$ git add -A

$ git commit -m "commit for deploy to heroku"

$ git push -f heroku

You’ll be assigned a new application URL each time you create a new 

Heroku app with the command: $ heroku create.

 Updating and Deleting Messages
In accordance with the REST API, an update on an object is performed via 

the PUT method and a delete is performed with the DELETE method. Both 

of them can easily be performed with the same jQuery.ajax() function 

that we’ve used for GET and POST, as long as we provide an ID of an object 

on which we want to execute an operation. The ID can be stored in the 

DOM. Try it yourself. Replace the method type and add ID to the URL 

such as:

$.ajax({

  type: 'PUT', // new method

   url: `${apiBase}/classes/MessageBoard/${id}`,  

// ID in the URL

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



126

  headers: {

    'X-Parse-Application-Id': parseAppID,

    'X-Parse-REST-API-Key': parseRestKey

  },

  contentType: 'application/json',

  dataType: 'json',

  processData: false,

  data: JSON.stringify({

    'username': username,

    'message': message

  }),

  success: function() {

    console.log('sent')

    getMessages()

    $sendButton.html('SEND')

  },

  error: function() {

    console.log('error')

    $sendButton.html('SEND')

  }

})

 Summary
This chapter was a handful. Hopefully you got some helpful ideas about 

JSON, AJAX, and cross-domain calls. Remember, when accessing servers 

you’ll need to make sure they support CORS or JSONP.

We’ve covered some of the meatiest Less features and worked with 

Parse to persist the data. We also deployed our app to the cloud using the 

Git version system.

Chapter 3  GettinG Data from BaCkenD UsinG jQUery anD parse



127© Azat Mardan 2018 
A. Mardan, Full Stack JavaScript, https://doi.org/10.1007/978-1-4842-3718-2_4

CHAPTER 4

Intro to Backbone.js

Code is not an asset. It’s a liability. The more you write, the 
more you’ll have to maintain later.

—Unknown

This chapter will demonstrate:

• Setting up a Backbone.js app from scratch and 

installing dependencies

• Working with Backbone.js collections

• Backbone.js event binding

• Backbone.js views and subviews with Underscore.js

• Refactoring Backbone.js code

• AMD and Require.js for Backbone.js development

• Require.js for Backbone.js production

• A simple Backbone.js starter kit

Backbone.js has been around for a while so it’s very mature and can 

be trusted to be used in serious front- end development projects. This 

framework is decidedly minimalistic and un-opinionated. You can use 

Backbone.js with a lot of other libraries and modules. I think of  Backbone.

js as the foundation to build a custom framework that will be tightly suited 

to your particular use case.



128

Some people are turned off by the fact that Backbone.js is un- opinionated 

and minimalistic. They prefer frameworks that do more for them and enforce 

a particular way of doing things (e.g., the Angular Style Guide, at https://

github.com/johnpapa/angular-styleguide). This is totally fine with 

me, and you can pursue the study of a more complex front-end framework. 

They all fit nicely into the Node.js stack and the ecosystem. For the purpose  

of this book, Backbone.js is ideal because it provides some much needed 

sanity to the plain non-framework jQuery code, and at the same time it 

doesn’t have a steep learning curve. All you need to know is a few classes and 

methods, which we cover in this book. Everything else is JavaScript, not a 

domain- specific language.

 Setting Up a Backbone.js App from Scratch
We’re going to build a typical starter Hello World application using 

Backbone.js and Model-View-Controller (MVC) architecture. It might 

sound like overkill in the beginning, but as we go along we’ll add more and 

more complexity, including models, subviews, and collections.

Full source code for the Hello World app is available under code/04- 

backbone/hello-world and on GitHub at http://bit.ly/2LgXOVp.

 Backbone.js Dependencies
Download the following libraries:

• jQuery development source file: http://code.

jquery.com

• Underscore.js development source file:  http://

underscorejs.org/underscore.js

• Backbone.js development source file: http://

backbonejs.org/backbone.js

Chapter 4  Intro to BaCkBone.js

https://github.com/johnpapa/angular-styleguide
https://github.com/johnpapa/angular-styleguide
http://bit.ly/2LgXOVp
http://code.jquery.com/
http://code.jquery.com/
http://underscorejs.org/underscore.js
http://underscorejs.org/underscore.js
http://backbonejs.org/backbone.js
http://backbonejs.org/backbone.js


129

Obviously by the time this book is in print, these versions won’t be the 

most recent. I recommend sticking with the versions in this book, because 

that’s what I used to test all the examples and projects. Using different, 

newer versions might cause some unexpected conflicts.

Create an index.html file, and include these frameworks in this file 

like this:

<!DOCTYPE>

<html>

<head>

  <script src="jquery.js"></script>

  <script src="underscore.js"></script>

  <script src="backbone.js"></script>

  <script>

    // TODO write some awesome JS code!

  </script>

</head>

<body>

</body>

</html>

We can also put <script> tags right before the </body> tag at the end 

of the file. This will change the order in which scripts and the rest of the 

HTML is loaded, and affect performance in large files.

Let’s define an empty Backbone.js router object router inside of a 

<script> tag using the extend():

// ...

const router = Backbone.Router.extend({

})

// ...

Chapter 4  Intro to BaCkBone.js



130

For now, to keep it simple (KISS-keep it stupid simple), we’ll be putting 

all of our JavaScript code right into the index.html file. This is not a good 

idea for real development or production code, so we’ll refactor it later.

Next, set up a special routes property inside of an extend call:

const router = Backbone.Router.extend({

  routes: {

  }

})

The Backbone.js routes property needs to be in the following format:

'path/:param':'action'

This will result in the filename#path/param URL triggering a 

function named action (defined in the Router object). For now, we’ll add 

a single home route:

const router = Backbone.Router.extend({

  routes: {

    '': 'home'

  }

})

This is good, but now we need to add a home function:

const router = Backbone.Router.extend({

  routes: {

    '': 'home'

  },

  home: function() {

    // TODO render HTML

  }

})

Chapter 4  Intro to BaCkBone.js



131

We’ll come back to the home function later to add more logic for 

creating and rendering of a view (instance of a View class in Backbone). 

Right now we should define our homeView:

const homeView = Backbone.View.extend({

})

It looks familiar, right? Backbone.js uses similar syntax for all of its 

components: the extend function and a JSON object as a parameter to it.

There are a multiple ways to proceed from now on, but the best 

practice is to use the el and template properties, which are special in 

Backbone.js:

const homeView = Backbone.View.extend({

  el: 'body',

  template: _.template('Hello World')

})

The property el is just a string that holds the jQuery selector (you can 

use class name with . and id name with #). The template property has 

been assigned an Underscore.js function template with just a plain text 

‘Hello World’.

To render our homeView we use this.$el, which is a compiled jQuery 

object referencing an element in an el property, and the jQuery .html() 

function to replace HTML with the this.template() value. Here is what 

the full code for our Backbone.js View looks like:

const homeView = Backbone.View.extend({

  el: 'body',

  template: _.template('Hello World'),

  render: function() {

    this.$el.html(this.template({}))

  }

})

Chapter 4  Intro to BaCkBone.js



132

Now, if we go back to the router we can add these two lines to the 

home function:

const router = Backbone.Router.extend({

  routes: {

    '': 'home'

  },

  initialize: function() {

  },

  home: function() {

    this.homeView = new homeView

    this.homeView.render()

  }

})

The first line creates the homeView object and assigns it to the 

homeView property of the router object router. The second line will  

call the render() method in the homeView object, triggering the  

“Hello World” output.

Finally, to start a Backbone app, we call new Router inside of a 

document-ready wrapper to make sure that the file’s DOM is fully loaded:

let app

$(document).ready(function(){

  app = new router

  Backbone.history.start()

})

This time, I won’t list the full source code of the index.html file 

because it’s rather simple.

Open index.html in the browser to see if it works; that is, the “Hello 

World” message should be on the page.

Chapter 4  Intro to BaCkBone.js



133

 Working with Backbone.js Collections
The full source code of this example is under 04-backbone/collections. 

It’s built on top of the “Hello World” example from the “Setting Up a 

Backbone.js App from Scratch” exercise, which is available for download 

at GitHub (https://github.com/azat-co/fullstack-javascript/

tree/master/code/04-backbone/collections).

We should add some data to play around with, and to hydrate our 

views. To do this, add this right after the <script> tag and before the  

other code:

const appleData = [

  {

    name: 'fuji',

    url: 'img/fuji.jpg'

  },

  {

    name: 'gala',

    url: 'img/gala.jpg'

  }

]

This is our apple database, or to be more correct, our REST API 

endpoint substitute, which provides us with names and image URLs of the 

apples (data models). Note that this mock data set can be easily substituted 

by assigning REST API endpoints of your backend to url properties in 

Backbone.js collections, models, or both, and calling the fetch() method 

on them.

Chapter 4  Intro to BaCkBone.js

https://github.com/azat-co/fullstack-javascript/tree/master/code/04-backbone/collections
https://github.com/azat-co/fullstack-javascript/tree/master/code/04-backbone/collections
https://github.com/azat-co/fullstack-javascript/tree/master/code/04-backbone/collections


134

Now to make the user experience a little bit better, we can add a new 

route to the routes object in the Backbone route:

// ...

routes: {

  '': 'home',

  'apples/:appleName': 'loadApple'

},

// ...

This will allow users to go to index.html#apples/SOMENAME and 

expect to see some information about an apple. This information will be 

fetched and rendered by the loadApple function in the Backbone router 

definition:

loadApple: function(appleName) {

  this.appleView.render(appleName)

}

Have you noticed an appleName variable? It’s exactly the same name 

as the one that we’ve used in route. This is how we can access query string 

parameters (e.g., ?param=value&q=search) in Backbone.js.

Now we’ll need to refactor some more code to create a Backbone 

collection, populate it with data in our appleData variable, and pass the 

collection to homeView and appleView. Conveniently enough, we do it all 

in the router constructor method initialize:

initialize: function(){

  const apples = new Apples()

  apples.reset(appleData)

  this.homeView = new homeView({collection: apples})

  this.appleView = new appleView({collection: apples})

},

Chapter 4  Intro to BaCkBone.js



135

At this point, we’re pretty much done with the Router class and it 

should look like this:

const router = Backbone.Router.extend({

  routes: {

    '': 'home',

    'apples/:appleName': 'loadApple'

  },

  initialize: function(){

    const apples = new Apples()

    apples.reset(appleData)

    this.homeView = new homeView({collection: apples})

    this.appleView = new appleView({collection: apples})

  },

  home: function(){

    this.homeView.render()

  },

  loadApple: function(appleName){

    this.appleView.render(appleName)

  }

})

Let’s modify our homeView a bit to see the whole database:

const homeView = Backbone.View.extend({

  el: 'body',

  template: _.template('Apple data: <%= data %>'),

  render: function(){

     this.$el.html(this.template({data: JSON.

stringify(this.collection.models)}))

  }

  // TODO subviews

})

Chapter 4  Intro to BaCkBone.js



136

For now, we just output the string representation of the JSON object 

in the browser. This is not user-friendly at all, but later we’ll improve it by 

using a list and subviews.

Our apple Backbone Collection Apples is very clean and simple:

const Apples = Backbone.Collection.extend({

})

Backbone automatically creates models inside of a collection when 

we use the fetch() or reset() functions from its API. I find using these 

functions to be very useful.

appleView is not any more complex; it has only two properties: 

template and render. In a template, we want to display figure, img, and 

figcaption tags with specific values. The Underscore.js template engine 

is handy at this task:

const appleView = Backbone.View.extend({

  template: _.template(

    '<figure>\

        <img src="<%= attributes.url %>"/>\

        <figcaption><%= attributes.name %></figcaption>\

    </figure>'),

  // ...

})

To make a JavaScript string that has HTML tags in it more readable, we 

can use the backslash line breaker escape (\) symbol, or close strings and 

concatenate them with a plus sign (+). This is an example of appleView 

introduced earlier, which is refactored using the latter approach:

Chapter 4  Intro to BaCkBone.js



137

const appleView = Backbone.View.extend({

  template: _.template(

    '<figure>'+

      +'<img src="<%= attributes.url %>"/>'+

      +'<figcaption><%= attributes.name %></figcaption>'+

      +'</figure>'),

// ...

})

Please note the <%= and %> symbols; they are the instructions 

for Undescore.js to print values in properties url and name of the 

attributes object.

Finally, we’re adding the render function to the appleView class.

render: function(appleName) {

To get the list of apples filtered by name, there’s a where method on 

the Collection class. We just need the very first item in that array, and 

because arrays in JavaScript are zero-based (they start with a 0 rather than 

1 index), the syntax to get the apple model by name is this:

const appleModel = this.collection.where({name: 

appleName})[0]

Once we have our model, all we need to do is to pass the model to the 

template (also called hydrating templates). The result is some HTML that 

we inject into the <body>:

  const appleHtml = this.template(appleModel)

  $('body').html(appleHtml)

}

Chapter 4  Intro to BaCkBone.js



138

So we find a model within the collection via the where() method 

and use [] to pick the first element. Right now, the render function is 

responsible for both loading the data and rendering it. Later we’ll refactor 

the function to separate these two functionalities into different methods.

For your convenience, here’s the whole app, which is in the 

04-backbone/collections/index.html file and on GitHub at http://

bit.ly/2Lee1L9:

<!DOCTYPE>

<html>

<head>

  <script src="jquery.js"></script>

  <script src="underscore.js"></script>

  <script src="backbone.js"></script>

  <script>

    const appleData = [

      {

        name: 'fuji',

        url: 'img/fuji.jpg'

      },

      {

        name: 'gala',

        url: 'img/gala.jpg'

      }

    ]

    let app

    const router = Backbone.Router.extend({

      routes: {

        '': 'home',

        'apples/:appleName': 'loadApple'

      },

Chapter 4  Intro to BaCkBone.js

http://bit.ly/2Lee1L9
http://bit.ly/2Lee1L9


139

      initialize: function(){

        const apples = new Apples()

        apples.reset(appleData)

        this.homeView = new homeView({collection: apples})

        this.appleView = new appleView({collection: apples})

      },

      home: function() {

        this.homeView.render()

      },

      loadApple: function(appleName) {

        this.appleView.render(appleName)

      }

    })

    const homeView = Backbone.View.extend({

      el: 'body',

      template: _.template('Apple data: <%= data %>'),

      render: function() {

         this.$el.html(this.template({data: JSON.

stringify(this.collection.models)}))

      }

    })

    const Apples = Backbone.Collection.extend({

    })

    const appleView = Backbone.View.extend({

      template: _.template('<figure>\

                               <img src="<%= attributes.

url%>"/>\

                               <figcaption><%= attributes.

name %></figcaption>\

                           </figure>'),

Chapter 4  Intro to BaCkBone.js



140

      render: function(appleName) {

         const appleModel = this.collection.where({name: 

appleName})[0]

        const appleHtml = this.template(appleModel)

        $('body').html(appleHtml)

      }

    })

    $(document).ready(function() {

      app = new router

      Backbone.history.start()

    })

  </script>

</head>

<body>

  <div></div>

</body>

</html>

Open the collections/index.html file in your browser. You should 

see the data from our database:

Apple data:  [{"name":"fuji","url":"img/fuji.jpg"}, 

{"name":"gala","url":"img/gala.jpg"}]

Now let’s go to collections/index.html#apples/fuji or 

collections/index.html#apples/gala in your browser. We expect to 

see an image with a caption. It’s a detailed view of an item, which in this 

case is an apple. Nice work!

Chapter 4  Intro to BaCkBone.js



141

 Backbone.js Event Binding
In real life, getting data does not happen instantaneously, so let’s refactor 

our code to simulate it. For a better user experience (UX), we’ll also have to 

show a loading icon (a spinner or AJAX loader) to users to notify them that 

the information is being loaded.

It’s a good thing that we have event binding in Backbone. Without it, 

we would have to pass a function that renders HTML as a callback to the 

data loading function, to make sure that the rendering function is not 

executed before we have the actual data to display.

Therefore, when a user goes to detailed view (apples/:id) we only 

call the function that loads the data. Then, with the proper event listeners, 

our view will automagically (this is not a typo) update itself when there is 

new data (or on a data change; Backbone.js supports multiple and even 

custom events).

For your information, if you don’t feel like typing out the code (which 

I recommend), it’s in the code/04-backbone/binding/index.html file 

and on GitHub at http://bit.ly/2LhBNpx.

Let’s change the code in the router:

// ...

  loadApple: function(appleName){

    this.appleView.loadApple(appleName)

  }

// ...

Everything else remains the same until we get to the appleView class. 

We’ll need to add a constructor or an initialize method, which is a 

special word or property in the Backbone.js framework. It’s called each 

time we create an instance of an object, such as const someObj = new 

SomeObject() . We can also pass extra parameters to the initialize 

function, as we did with our views (we passed an object with the key 

collection and the value of apples Backbone Collection).  

Chapter 4  Intro to BaCkBone.js

http://bit.ly/2LhBNpx


142

Read more on Backbone.js constructors at http://backbonejs.org/ 

#View-constructor.

// ...

const appleView = Backbone.View.extend({

  initialize: function(){

    // TODO: create and setup model (aka an apple)

  },

// ...

We have our initialize function; now we need to create a model 

that will represent a single apple and set up proper event listeners on the 

model. We’ll use two types of events, change and a custom event called 

spinner. To do that, we are going to use the on() function, which takes 

these properties: on(event, actions, context). You can read more 

about it at http://backbonejs.org/#Events-on.

// ...

const appleView = Backbone.View.extend({

  initialize: function(){

    this.model = new (Backbone.Model.extend({}))

    this.model.bind('change', this.render, this)

    this.bind('spinner', this.showSpinner, this)

  },

  // ...

})

// ...

The preceding code basically boils down to two simple things:

 1. Call the render() function of the appleView object 

when the model has changed.

 2. Call the showSpinner() method of the appleView 

object when event spinner has been fired.

Chapter 4  Intro to BaCkBone.js

http://backbonejs.org/#View-constructor
http://backbonejs.org/#View-constructor
http://backbonejs.org/#Events-on


143

So far, so good, right? But what about the spinner, a GIF icon? Let’s 

create a new property in appleView:

// ...

   templateSpinner: '<img src="img/spinner.gif" 

width="30"/>',

// ...

Remember the loadApple call in the router? This is how we can 

implement the function in appleView:

...

loadApple:function(appleName) {

To show the spinner GIF image, use this.trigger to make Backbone 

call the showSpinner:

  this.trigger('spinner')

Next, we’ll need to access the context inside of a closure. Sometimes I 

like to use a meaningful name instead of _this or self, so:

  const view = this

Next, you would have an XHR call (e.g., $.ajax()) to the server to 

get the data. We’ll simulate the real time lag when fetching data from the 

remote server with:

  setTimeout(function() {

    view.model.set(view.collection.where({

      name:appleName

    })[0].attributes)

  }, 1000)

},

// ...

Chapter 4  Intro to BaCkBone.js



144

The attributes is a Backbone.js model property that gives a normal 

JavaScript object with the model’s properties. To summarize, the line with 

this.trigger('spinner') will trigger the spinner event. We still have 

to write the function for this event.

The line const view = this after that is just for scoping issues. This 

give us the ability to use appleView inside of the subsequent callbacks/

closures. And the setTimeout function is simulating a time lag of a real 

remote server response. Inside of it, we assign attributes of a selected 

model to our view’s model by using a model.set() function and a model.

attributes property (which returns the properties of a model).

Now we can remove extra code from the render method and 

implement the showSpinner function:

render: function(appleName) {

  const appleHtml = this.template(this.model)

  $('body').html(appleHtml)

},

showSpinner: function() {

  $('body').html(this.templateSpinner)

}

...

That’s all! Open index.html#apples/gala or index.html#apples/

fuji in your browser and enjoy the loading animation while waiting for an 

apple image to load.

Here is the full code of the index.html file (also in 04-backbone/

binding/index.html and at http://bit.ly/2LhBNpx):

<!DOCTYPE>

<html>

<head>

  <script src="jquery.js"></script>

  <script src="underscore.js"></script>

  <script src="backbone.js"></script>

Chapter 4  Intro to BaCkBone.js

http://bit.ly/2LhBNpx)


145

  <script>

    const appleData = [

      {

        name: 'fuji',

        url: 'img/fuji.jpg'

      },

      {

        name: 'gala',

        url: 'img/gala.jpg'

      }

    ]

    let app

    const router = Backbone.Router.extend({

      routes: {

        '': 'home',

        'apples/:appleName': 'loadApple'

      },

      initialize: function(){

        const apples = new Apples()

        apples.reset(appleData)

        this.homeView = new homeView({collection: apples})

         this.appleView = new appleView({collection: 

apples})

      },

      home: function(){

        this.homeView.render()

      },

      loadApple: function(appleName){

        this.appleView.loadApple(appleName)

      }

    })

Chapter 4  Intro to BaCkBone.js



146

    const homeView = Backbone.View.extend({

      el: 'body',

      template: _.template('Apple data: <%= data %>'),

      render: function(){

         this.$el.html(this.template({data: JSON.

stringify(this.collection.models)}))

      }

    })

    const Apples = Backbone.Collection.extend({

    })

    const appleView = Backbone.View.extend({

      initialize: function(){

        this.model = new (Backbone.Model.extend({}))

        this.model.on('change', this.render, this)

        this.on('spinner', this.showSpinner, this)

      },

      template: _.template('<figure>\

                               <img src="<%=  attributes.

url%>"/>\

                               <figcaption><%= attributes.

name %></figcaption>\

                            </figure>'),

       templateSpinner: '<img src="img/spinner.gif" 

width="30"/>',

      loadApple:function(appleName){

        this.trigger('spinner')

        const view = this

        setTimeout(function() {

           view.model.set(view.collection.where({name: 

appleName})[0].attributes)

        }, 1000)

      },

Chapter 4  Intro to BaCkBone.js



147

      render: function(appleName){

        const appleHtml = this.template(this.model)

        $('body').html(appleHtml)

      },

      showSpinner: function(){

        $('body').html(this.templateSpinner)

      }

    })

    $(document).ready(function(){

      app = new router

      Backbone.history.start()

    })

  </script>

</head>

<body>

  <div></div>

</body>

</html>

 Backbone.js Views and Subviews 
with Underscore.js
The example for this section is available in code/04-backbone/subview 

and at http://bit.ly/2LhEOWH.

Subviews are Backbone Views that are created and used inside of 

another Backbone View. A Subviews concept is a great way to abstract 

(separate) UI events (e.g., clicks), and templates for similarly structured 

elements (e.g., apples).

A use case of a Subview might include a row in a table, an item in a list, 

a paragraph, or a new line.

Chapter 4  Intro to BaCkBone.js

http://bit.ly/2LhEOWH


148

We’ll refactor our home page to show a nice list of apples. Each list 

item will have an apple name and a Buy link with an onClick event. Let’s 

start by creating a subview for a single apple with our standard Backbone 

extend() function:

  // ...

  const appleItemView = Backbone.View.extend({

    tagName: 'li',

    template: _.template(''

             +'<a href="#apples/<%=name%>"  

target="_blank">'

          +'<%=name%>'

           +'</a>&nbsp;<a class="add-to- cart" 

href="#">buy</a>'),

    events: {

      'click .add-to-cart': 'addToCart'

    },

    render: function() {

      this.$el.html(this.template(this.model.attributes))

    },

    addToCart: function() {

       this.model.collection.trigger('addToCart', this.

model)

    }

  })

  // ...

Now we can populate the object with tagName, template, events, 

render, and addToCart properties and methods.

// ...

tagName: 'li',

// ...

Chapter 4  Intro to BaCkBone.js



149

tagName automatically allows Backbone.js to create an HTML element 

with the specified tag name, in this case <li> for list item. This will be a 

representation of a single apple, a row in our list.

// ...

template: _.template(''

        +'<a href="#apples/<%=name%>" target="_blank">'

      +'<%=name%>'

      +'</a>&nbsp;<a class="add-to- cart" href="#">buy</a>'),

// ...

The template is just a string with Underscore.js instructions. They are 

wrapped in <% and %> symbols. <%= simply means print a value. The same 

code can be written with backslash escapes:

// ...

template: _.template('\

        <a href="#apples/<%=name%>" target="_blank">\

      <%=name%>\

      </a>&nbsp;<a class="add-to-cart" href="#">buy</a>\

      '),

// ...

Each <li> will have two anchor elements (<a>), links to a detailed 

apple view (#apples/:appleName), and a Buy button. Now we’re going to 

attach an event listener to the Buy button:

// ...

events: {

  'click .add-to-cart': 'addToCart'

},

// ...

Chapter 4  Intro to BaCkBone.js



150

The syntax follows this rule:

event + jQuery element selector: function name

Both the key and the value (right and left parts separated by the colon) 

are strings. For example:

'click .add-to-cart': 'addToCart'

or

'click #load-more': 'loadMoreData'

To render each item in the list, we’ll use the jQuery html() function on 

the this.$el jQuery object, which is the <li> HTML element based on 

our tagName attribute:

// ...

render: function() {

  this.$el.html(this.template(this.model.attributes))

},

// ...

addToCart will use the trigger() function to notify the collection 

that this particular model (apple) is up for purchase by the user:

// ...

addToCart: function(){

  this.model.collection.trigger('addToCart', this.model)

}

// ...

Here is the full code of the appleItemView Backbone View class:

// ...

const appleItemView = Backbone.View.extend({

  tagName: 'li',

Chapter 4  Intro to BaCkBone.js



151

  template: _.template(''

          + '<a href="#apples/<%=name%>" target="_blank">'

        + '<%=name%>'

         + '</a>&nbsp;<a class="add-to- cart" href="#">buy 

</a>'),

  events: {

    'click .add-to-cart': 'addToCart'

  },

  render: function() {

    this.$el.html(this.template(this.model.attributes))

  },

  addToCart: function(){

    this.model.collection.trigger('addToCart', this.model)

  }

})

// ...

Easy peasy! But what about the master view, which is supposed to 

render all of our items (apples) and provide a wrapper <ul> container for 

li HTML elements? We need to modify and enhance our homeView.

To begin with, we can add extra properties of string type 

understandable by jQuery as selectors to homeView:

// ...

el: 'body',

listEl: '.apples-list',

cartEl: '.cart-box',

// ...

Chapter 4  Intro to BaCkBone.js



152

We can use properties from earlier in the template, or just hard-code 

them (we’ll refactor our code later) in homeView:

// ...

template: _.template('Apple data: \

  <ul class="apples-list">\

  </ul>\

  <div class="cart-box"></div>'),

// ...

The initialize function will be called when homeView is created 

(new homeView()). There we render our template (with our favorite 

html() function), and attach an event listener to the collection, which is a 

set of apple models:

// ...

initialize: function() {

  this.$el.html(this.template)

  this.collection.on('addToCart', this.showCart, this)

},

// ...

The syntax for the binding event is covered in the previous section. 

In essence, it is calling the showCart() function of homeView. In this 

function, we append appleName to the cart (along with a line break, a 

<br/> element):

// ...

showCart: function(appleModel) {

  $(this.cartEl).append(appleModel.attributes.name + '<br/>')

},

// ...

Chapter 4  Intro to BaCkBone.js



153

Finally, here is our long-awaited render() method, in which we 

iterate through each model in the collection (each apple), create an 

appleItemView for each apple, create an <li> element for each apple, 

and append that element to view.listEl — <ul> element with a class 

apples-list in the DOM:

// ...

render: function() {

  view = this

  // So we can use view inside of closure

  this.collection.each(function(apple){

    const appleSubView = new appleItemView({model:apple})

    // Creates subview with model apple

    appleSubView.render()

    // Compiles template and single apple data

    $(view.listEl).append(appleSubView.$el)

    // Append jQuery object from single

    // Apple to apples-list DOM element

  })

}

// ...

Let’s make sure we didn’t miss anything in the homeView Backbone 

View. Here’s the full code sans the inline comments:

// ...

const homeView = Backbone.View.extend({

  el: 'body',

  listEl: '.apples-list',

  cartEl: '.cart-box',

  template: _.template('Apple data: \

    <ul class="apples-list">\

    </ul>\

    <div class="cart-box"></div>'),

Chapter 4  Intro to BaCkBone.js



154

  initialize: function() {

    this.$el.html(this.template)

    this.collection.on('addToCart', this.showCart, this)

  },

  showCart: function(appleModel) {

     $(this.cartEl).append(appleModel.attributes.name + 

'<br/>')

  },

  render: function() {

    view = this

    this.collection.each(function(apple) {

       const appleSubView = new appleItemView({model: 

apple})

      appleSubView.render()

      $(view.listEl).append(appleSubView.$el)

    })

  }

})

// ...

You should be able to click the Buy button and populate the cart with 

the apples of your choice. Looking at an individual apple does not require 

typing its name in the URL address bar of the browser anymore. We can 

click the name to open a new window with a detailed view.

By using subviews, we reused the template for all of the items (apples) 

and attached a specific event to each of them (see Figure 4-1). Those 

events are smart enough to pass the information about the model to other 

objects: views and collections.

Chapter 4  Intro to BaCkBone.js



155

Just in case, here is the full code for the subviews example, which is 

also available at http://bit.ly/2LhEOWH:

<!DOCTYPE>

<html>

<head>

  <script src="jquery.js"></script>

  <script src="underscore.js"></script>

  <script src="backbone.js"></script>

  <script>

    const appleData = [

      {

        name: 'fuji',

        url: 'img/fuji.jpg'

      },

Figure 4-1. The list of apples rendered by subviews

Chapter 4  Intro to BaCkBone.js

http://bit.ly/2LhEOWH


156

      {

        name: 'gala',

        url: 'img/gala.jpg'

      }

    ]

    let app

    const router = Backbone.Router.extend({

      routes: {

        '': 'home',

        'apples/:appleName': 'loadApple'

      },

      initialize: function(){

        const apples = new Apples()

        apples.reset(appleData)

        this.homeView = new homeView({collection: apples})

        this.appleView = new appleView({collection: apples})

      },

      home: function(){

        this.homeView.render()

      },

      loadApple: function(appleName){

        this.appleView.loadApple(appleName)

      }

    })

    const appleItemView = Backbone.View.extend({

      tagName: 'li',

      template: _.template('\

              <a href="#apples/<%=name%>" target="_blank">\

            <%=name%>\

             </a>&nbsp;<a class="add-to- cart" href="#"> 

buy</a>\

            '),

Chapter 4  Intro to BaCkBone.js



157

      events: {

        'click .add-to-cart': 'addToCart'

      },

      render: function() {

         this.$el.html(this.template(this.model.attributes))

      },

      addToCart: function(){

         this.model.collection.trigger('addToCart', this.

model)

      }

    })

    const homeView = Backbone.View.extend({

      el: 'body',

      listEl: '.apples-list',

      cartEl: '.cart-box',

      template: _.template('Apple data: \

        <ul class="apples-list">\

        </ul>\

        <div class="cart-box"></div>'),

      initialize: function() {

        this.$el.html(this.template)

         this.collection.on('addToCart', this.showCart, 

this)

      },

      showCart: function(appleModel) {

         $(this.cartEl).append(appleModel.attributes.name + 

'<br/>')

      },

      render: function(){

        view = this

Chapter 4  Intro to BaCkBone.js



158

        this.collection.each(function(apple){

           const appleSubView = new appleItemView({model: 

apple})

          appleSubView.render()

          $(view.listEl).append(appleSubView.$el)

        })

      }

    })

    const Apples = Backbone.Collection.extend({

    })

    const appleView = Backbone.View.extend({

      initialize: function(){

        this.model = new (Backbone.Model.extend({}))

        this.model.on('change', this.render, this)

        this.on('spinner', this.showSpinner, this)

      },

      template: _.template('<figure>\

                               <img src="<%= attributes.

url%>"/>\

                               <figcaption><%= attributes.

name %></figcaption>\

                            </figure>'),

       templateSpinner: '<img src="img/spinner.gif" 

width="30"/>',

      loadApple:function(appleName){

        this.trigger('spinner')

        const view = this

        setTimeout(function(){

           view.model.set(view.collection.where({name: 

appleName})[0].attributes)

        }, 1000)

      },

Chapter 4  Intro to BaCkBone.js



159

      render: function(appleName){

        const appleHtml = this.template(this.model)

        $('body').html(appleHtml)

      },

      showSpinner: function(){

        $('body').html(this.templateSpinner)

      }

    })

    $(document).ready(function(){

      app = new router

      Backbone.history.start()

    })

  </script>

</head>

<body>

  <div></div>

</body>

</html>

The link to an individual item, for example, collections/index.

html#apples/fuji, also should work independently, by typing it in the 

browser address bar.

 Refactoring Backbone.js Code
At this point you are probably wondering what the benefit is of using the 

framework and still having multiple classes, objects, and elements with 

different functionalities in one single file. This was done for the purpose of 

adhering to the idea of keeping things simple.

Chapter 4  Intro to BaCkBone.js



160

The bigger your application is, the more pain there is in an 

unorganized code base. Let’s break down our application into multiple 

files where each file will be one of these types:

• View

• Template

• Router

• Collection

• Model

Let’s write these scripts to include tags into our index.html head, or 

body, as noted previously:

<script  src="apple-item.view.js"></script>

<script src="apple-home.view.js"></script>

<script src="apple.view.js"></script>

<script src="apples.js"></script>

<script src="apple-app.js"></script>

The names don’t have to follow the convention of dashes and dots, as 

long as it’s easy to tell what each file is supposed to do.

Now, let’s copy our objects and classes into the corresponding files.

Our main index.html file should look very minimalistic:

<!DOCTYPE>

<html>

<head>

  <script src="jquery.js"></script>

  <script src="underscore.js"></script>

  <script src="backbone.js"></script>

  <script src="apple-item.view.js"></script>

  <script src="apple-home.view.js"></script>

Chapter 4  Intro to BaCkBone.js



161

  <script src="apple.view.js"></script>

  <script  src="apples.js"></script>

  <script src="apple-app.js"></script>

</head>

<body>

  <div></div>

</body>

</html>

The other files just have the code that corresponds to their file names.

The content of apple-item.view.js will have the appleView object:

const appleView = Backbone.View.extend({

  initialize: function(){

    this.model = new (Backbone.Model.extend({}))

    this.model.on('change', this.render, this)

    this.on('spinner', this.showSpinner, this)

  },

  template: _.template('<figure>\

            <img src="<%= attributes.url %>"/>\

             <figcaption><%= attributes.name %> 

</figcaption>\

          </figure>'),

   templateSpinner: '<img src="img/spinner.gif" 

width="30"/>',

  loadApple:function(appleName){

    this.trigger('spinner')

    const view = this

    // We'll need to access that inside of a closure

Chapter 4  Intro to BaCkBone.js



162

    setTimeout(function(){

    // Simulates real time lag when fetching

    // data from the remote server

      view.model.set(view.collection.where({

        name: appleName

      })[0].attributes)

    }, 1000)

  },

  render: function(appleName){

    const appleHtml = this.template(this.model)

    $('body').html(appleHtml)

  },

  showSpinner: function(){

    $('body').html(this.templateSpinner)

  }

})

The `apple-home.view.js` file has the `homeView` object:

const homeView = Backbone.View.extend({

  el: 'body',

  listEl: '.apples-list',

  cartEl: '.cart-box',

  template: _.template('Apple data: \

    <ul class="apples-list">\

    </ul>\

    <div class="cart-box"></div>'),

  initialize: function() {

    this.$el.html(this.template)

    this.collection.on('addToCart', this.showCart, this)

  },

Chapter 4  Intro to BaCkBone.js



163

  showCart: function(appleModel) {

     $(this.cartEl).append(appleModel.attributes.name + 

'<br/>')

  },

  render: function(){

    view = this // So we can use view inside of closure

    this.collection.each(function(apple){

       const appleSubView = new 

appleItemView({model:apple})

      // Create subview with model apple

      appleSubView.render()

      // Compiles template and single apple data

      $(view.listEl).append(appleSubView.$el)

      // Append jQuery object from

      // single apple to apples-list DOM element

    })

  }

})

The apple.view.js file contains the master apples list:

const appleView = Backbone.View.extend({

  initialize: function() {

    this.model = new (Backbone.Model.extend({}))

    this.model.on('change', this.render, this)

    this.on('spinner',this.showSpinner, this)

  },

  template: _.template('<figure>\

          <img src="<%= attributes.url %>"/>\

          <figcaption><%= attributes.name %></figcaption>\

        </figure>'),

   templateSpinner: '<img src="img/spinner.gif" 

width="30"/>',

Chapter 4  Intro to BaCkBone.js



164

  loadApple:function(appleName) {

    this.trigger('spinner')

    const view = this

    // We'll need to access that inside of a closure

    setTimeout(function() {

    // Simulates real time lag when

    // fetching data from the remote server

      view.model.set(view.collection.where({

        name:appleName

      })[0].attributes)

    }, 1000)

  },

  render: function(appleName) {

    const appleHtml = this.template(this.model)

    $('body').html(appleHtml)

  },

  showSpinner: function() {

    $('body').html(this.templateSpinner)

  }

})

apples.js is an empty collection:

const Apples = Backbone.Collection.extend({

})

apple-app.js is the main application file with the data, the router, 

and the starting command:

const appleData = [

  {

    name: 'fuji',

    url: 'img/fuji.jpg'

  },

Chapter 4  Intro to BaCkBone.js



165

  {

    name: 'gala',

    url: 'img/gala.jpg'

  }

]

let app

const router = Backbone.Router.extend({

  routes: {

    '': 'home',

    'apples/:appleName': 'loadApple'

  },

  initialize: function() {

    const apples = new Apples()

    apples.reset(appleData)

    this.homeView = new homeView({collection: apples})

    this.appleView = new appleView({collection: apples})

  },

  home: function() {

    this.homeView.render()

  },

  loadApple: function(appleName) {

    this.appleView.loadApple(appleName)

  }

})

$(document).ready(function() {

  app = new router

  Backbone.history.start()

})

Now let’s try to open the application. It should work exactly the same 

as in the previous Subviews example.

Chapter 4  Intro to BaCkBone.js



166

It’s a far better code organization, but it’s still far from perfect, because 

we still have HTML templates directly in the JavaScript code. The problem 

is that designers and developers can’t work on the same files, and any 

change to the presentation requires a change in the main code base.

We can add a few more JS files to our index.html file:

<script src="apple-item.tpl.js"></script>

<script src="apple-home.tpl.js"></script>

<script src="apple-spinner.tpl.js"></script>

<script src="apple.tpl.js"></script>

Usually, one Backbone View has one template, but in the case of our 

appleView—a detailed view of an apple in a separate window—we also 

have a spinner, a “loading” GIF animation.

The contents of the files are just global variables that are assigned 

some string values. Later we can use these variables in our views, when we 

call the Underscore.js helper method .template().

Here is the apple-item.tpl.js file:

const appleItemTpl = '\

      <a href="#apples/<%=name%>" target="_blank">\

    <%=name%>\

    </a>&nbsp;<a class="add-to-cart" href="#">buy</a>\

    '

This is the apple-home.tpl.js file:

const appleHomeTpl = 'Apple data: \

        <ul class="apples-list">\

        </ul>\

        <div class="cart-box"></div>'

Chapter 4  Intro to BaCkBone.js



167

Here is the apple-spinner.tpl.js file:

const appleSpinnerTpl = '<img src="img/spinner.gif" 

width="30"/>'

This is the apple.tpl.js file:

const appleTpl = '<figure>\

                <img src="<%= attributes.url %>"/>\

                 <figcaption><%= attributes.name %> 

</figcaption>\

              </figure>'

Try to start the application now. The full code is at http://bit.

ly/2LdEtEy.

As you can see in the previous example, we used global scoped 

variables (without the keyword window).

Be careful when you introduce a lot of variables into the global 

namespace (window keyword). There might be conflicts and other 

unpredictable consequences. For example, if you wrote an open source 

library and other developers started using the methods and properties 

directly, instead of using the interface, what would happen later when 

you decide to finally remove or deprecate those global leaks? To prevent 

this, properly written libraries and applications use JavaScript closures 

(https://developer.mozilla.org/en-US/docs/Web/JavaScript/

Closures).

Here is an example of using closure and a global variable module 

definition:

;(function() {

  const apple = function() {

  ...// Do something useful like return apple object

  }

  window.Apple = apple

}())

Chapter 4  Intro to BaCkBone.js

http://bit.ly/2LdEtEy
http://bit.ly/2LdEtEy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures


168

In a case when we need to access the app object (which creates a 

dependency on that object):

;(function() {

  let app = this.app

<<[][/ Equivalent of window.application]

  // in case we need a dependency (app)

  this.apple = function() {

    ...

    // Return apple object/class

    // Use app variable

  }

  // Equivalent of window.apple = function(){...}

}())

As you can see, we’ve created the function and called it immediately 

while also wrapping everything in parentheses ().

 AMD and Require.js for Backbone.js 
Development
AMD allows us to organize development code into modules, manage 

dependencies, and load them asynchronously. The article “Why AMD” 

does a great job at explaining benefits of AMD: http://requirejs.org/

docs/whyamd.html.

Start your local HTTP server, for example, MAMP (https://www.

mamp.info) or node-static (https://npmjs.com/node-static).

Let’s enhance our code by using the Require.js library.

Chapter 4  Intro to BaCkBone.js

http://requirejs.org/docs/whyamd.html
http://requirejs.org/docs/whyamd.html
http://requirejs.org/docs/whyamd.html
https://www.mamp.info
https://www.mamp.info
https://www.mamp.info
https://npmjs.com/node-static


169

Our index.html will shrink even more:

<!DOCTYPE>

<html>

  <head>

    <script src="jquery.js"></script>

    <script src="underscore.js"></script>

    <script src="backbone.js"></script>

    <script src="require.js"></script>

    <script src="apple-app.js"></script>

  </head>

  <body>

    <div></div>

  </body>

</html>

We only included libraries and the single JavaScript file with our 

application. This file has the following structure:

require([...],function(...){...})

In a more explanatory way:

require([

  'name-of-the-module',

  ...

  'name-of-the-other-module'

   ],function(referenceToModule, ..., 

referenceToOtherModule){

  // Some useful code...

  referenceToModule.someMethod()

})

Chapter 4  Intro to BaCkBone.js



170

Basically, we tell a browser to load the files from the array of file 

names—the first parameter of the require() function—and then pass 

our modules from those files to the anonymous callback function (second 

argument) as variables. Inside of the main function (anonymous callback) 

we can use our modules by referencing those variables. Therefore, our 

apple-app.js metamorphoses into:

require([

  'apple-item.tpl', // Can use shim plug-in

  'apple-home.tpl',

  'apple-spinner.tpl',

  'apple.tpl',

  'apple-item.view',

  'apple-home.view',

  'apple.view',

  'apples'

],function(

  appleItemTpl,

  appleHomeTpl,

  appleSpinnerTpl,

  appleTpl,

  appleItemView,

  homeView,

  appleView,

  Apples

  ){

  const appleData = [

    {

      name: 'fuji',

      url: 'img/fuji.jpg'

    },

Chapter 4  Intro to BaCkBone.js



171

    {

      name: 'gala',

      url: 'img/gala.jpg'

    }

  ]

  let app

  const router = Backbone.Router.extend({

  // Check if need to be required

    routes: {

      '': 'home',

      'apples/:appleName': 'loadApple'

    },

    initialize: function() {

      const apples = new Apples()

      apples.reset(appleData)

      this.homeView = new homeView({collection: apples})

      this.appleView = new appleView({collection: apples})

    },

    home: function() {

      this.homeView.render()

    },

    loadApple: function(appleName) {

      this.appleView.loadApple(appleName)

    }

  })

  $(document).ready(function() {

    app = new router

    Backbone.history.start()

  })

})

Chapter 4  Intro to BaCkBone.js



172

We put all of the code inside the function that is a second argument 

of require(), mentioned modules by their file names, and used 

dependencies via corresponding parameters. Now we should define the 

module itself. This is how we can do it with the define() method:

define([...],function(...) {...})

The meaning is similar to the require() function: Dependencies 

are strings of file names (and paths) in the array that is passed as the first 

argument. The second argument is the main function that accepts other 

libraries as parameters (the order of parameters and modules in the array 

is important):

define(['name-of-the-module'],function(nameOfModule) {

  const b = nameOfModule.render()

  return b

})

Note that there is no need to append .js to file names. Require.js does 

it automatically. The Shim plug-in is used for importing text files such as 

HTML templates.

Let’s start with the templates and convert them into the Require.js 

modules.

Here is the new apple-item.tpl.js file:

define(function() {

  return '\

               <a href="#apples/<%=name%>"  

target="_blank">\

            <%=name%>\

             </a>&nbsp;<a class="add-to- cart" 

href="#">buy</a>\

            '

})

Chapter 4  Intro to BaCkBone.js



173

This is the apple-home.tpl file:

define(function() {

  return 'Apple data: \

        <ul class="apples-list">\

        </ul>\

        <div class="cart-box"></div>'

})

Here is the apple-spinner.tpl.js file:

define(function() {

  return '<img src="img/spinner.gif" width="30"/>'

})

This is the apple.tpl.js file:

define(function() {

  return '<figure>\

          <img src="<%= attributes.url %>"/>\

          <figcaption><%= attributes.name %></figcaption>\

        </figure>'

  })

Here is the apple-item.view.js file:

define(function() {

  return '\

               <a href="#apples/<%=name%>"  

target="_blank">\

            <%=name%>\

             </a>&nbsp;<a class="add-to- cart" 

href="#">buy</a>\

            '

})

Chapter 4  Intro to BaCkBone.js



174

In the apple-home.view.js file, we need to declare dependencies on 

apple-home.tpl and apple-item.view.js files:

define(['apple-home.tpl', 'apple-item.view'], function(

  appleHomeTpl,

  appleItemView){

return Backbone.View.extend({

      el: 'body',

      listEl: '.apples-list',

      cartEl: '.cart-box',

      template: _.template(appleHomeTpl),

      initialize: function() {

        this.$el.html(this.template)

         this.collection.on('addToCart', this.showCart, 

this)

      },

      showCart: function(appleModel) {

         $(this.cartEl).append(appleModel.attributes.name + 

'<br/>')

      },

      render: function() {

         view = this // So we can use view inside of 

closure

        this.collection.each(function(apple){

           const appleSubView = new 

appleItemView({model:apple})

          // Create subview with model apple

          appleSubView.render()

          // Compiles template and single apple data

          $(view.listEl).append(appleSubView.$el)

Chapter 4  Intro to BaCkBone.js



175

          // Append jQuery object from

          // a single apple to apples-list DOM element

        })

      }

    })

})

The apple.view.js file depends on two templates:

define([

  'apple.tpl',

  'apple-spinner.tpl'

], function(appleTpl,appleSpinnerTpl){

  return Backbone.View.extend({

    initialize: function(){

      this.model = new (Backbone.Model.extend({}))

      this.model.on('change', this.render, this)

      this.on('spinner',this.showSpinner, this)

    },

    template: _.template(appleTpl),

    templateSpinner: appleSpinnerTpl,

    loadApple:function(appleName){

      this.trigger('spinner')

      const view = this

      // We'll need to access that inside of a closure

      setTimeout(function(){

      // Simulates real time lag when

      // fetching data from the remote server

        view.model.set(view.collection.where({

          name:appleName

        })[0].attributes)

      }, 1000)

    },

Chapter 4  Intro to BaCkBone.js



176

    render: function(appleName){

      const appleHtml = this.template(this.model)

      $('body').html(appleHtml)

    },

    showSpinner: function(){

      $('body').html(this.templateSpinner)

    }

  })

})

This is the apples.js file:

define(function() {

  return Backbone.Collection.extend({})

})

I hope you can see the pattern by now. All of our code is split into 

the separate files based on the logic (e.g., view class, collection class, 

template). The main file loads all of the dependencies with the require() 

function. If we need some module in a non-main file, then we can ask 

for it in the define() method. Usually, in modules we want to return an 

object; for example, in templates we return strings and in views we return 

Backbone View classes and objects.

Try launching the example located in code/04-backbone/amd and 

at http://bit.ly/2LhEmb9. Visually, there shouldn’t be any changes. If 

you open the Network tab in the Developers Tool, you can see a difference 

in how the files are loaded.

The old file shown in Figure 4-2 (code/04-backbone/refactor/

index.html and http://bit.ly/2Lfi7lT) loads our JavaScript  

scripts in a serial manner, whereas the new file shown in Figure 4-3  

(code/04-backbone/amd/index.html) loads them in parallel.

Chapter 4  Intro to BaCkBone.js

http://bit.ly/2LhEmb9
http://bit.ly/2Lfi7lT)


177

Figure 4-2. The old 04-backbone/refactor/index.html file

Chapter 4  Intro to BaCkBone.js



178

Require.js has a lot of configuration options that are defined through 

the requirejs.config() call in the top level of an HTML page. More 

information can be found at http://requirejs.org/docs/api.

html#config.

Let’s add a bust parameter to our example. The bust argument will be 

appended to the URL of each file, preventing a browser from caching the 

files. This is perfect for development and terrible for production.

Add this to the apple-app.js file in front of everything else:

requirejs.config({

  urlArgs: 'bust=' + (new Date()).getTime()

})

require([

// ...

Figure 4-3. The new 04-backbone/amd/index.html file

Chapter 4  Intro to BaCkBone.js

http://requirejs.org/docs/api.html#config
http://requirejs.org/docs/api.html#config


179

Notice in Figure 4-4 that each file request now has status 200 instead of 

304 (not modified).

 Require.js for Backbone.js Production
We’ll use the Node.js package manager (npm) to install the requirejs 

library (it’s not a typo; there’s no period in the name). In your project 

folder, run this command in a terminal:

$ npm init

Then run

$ npm install requirejs

or add -g for global installation:

$ npm install -g requirejs

Figure 4-4. Network tab with bust parameter added

Chapter 4  Intro to BaCkBone.js



180

Create a file named app.build.js:

({

    appDir: "./js",

    baseUrl: "./",

    dir: "build",

    modules: [

        {

            name: "apple-app"

        }

    ]

})

Move the script files into the js folder (appDir property). The 

builded files will be placed in the build folder (dir parameter). For 

more information on the build file, check out the extensive example with 

comments available at http://bit.ly/2LdFSuO.

Now everything should be ready for building one gigantic JavaScript 

file that will include all of our dependencies and modules:

$ r.js -o app.build.js

or

$ node_modules/requirejs/bin/r.js -o app.build.js

You should get a list of the r.js processed files, as shown in Figure 4-5.

Chapter 4  Intro to BaCkBone.js

http://bit.ly/2LdFSuO


181

Open index.html from the build folder in a browser window, and 

check if the Network tab shows any improvement now with just one 

request or file to load (Figure 4-6).

Figure 4-5. A list of the r.js processed files

Chapter 4  Intro to BaCkBone.js



182

For more information, check out the official r.js documentation at 

http://requirejs.org/docs/optimization.html.

The example code is available at http://bit.ly/2LiMuYM and 

http://bit.ly/2Lg6efx.

For uglification of JS files (which decreases the file sizes), we can use 

the Uglify2 module. To install it with npm, use:

$ npm install uglify-js

Then update the app.build.js file with the optimize: "uglify2" 

property:

({

    appDir: "./js",

    baseUrl: "./",

    dir: "build",

    optimize: "uglify2",

Figure 4-6. Performance improvement with one request or file to load

Chapter 4  Intro to BaCkBone.js

http://requirejs.org/docs/optimization.html
http://bit.ly/2LiMuYM
http://bit.ly/2Lg6efx


183

    modules: [

        {

            name: "apple-app"

        }

    ]

})

Run r.js with:

$ node_modules/requirejs/bin/r.js -o app.build.js

You should get something like this:

define("apple-item.tpl",[],function(){return'  

<a href="#apples/<%=name%>" target="_blank"> <%=name%>  

</a>&nbsp;<a class="add-to-cart" href="#">buy 

</a>'}),define("apple-home.tpl",[],function(){return 

'Apple data: <ul class="apples-list"> </ul>  

<div class="cart- box"></div>'}),define("apple- spinner.tpl", 

[],function(){return'<img src="img/spinner.gif" 

width="30"/>'}),define("apple.tpl",[],function()

{return'<figure> <img src="<%= attributes.url %>"/> 

<figcaption><%= attributes.name %></figcaption>  

</figure>'}),define("apple-item.view",["apple-item.

tpl"],function(e){return  Backbone.View.extend({tagName:

"li",template:_.template(e),events:{"click .add-to-car

t":"addToCart"},render:function(){this.$el.html(this.

template(this.model.attributes))},addToCart:function 

(){this.model.collection.trigger("addToCart",this.

model)}})}),define("apple-home.view",["apple- 

home.tpl","apple-item.view"],function(e,t){return  

Backbone.View.extend({el:"body",listEl:".apples-  

list",cartEl:".cart-box",template:_.template(e), 

initialize:function(){this.$el.html(this.template),this.

Chapter 4  Intro to BaCkBone.js



184

collection.on("addToCart",this.showCart,this)}, 

showCart:function(e){$(this.cartEl).append(e.attributes. 

name+"<br/>")},render:function(){view=this,this.

collection.each(function(e){const i=new t({model:e}); 

i.render(),$(view.listEl).append(i.$el)})}})}),define 

("apple.view",["apple.tpl","apple-spinner.tpl"],function(e,t)

{return Backbone.View.extend({initialize:function() 

{this.model=new(Backbone.Model.extend({})),this.model.

on("change",this.render,this),this.on("spinner",this.

showSpinner,this)},template:_.template(e),templateSpinner:t, 

loadApple:function(e){this.trigger("spinner");const 

t=this;setTimeout(function(){t.model.set(t.collection.

where({name:e})[0].attributes)},1e3)},render:function()

{const e=this.template(this.model);$("body").html(e)}, 

showSpinner:function(){$("body").html(this.templateSpinner) 

}})}),define("apples",[],function(){return Backbone.

Collection.extend({})}),requirejs.config({urlArgs:"bust="

+(new Date).getTime()}),require(["apple-item.tpl","apple-

home.tpl","apple- spinner.tpl","apple.tpl","apple-item.

view","apple-home.view","apple.view","apples"],function 

(e,t,i,n,a,l,p,o){const r,s=[{name:"fuji",url:"img/ 

fuji.jpg"},{name:"gala",url:"img/gala.jpg"}],c=Backbone.

Router.extend({routes:{"":"home","apples/:appleName"

:"loadApple"},initialize:function(){const e=new o;e.

reset(s),this.homeView=new  l({collection:e}),this.

appleView=new p({collection:e})},home:function()

{this.homeView.render()},loadApple:function(e){this.

appleView.loadApple(e)}});$(document).ready(function()

{r=new c,Backbone.history.start()})}),define("apple-

app",function(){});

Chapter 4  Intro to BaCkBone.js



185

The file is intentionally not formatted to show how Uglify2 works 

(https://npmjs.com/uglify-js and http://lisperator.net/

uglifyjs). Without the line break escape symbols, the code is on one line. 

Also notice that variables’ and objects’ names are shortened.

 Super Simple Backbone.js Starter Kit
To jump-start your Backbone.js development, consider using Super Simple 

Backbone Starter Kit (http://bit.ly/2LhjDE4) or similar projects:

• Backbone Boilerplate available at http://

backboneboilerplate.com

• Sample App with Backbone.js and Bootstrap available 

at http://coenraets.org/blog/2012/02/sample-

app-with-backbone-js-and-twitter-bootstrap

• More Backbone.js tutorials available at http://bit.

ly/2LfBifE

 Summary
So far we’ve covered how to:

• Build a Backbone.js application from scratch.

• Use views, collections, subviews, models, and event 

binding.

• Use AMD and Require.js on the example of the apple 

database application.

Chapter 4  Intro to BaCkBone.js

https://npmjs.com/uglify-js
http://lisperator.net/uglifyjs
http://lisperator.net/uglifyjs
http://bit.ly/2LhjDE4)
http://backboneboilerplate.com
http://backboneboilerplate.com/
http://backboneboilerplate.com/
http://coenraets.org/blog/2012/02/sample-app-with-backbone-js-and-twitter-bootstrap
http://coenraets.org/blog/2012/02/sample-app-with-backbone-js-and-twitter-bootstrap
http://coenraets.org/blog/2012/02/sample-app-with-backbone-js-and-twitter-bootstrap
http://bit.ly/2LfBifE
http://bit.ly/2LfBifE


186

In this chapter, you’ve learned enough about Backbone.js to make sure 

you can start using it in your web or mobile apps. Without a framework like 

Backbone, your code will become exponentially more complex as it grows. 

On the other hand, with Backbone or a similar MVC architecture, you can 

scale the code better.

Chapter 4  Intro to BaCkBone.js



187© Azat Mardan 2018 
A. Mardan, Full Stack JavaScript, https://doi.org/10.1007/978-1-4842-3718-2_5

CHAPTER 5

Backbone.js and Parse

When in doubt—console log.

—Azat Mardan

In this chapter, we’ll explore the practical aspect of leveraging Parse for a 

Backbone.js app. The chapter will illustrate the following:

• Backbone.js and Parse usage

• Modifying Message Board with Parse and JavaScript SDK

• Taking Message Board further the

If you’ve written some complex client-side applications, you might 

have found that it’s challenging to maintain the spaghetti code of 

JavaScript callbacks and UI events. Backbone.js provides a lightweight yet 

powerful way to organize your logic into a Model-View-Controller (MVC) 

type of structure. It also has nice features like URL routing, REST API 

support, event listeners, and triggers. For more information and  

step-by- step examples of building Backbone.js applications from scratch, 

please refer to Chapter 4 “Intro to Backbone.js.”

http://azat.co/


188

 Message Board with Parse: JavaScript SDK 
and Backbone.js Version
Speaking of Message Board with jQuery that I covered earlier, it’s easy 

to see that if we keep adding more and more buttons such as “DELETE,” 

“UPDATE,” and other functionalities, our asynchronous callbacks will 

grow more complicated. And we’ll have to know when to update the view 

(i.e., the list of messages) based on whether or not there were changes to 

the data. The Backbone.js Model-View-Controller (MVC) framework can 

be used to make complex applications more manageable and easier to 

maintain.

If you felt comfortable with the previous Message Board with jQuery 

example, let’s build upon it with the use of the Backbone.js framework. We 

will change the app to use Backbone but the look will remain moslty the 

same (see Figure 5-1).

Chapter 5  BaCkBone.js and parse



189

Next we’ll go step by step, creating a Message Board application using 

Backbone.js and Parse JavaScript SDK. If you feel familiar enough with it, 

you could download the Super Simple Backbone Starter Kit at http://bit.

ly/2LhjDE4. Integration with Backbone.js will allow for a straightforward 

implementation of user actions by binding them to asynchronous updates of 

the collection.

Figure 5-1. Message Board powered by local Parse server

Chapter 5  BaCkBone.js and parse

http://bit.ly/2LhjDE4
http://bit.ly/2LhjDE4


190

The application is available at http://bit.ly/2LfB9IQ, but again 

you are encouraged to start from scratch and try to write your own code 

using the example only as a reference.

The following shows the structure of the Message Board with Parse, 

JavaScript SDK, and Backbone.js version:

/06-board-backbone-parse-sdk

  -index.html

  -home.html

  -footer.html

  -header.html

  -app.js

  /css

    -bootstrap.css

    -bootstrap.min.css

  /js

    -backbone.js

    -jquery.js

    -underscore.js

  /libs

    -require.min.js

    -text.js

Create a folder; in the folder create an index.html file with the 

following content skeleton:

<!DOCTYPE html>

<html lang="en">

  <head>

  ...

  </head>

Chapter 5  BaCkBone.js and parse

http://bit.ly/2LfB9IQ


191

  <body>

  ...

  </body>

</html>

Download the necessary libraries or hot-link them from a CDN. Next 

include JavaScript libraries and Bootstrap stylesheets into the <head> 

element along with other important but not required meta elements.

<head>

  <meta charset="utf-8" />

  <title>Message Board</title>

  <meta name="author" content="Azat Mardan" />

We need this for responsive behavior:

  <meta name="viewport"

    content="width=device-width, initial-scale=1.0" />

Link jQuery from a local file (v2.1.4 or higher):

  <script src="js/jquery.js"></script>

Do the same for Underscore (v1.8.3 or higher) and Backbone (v1.2.3 or 

higher):

  <script src="js/underscore.js"></script>

  <script src="js/backbone.js"></script>

The Parse JavaScript SDK v1.5.0 is patched, meaning it’s modified to 

work with the local Parse server. In this version, I commented or deleted 

the /1 in the URL path. The file is in the js folder of this project. Note this, 

because other versions might not work properly with this example:

  <script src="js/parse-1.5.0.js"></script>

Chapter 5  BaCkBone.js and parse



192

The Bootstrap CSS inclusion requires the following:

  <link type="text/css" rel="stylesheet"  

href="css/bootstrap.css" />

We need to have RequireJS (v2.1.22 or higher) for loading 

dependencies:

  <script type="text/javascript" src="libs/require.js"> 

</script>

And here’s our JS application inclusion:

  <script type="text/javascript" src="app.js"></script>

</head>

Populate the <body> element with Bootstrap scaffolding (introduced 

in Chapter 1, “Basics” ):

  <body>

  <div class="container-fluid">

    <div class="row-fluid">

      <div class="col-md-12">

        <div id="header">

        </div>

      </div>

    </div>

    <div class="row-fluid">

      <div class="col-md-12">

        <div id="content">

        </div>

      </div>

    </div>

Chapter 5  BaCkBone.js and parse



193

    <div class="row-fluid">

      <div class="col-md-12">

        <div id="footer">

        </div>

      </div>

    </div>

  </div>

  </body>

Create an app.js file and put Backbone.js views inside:

• headerView: Menu and app-common information

• footerView: Copyrights and contact links

• homeView: Home page content

We use Require.js syntax and the Shim plug-in for HTML templates:

    require([

    'libs/text!header.html',

    'libs/text!home.html',

    'libs/text!footer.html'], function (

      headerTpl,

      homeTpl,

      footerTpl) {

The following code adds the application router with a single index route:

      const ApplicationRouter = Backbone.Router.extend({

        routes: {

          "": "home",

          "*actions": "home"

        },

Chapter 5  BaCkBone.js and parse



194

Before we do anything else, we can initialize views that are going to be 

used across the app:

        initialize: function() {

          this.headerView = new HeaderView()

          this.headerView.render()

          this.footerView = new FooterView()

          this.footerView.render()

        },

This code takes care of the home route:

        home: function() {

          this.homeView = new HomeView()

          this.homeView.render()

        }

      })

The header Backbone View is attached to the #header element and 

uses the headerTpl template:

      HeaderView = Backbone.View.extend({

        el: '#header',

        templateFileName: 'header.html',

        template: headerTpl,

        initialize: function() {

        },

        render: function() {

          console.log(this.template)

          $(this.el).html(_.template(this.template))

        }

      })

Chapter 5  BaCkBone.js and parse



195

To render the HTML, we use the jQuery.html() function:

      FooterView = Backbone.View.extend({

        el: '#footer',

        template: footerTpl,

        render: function() {

          this.$el.html(_.template(this.template))

        }

      })

The home Backbone View definition uses the #content DOM 

element:

      HomeView = Backbone.View.extend({

        el: '#content',

        template: homeTpl,

        initialize: function() {

        },

        render: function() {

          $(this.el).html(_.template(this.template))

        }

      })

To start an app, we create a new instance and call Backbone.

history.start():

    app = new ApplicationRouter()

      Backbone.history.start()

    })

Chapter 5  BaCkBone.js and parse



196

The full code of the app.js file is shown here:

require([

    'libs/text!header.html',

    // Example of a shim plugin use

    'libs/text!home.html',

    'libs/text!footer.html'],

  function (

    headerTpl,

    homeTpl,

    footerTpl) {

  const ApplicationRouter = Backbone.Router.extend({

    routes: {

      ' ': 'home',

      '*actions': 'home'

    },

    initialize: function() {

      this.headerView = new HeaderView()

      this.headerView.render()

      this.footerView = new FooterView()

      this.footerView.render()

    },

    home: function() {

      this.homeView = new HomeView()

      this.homeView.render()

    }

  })

  HeaderView = Backbone.View.extend({

    el: '#header',

    templateFileName: 'header.html',

    template: headerTpl,

    initialize: function() {

    },

Chapter 5  BaCkBone.js and parse



197

    render: function() {

      console.log(this.template)

      $(this.el).html(_.template(this.template))

    }

  })

  FooterView = Backbone.View.extend({

    el: '#footer',

    template: footerTpl,

    render: function() {

      this.$el.html(_.template(this.template))

    }

  })

  HomeView = Backbone.View.extend({

    el: '#content',

    template: homeTpl,

    initialize: function() {

    },

    render: function() {

      $(this.el).html(_.template(this.template))

    }

  })

  app = new ApplicationRouter()

  Backbone.history.start()

})

The code above displays templates. All views and routers are inside, 

requiring the module to make sure that the templates are loaded before we 

begin to process them.

Chapter 5  BaCkBone.js and parse



198

Here is what home.html looks like:

• A table of messages

• Underscore.js logic to output rows of the table

• A new message form

Let’s use the Bootstrap library structure (with its responsive 

components) by assigning row-fluid and col-md-12 classes:

<div class="row-fluid" id="message-board">

<div class="col-md-12">

  <table class="table table-bordered table-striped">

    <caption>Message Board</caption>

    <thead>

      <tr>

        <th class="span2">Username</th>

        <th>Message</th>

      </tr>

    </thead>

    <tbody>

This part has Underscore.js template instructions, which are just some 

JS code wrapped in <% and %> marks. Right away we are checking that the 

models variable is defined and not empty:

      <%

       if (typeof models != 'undefined' &&  

models.length > 0) {

_.each() is an iterator function from the UnderscoreJS TK library 

(http://underscorejs.org/#each), which does exactly what it sounds 

like—iterates through elements of an object/array:

        _.each(models, function (value, key, list) { %>

          <tr>

Chapter 5  BaCkBone.js and parse

http://underscorejs.org/#each


199

Inside of the iterator function we have the argument value that is 

a single model from models. We can access attributes of the Backbone 

model with model.attributes.attributeName. To output variables in 

Underscore, we use <%= NAME %> instead of <% CODE %>:

            <td><%= value.attributes.username %></td>

            <td><%= value.attributes.message %></td>

          </tr>

        <% })

      }

But what if models is undefined or empty? In this case, we print a 

message that says that there’s no messages yet. It goes into the else block. 

We use colspan=2 to merge two cells into one:

      else { %>

      <tr>

        <td colspan="2">No messages yet</td>

      </tr>

We close the table and other HTML tags:

      <%}%>

    </tbody>

  </table>

</div>

</div>

For the new message form, we also use the row-fluid class and then 

add <input> elements:

<div class="row-fluid" id="new-message">

  <div class="col-md-12">

    <form class="well form-inline">

Chapter 5  BaCkBone.js and parse



200

The <input> element must have the name username because that’s 

how we find this element and get the username value in the JavaScript code:

      <input type="text"

        name="username"

        class="input-small"

        placeholder="Username" />

Analogous to the username <input> tag, the message text tag needs to 

have the name. In this case, it’s message:

      <input type="text" name="message"

        class="input-small"

        placeholder="Message Text" />

Lastly, the “SEND” button must have the ID of send. This is what we 

use in the events property of the Backbone’s HomeView class:

      <a id="send" class="btn btn-primary">SEND</a>

    </form>

  </div>

</div>

For your convenience, here’s the full code of the home.html template file:

<div class="row-fluid" id="message-board">

<div class="col-md-12">

  <table class="table table-bordered table-striped">

    <caption>Message Board</caption>

    <thead>

      <tr>

        <th class="span2">Username</th>

        <th>Message</th>

      </tr>

    </thead>

Chapter 5  BaCkBone.js and parse



201

    <tbody>

       <% if (typeof models != 'undefined' && models.

length>0) {

        _.each(models, function (value,key, list) { %>

          <tr>

            <td><%= value.attributes.username %></td>

            <td><%= value.attributes.message %></td>

          </tr>

        <% })

      }

      else { %>

      <tr>

        <td colspan="2">No messages yet</td>

      </tr>

      <%}%>

    </tbody>

  </table>

</div>

</div>

<div class="row-fluid" id="new-message">

  <div class="col-md-12">

    <form class="well form-inline">

      <input type="text"

        name="username"

        class="input-small"

        placeholder="Username" />

      <input type="text" name="message"

        class="input-small"

        placeholder="Message Text" />

Chapter 5  BaCkBone.js and parse



202

      <a id="send" class="btn btn-primary">SEND</a>

    </form>

  </div>

</div>

Now we can add the following components:

• Parse collection

• Parse model

• Send/add message event

• Getting/displaying messages functions

The following is a Backbone-compatible model/class Parse.Object 

from Parse JS SDK. It has a mandatory className attribute. This is the 

name of the collection. We define the model with extend():

Message = Parse.Object.extend({

    className: 'MessageBoard'

})

Next is the Backbone-compatible collection class/object  

Parse.Collection from Parse JavaScript SDK that points to the just 

created Message model using the model property:

MessageBoard = Parse.Collection.extend ({

    model: Message

})

The HomeView object needs to have the click event listener on the 

“SEND” button:

HomeView = Backbone.View.extend({

    el: '#content',

    template: homeTpl,

Chapter 5  BaCkBone.js and parse



203

    events: {

        'click #send': 'saveMessage'

    },

When we create HomeView, let’s also create a collection and attach 

event listeners to it:

    initialize: function() {

        this.collection = new MessageBoard()

        this.collection.bind('all', this.render, this)

        this.collection.fetch()

        this.collection.on('add', function(message) {

            message.save(null, {

                success: function(message) {

                    console.log('saved ' + message)

                },

                error: function(message) {

                    console.log('error')

                }

            })

            console.log('saved' + message)

        })

    },

Next is the definition of saveMessage() calls for the “SEND” button 

click event that goes on the same HomeView object as a property:

    saveMessage: function() {

Firstly, we get the form object by its ID (#new-message) because it’s 

more effective and readable to use a stored object rather than use jQuery 

selector every time.

      const newMessageForm = $('#new-message')

Chapter 5  BaCkBone.js and parse



204

The next two lines will get the values of the input fields with names 

username and message:

      const username = newMessageForm.

find('[name="username"]').val()

      const message = newMessageForm.

find('[name="message"]').val()

Once we have the values of a new message (text and author), we can 

invoke this.collection.add():

        this.collection.add({

          'username': username,

          'message': message

        })

    },

Last, we output the collections by using _.template with the template 

from this.template, and then invoking it with the data coming from 

this.collection:

    render: function() {

        $(this.el).html(_.template(this.template) 

(this.collection))

    }

The end result of our manipulations in app.js might look something 

like this:

require([

    'libs/text!header.html',

    'libs/text!home.html',

    'libs/text!footer.html'], function (

        headerTpl,

Chapter 5  BaCkBone.js and parse



205

        homeTpl,

        footerTpl) {

    Parse.initialize('your-parse-app-id',  

'your-parse-js-sdk-key')

    const ApplicationRouter = Backbone.Router.extend({

        routes: {

            ' ': 'home',

            '*actions': 'home'

        },

        initialize: function() {

            this.headerView = new HeaderView()

            this.headerView.render()

            this.footerView = new FooterView()

            this.footerView.render()

        },

        home: function() {

            this.homeView = new HomeView()

            this.homeView.render()

        }

    })

    HeaderView = Backbone.View.extend ({

        el: '#header',

        templateFileName: 'header.html',

        template: headerTpl,

        initialize: function() {

        },

        render: function() {

            $(this.el).html(_.template(this.template))

        }

    })

Chapter 5  BaCkBone.js and parse



206

    FooterView = Backbone.View.extend({

        el: '#footer',

        template: footerTpl,

        render: function() {

            this.$el.html(_.template(this.template))

        }

    })

    Message = Parse.Object.extend({

        className: 'MessageBoard'

    })

    MessageBoard = Parse.Collection.extend ({

        model: Message

    })

    HomeView = Backbone.View.extend({

        el: '#content',

        template: homeTpl,

        events: {

            'click #send': 'saveMessage'

        },

        initialize: function(){

            this.collection = new MessageBoard()

            this.collection.bind('all', this.render, this)

            this.collection.fetch()

            this.collection.on('add', function(message) {

                message.save(null, {

                    success: function(message) {

                        console.log('saved ' + message)

                    },

Chapter 5  BaCkBone.js and parse



207

                    error: function(message) {

                        console.log('error')

                    }

                })

                console.log('saved' + message)

            })

        },

        saveMessage: function(){

            const newMessageForm = $('#new-message')

            const username = newMessageForm.

find('[name="username"]').val()

            const message = newMessageForm.

find('[name="message"]').val()

            this.collection.add({

                'username': username,

                'message': message

                })

        },

        render: function() {

          $(this.el).html(_.template(this.template)(this.

collection))

        }

    })

    window.app = new ApplicationRouter ()

    Backbone.history.start()

})

Again, the full source code of the Backbone.js and Parse Message 

Board application is available at http://bit.ly/2LfB9IQ.

Chapter 5  BaCkBone.js and parse

http://bit.ly/2LfB9IQ


208

 Taking Message Board Further
Once you are comfortable that your front-end application works well locally, 

with or without a local HTTP server like MAMP or XAMPP, deploy it to 

Microsoft Azure or Heroku. In-depth deployment instructions are described 

in Chapter 1, “Getting Data from Backend Using jQuery and Parse”.

In the last two examples, Message Board had very basic functionality. 

You could enhance the application by adding more features.

I created a list of additional features for intermediate level developers 

to implement as an exercise:

• Sort the list of messages through the updateAt 

attribute before displaying it.

• Add a “Refresh” button to update the list of messages.

• Save the username after the first message entry in a 

runtime memory or in a session.

• Add an up-vote button next to each message, and store 

the votes.

• Add a down-vote button next to each message, and 

store the votes.

Here are a few recommended additional features for advanced level 

developers:

• Add a User collection.

• Prevent the same user from voting multiple times.

• Add user sign-up and log-in actions by using Parse 

functions.

Chapter 5  BaCkBone.js and parse



209

• Add a “Delete Message” button next to each message 

created by a user.

• Add an “Edit Message” button next to each message 

created by a user.

 Summary
This short chapter gives you yet another way of building apps with nothing 

but JavaScript (and HTML and CSS, obviously). With Parse or a similar 

back-end-as-a-service (BaaS) solution, it is straightforward to persist the 

data without having to code your own backend. BaaS solutions take it a 

step further by allowing for access-level controls, authentications,  

server- side logic, and third-party integrations.

In addition to leveraging Parse in this chapter, we saw how Backbone 

can be flexible in terms of allowing you to overload its classes to build 

your own custom ones. This is a way to use Backbone to build your own 

framework. This is what we did at DocuSign when I worked there; we had 

base Backbone models and extended them for custom use cases. We even 

shared Backbone models between the server and the browser, allowing for 

faster data loading. Speaking of the server JavaScript, in the next chapter 

we’ll explore how to write JavaScript on the server with Node.js.

Chapter 5  BaCkBone.js and parse



Back-End Prototyping

PART III



213© Azat Mardan 2018 
A. Mardan, Full Stack JavaScript, https://doi.org/10.1007/978-1-4842-3718-2_6

CHAPTER 6

Intro to Node.js

Any fool can write code that a computer can understand. 
Good programmers write code that humans can understand.

—Martin Fowler

In this chapter, we’ll cover the following:

• Building “Hello World” in Node.js

• Node.js core modules

• npm Node.js package manager

• Message Board with Node.js: memory store version

• Unit testing Node.js

Node.js is a non-blocking platform for building web applications. 

It uses JavaScript, so it’s a centerpiece in our full stack JavaScript 

development. We’ll start by building our “Hello World” app and then we’ll 

cover core modules and npm. Then, we deploy our “Hello World” app to 

the cloud.

https://en.wikipedia.org/wiki/Martin_Fowler


214

 Building “Hello World” in Node.js
To check if you have Node.js installed on your computer, type and execute 

this command in your terminal:

$ node -v

Get the version 8 or higher. If you don’t have Node.js installed, or 

if your version is older (behind or lower), you can download the latest 

version at http://nodejs.org/#download. You can use one of these 

tools for version management (i.e., switching between Node.js versions):

• n : https://npmjs.com/n

• nave : https://npmjs.com/nave

• nvm : https://npmjs.com/nvm

• nvm-windows : https://github.com/coreybutler/

nvm-windows

As usual, you could copy the example code at http://bit.ly/ 

2Lbvxzr, or write your own program from scratch. If you wish to do the 

latter, create a folder hello for your “Hello World” Node.js application. 

Then create a file server.js and line by line type the code below.

This line will load the core http module for the server (more on the 

modules later):

const http = require('http')

We’ll need a port number for our Node.js server. To get it from the 

environment or assign 1337 if the environment is not set, use:

const port = process.env.PORT || 1337

This will create a server, and a callback function will contain the 

response handler code:

const server = http.createServer((req, res) => {

Chapter 6  Intro to node.js

http://nodejs.org/#download
https://npmjs.com/n
https://npmjs.com/nave
https://npmjs.com/nvm
https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows
http://bit.ly/2Lbvxzr
http://bit.ly/2Lbvxzr


215

To set the right header and status code, use:

  res.writeHead(200, {'Content-Type': 'text/plain'})

To output “Hello World” with the line end symbol, use:

  res.end('Hello World\n')

})

To set a port and display the address of the server and the port  

number, use:

server.listen(port, () => {

  console.log('Server is running at %s:%s ',

    server.address().address, server.address().port)

})

From the folder in which you have server.js, launch in your terminal 

the following command:

$ node server.js

Open http://localhost:1337 or http://127.0.0.1:1337 or any other 

address you see in the terminal as a result of the console.log() function, 

and you should see “Hello World” in a browser. To shut down the server, 

press Control + C.

Note the name of the main file could be different from server.js 
(e.g., index.js or app.js). In case you need to launch the app.js 
file, just use $ node app.js.

Chapter 6  Intro to node.js



216

 Node.js Core Modules
Unlike other programming technologies, Node.js doesn’t come with a 

heavy standard library. The core modules of Node.js are a bare minimum 

and the rest can be cherry-picked via the npm Node.js package manager 

registry. The main core modules, classes, methods, and events include:

• http (https://nodejs.org/api/http.html): 

Module for working with HTTP protocol

• util (https://nodejs.org/api/util.html): Module 

with various helpers

• querystring (https://nodejs.org/api/querystring. 

html): Module for parsing query strings from the URI

• url (https://nodejs.org/api/url.html): Module 

for parsing URI information

• fs (https://nodejs.org/api/fs.html): Module for 

working with the file system

These are the most important core modules. Let’s take a look  

at each of them.

 http
This is the main module responsible for the Node.js HTTP server. Here are 

the main methods:

• http.createServer(): Returns a new web  

server object

• http.listen(): Begins accepting connections on the 

specified port and hostname

Chapter 6  Intro to node.js

https://nodejs.org/api/http.html
https://nodejs.org/api/http.html
https://nodejs.org/api/util.html
https://nodejs.org/api/util.html
https://nodejs.org/api/querystring.html
https://nodejs.org/api/querystring.html
https://nodejs.org/api/querystring.html
https://nodejs.org/api/url.html
https://nodejs.org/api/url.html
https://nodejs.org/api/fs.html
https://nodejs.org/api/fs.html


217

• http.ServerRequest(): Passes incoming requests to 

request handlers

• data: Emitted when a piece of the message body is 

received

• end: Emitted exactly once for each request

• request.method(): The request method  

as a string

• request.url(): Request URL string

• http.ServerResponse(): Provides response/output 

of request handlers initiated by an HTTP server—not 

by the user

• response.writeHead(): Sends a response header 

to the request

• response.write(): Sends a response body

• response.end(): Sends and ends a response body

 util
This module provides a utility for debugging:

• util.inspect(): Returns a string representation of an 

object, which is useful for debugging

Chapter 6  Intro to node.js



218

 querystring
This module provides utilities for dealing with query strings. Some of the 

methods include:

• querystring.stringify(): Serializes an object to a 

query string

• querystring.parse(): Deserializes a query string to 

an object

 url
This module has a utility for URL resolution and parsing:

• url.parse(): Takes a URL string, and returns an object 

which has URL information broken down into parts

 fs
fs handles file system operations such as reading and writing to/from files. 

There are synchronous and asynchronous methods in the library. Some of 

the methods include:

• fs.readFile(): Reads file asynchronously

• fs.writeFile(): Writes data to file asynchronously

There is no need to install or download core modules. To include them 

in your application, all you need is to follow the syntax:

const http = require('http')

Chapter 6  Intro to node.js



219

The lists of non-core modules can be found at:

• npmjs.org: Node.js Package Manager registry

• Nipster (http://eirikb.github.io/nipster): npm 

search tool for Node.js

• node-modules (http://node-modules.com): npm 

search engine

If you would like to know how to code your own modules, take a look at 

Chapter 12 “Modularizing Your Code and Publishing Node.js Modules to 

npm” of Practical Node.js, 2nd Edition: http://bit.ly/2LkG0Zk.

 npm Node.js Package Manager
Node.js Package Manager, or npm, manages dependencies and installs 

modules for you. Node.js installation comes with npm, whose web site is 

npmjs.org.

package.json contains meta information about our Node.js 

application such as a version number; author name; and, most important, 

what dependencies we use in the application. All of that information is in 

the JSON formatted object, which is read by npm.

If you would like to install packages and dependencies specified in 

package.json, type:

$ npm install

A typical package.json file might look like this:

{

    "name": "Blerg",

    "description": "Blerg blerg blerg.",

    "version": "0.0.1",

    "author": {

Chapter 6  Intro to node.js

https://npmjs.org/
http://eirikb.github.io/nipster)
http://node-modules.com
https://doi.org/10.1007/978-1-4842-3718-2_12
http://bit.ly/2LkG0Zk
http://npmjs.org/


220

        "name" : "John Doe",

        "email" : "john.doe@gmail.com"

    },

    "repository": {

        "type": "git",

        "url": "http://github.com/johndoe/blerg.git"

    },

    "engines": [

        "node >= 0.6.2"

    ],

    "scripts": {

        "start": "server.js"

    },

    "license" : "MIT",

    "dependencies": {

        "express": ">= 2.5.6",

        "mustache": "0.4.0",

        "commander": "0.5.2"

    },

    "bin" : {

        "blerg" : "./cli.js"

    }

}

While most of the properties in the package.json example above 

like description and name are self-explanatory, others deserve more 

explaining. The dependencies property is an object, and each item has 

the name on the left side and the version number on the right side. For 

example, this statement tells npm to use Express.js version 2.5.6 or lower 

(earlier):

"express": "<= 2.5.6"

Chapter 6  Intro to node.js



221

The version can be exact (recommended). For example, this statement 

locks the version of Express.js at 2.5.6.:

"express": "2.5.6,"

The versions can be specified to be greater-than (>), less-than (<), or 

any/wildcard (*). For example, this statement tell npm to use any version 

which usually means npm will get the latest stable version:

"express": "*"

A wild card is a great way to blow up your app in production with new 

untested dependencies: therefore not recommended.

The bin property is for command-line utilities. It tells the system what 

file to launch. And the scripts object has scripts that you can launch with 

$ npm run SCRIPT_NAME. The start and test scripts are exceptions. 

You can run them with $ npm start and $ npm test.

To update a package to its current latest version or the latest version 

that is allowable by the version specification defined in package.json, 

use:

$ npm update name-of-the-package

Or for single module installation:

$ npm install name-of-the-package

The only module used in this book’s examples—and which does not 

belong to the core Node.js package—is mongodb. We’ll install it in the next 

chapter.

However, Heroku will need package.json to run npm on the server. 

The easiest way to create package.json is to execute:

$ npm init -y

Chapter 6  Intro to node.js



222

 Deploying “Hello World” to PaaS
For Heroku and Microsoft Azure deployment, we’ll need a Git repository. 

To create it from the root of your project, type the following command in 

your terminal:

$ git init

Git will create a hidden .git folder. Now we can add files and make 

the first commit:

$ git add .

$ git commit -am "first commit"

Tip to view hidden files on the macos Finder app, execute this 
command in a terminal window:

defaults write com.apple.finder AppleShowAllFiles -bool true

To change the flag back to hidden:

defaults write com.apple.finder AppleShowAllFiles -bool false

 Deploying to Microsoft Azure
In order to deploy our “Hello World” application to Microsoft Azure, 

we must add a Git remote destination that belongs to Azure. You could 

copy the URI/URL from the Microsoft Azure Portal, and use it with this 

command:

$ git remote add azure YOUR_AZURE_URI

Chapter 6  Intro to node.js



223

Now we should be able to make a push with this command:

$ git push azure master

If everything went okay, you should see success logs in the terminal 

and “Hello World” in the browser of your Microsoft Azure Web Site URL.

To push changes, just execute:

$ git add .

$ git commit -m "changing to hello azure"

$ git push azure master

A more meticulous guide can be found in the tutorial  http://bit.ly/ 

2LbXQOi.

 Deploying to Heroku
For Heroku deployment, we need to create two extra files: Procfile and 

package.json. You could get the source code from http://bit.ly/ 

2Lbvxzr or write your own one.

The structure of the “Hello World” application looks like this:

/06-hello

  -package.json

  -Procfile

  -server.js

Procfile is a mechanism for declaring what commands are run by 

your application’s dynos on the Heroku platform. Basically, it tells Heroku 

what processes to run. Procfile has only one line in this case:

web: node server.js

Chapter 6  Intro to node.js

http://bit.ly/2LbXQOi
http://bit.ly/2LbXQOi
http://bit.ly/2Lbvxzr
http://bit.ly/2Lbvxzr


224

For this example, we keep package.json simple:

{

  "name": "node-example",

  "version": "0.0.1",

  "dependencies": {

  },

  "engines": {

    "node": ">=0.6.x"

  }

}

After we have all of the files in the project folder, we can use Git to 

deploy the application. The commands are pretty much the same as with 

Microsoft Azure except that we need to add Git remote, and create Cedar 

Stack with:

$ heroku create

After it’s done, we push and update with:

$ git push heroku master

$ git add .

$ git commit -am "changes :+1:"

$ git push heroku master

If everything went okay, you should see success logs in the terminal 

and “Hello World” in the browser of your Heroku app URL.

Chapter 6  Intro to node.js



225

 Message Board with Node.js: Memory Store 
Version
The first version of the Message Board back-end application will store 

messages only in runtime memory storage for the sake of the KISS 

principle—keep it simple stupid (http://azat.co/blog/kiss). That 

means that each time we start/reset the server, the data will be lost.

We’ll start with a simple test case first to illustrate the Test-Driven 

Development approach. The full code is available at the book’s GitHub 

repository in the code/06-test folder: http://bit.ly/2LcnHWv.

 Unit Testing Node.js
We should have two methods:

 1. Get all of the messages as an array of JSON 

objects for the GET /message endpoint using the 

getMessages()method

 2. Add a new message with properties name and 

message for the POST /messages route via the 

addMessage()function

We’ll start by creating an empty mb-server.js file. After it’s there, let’s 

switch to tests and create the test.js file with the following content:

const http = require('http')

const assert = require('assert')

const querystring = require('querystring')

const util = require('util')

const messageBoard = require('./mb-server')

assert.deepEqual('[{"name":"John","message":"hi"}]',

  messageBoard.getMessages())

Chapter 6  Intro to node.js

http://azat.co/blog/kiss
http://bit.ly/2LcnHWv


226

assert.deepEqual ('{"name":"Jake","message":"gogo"}',

  messageBoard.addMessage ("name=Jake&message=gogo"))

assert.deepEqual('[{"name":"John","message":"hi"},{"name":

"Jake","message":"gogo"}]',

  messageBoard.getMessages())

Please keep in mind that this is a very simplified comparison of strings 

and not JavaScript objects. So every space, quote, and case matters. You 

could make the comparison “smarter” by parsing a string into a JSON 

object with:

JSON.parse(str)

For testing our assumptions, we use the core Node.js module assert. It 

provides a bunch of useful methods like equal(), deepEqual(), etc.

More advanced libraries include alternative interfaces with TDD and/

or BDD approaches:

• expect.js (https://www.npmjs.com/expect.js): 

Minimalistic BDD-style assertion library: for example, 

expect(user.name).to.eql('azat')

• should (https://www.npmjs.com/should and 

http://shouldjs.github.io): BDD-style assertion 

library that works by modifying Object.prototype: 

for example, user.name.should.be.eql('azat')

For more Test-Driven Development and cutting-edge automated 

testing, you could use the following libraries and modules:

• mocha (https://www.npmjs.com/mocha and 

https://mochajs.org): Feature-rich testing 

framework (my default choice)

• jasmine (https://www.npmjs.com/jasmine 

https://jasmine.github.io): BDD testing framework 

with built-in assertion and spy (for mocking) libraries

Chapter 6  Intro to node.js

http://nodejs.org/api/assert.html
http://www.npmjs.com/expect.js)
http://www.npmjs.com/should
http://shouldjs.github.io
http://www.npmjs.com/mocha
https://mochajs.org
http://www.npmjs.com/jasmine
https://jasmine.github.io


227

• vows (https://www.npmjs.com/vows and http://

vowsjs.org): BDD framework for Node.js tailored to 

testing asynchronous code

• chai (https://www.npmjs.com/chaijs and 

http://chaijs.com): BDD/TDD assertion library 

that can be paired with a testing framework and has its 

own versions of Should, Expect, and Assert

• tape (https://www.npmjs.com/tape): A 

minimalistic TAP (Test Anything Protocol) library

• jest (https://www.npmjs.com/jest and https://

jestjs.io): Jasmine-and-Expect-like testing library 

with automatic mocks

You could copy the “Hello World” script into the mb-server.js file for 

now or even keep it empty. If we run test.js by the terminal command:

$ node test.js

we should see an error, probably something like this one:

TypeError: Object #<Object> has no method 'getMessages'

That’s totally fine, because we haven’t written the getMessages() 

method yet. So let’s do it and make our application more useful by adding 

two new methods: to get the list of the messages for Chat and to add a new 

message to the collection.

Here’s the mb-server.js file with the global exports object:

exports.getMessages = function() {

    return JSON.stringify(messages)

    // Output array of messages as a string/text

}

Chapter 6  Intro to node.js

http://www.npmjs.com/vows
http://vowsjs.org
http://vowsjs.org
http://www.npmjs.com/chaijs
http://chaijs.com
http://www.npmjs.com/tape)
http://www.npmjs.com/jest
https://jestjs.io
https://jestjs.io


228

exports.addMessage = function (data){

    messages.push(querystring.parse(data))

     // To convert string into JavaScript object we use 

parse/deserializer

    return JSON.stringify(querystring.parse(data))

    // Output new message in JSON as a string

}

We import dependencies:

const http = require('http')

// Loads http module

const util= require('util')

// Usefull functions

const querystring = require('querystring')

// Loads querystring module, we'll need it to serialize 

and deserialize objects and query strings

And set the port. If it’s set in the environment variable PORT (e.g.,  

$ PORT=3000 node server.js), we use that value; and if it’s not set, we 

use a hard-coded value of 1337:

const port = process.env.PORT || 1337

So far, nothing fancy, right? To store the list of messages, we’ll use an 

array:

const messages=[]

// This array will hold our messages

messages.push({

    'name': 'John',

    'message': 'hi'

})

// Sample message to test list method

Chapter 6  Intro to node.js



229

Generally, fixtures like dummy data belong to the test/spec files and 

not to the main application code base.

Our server code will look slightly more interesting. For getting the list 

of messages, according to REST methodology, we need to make a GET 

request. For creating/adding a new message, it should be a POST request. 

So in our createServer object, we should add req.method() and  

req.url() to check for an HTTP request type and a URL path.

Let’s load the http module:

const http = require('http')

We’ll need some of the handy functions from the util and 

querystring modules (to serialize and deserialize objects and query 

strings):

const util= require('util')

// Usefull functions

const querystring = require('querystring')

// Loads querystring module, we'll need it to serialize 

and deserialize objects and query strings

To create a server and expose it to outside modules (i.e., test.js):

exports.server=http.createServer(function (req, res) {

// Creates server

Inside of the request handler callback, we should check if the request 

method is POST and the URL is messages/create.json:

  if  (req.method == 'POST' && req.url == '/messages/

create.json') {

     //  If method is POST and URL is messages/ add message 

to the array

Chapter 6  Intro to node.js



230

If the condition above is true, we add a message to the array. However, 

data must be converted to a string type (with encoding UTF–8) prior to the 

adding, because it is a type of Buffer:

let message = ''

req.on('data', function(data, msg) {

    console.log(data.toString('utf-8'))

    message=exports.addMessage(data.toString('utf-8'))

    //  Data is type of Buffer and must be converted to 

string with encoding UTF-8 first

    // Adds message to the array

})

These logs will help us to monitor the server activity in the terminal:

    req.on('end', function() {

       console.log('message', util.inspect(message, true, 

null))

       console.log('messages:', util.inspect(messages, 

true, null))

      // Debugging output into the terminal

The output should be in a text format with a status of 200 (okay):

      res.writeHead(200, {'Content-Type': 'text/plain'})

      // Sets the right header and status code

We output a message with a newly created object ID:

      res.end(message)

      // Output message, should add object id

    })

Chapter 6  Intro to node.js



231

If the method is GET and the URL is /messages/list.json, output a 

list of messages:

  } else if (req.method == 'GET' && req.url == '/messages/

list.json') {

  // If method is GET and URL is /messages output list of 

messages

Fetch a list of messages:

    const body = exports.getMessages()

    // Body will hold our output

The response body will hold our output:

    res.writeHead(200, {

      'Content-Length': body.length,

      'Content-Type': 'text/plain'

    })

    res.end(body)

The next else is for when there’s not a match for any of the previous 

conditions. This sets the right header and status code:

  } else {

    res.writeHead(200, {'Content-Type': 'text/plain'})

    // Sets the right header and status code

In case it’s neither of the two endpoints above, we output a string with 

a line end symbol:

    res.end('Hello World\n')

    // Outputs string with line end symbol

  }

Chapter 6  Intro to node.js



232

Start the server:

}).listen(port)

// Sets port and IP address of the server

Now, we should set a port and IP address of the server:

console.log('Server running at http://127.0.0.1:%s/', port)

We expose methods for the unit testing in test.js (exports 

keyword), and this function returns an array of messages as a string/text:

exports.getMessages = function() {

  return JSON.stringify(messages)

}

addMessage() converts a string into a JavaScript object with the 

parse() deserializer method from querystring:

exports.addMessage = function (data) {

  messages.push(querystring.parse(data))

We also return a new message in a JSON-as-a-string format:

  return JSON.stringify(querystring.parse(data))

}

Here is the full code of mb-server.js minus the comments. It’s also 

available in the code/06-test folder.

const http = require('http')

// Loads http module

const util= require('util')

// Usefull functions

const querystring = require('querystring')

// Loads querystring module, we'll need it to serialize 

and deserialize objects and query strings

Chapter 6  Intro to node.js

https://github.com/azat-co/fullstack-javascript/tree/master/code/06-test


233

const port = process.env.PORT || 1337

const messages=[]

// This array will hold our messages

messages.push({

  'name': 'John',

  'message': 'hi'

})

// Sample message to test list method

exports.server=http.createServer(function (req, res) {

// Creates server

   if (req.method == 'POST' && req.url == '/messages/

create.json') {

     // If method is POST and URL is messages/ add message 

to the array

    let message = “

    req.on('data', function(data, msg) {

      console.log(data.toString('utf-8'))

      message=exports.addMessage(data.toString('utf-8'))

       // Data is type of Buffer and must be converted to 

string with encoding UTF-8 first

      // Adds message to the array

    })

    req.on('end', function() {

       console.log('message', util.inspect(message, true, 

null))

       console.log('messages:', util.inspect(messages, 

true, null))

      // Debugging output into the terminal

      res.writeHead(200, {'Content-Type': 'text/plain'})

      // Sets the right header and status code

      res.end(message)

Chapter 6  Intro to node.js



234

      // Output message, should add object id

    })

  } else

  if (req.method == 'GET' && req.url == '/messages/list.

json') {

   // If method is GET and URL is /messages output list of 

messages

    const body = exports.getMessages()

    // Body will hold our output

    res.writeHead(200, {

      'Content-Length': body.length,

      'Content-Type': 'text/plain'

    })

    res.end(body)

  } else {

    res.writeHead(200, {'Content-Type': 'text/plain'})

    // Sets the right header and status code

    res.end('Hello World\n')

    // Outputs string with line end symbol

  }

}).listen(port)

// Sets port and IP address of the server

console.log('Server running at http://127.0.0.1:%s/', port)

exports.getMessages = function() {

  return JSON.stringify(messages)

  // Output array of messages as a string/text

}

exports.addMessage = function (data) {

  messages.push(querystring.parse(data))

Chapter 6  Intro to node.js



235

   // To convert string into JavaScript object we use 

parse/deserializer

  return JSON.stringify(querystring.parse(data))

  // Output new message in JSON as a string

}

To check it, go to http://localhost:1337/messages/list.json. You 

should see an example message. Alternatively, you could use the terminal 

command to fetch the messages:

$ curl http://127.0.0.1:1337/messages/list.json

To make the POST request by using a command-line interface:

$ curl -d "name=BOB&message=test" http://127.0.0.1:1337/

messages/create.json

And you should get the output in a server terminal window and a new 

message “test” when you refresh http://localhost:1337/messages/list.json. 

Needless to say, all three tests should pass.

Your application might grow bigger with more methods, URL paths 

to parse, and conditions. That is where frameworks come in handy. They 

provide helpers to process requests and other nice things like static file 

support, sessions, etc. In this example, we intentionally didn’t use any 

frameworks like Express.js or Restify but there are many powerful and 

useful frameworks for Node. Here’s the list of the most popular and 

notable Node.js frameworks:

• Derby (http://derbyjs.com): MVC framework 

makes it easy to write real-time, collaborative 

applications that run in both Node.js and browsers

• Express.js (http://expressjs.com): The most robust, 

tested and used Node.js framework

Chapter 6  Intro to node.js

http://derbyjs.com/
http://derbyjs.com
http://expressjs.com/
http://expressjs.com


236

• Restify (http://restify.com): Lightweight 

framework for REST API servers

• Sails (http://sailsjs.org): MVC Node.js framework 

with rich scaffolding

• hapi (https://hapijs.com): Node.js framework built 

on top of Express.js

• Connect (https://github.com/senchalabs/

connect): Middleware framework for Node.js, shipping 

with over 18 bundled middlewares and a rich selection 

of third- party middleware

• GeddyJS (http://geddyjs.org): Simple, structured 

MVC web framework for Node.js

• CompoundJS (http://compoundjs.com) 

(exRailswayJS): Node.js MVC framework based on 

Express.js

• Tower.js (http://tower.github.io): Full stack web 

framework for Node.js and the browser

• Meteor (https://www.meteor.com): Open source 

platform for building top-quality web apps in a fraction 

of the time

For a list of hand-picked Node.js frameworks, take a look at  

http://nodeframeworks.com.

Next, I will explain a few ways to improve the REST API application. 

These are your assignments to give you more practice and make the 

learning more effective:

• Improve existing test cases by adding object 

comparison instead of a string one

• Move the seed data to test.js from mb-server.js

Chapter 6  Intro to node.js

http://restify.com/
http://restify.com
http://sailsjs.org/
http://sailsjs.org
https://hapijs.com/
https://hapijs.com
https://github.com/senchalabs/connect/
https://github.com/senchalabs/connect
https://github.com/senchalabs/connect
http://geddyjs.org/
http://geddyjs.org
http://compoundjs.com/
http://compoundjs.com
http://tower.github.io/
http://tower.github.io
https://www.meteor.com/
https://www.meteor.com
http://nodeframeworks.com/


237

• Add test cases to support your frontend (e.g., up vote, 

user login)

• Add methods to support your frontend (e.g., up-vote, 

user login)

• Generate unique IDs for each message and store them 

in a Hash instead of an Array

• Install Mocha and refactor test.js so it uses this 

library

So far we’ve been storing our messages in the application memory, so 

each time the application is restarted, we lose our messages. To fix it, we 

need to add persistence (more permanent store), and one of the best ways 

is to use a database like MongoDB, introduced in the next chapter.

 Summary
In this chapter we’ve covered important topics that will lay the foundation 

for all of your future Node.js development. This chapter taught the 

“Hello World” application in Node.js, listed of some of its most important 

Node.js core modules, explained the npm workflow, covered test-driven 

development practice, and provided detailed commands for deployment 

of Node.js apps to the Heroku and Microsoft Azure cloud services.

Chapter 6  Intro to node.js



239© Azat Mardan 2018 
A. Mardan, Full Stack JavaScript, https://doi.org/10.1007/978-1-4842-3718-2_7

CHAPTER 7

Intro to MongoDB

What is Oracle? A bunch of people. And all of our products 
were just ideas in the heads of those people - ideas that people 
typed into a computer, tested, and that turned out to be the 
best idea for a database or for a programming language.

—Larry Ellison

In this chapter, we’ll explore the following topics:

• MongoDB shell

• MongoDB Native Node.js Driver

• MongoDB on Heroku with MongoLab

• Message Board: MongoDB version

MongoDB is a NoSQL document-store database. It is scalable and 

performant. It has no schema so all the logic and relationships are 

implemented in the application layer. You can use object-document 

mappers (ODMs) like Waterline or Mongoose for that schema, validation 

and business logic implementation in Node.js.

What’s good about MongoDB in addition to its scaling and performance 

is that MongoDB uses a JavaScript interface, which completes the full stack 

JavaScript stack puzzle of browser, server, and the database layers. With 

MongoDB we can use one language for all three layers. The easiest way to get 

started with MongoDB is to use its shell, a.k.a. REPL (read-eval-print-loop).

https://en.wikipedia.org/wiki/Larry_Ellison


240

 MongoDB Shell
If you haven’t done so already, please install the latest version of MongoDB 

from https://www.mongodb.com/download-center. For more 

instructions, please refer to the “Database: MongoDB” section in  

Chapter 2. You might have to create a data folder per the instructions.

Now from the folder where you unpacked the archive, launch the 

mongod service with:

$ ./bin/mongod

You should be able to see information in your terminal and in the 

browser at localhost:28017.

For the MongoDB shell, or mongo, launch in a new terminal window 

(important!) and at the same folder this command:

$ ./bin/mongo

You should see something like this, depending on your version of the 

MongoDB shell ($ mongo –version or after $ mongo):

MongoDB shell version: 3.0.6

connecting to: test

To test the database, use the JavaScript-like interface and commands 

save and find:

> db.test.save( { a: 1 } )

> db.test.find()

Again, more detailed step-by-step instructions are available in the 

“Database: MongoDB” section of Chapter 2.

The following are some other useful MongoDB shell commands, which 

I’ve referenced in a MongoDB and Mongoose cheatsheet that you can 

download in PDF for free at https://gum.co/mongodb/git-874e6fb4 

Chapter 7  Intro to MongoDB

http://www.mongodb.com/download-center
https://gum.co/mongodb/git-874e6fb4


241

or view online at http://bit.ly/2LatWtP. Here’s the short version of 

the reference:

• > show dbs: Show databases on the server

• > use DB_NAME: Select database DB_NAME

• > show collections: Show collections in the 

selected database

• > db.COLLECTION_NAME.find(): Perform the find 

query on collection with the COLLECTION_NAME name 

to find any items

• > db.COLLECTION_NAME.find({"_id": ObjectId 

("549d9a3081d0f07866fdaac6")}): Perform the find 

query on collection with the COLLECTION_NAME name 

to find item with ID 549d9a3081d0f07866fdaac6

• > db.COLLECTION_NAME.find({"email": /

gmail/}): Perform the find query on collection with 

the COLLECTION_NAME name to find items with e-mail 

property matching /gmail/ regular expression, e.g., 

bob@gmail.com or john@gmail.in

• > db.COLLECTION_NAME.update(QUERY_OBJECT, 

SET_OBJECT): Perform the update query on collection 

with the COLLECTION_NAME name to update items that 

match QUERY_OBJECT with SET_OBJECT

• > db.COLLECTION_NAME.remove(QUERY_OBJECT): 

Perform remove query for items matching QUERY_

OBJECT criteria on the COLLECTION_NAME collection

• > db.COLLECTION_NAME.insert(OBJECT): Add 

OBJECT to the collection with the COLLECTION_NAME 

name

Chapter 7  Intro to MongoDB

http://bit.ly/2LatWtP


242

So starting from a fresh shell session, you can execute these commands 

to create a document, change it, and remove it:

> help

> show dbs

> use board

> show collections

> db.messages.remove();

> var a = db.messages.findOne();

> printjson(a);

> a.message = "hi";

> a.name = "John";

> db.messages.save(a);

> db.messages.find({});

> db.messages.update({name: "John"},{$set: {message: "bye"}});

> db.messages.find({name: "John"});

> db.messages.remove({name: "John"});

MongoDB uses a special data format called BSON that has special 

types and one of them is Object ID. Let’s cover it briefly next.

 BSON Object ID
Binary JSON, or BSON, is a special data type that MongoDB utilizes. It is 

like JSON in notation but has support for additional, more sophisticated 

data types such as buffer or date.

A word of caution about BSON’s Object ID: ObjectId in MongoDB 

shell and many other MongoDB driver is an equivalent to ObjectID in 

MongoDB Native Node.js Driver. Make sure to use the proper case and 

don’t confuse the two, otherwise you’ll get an error.

Chapter 7  Intro to MongoDB



243

For example, in a Node.js code with the native driver use ObjectID():

const mongodb = require('mongodb')

const ObjectID = mongodb.ObjectID

collection.findOne({_id: new ObjectID(idString)}, console.log)

On the other hand, in the MongoDB shell and many other MongoDB 

libraries like Mongoose, we employ ObjectId(). The following is the 

MongoDB shell code:

db.messages.findOne({_id: ObjectId(idStr)});

The following is a Node.js code with Mongoose:

const mongoose = require('mongoose')

const ObjectId = mongoose.Schema.Types.ObjectId

const Car = new Schema({ driver: ObjectId })

Note Mongoose is a very powerful library for node.js and 
MongoDB. It has validation, pre and post hooks, schemas and many 
more features. I wrote a whole chapter on Mongoose in my new book 
Practical Node.js, 2nd Edition (apress, 2018). get and read my book 
to learn more about Mongoose at: http://bit.ly/2LdCNL3 and 
https://github.com/azat-co/practicalnode.

 MongoDB Native Driver
We’ll use MongoDB Native Node.js Driver (https://github.com/

christkv/node-mongodb-native) to access MongoDB from Node.js 

applications. This will add persistence to Node.js apps meaning apps will 

save and retrieve data from a permanent location instead of relying on an 

ephemeral in-memory store. To install MongoDB Native Node.js Driver, use:

$ npm install mongodb

Chapter 7  Intro to MongoDB

http://bit.ly/2LdCNL3
https://github.com/azat-co/practicalnode
https://github.com/christkv/node-mongodb-native
https://github.com/christkv/node-mongodb-native


244

Keep in mind that the preceding command is to install the driver 

library, not the database. I taught many workshops and in almost every 

one of them there would be a person who would confuse installing 

mongodb using npm with installing a database. Don’t be this person. 

We need both, the database and the npm library. I already covered the 

database installation. If you have any issue with installing the driver, 

read the details are at https://mongodb.github.io/node-mongodb-

native.

Don’t forget to include the dependency in the package.json file as 

well, either with -SE or manually, so that you have the file resembling this:

{

  "name": "node-example",

  "version": "0.0.1",

  "dependencies": {

    "mongodb":"3.x",

    ...

  },

  "engines": {

    "node": ">=8.x"

  }

}

Alternatively, for your own development you could use other mappers, 

which are available as an extension of the Native Driver:

• mongoskin (https://npmjs.org/node-mongoskin): 

Future layer for node-mongodb-native

• mongoose (https://npmjs.org/mongoose and 

http://mongoosejs.com): Asynchronous JavaScript 

driver with optional support for modeling

Chapter 7  Intro to MongoDB

https://mongodb.github.io/node-mongodb-native
https://mongodb.github.io/node-mongodb-native
https://npmjs.org/node-mongoskin
https://npmjs.org/mongoose
http://mongoosejs.com


245

• mongolia (https://npmjs.org/mongolia): 

Lightweight MongoDB ORM/driver wrapper

• monk (https://npmjs.org/monk): Tiny layer that 

provides simple yet substantial usability improvements 

for MongoDB usage within Node.js

This small example will test if we can connect to a local MongoDB 

instance from a Node.js script. Create a Node.js file app.js. After we 

install the library with npm, we can include the mongodb library in our 

app.js file:

const util = require('util')

const mongodb = require ('mongodb')

This is one of the ways to establish a connection to the MongoDB 

server in which the db variable will hold a reference to the database at a 

specified host and port:

const Db = mongodb.Db

const Connection = mongodb.Connection

const Server = mongodb.Server

const host = '127.0.0.1'

const port = 27017

const db = new Db ('test', new Server(host,port, {}))

To actually open a connection:

db.open((error, connection) => {

  // Do something with the database here

  db.close()

})

Chapter 7  Intro to MongoDB

https://npmjs.org/mongolia
https://npmjs.org/monk


246

To check that we have the connection, we need to handle error. Also, 

let’s get the admin object with db.admin() and fetch the list of databases 

with listDatabases():

const db = new Db ('test', new Server(host, port, {}))

db.open((error, connection) => {

  console.log('error: ', error)

  const adminDb = db.admin()

  adminDb.listDatabases((error, dbs) => {

    console.log('error: ', error)

    console.log('databases: ', dbs.databases)

    db.close()

  })

})

If we run it with $ node app.js, it should output “connected” in the 

terminal. When you’re in doubt and need to check the properties of an 

object, there is a useful method in the util module:

console.log(util.inspect(db))

Now you might want to set up the database in the cloud and test the 

connection from your Node.js script.

 MongoDB on Heroku: MongoLab
Now that you’ve made the application that displays “connected” work 

locally, it’s time to slightly modify it and deploy it to the Heroku PaaS 

(cloud). The database will also be in the cloud. I recommend using the 

MongoLab add-on, which provides ready-to-use MongoDB instances 

that integrate well with Heroku apps (https://elements.heroku.com/

addons/mongolab). MongoLab (or mLab) also has a very convenient 

browser- based GUI to look up and manipulate the data and collections.

Chapter 7  Intro to MongoDB

https://elements.heroku.com/addons/mongolab
https://elements.heroku.com/addons/mongolab


247

Note You might have to provide your credit card information to 
use MongoLab even if you select the free version. You should not be 
charged for a free plan, though.

In order to connect to the database server, there is a database connection 

URL (a.k.a. MongoLab URL/URI), which is a way to transfer all of the 

necessary information to make a connection to the database in one string.

The database connection string MONGOLAB_URI has the following format:

mongodb://user:pass@server_NAME.mongolab.com:PORT/db_name

You could either copy the MongoLab URL string from the Heroku web 

site (and hard-code it) or get the string from the Node.js process.env 

object:

process.env.MONGOLAB_URI

or

const connectionUri = url.parse(process.env.MONGOLAB_URI)

The global object process gives access to environment variables 

via process.env. Heroku and Heroku add-ons like mLabs use these 

environment variables to pass database host names and ports, passwords, 

API keys, port numbers, and other system information that shouldn’t be 

hard-coded into the main logic.

To make our code work both locally and on Heroku, we can use the 

logical OR operator || and assign a local host and port if environment 

variables are undefined:

const port = process.env.PORT || 1337

const dbConnUrl = process.env.MONGOLAB_URI ||

  'mongodb://127.0.0.1:27017/test'

Chapter 7  Intro to MongoDB



248

Here is our updated cross-environment-ready app.js file  

(http://bit.ly/2LeezQT). I added a method to get the list of collections 

listCollections instead of getting the list of the databases (we have 

only one database in MongoLab right now):

const util = require('util')

const url = require('url')

const client = require ('mongodb').MongoClient

const dbConnUrl = process.env.MONGOLAB_URI ||

  'mongodb://127.0.0.1:27017/test'

console.log('db server: ', dbConnUrl)

client.connect(dbConnUrl, {}, (error, db) => {

  console.log('error: ', error)

  db.listCollections().toArray((err, collections) => {

    console.log('error: ', error)

    console.log('collections: ', collections)

    db.close()

  })

})

Following the modification of app.js by addition of MONGOLAB_URI, 

we can now initialize the Git repository, create a Heroku app, add the 

MongoLab add-on to it, and deploy the app with Git.

Utilize the same steps as in the previous examples to create a new Git 

repository:

$ git init

$ git add .

$ git commit -am 'initial commit'

Create the Cedar Stack Heroku app:

$ heroku create

Chapter 7  Intro to MongoDB

http://bit.ly/2LeezQT


249

If everything went well you should be able to see a message that tells 

you the new Heroku app name (and URL) along with a message that the 

Heroku remote destination was added. Having remote in your local Git 

project is crucial because that’s you’ll deploy the app to Heroku. You can 

always check a list of remotes by executing this command from the root of 

our project:

$ git remote show

Add-ons work on a per app basis not on a per account basis. To install 

the free MongoLab on the existing Heroku app (), use:

$ heroku addons:create mongolab:sandbox

Or log on to Heroku (https://elements.heroku.com/addons/

mongolab) with your Heroku credentials and choose MongoLab Free for 

that particular Heroku app, if you know the name of that app.

The project folder needs to have Procfile and package.json.  

You can copy them from code/07-db-connect-heroku or  

http://bit.ly/2LeezQT.

Now you can push your code to Heroku with:

$ git push heroku master

Enjoy seeing the logs that tell you that the deploy was successful. For 

additional logs and debugging, use this command:

$ heroku logs

The result will be something like this:

2019-12-01T12:34:51.438633+00:00 app[web.1]: db server: 

mongodb://heroku_cxgh54g6:9d76gspc45v899i44sm6bn790c@

ds035617.mongolab.com:34457/heroku_cxgh54g6

2019-12-01T12:34:53.264530+00:00 app[web.1]: error: null

2019-12-01T12:34:53.236398+00:00 app[web.1]: error: null

Chapter 7  Intro to MongoDB

https://elements.heroku.com/addons/mongolab
https://elements.heroku.com/addons/mongolab
http://bit.ly/2LeezQT


250

2019-12-01T12:34:53.271775+00:00 app[web.1]: collections: 

[ { name: 'system.indexes', options: {} },

2019-12-01T12:34:53.271778+00:00 app[web.1]: { name: 

'test', options: { autoIndexId: true }

} ]

So far you have implemented a local app.js file (code/07-db- 

connect/app.js or http://bit.ly/2LhLrZm). You enhanced it to work 

in the cloud (code/07-db-connect-heroku/app.js or  

http://bit.ly/2LgX5Dy). You learned how to build Node.js programs 

which work with MongoDB. Great work!

Let’s enhance the latest app.js file by adding an HTTP server. After 

you get the app.js and the modified app.js files working, you modify the 

app.js to add a server so that the “connected” message will be displayed 

in the browser instead of the terminal window. To do so, we’ll wrap the 

server object instantiation in a database connection callback. The final 

implementation is in the file code/07-db-server/app.js or at the 

book’s GitHub repository: http://bit.ly/2LcTd6K.

Supplemental video which walks you through the implementation and 

demonstrates the project: http://bit.ly/1Qnrmwr.

const util = require('util')

const url = require('url')

const http = require('http')

const mongodb = require ('mongodb')

const client = require ('mongodb').MongoClient

const port = process.env.PORT || 1337

const dbConnUrl = process.env.MONGOLAB_URI || 

'mongodb://@127.0.0.1:27017/test'

Chapter 7  Intro to MongoDB

http://bit.ly/2LhLrZm
http://bit.ly/2LgX5Dy
http://bit.ly/2LcTd6K
http://bit.ly/1Qnrmwr


251

client.connect(dbConnUrl, {}, function(error, db) {

    console.log('error: ', error)

     db.listCollections().toArray(function(error, 

collections) {

    console.log('error: ', error)

        console.log('collections: ', collections)

         const server = http.createServer(function 

(request, response) { // Creates server

           response.writeHead(200, {'Content-Type': 'text/

plain'}) // Sets the right header and status code

           response.end(util.inspect(collections))  

// Outputs string with line end symbol

        })

        server.listen(port, function() {

           console.log('Server is running at %s:%s ', 

server.address().address, server.address().port) 

// Sets port and IP address of the server

        })

    db.close()

    })

})

After the deployment you should be able to open the URL provided by 

Heroku and see the list of collections. If it’s a newly created app with an 

empty database, there would be no collections. You can create a collection 

using the MongoLab web interface in Heroku, then check in your app. You 

can use Mongo shell to connect to mLab too, e.g.,

mongo --username alice --password dolphin --host 

mongodb0.herokuserverapp.com --port 28015

Chapter 7  Intro to MongoDB



252

 Message Board: MongoDB Version
We should have everything set up for writing the Node.js application that 

will work both locally and on Heroku. The source code is available in the 

folder code/07-board-api-mongo and at http://bit.ly/2LbCtfX. 

The structure of the application is as simple as:

/07-board-api-mongo

  web.js

  Procfile

  package.json

This is what web.js looks like; first we include our libraries:

const http = require('http')

const util = require('util')

const querystring = require('querystring')

const client = require('mongodb').MongoClient

Then put out a magic string to connect to MongoDB:

const uri = process.env.MONGOLAB_URI || 'mongodb: 

//@127.0.0.1:27017/messages'

Note the UrI/UrL format contains the optional database name 
in which our collection will be stored. Feel free to change it to 
something else: for example, rpjs or test.

We put all the logic inside of an open connection in the form of a 

callback function:

client.connect(uri, (error, db) => {

  if (error) return console.error(error)

Chapter 7  Intro to MongoDB

http://bit.ly/2LbCtfX


253

We are getting the collection with the next statement:

const collection = db.collection('messages')

Now we can instantiate the server and set up logic to  

process our endpoints/routes. We need to fetch the documents on GET  

/messages.json:

  const app = http.createServer((request, response) => {

       if (request.method === 'GET' && request.url ===  

'/messages.json') {

      collection.find().toArray((error,results) => {

         response.writeHead(200,{ 'Content-Type': 'text/

plain'})

          console.dir(results)

          response.end(JSON.stringify(results))

      })

On the POST /messages.json, we insert the document:

    } else if (request.method === 'POST' && request.url === 

'/messages.json') {

      request.on('data', (data) => {

         collection.insert(querystring.parse(data.

toString('utf-8')), {safe:true}, function (error, 

obj) {

          if (error) throw error

          response.end(JSON.stringify(obj))

        })

      })

  } else {

Chapter 7  Intro to MongoDB



254

This will be shown in the event that the client request does not match 

any of the conditions above. This is a good reminder for us when we try to 

go to http://localhost:1337 instead of http://localhost:1337/messages.json 

and there are no messages:

       response.end('Supported endpoints: \n/messages.

json\n/messages.json')

    }

  })

  const port = process.env.PORT || 1337

  app.listen(port)

})

Note We don’t have to use additional words after the collection/entity 
name; that is, instead of /messages.json it’s perfectly fine to have 
just /messages for all the http methods such as get, poSt, pUt, and 
DeLete. the main reason why many developers and I use .json is to 
be explicit with the format that needs to be returned back. another way 
to be explicit is to use Accept header set to application/json. If you 
change the endpoints to just /messages in your node.js application 
code, make sure you update UrLs in the provided CUrL commands 
and the supplied Message Board front-end code.

To test via CURL terminal commands run:

[{"username":"BOB","message":"test","_id":"51edc

ad45862430000000001"}]

Or open your browser at the http://locahost:1337/messages.json 

location.

Chapter 7  Intro to MongoDB



255

It should give you an empty array ([]), which is fine. Then POST a new 

message:

$ curl -d "username=BOB&message=test" http://

localhost:5000/messages.json

Now we must see a response containing an ObjectID of a newly 

created element, for example:

[{"username":"BOB","message":"test","_id":"51edc

ad45862430000000001"}]

Your ObjectId will be different.

If everything works as it should locally, try to deploy it to Heroku.

To test the application on Heroku, you could use the same CURL 

commands (https://curl.haxx.se/docs/manpage.html), 

substituting http://localhost or http://127.0.0.1 with your unique Heroku 

app’s host/URL:

$ curl http://your-app-name.herokuapp.com/messages.json

$ curl -d "username=BOB&message=test" http://your-app-

name.herokuapp.com/messages.json

It’s also nice to double check the database either via Mongo shell: 

$ mongo terminal command and then use twitter-clone and db.

messages.find(); or via Compass (http://bit.ly/2Lft3Qs),  

my tool mongoui (https://github.com/azat-co/mongoui),  

mongo-express (https://npmjs.org/mongo-express) or in case of 

MongoLab through its web interface accessible at the Heroku website.

If you would like to use another domain name instead of  

http://your- app- name.herokuapp.com, you’ll need to do two things:

 1. Tell Heroku your domain name:

$ heroku domains:add www.your-domain-name.com

Chapter 7  Intro to MongoDB

https://curl.haxx.se/docs/manpage.html
http://bit.ly/2Lft3Qs
https://github.com/azat-co/mongoui
https://npmjs.org/mongo-express
http://your-app-name.herokuapp.com/


256

 2. Add the CNAME DNS record in your DNS manager to 

point to http://your-app-name.herokuapp.com.

Custom domains will hide the fact that your application is hosted 

on Heroku. For more information on custom domains can be found at 

https://devcenter.heroku.com/articles/custom-domains.

Tip For more productive and efficient development we should 
automate as much as possible; that is, use tests instead of CUrL 
commands Use http libraries such as axios, superagent or 
request to test your reSt apIs. they are a timesaver for such tasks. 
there is a chapter on the Mocha library and node.js testing in my 
other best-selling book Practical Node.js, 2nd Edition (apress, 2018): 
http://bit.ly/2LdCNL3 and  https://github.com/azat-co/
practicalnode.

 Summary
In this chapter we covered the MongoDB database and its shell. 

MongoDB uses an extended version of JSON, which is called BSON. Then 

we switched to Node.js with the native MongoDB driver. Many other 

MongoDB Node.js libraries depend on the native driver and build on top 

of it. For this reason, it’s good to know it. To use MongoDB on Heroku,  

we utilized the MongoLab add-on (the magical MONGOLAB_URI). Finally, 

we used the acquired knowledge to add database store (persistence) to the 

Message Boards application.

Chapter 7  Intro to MongoDB

http://your-app-name.herokuapp.com/
https://devcenter.heroku.com/articles/custom-domains
http://bit.ly/2LdCNL3
https://github.com/azat-co/practicalnode
https://github.com/azat-co/practicalnode


257© Azat Mardan 2018 
A. Mardan, Full Stack JavaScript, https://doi.org/10.1007/978-1-4842-3718-2_8

CHAPTER 8

Putting Frontend and 
Backend Together

Debugging is twice as hard as writing the code in the first 
place. Therefore, if you write the code as cleverly as possible, 
you are, by definition, not smart enough to debug it.

—Brian W. Kernighan

In this chapter, we’ll cover:

• Adding CORS for a different-domain deployment

• Message Board UI

• Message Board API

• Deployment to Heroku

• Same-domain deployment server

• Deployment to Amazon Web Services

https://en.wikipedia.org/wiki/Brian_Kernighan


258

Now, it’s a good time to configure our front-end and back-end 

applications so they could work together. There are a few ways to do it:

• Different-domain deployment: deploy two separate 

apps (Heroku apps) for front-end and back-end apps. 

Developers need to be implement CORS or JSONP to 

mitigate cross-domain request issues.

• Same-domain deployment: deploy frontend and 

backend on the same webapp. Developers need to 

implement a static Node.js server to serve static assets 

for the front-end application. This approach is not 

recommended for serious production applications.

I cover both approaches in this in detail in this chapter starting with 

the recommended approach —different-domain deployment.

 Adding CORS for Different-Domain 
Deployment
This is, so far, the best practice for the production environment. Back-end 

applications are usually deployed at the http://app. or http://api. 

subdomains.

One way to make a different domain deployment work is to overcome 

the same-domain limitation of AJAX technology with JSONP:

const request = $.ajax({

  url: url,

  dataType: 'jsonp',

  data: {...},

  jsonpCallback: 'fetchData,

  type: 'GET'

})

Chapter 8  putting Frontend and BaCkend together



259

The other, and better, way to do it is to add the cross-origin resource 

sharing or CORS support on the server (https://mzl.la/2LcH9lZ). 

It will require to add the OPTIONS method request handler and special 

headers to other request handlers to the Node.js server app before the 

output/response. This is a special header that needs to be added to all 

request handlers. The origin is the domain but can be open to anything 

with *:

    ...

    response.writeHead(200,{

      'Access-Control-Allow-Origin': origin,

      'Content-Type': 'text/plain',

      'Content-Length': body.length

    })

    ...

or origin value can be locked to only your front-end app location 

(recommended):

    ...

    res.writeHead(200, {

       'Access-Control-Allow-Origin',  

'your-fe-app-domain-name',

      ...

    })

    ...

We need a new response (route or request handler) with the OPTIONS 

method to tell the client (browser) what methods are supported on 

the server. The OPTIONS request can be implemented in the following 

manner:

Chapter 8  putting Frontend and BaCkend together

https://mzl.la/2LcH9lZ


260

    ...

    if (request.method=="OPTIONS") {

      response.writeHead("204", "No Content", {

        "Access-Control-Allow-Origin": origin,

        "Access-Control-Allow-Methods":

          "GET, POST, PUT, DELETE, OPTIONS",

         "Access-Control-Allow-Headers": "content-type, 

accept",

        "Access-Control-Max-Age": 10, // In seconds

        "Content-Length": 0

      })

      response.end();

    }

    ...

 Message Board UI
Our front-end application used Parse.com as a replacement for a back-

end application. Now we can switch to our own backend by replacing the 

endpoints along with making a few other painless changes. Let me walk 

you through them.

In the beginning of the app.js file, uncomment the first line for 

running locally, or replace the URL values with your Heroku or Microsoft 

Azure back-end application public URLs:

// const URL = 'http://localhost:1337/'

const URL ='http://your-app-name.herokuapp.com/'

Most of the code in app.js and the folder structure remained intact 

from the code/05-board-backbone- parse-sdk project (http://

bit.ly/2LfB9IQ), with the exception of replacing Parse models and 

Chapter 8  putting Frontend and BaCkend together

http://bit.ly/2LfB9IQ
http://bit.ly/2LfB9IQ


261

collections with original Backbone.js ones. So go ahead and type or copy 

the RequireJS block for loading of the dependencies (templates in this 

case):

require([

    'libs/text!header.html',

    'libs/text!home.html',

    'libs/text!footer.html'],

    function (

        headerTpl,

        homeTpl,

        footerTpl) {

The ApplicationRouter, HeaderView, and FooterView are the 

same as in the code/05-board- backbone-parse-sdk project so I won’t 

list them here again.

We need to change the model and collection to this from using Parse.

Object and Parse.Collection. Those are the places where Backbone.

js looks up for REST API URLs corresponding to the specific collection and 

model:

    Message = Backbone.Model.extend({

        url: URL + 'messages.json'

    })

    MessageBoard = Backbone.Collection.extend ({

        model: Message,

        url: URL + 'messages.json'

    })

Next is the HomeView where most of the logic resides. I made a few 

enhancements to the rendering process, which is a good illustration of 

what you can do with events in Backbone. First, create the view and define 

Chapter 8  putting Frontend and BaCkend together



262

the element selector, template (loaded via RequireJS and text plug-in), and 

event for the SEND button:

    HomeView = Backbone.View.extend({

        el: '#content',

        template: homeTpl,

        events: {

            'click #send': 'saveMessage'

        },

Now, in the constructor of the view, set the homeView to this so we 

can use this later by the name inside of the callbacks/closures or use 

fat arrow functions ()=>{} (otherwise, this can mutate inside of the 

callbacks/closures):

initialize: function() {

    const homeView = this

Next, I attach an event listener refresh that will do the rendering. 

Prior to that we had the all event, which wasn’t very good, because it 

triggered re-rendering multiple times on the addition of each message. 

The reason is that fetch() triggers add() as many times as there are 

messages (10, 100, 1000, etc.). So if we use the all event listener for 

render(), our app will unnecessarily render multiple times. A better way 

is to use a custom event refresh that we will trigger manually and only in 

the appropriate places (you’ll see them later). This will prevent multiple 

re-rendering.

The following code creates the collection, creates the refresh event 

and starts the fetch request to populate the messages from the backend:

homeView.collection = new MessageBoard()

homeView.collection.bind('refresh', homeView.render, 

homeView)

homeView.collection.fetch({

Chapter 8  putting Frontend and BaCkend together



263

The fetch method will perform a GET XHR request, and it has 

success and error callbacks (indentation removed):

success: function(collection, response, options){

    console.log('Fetched ', collection)

The next line will trigger rendering only after all the messages are in 

the collection (and came from the server response):

        collection.trigger('refresh')

    },

    error: function(){

        console.error('Error fetching messages')

    }

})

This event listener will be triggered by the “SEND” button as well as by 

the fetch (). To avoid persisting existing records with message.save(), 

we add the check for the message.attributes._id. In other words, if 

this is an existing message and it comes from the server (fetch), then it 

will have _id and we stop the execution flow. Otherwise, we persist the 

message and trigger rendering on success:

      homeView.collection.on('add', function(message) {

          if (message.attributes._id) return false

          message.save(null, {

              success: function(message) {

                  homeView.collection.trigger('refresh')

                  console.log('Saved ', message)

              },

              error: function(message) {

                  console.log('error')

              }

          })

      })

  },

Chapter 8  putting Frontend and BaCkend together



264

The rest of the HomeView object is the same as in the 05-board-

parse-sdk project. In the saveMessage we get the values of the username 

and the message text and add the new message object to the collection 

with collection.add(). This will call the event listener add, which we 

implemented in the initialize.

      saveMessage: function(){

          const newMessageForm = $('#new-message')

           const username = newMessageForm.

find('[name="username"]').val()

           const message = newMessageForm.

find('[name="message"]').val()

          this.collection.add({

              'username': username,

              'message': message

              })

      },

Last, we write or copy the render method that takes the template and 

the collection, then injects the resulting HTML into the element with ID 

content (this.el):

      render: function() {

          console.log('Home view rendered')

           $(this.el).html(_.template(this.template) 

(this.collection))

      }

  })

  app = new ApplicationRouter()

  Backbone.history.start()

})

Chapter 8  putting Frontend and BaCkend together



265

Here is the full source code of the code/08-board-ui/app.js file 

(http://bit.ly/2LaHhCp):

const URL = 'http://localhost:1337/'

// const URL ='http://your-app-name.herokuapp.com/'

require([

    'libs/text!header.html',

    'libs/text!home.html',

    'libs/text!footer.html'],

    function (

        headerTpl,

        homeTpl,

        footerTpl) {

    const ApplicationRouter = Backbone.Router.extend({

        routes: {

            ' ': 'home',

            '*actions': 'home'

        },

        initialize: function() {

            this.headerView = new HeaderView()

            this.headerView.render()

            this.footerView = new FooterView()

            this.footerView.render()

        },

        home: function() {

            this.homeView = new HomeView()

            this.homeView.render()

        }

    })

Chapter 8  putting Frontend and BaCkend together

http://bit.ly/2LaHhCp)


266

    const HeaderView = Backbone.View.extend({

        el: '#header',

        templateFileName: 'header.html',

        template: headerTpl,

        initialize: function() {

        },

        render: function() {

            $(this.el).html(_.template(this.template))

        }

    })

    const FooterView = Backbone.View.extend({

        el: '#footer',

        template: footerTpl,

        render: function() {

            this.$el.html(_.template(this.template))

        }

    })

    const Message = Backbone.Model.extend({

        url: URL + 'messages.json'

    })

    const MessageBoard = Backbone.Collection.extend ({

        model: Message,

        url: URL + 'messages.json'

    })

    const HomeView = Backbone.View.extend({

        el: '#content',

        template: homeTpl,

        events: {

            'click #send': 'saveMessage'

        },

Chapter 8  putting Frontend and BaCkend together



267

        initialize: function() {

            this.collection = new MessageBoard()

            this.collection.bind('all', this.render, this)

            this.collection.fetch()

            this.collection.on('add', function(message) {

                message.save(null, {

                    success: function(message) {

                        console.log('saved ' + message)

                    },

                    error: function(message) {

                        console.log('error')

                    }

                })

                console.log('saved' + message)

            })

        },

        saveMessage: function(){

            const newMessageForm=$('#new-message')

             const username=newMessageForm.

find('[name="username"]').val()

             const message=newMessageForm.

find('[name="message"]').val()

            this.collection.add({

                'username': username,

                'message': message

                })

        },

        render: function() {

            console.log(this.collection)

Chapter 8  putting Frontend and BaCkend together



268

             $(this.el).html(_.template(this.template, 

this.collection))

        }

    })

    window.app = new ApplicationRouter()

    Backbone.history.start()

})

This is it. For your reference, the front-end app source code is in the 

code/08-board-ui folder and on GitHub at http://bit.ly/2LfD1Bo. 

I won’t list it here because we had only a few changes comparing with the 

Parse SDK project. The next piece of the puzzle is the backend.

 Message Board API
The back-end Node.js application source code is in code/08-board-api 

and at http://bit.ly/2LbVY84, which has this structure:

/08-board-api

    -web.js

    -Procfile

    -package.json

The Procfile file is for the Heroku deployment, and the package.json  

file is for project metadata as well as for Hekoru deployment.

The web.js file is very similar to the 08-board-api, but has 

CORS headers and OPTIONS request handler code. The file starts with 

importation of dependencies:

const http = require('http')

const util = require('util')

const querystring = require('querystring')

const client = require('mongodb').MongoClient

Chapter 8  putting Frontend and BaCkend together

http://bit.ly/2LfD1Bo
http://bit.ly/2LbVY84


269

Then we set the MongoDB connection string:

const uri = process.env.MONGOLAB_URI || 

'mongodb://@127.0.0.1:27017/messages'

//MONGOLAB_URI=mongodb://user:pass@server.mongohq.

com:port/db_name

We connect to the database using the string and client.connect 

method. It’s important to handle the error and finish the execution flow 

with return if there’s an error:

client.connect(uri, function(error, db) {

  if (error) return console.error(error)

After we are sure that there were no errors (otherwise the execution 

flow won’t come to the next line), we select the collection, which is 

messages in this case:

  const collection = db.collection('messages')

The server code follows. We create the server instance and set up the 

origin variable based on the information from the request. This value will 

be in the Access-Control-Allow-Origin header. The idea is that the 

response will have the value of the client’s URL:

   const app = http.createServer(function (request, 

response) {

    const origin = (request.headers.origin || '*')

Chapter 8  putting Frontend and BaCkend together



270

Check the HTTP method value in request.method. If it’s OPTIONS, 

which we must implement for CORS, we start writing headers to the 

response object:

    if (request.method == 'OPTIONS') {

      response.writeHead('204', 'No Content', {

        'Access-Control-Allow-Origin': origin,

The next header will tell what methods are supported:

        'Access-Control-Allow-Methods':

         'GET, POST, PUT, DELETE, OPTIONS',

         'Access-Control-Allow-Headers': 'content-type, 

accept',

        'Access-Control-Max-Age': 10, // In seconds

        'Content-Length': 0

      })

      response.end()

We are done with OPTIONS, but we still need to implement GET  

and POST:

     } else if (request.method === 'GET' && request.url === 

'/messages.json') {

      collection.find().toArray(function(error,results) {

        if (error) return console.error(error)

        const body = JSON.stringify(results)

We need to add a few headers to the response of the GET:

        response.writeHead(200,{

          'Access-Control-Allow-Origin': origin,

          'Content-Type': 'text/plain',

          'Content-Length': body.length

        })

Chapter 8  putting Frontend and BaCkend together



271

        console.log('LIST OF OBJECTS: ')

        console.dir(results)

        response.end(body)

      })

Last but not least, we process POST:

       } else if (request.method === 'POST' &&  

request.url === '/messages.json') {

        request.on('data', function(data) {

          console.log('RECEIVED DATA:')

          console.log(data.toString('utf-8'))

We need to parse data to get the object so later we can save it into the 

database. The next line often causes bugs because front-end apps send 

data in one format and the server parses another. Please make sure to use 

the same format on the browser and server:

           collection.insert(JSON.parse(data.

toString('utf-8')),

          {safe:true}, function(error, obj) {

            if (error) return console.error(error)

            console.log('OBJECT IS SAVED: ')

            console.log(JSON.stringify(obj))

            const body = JSON.stringify(obj)

We add the headers again. Maybe we should write a function and call 

it instead of writing the headers manually. Wait, Express.js is actually will 

do some of it for us, but that’s a topic for another book (read my book Pro 

Express.js at http://amzn.to/1D6qiqk). The following code supplies the 

CORS headers for the response:

          response.writeHead(200,{

            'Access-Control-Allow-Origin': origin,

            'Content-Type': 'text/plain',

Chapter 8  putting Frontend and BaCkend together

http://proexpressjs.com/
http://amzn.to/1D6qiqk


272

            'Content-Length': body.length

          })

          response.end(body)

        })

      })

    }

  })

  const port = process.env.PORT || 1337

  app.listen(port)

})

Here is the source code of web.js, our Node.js application 

implemented with CORS headers:

const http = require('http')

const util = require('util')

const querystring = require('querystring')

const client = require('mongodb').MongoClient

const uri = process.env.MONGOLAB_URI || 

'mongodb://@127.0.0.1:27017/messages'

//MONGOLAB_URI = mongodb://user:pass@server.mongohq.

com:port/db_name

client.connect(uri, function(error, db) {

  if (error) return console.error(error)

  const collection = db.collection('messages')

   const app = http.createServer(function (request, 

response) {

    const origin = (request.headers.origin || '*')

    if (request.method == 'OPTIONS') {

      response.writeHead('204', 'No Content', {

        'Access-Control-Allow-Origin': origin,

        'Access-Control-Allow-Methods':

Chapter 8  putting Frontend and BaCkend together



273

          'GET, POST, PUT, DELETE, OPTIONS',

         'Access-Control-Allow-Headers': 'content-type, 

accept',

        'Access-Control-Max-Age': 10, // Seconds.

        'Content-Length': 0

      })

      response.end()

     } else if (request.method === 'GET' &&  

request.url === '/messages.json') {

      collection.find().toArray(function(error,results) {

        if (error) return console.error(error)

        const body = JSON.stringify(results)

        response.writeHead(200,{

          'Access-Control-Allow-Origin': origin,

          'Content-Type': 'text/plain',

          'Content-Length': body.length

        })

        console.log('LIST OF OBJECTS: ')

        console.dir(results)

        response.end(body)

      })

     } else if (request.method === 'POST' &&  

request.url === '/messages.json') {

      request.on('data', function(data) {

        console.log('RECEIVED DATA:')

        console.log(data.toString('utf-8'))

         collection.insert(JSON.parse(data.

toString('utf-8')),

        {safe:true}, function(error, obj) {

          if (error) return console.error(error)

          console.log('OBJECT IS SAVED: ')

          console.log(JSON.stringify(obj))

Chapter 8  putting Frontend and BaCkend together



274

          const body = JSON.stringify(obj)

          response.writeHead(200,{

            'Access-Control-Allow-Origin': origin,

            'Content-Type': 'text/plain',

            'Content-Length': body.length

          })

          response.end(body)

        })

      })

    }

  })

  const port = process.env.PORT || 1337

  app.listen(port)

})

 Deployment to Heroku
For your convenience, I placed the front-end app in code/08-board-ui 

and at http://bit.ly/2LfD1Bo. I also saved the the back-end app with 

CORS in the code/08-board-api folder, and uploaded to http://bit.

ly/2LbVY84.

By now, you probably know what to do, but as a reference, below are 

the steps to deploy these examples to Heroku. We’ll start with the API. In 

the 08-board-api folder, execute the following code ($ heroku login is 

optional):

$ git init

$ git add .

$ git commit -am "first commit"

$ heroku login

$ heroku create

$ heroku addons:create mongolab:sandbox

$ git push heroku master

Chapter 8  putting Frontend and BaCkend together

http://bit.ly/2LfD1Bo
http://bit.ly/2LbVY84
http://bit.ly/2LbVY84


275

Watch the terminal messages. If the API is successfully deployed,  

you can test it with CURL or Postman. Then copy the URL from Heroku 

(e.g., https://guarded-waters–1780.herokuapp.com) and paste it 

into the code/08-board-ui/app.js file, assigning the value to the URL 

variable. Then, in the code/08-board-ui folder, execute:

$ git init

$ git add .

$ git commit -am "first commit"

$ heroku create

$ git push heroku master

$ heroku open

That’s it. By now you should be able to see Message Board running 

in the cloud with the UI (front-end browser app) on one domain and the 

API (backend) on another. In high-trafficked apps, the API will be hiding 

behind a load balancer, so you can have multiple API servers on a single 

IP/URL. This way they’ll handle more traffic and the system will become 

more resilient. You can take out, restart, or deploy on APIs one at a time 

with zero downtime.

 Same-Domain Deployment Server
The same-domain deployment is not recommended for serious production 

applications, because static assets are better served with web servers 

like Nginx (not Node.js I/O engine), and separating APIs makes for less 

complicated testing, increased robustness, and quicker troubleshooting/

monitoring. However, the same app/domain approach could be used for 

staging, testing, development environments, and/or tiny apps.

The idea is that the API serves static files for the browser app as well, 

not just handling dynamic requests to its routes. So you can copy the 

Chapter 8  putting Frontend and BaCkend together



276

code/08-board-api code into a new folder code/08- board- web (or 

getting my copy from GitHub). The beginning of the new server file is the 

same; we have GET and POST logic (this time CORS is not needed). The 

last condition in the chain of if/else needs to process the static files. 

Here’s how we can do a new response/request handler for static assets:

const http = require('http'),

  url = require('url'),

  path = require('path'),

  fs = require('fs'),

  port = process.env.PORT || 1337,

  staticFolder = 'public',

  client = require('mongodb').MongoClient

const uri = process.env.MONGOLAB_URI || 

'mongodb://@127.0.0.1:27017/messages'

//MONGOLAB_URI=mongodb://user:pass@server.mongohq.

com:port/db_name

client.connect(uri, function(error, db) {

  if (error) return console.error(error)

  const collection = db.collection('messages')

  http.createServer(function(request, response) {

    const origin = (request.headers.origin || '*')

    if (request.method == 'OPTIONS') {

      // ...

     } else if (request.method === 'GET' &&  

request.url === '/messages.json') {

      // ...

     } else if (request.method === 'POST' &&  

request.url === '/messages.json') {

      // ...

    } else {

Chapter 8  putting Frontend and BaCkend together



277

      const uri = url.parse(request.url).pathname

      console.log('Processing URI: ', uri)

      if (uri == “ || uri == '/') uri = 'index.html'

      filename = path.join(__dirname, staticFolder, uri)

      console.log('Processing file: ', filename)

      try {

        stats = fs.statSync(filename)

      } catch (error) {

        if (error) {

          console.error(error)

          response.writeHead(404, {

            'Content-Type': 'text/plain'})

          response.write('404 Not Found\n')

          return response.end()

        }

      }

      if(!stats.isFile()) {

        response.writeHead(404, {

          'Content-Type': 'text/plain'})

        response.write('404 Not Found\n')

        return response.end()

      } else {

        const file = fs.readFileSync(filename)

        if (!file) {

          response.writeHead(500,

            {'Content-Type': 'text/plain'})

          response.write(err + '\n')

          return response.end()

        }

Chapter 8  putting Frontend and BaCkend together



278

        const extname = path.extname(filename)

        const contentType = 'text/html'

        switch (extname) {

            case '.js':

                contentType = 'text/javascript'

                break

            case '.css':

                contentType = 'text/css'

                break

            case '.json':

                contentType = 'application/json'

                break

            case '.png':

                contentType = 'image/png'

                break

            case '.jpg':

            case '.jpeg':

                contentType = 'image/jpg'

                break

            case '.wav':

                contentType = 'audio/wav'

                break

        }

        response.writeHead(200, {

          'Content-Type': contentType,

          'Content-Length': file.length

        })

        response.end(file)

      }

    }

  }).listen(port)

Chapter 8  putting Frontend and BaCkend together



279

  console.log('Static file server running at\n '+

   ' => http://localhost:' + port + '/\nCTRL + C to 

shutdown')

})

Let me take you through this implementation line-by-line. We use the 

url module (https://npmjs.org/url) to parse the path name from 

the URL. The path name is everything after the domain; for example, in 

http://webapplog.com/es6 the path name is /es6. This will be our 

folder and file names.

      const uri = url.parse(request.url).pathname

It’s good to have some logging to know that our system is working as it 

should:

      console.log('Processing path: ', uri)

The next line deals with the root URI; that is, when you go to the 

website and the path is empty or a slash, you’ll get index.html. In our 

app, let’s follow the convention and serve the index.html file by default 

(if it exists):

      if (uri == ' ' || uri == '/') uri = 'index.html'

The path.join() method will make this code cross-platform by 

creating a string with the proper slashes depending on the OS: that is, \ or /  

as separator. You can see the resulting path and file name in the logs:

      filename = path.join(__dirname, staticFolder, uri)

      console.log('Processing file: ', filename)

Chapter 8  putting Frontend and BaCkend together

https://npmjs.org/url
http://webapplog.com/es6


280

I always say never use synchronous functions in Node.js, unless you 

have to. This is such a case. Without the synch methods, we’ll get racing 

conditions on our files, meaning some will load faster than the others and 

cause conflicts:

      stats = fs.statSync(filename)

      if (error) {

        console.error(error)

Obviously, if the file doesn’t exist we want to send 404 Not Found:

        response.writeHead(404, {

          'Content-Type': 'text/plain'})

        response.write('404 Not Found\n')

        return response.end()

      }

Let’s make sure the requested resource is the file. If it’s not the file, you 

can implement adding index.html as we did for the root. I don’t have this 

code here. Our front-end app only needs to include files so this code will 

serve the files!

      if(!stats.isFile()) {

        response.writeHead(404, {

          'Content-Type': 'text/plain'})

        response.write('404 Not Found\n')

        return response.end()

      } else {

Finally, we read the file. We use the synchronous function again for the 

reasons mentioned above.

        const file = fs.readFileSync(filename)

        if (!file) {

           response.writeHead(500, {'Content-Type':  

'text/plain'})

Chapter 8  putting Frontend and BaCkend together



281

        response.write(err + '\n')

        return response.end()

      }

I know that the JavaScript guru Douglas Crockford dislikes switch, 

but we’ll use it here to determine the right content type for the response 

header. Most browsers will understand the content type okay if you omit 

the Content-Type header, but why not go the extra mile?

        const extname = path.extname(filename)

        const contentType = 'text/html'

        switch (extname) {

            case '.js':

                contentType = 'text/javascript'

                break

            case '.css':

                contentType = 'text/css'

                break

            case '.json':

                contentType = 'application/json'

                break

            case '.png':

                contentType = 'image/png'

                break

            case '.jpg':

            case '.jpeg':

                contentType = 'image/jpg'

                break

            case '.wav':

                contentType = 'audio/wav'

                break

        }

        response.writeHead(200, {

          'Content-Type': contentType,

Chapter 8  putting Frontend and BaCkend together



282

Another header that we send back with the response is Content-Length:

          'Content-Length': file.length

        })

        response.end(file)

      }

    }

...

So this piece of code goes into the request handler of the server, which 

is inside of the database connect call. Just like the Russian Matreshka 

dolls. Confusing? Just refer to the full source code at http://bit.

ly/2LdCK20.

Another, more elegant way is to use Node.js frameworks such as 

Connect or Express; because there is a special static middleware for JS 

and CSS assets. But those frameworks deserve a book on their own.

Now that you’ve mastered the basics of Node.js, MongoDB, Backbone.

js, and Heroku, there’s one bonus step to take: deployment to the cloud. 

Check out the cloud solution Amazon Web Services known as EC2 

(Infrastructure as a Service category of cloud computing).

 Deployment to Amazon Web Services
Cloud is eating the world of computing. You can say that cloud has taken 

the world of IT by storm. There are private and public clouds. AWS, 

probably the most popular choice among the public cloud options, offers 

Elastic Compute Cloud (EC2) in the infrastructure as a Service (IaaS) 

category of cloud solutions. The advantages of using an IaaS such as AWS 

EC2 over PaaS-like Heroku are as follows:

• It’s more configurable (any services, packages, or 

operation systems).

Chapter 8  putting Frontend and BaCkend together

http://bit.ly/2LdCK20
http://bit.ly/2LdCK20


283

• It’s more controllable. There are no restrictions or 

limitations.

• It’s cheaper to maintain. PaaS can quickly cost a fortune 

for high-performance resources.

In this tutorial, we’ll be using the 64-bit Amazon Linux AMI (http://

aws.amazon.com/amazon-linux-ami) with CentOS (http://aws.

amazon.com/amazon-linux-ami).

Assuming you have your EC2 instance up and running, SSH into it and 

install all system updates with yum:

$ sudo yum update

You can try installing Node.js with yum. It should be available 

in the Extra Packages for Enterprise Linux repository (https://

fedoraproject.org/wiki/EPEL):

$ sudo yum install nodejs npm --enablerepo=epel

This might take a while. Answer with y as the process goes. In the end, 

you should see something like this (your results may vary):

Installed: nodejs.i686 0:0.10.26-1.el6  

npm.noarch 0:1.3.6-4.el6Dependency Installed:

...Dependency Updated:...Complete!

You probably know this, but just in case, to check installations, type the 

following:

$ node –V

$ npm –v

If the yum Node.js installation fails, see if you have EPEL (just see if the 

command below says epel):

$ yum repolist

Chapter 8  putting Frontend and BaCkend together

http://aws.amazon.com/amazon-linux-ami
http://aws.amazon.com/amazon-linux-ami
http://aws.amazon.com/amazon-linux-ami)
http://aws.amazon.com/amazon-linux-ami)
https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL


284

If there’s no epel, run:

$ rpm -Uvh http://download-i2.fedoraproject.org/pub/

epel/6/i386/epel-release-6-8.noarch.rpm

Then, try to install both Node.js and npm again with:

$ sudo yum install nodejs npm --enablerepo=epel

Alternatively, you can compile Node.js from the source. To do so, 

install the C++ compiler (again with yum):

$ sudo yum install gcc-c++ make

Same with openSSL:

$ sudo yum install openssl-devel

Then install Git with yum:

$ sudo yum install git

Finally, clone the Node.js repository straight from GitHub:

$ git clone git://github.com/joyent/node.git

And build Node.js:

$ cd node

$ git checkout v0.10.12

$ ./configure

$ make

$ sudo make install

Note For a different version of node.js, you can list all versions with 
$ git tag -l and check out the one you need.

Chapter 8  putting Frontend and BaCkend together



285

To install npm, run:

$ git clone https://github.com/isaacs/npm.git

$ cd npm

$ sudo make install

Once you have Git and npm and Node.js, you are good to deploy your 

code (manually). Pull the code from the repository. You might need to 

provide credentials or upload your SSH keys to AWS. Then start the Node.

js server with pm2 (https://npmjs.com/pm2 and https://pm2.io) or 

similar process manager. pm2 is good because it has a lot of features not 

only to keep the process running but also to scale it as show in Figure 8-1. 

pm2 also has load balancing.

To install pm2:

$ npm i -g pm2

To start your application:

$ pm2 start app.js

To list all running processes:

$ pm2 list

Figure 8-1. pm2 running multiple Node.js processes

Chapter 8  putting Frontend and BaCkend together

https://npmjs.com/pm2
https://pm2.io


286

That’s pretty much all you need to do. Ideally, you want to automate 

the deployment. Also, you might want to add some d.init or upstart 

scripts to launch your pm2 or another process manager automatically.

Steps for other OSs on AWS are similar. You would use their package 

manager to install Node.js, Git, and npm, then get the code (Git or rsync) 

and launch it with the process manager. You don’t need the process 

manager. You can launch with node itself, but it’s better to use some 

process manager.

Now, while the Node.js app is running, executing $ netstat -apn | 

grep 80, the remote machine should show the process. For example, for a 

Node.js app listening on port 80:

tcp  0  0  0.0.0.0:80   0.0.0.0:*   LISTEN  1064/node

On the EC2 instance, either configure the firewall to redirect 

connections (e.g., port to Node.js 3000, but this is too advanced for our 

example) or disable the firewall (okay for our quick demonstration and 

development purposes):

$ service iptables save

$ service iptables stop

$ chkconfig iptables off

In the AWS console, find your EC2 instance and apply a proper rule to 

allow for inbound traffic; for example:

Protocol: TCPPort Range: 80Source: 0.0.0.0/0

And from your local machine, that is, your development computer, you 

can either use the public IP address or the public DNS (the Domain Name 

System) domain, which is found and copied from the AWS console under 

that instance’s description. For example,

$ curl XXX.XXX.XXX.XXX –v

Chapter 8  putting Frontend and BaCkend together



287

It’s worth mentioning that AWS supports many other operating 

systems via its AWS Marketplace (https://aws.amazon.com/

marketplace). Although AWS EC2 is a very popular and affordable 

choice, there are other alternatives as well: Google Cloud (https://

cloud.google.com), Microsoft Azure (https://azure.microsoft.

com), IBM Cloud (https://www.ibm.com/cloud), and others.

 Summary
This chapter presented the descriptions of different deployment 

approaches, the final version of the Message Board application, and its 

deployment with two approaches: on different domains and on the same 

domains. We covered deployment using the Git and Heroku command-

line interfaces to deploy to PaaS. And we worked through examples of 

installing and building a Node.js environment on AWS EC2 and running 

Node.js apps on AWS with CentOS.

Chapter 8  putting Frontend and BaCkend together

https://aws.amazon.com/marketplace
https://aws.amazon.com/marketplace
https://cloud.google.com
https://cloud.google.com
https://azure.microsoft.com
https://azure.microsoft.com
http://www.ibm.com/cloud)


289© Azat Mardan 2018 
A. Mardan, Full Stack JavaScript, https://doi.org/10.1007/978-1-4842-3718-2_9

CHAPTER 9

Conclusion
I hope you’ve enjoyed this book. I intended it to be small on theory but 

big on practice and to give you an overview of multiple technologies, 

frameworks, and techniques used in modern agile web development, such 

as the following:

• jQuery, JSON, and AJAX/XHR

• Bootstrap, CSS, and Less

• Backbone.js, AMD, and Require.js

• Node.js, REST API, and Parse

• MongoDB and BSON

• AWS, Heroku, and MongoLab

If you want to explore any of these topics in greater depth, check out 

the appendix, “Further Reading,” for additional references (or do a Google 

search).

Practical aspects of this book included building multiple versions of 

the Message Board app:

• jQuery and Parse JavaScript REST API

• Backbone.js and Parse JavaScript SDK

• Backbone.js and Node.js

• Backbone.js and Node.js and MongoDB



290

The Message Board app has all the foundation of a typical web/mobile 

app: fetching data, displaying it, and submitting new data. Other examples 

include:

• jQuery and OpenWeatherMap REST API (Chapter 3)

• Parse Save JSON (Chapter 3)

• Node.js “Hello World” (Chapter 6)

• MongoDB “Print Collections” (Chapter 7)

• Backbone.js “Hello World” (Chapter 4)

• Backbone.js apple database application (Chapter 4)

Please submit a GitHub issue if you have any feedback, comments, or 

suggestions or have found typos, bugs, mistakes, or other errata: https://

github.com/azat-co/fullstack-javascript/issues.

Other ways to connect are via @azatmardan (https://twitter.com/

azatmardan), https://webapplog.com, and http://azat.co.

In case you enjoyed Node.js and want to find out more about building 

production web services with Express.js—a de facto standard for Node.js 

web apps—take a look at my other top-rated books Pro Express.js, Practical 

Node.js 2nd Edition, and React Quickly.

Chapter 9  ConClusion

https://github.com/azat-co/fullstack-javascript/issues
https://github.com/azat-co/fullstack-javascript/issues
https://twitter.com/azatmardan
https://twitter.com/azatmardan
https://webapplog.com
http://azat.co


291© Azat Mardan 2018 
A. Mardan, Full Stack JavaScript, https://doi.org/10.1007/978-1-4842-3718-2

 APPENDIX

Further Reading
You have reached the end of the book but your learning is just starting. 

This appendix provides a list of JavaScript blog posts, articles, e-books, 

books, and other resources to help you continue your exploration of full 

stack JavaScript.

 Free JavaScript and Node Resources
• Node University Blog: https://node.university/blog

• ES6/ES2015 Cheatsheet: https://gumroad.com/l/

LDwVU/git–1CC81D40

• MongoDB and Mongoose Cheatsheet: https://

gumroad.com/l/mongodb/git–874e6fb4

• Express.js 4 Cheatsheet: https://gumroad.com/l/

NQiQ/git–874E6FB4

• React Cheatsheet: https://gumroad.com/l/IJRtw/

git-FB2C5E22

• JavaScript For Cats (an introduction for new 

programmers): http://jsforcats.com

• Superhero.js (a comprehensive collection of JS 

resources): http://superherojs.com

https://doi.org/10.1007/978-1-4842-3718-2
https://node.university/blog
https://gumroad.com/l/LDwVU/git–1CC81D40
https://gumroad.com/l/LDwVU/git–1CC81D40
https://gumroad.com/l/mongodb/git–874e6fb4
https://gumroad.com/l/mongodb/git–874e6fb4
https://gumroad.com/l/NQiQ/git–874E6FB4
https://gumroad.com/l/NQiQ/git–874E6FB4
https://gumroad.com/l/IJRtw/git-FB2C5E22
https://gumroad.com/l/IJRtw/git-FB2C5E22
http://jsforcats.com
http://superherojs.com


292

• MDN JavaScript Guide: https://developer.

mozilla.org/en-US/docs/Web/JavaScript/Guide

• MDN JavaScript Reference: https://developer.

mozilla.org/en-US/docs/Web/JavaScript/

Reference

• Felix’s Node.js Style Guide: https://github.com/

felixge/node-style-guide

 Good JavaScript Books
• React Quickly: Painless web apps with React, JSX, 

Redux, and GraphQL by Azat Mardan (Manning 

Publications, 2017)

• JavaScript: The Good Parts by Douglas Crockford 

(O’Reilly Media, 2008)

• JavaScript: The Definitive Guide, Sixth Edition, by David 

Flanagan (O’Reilly Media, 2011)

• Secrets of the JavaScript Ninja, Second Edition, by 

John Resig, Bear Bibeault, and Josip Maras (Manning 

Publications, 2016)

• Pro JavaScript Techniques, Second Edition, by John 

Resig, Russ Ferguson, and John Paxton (Apress, 2015)

• Eloquent JavaScript, Third Edition, by Marijn 

Haverbeke (No Starch Press, 2018)

 Good Node.js Books
• Pro Express.js by Azat Mardan (Apress, 2014)

• Practical Node.js, Second Edition, by Azat Mardan 

(Apress, 2018)

Appendix  Further reAding

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
https://github.com/felixge/node-style-guide
https://github.com/felixge/node-style-guide


293

• Node.js in Action, Second Edition, by Alex Young, 

Bradley Meck, and Mike Cantelon (Manning 

Publications, 2017)

• Express.js Deep API Reference, by Azat Mardan 

(Apress, 2014)

 Interactive Online Classes and Courses
• Node University: https://node.university

• Introduction to NodeJS on edX: https://www.edx.

org/course/introduction-to-nodejs–0

 Startup Books and Blogs
• Hackers & Painters by Paul Graham (O’Reilly  

Media, 2010)

• The Lean Startup by Eric Ries (Currency, 2011)

• The Startup Owner’s Manual by Steve Blank and Bob 

Dorf (K & S Ranch, 2012)

• The Entrepreneur’s Guide to Customer Development 

by Brant Cooper and Patrick Vlaskovits (Cooper- 

Vlaskovits, 2010)

• Venture Hacks: http://venturehacks.com

• Webapplog (https://webapplog.com)

Appendix  Further reAding

https://node.university
https://www.edx.org/course/introduction-to-nodejs–0
https://www.edx.org/course/introduction-to-nodejs–0
http://venturehacks.com
https://webapplog.com


295© Azat Mardan 2018 
A. Mardan, Full Stack JavaScript, https://doi.org/10.1007/978-1-4842-3718-2

Index

A
Agile methodologies

CD and integration, 29
pair programming, 30
scrum, 27
test-driven development, 29

Agile web development, 289–290
Amazon Web Services (AWS), 282
Asynchronous JavaScript and  

XML (AJAX), 70

B
Backbone.js

AMD. and Require.js, 168–179
code base

apple-home.view.js file, 162
apples.js, 164
appleView object, 161
apple.view.js file, 163
index.html file, 160, 166
module definition, 167
.template() method, 166
types, 159

collections
fetch() method, 133
homeView and  

appleView, 134–136

index.html file, 138–140
loadApple function, 134
source code, 133
where() method, 138

definition, 128
dependencies, 128
development kit, 185
event binding

constructors, 142
index.html file, 144–147
loadApple function, 143
model.set() function, 144
on() function, 142
render() function, 142
setTimeout function, 144
showSpinner() method, 142
UX, 141

framework, 127
render() method, 132
Require.js (see Require.js)
views and subviews (see 

Underscore.js)
Back-end-as-a-service solutions 

(BaaS), 31
Back-end development

cloud computing, 33
HTTP request and response, 34
MongoDB, 33

https://doi.org/10.1007/978-1-4842-3718-2


296

Node.js, 31
NoSQL, 33
RESTful API, 35

Bootstrap, 74

C
Cascading Style Sheets (CSS), 12
Cloud computing, 33
Cloud setup

code, 55
GitHub, 58
Heroku, 61
Microsoft Azure, 59
SSH keys, 55

Command-line interface (CLI), 47
Continuous deployment (CD), 29
Cross-domain calls, 71

D, E
DELETE method, 125

F, G
fetch()/reset() functions, 136
Front-end and back-end 

applications, 257
Amazon Web Services, 282
collection.add(), 264
different-domain  

deployment, 258
fetch method, 263
Heroku, 274

HomeView file, 261
Message Board API, 268
Message Board UI, 260
message.save(), 263
OPTIONS method, 259
path.join() method, 279
render() function, 262
same-domain deployment, 275
source code, 265–267
steps, 258

Front-end web development
browser, 4
cascading style sheets, 12
components, 5
definition, 4
HyperText markup language, 8
JS (see JavaScript (JS))
mobile development, 6
server applications, 4
web request cycle, 5

H, I
Heroku, 122
HyperText Markup Language 

(HTML)
class, 10
data-name, 11
elements, 9
id attribute, 10
onclick, 11
onmouseover, 11
style, 10
tags, 8
title, 10

Back-end development (cont.)

Index



297

HyperText Transfer Protocol 
(HTTP)

browser JavaScript libraries, 54
components, 52
less App, 55
MongoDB, 47
node-based tools, 46
Node.js installation, 52
XAMPP and MAMP, 47

J, K
JavaScript (JS)

advantages of, 16
array object, 21
boolean primitives and  

objects, 22
browser objects, 23
Date object, 21, 23
definition, 14
differences, 14
DOM objects, 23
globals, 24
HTML document, 15
JSON (see JavaScript Object 

Notation (JSON)
Math object, 23
Node.js conventions, 25
number object, 17
number primitives, 16
RegExp object, 19
special types, 20
string object, 18
string primitives, 18

JavaScript Object Notation (JSON)

definition, 68
JSON.stringify(), 69
object, 69
string, 20

jQuery
ajax function, 113
app.js file, 117–119
Bootstrap, 74
btn class, 112
container-fluid and row-fluid 

classes, 111
DELETE method, 125
functions, 72, 112
getMessages() function, 115
GitHub, 119–121
Heroku, 122
index.html, 110
jQuery.each() function, 116
Microsoft Azure, 121
OpenWeatherMap (see 

OpenWeatherMap)
POST, 114
REST API, 109
structure of, 110
style.css, 110
updateView()  

function, 115–116

L
Less

CSS rules, 79
mix-ins, 80
operations, 82
variables, 79

Index



298

M
match() method, 19
Message Board

app.js file, 193, 196, 204
API, 268
application, 104
Backbone.js framework, 188
Bootstrap, 192
components, 202
DOM element, 195
_.each() function, 198
extend(), 202
features, 208–209
headerTpl template, 194
home.html template file, 200
home.html, 198
home route code, 194
homeView class, 200
homeView object, 202
HTML tags, 199
index.html file, 190
JavaScript code, 200
jQuery.html() function, 195
library structure, 198
MongoDB, 252
Parse

GET XHR calls fetches, 108
REST API, 109
SEND button, 107
server, 109, 189

Require.js syntax, 193
row-fluid class, 199
saveMessage(), 203

single index route, 193
structure of, 190
stylesheets, 191
this.collection.add(), 204
UI, 260

Microsoft Azure, 121
Minimal viable product  

(MVP), 8
Model-View-Controller  

(MVC), 128
MongoDB, 239

BSON ObjectID, 242
JavaScript interface, 239
Message Board, 252
MongoLab, 246
Native Driver, 243
shell, 240

N
Node.js, 213

core modules
fs, 218
http, 216
overview, 216
package manager/npm, 219
querystring, 218
url, 218
util, 217

deployment
Hello World, 222
Heroku, 223
message board, 225
Microsoft Azure, 222

Index



299

Hello World, 214
unit testing, 225, 237

Node.js conventions, 25
Node.js installation, 52

O
OpenWeatherMap

ajax() function, 87
buttons, metric and imperial 

forecasts, 84–85
classes, 88
click() function, 87
getData(), 90
index.html file, 91–95
jQuery’s $.ajax()  

function, 86–87
predictions, 85–86
prepareData() method, 89

P, Q
Parse

app.js file, 97–103
compass, 106
definition, 96
index.html file, 97
jQuery (see jQuery)
log container, 101
<textarea> element, 98
parseApplicationId and 

parseJavaScriptKey, 99
save objects, 105
test.save(), 100

R
Regular Expressions  

(RegExps), 19
REpresentational State Transfer 

(RESTful), 35
Require.js, 168

apple-app.js, 170
apple-home.tpl file, 173
apple-home.view.js file, 174
apple-item.tpl.js file, 172
apple-item.view.js file, 173
apple-spinner.tpl.js file, 173
apple.view.js file, 175
define() method, 172, 176
index.html file, 169, 176, 178
network tab, 179
production, 179
r.js processed files, 181
structure, 169

S
Scrum approach, 27
Setup

browsers, 42
cloud setup

GitHub, 58
Heroku, 61
Microsoft Azure, 59
SSH keys, 55

development folder, 40
HTTP servers, 46
IDEs and text editors, 43

Index



300

initial development 
environment, 40

version control system, 45

T
Test-driven development (TDD), 29

U
Underscore.js

addToCart, 150
appleItemView function, 150
extend() function, 148

homeView, 151–153
html() function, 150
render() method, 153
showCart() function, 152
strings, 150
subviews, 154–159
tagName function, 149

V
Version control system, 45

W, X, Y, Z
WebKitGecko browser, 42

Setup (cont.)

Index


	Table of Contents
	About the Author
	Acknowledgments
	Preface
	Introduction
	Part I: Quick Start
	Chapter 1: Basics
	Front-End Definitions
	Web Request Cycle
	Mobile Development
	HyperText Markup Language
	class
	id
	style
	title
	data-name
	onclick
	onmouseover

	Cascading Style Sheets
	JavaScript
	Number Primitives
	Number Object
	String Object
	String Primitives
	RegExp Object
	Special Types
	JSON
	Array Object
	Data Object
	Boolean Primitives and Objects
	Date Object
	Math Object
	Browser Objects
	DOM Objects
	Globals
	JavaScript and Node.js Conventions


	Agile Methodologies
	Scrum
	Test-Driven Development
	Continuous Deployment and Integration
	Pair Programming

	Back-End Definitions
	Node.js
	NoSQL and MongoDB
	Cloud Computing
	HTTP Requests and Responses
	RESTful API

	Summary

	Chapter 2: Setup
	Local Setup
	Development Folder
	Browsers
	IDEs and Text Editors
	Version Control Systems

	Local HTTP Servers
	Database: MongoDB
	Required Components
	Node.js Installation
	Browser JavaScript Libraries
	Less App

	Cloud Setup
	SSH Keys

	GitHub
	Microsoft Azure
	Heroku
	Summary


	Part II: Front-End Prototyping
	Chapter 3: Getting Data from Backend Using jQuery and Parse
	Definitions
	JavaScript Object Notation
	AJAX
	Cross-Domain Calls

	jQuery Functions
	Bootstrap
	Less
	Less Variables
	Less Mix-ins
	Less Operations

	An Example Using a Third-Party API (OpenWeatherMap) and jQuery
	Parse
	Message Board with Parse Overview
	Message Board with Parse: REST API and  jQuery Version
	Pushing to GitHub

	Deployment to Microsoft Azure
	Deployment of Weather App to Heroku
	Updating and Deleting Messages
	Summary

	Chapter 4: Intro to Backbone.js
	Setting Up a Backbone.js App from Scratch
	Backbone.js Dependencies
	Working with Backbone.js Collections
	Backbone.js Event Binding
	Backbone.js Views and Subviews with Underscore.js
	Refactoring Backbone.js Code
	AMD and Require.js for Backbone.js Development
	Require.js for Backbone.js Production
	Super Simple Backbone.js Starter Kit
	Summary

	Chapter 5: Backbone.js and Parse
	Message Board with Parse: JavaScript SDK and Backbone.js Version
	Taking Message Board Further
	Summary


	Part III: Back-End Prototyping
	Chapter 6: Intro to Node.js
	Building “Hello World” in Node.js
	Node.js Core Modules
	http
	util
	querystring
	url
	fs

	npm Node.js Package Manager
	Deploying “Hello World” to PaaS
	Deploying to Microsoft Azure
	Deploying to Heroku
	Message Board with Node.js: Memory Store Version
	Unit Testing Node.js

	Summary

	Chapter 7: Intro to MongoDB
	MongoDB Shell
	BSON Object ID
	MongoDB Native Driver
	MongoDB on Heroku: MongoLab
	Message Board: MongoDB Version
	Summary

	Chapter 8: Putting Frontend and Backend Together
	Adding CORS for Different-Domain Deployment
	Message Board UI
	Message Board API
	Deployment to Heroku
	Same-Domain Deployment Server
	Deployment to Amazon Web Services
	Summary

	Chapter 9: Conclusion

	Appendix: Further Reading
	Free JavaScript and Node Resources
	Good JavaScript Books
	Good Node.js Books
	Interactive Online Classes and Courses
	Startup Books and Blogs

	Index



