

SQL
	

Easy	SQL	Programming	&	Database
Management	For	Beginners.	Your	Step-By-
Step	Guide	To	Learning	The	SQL	Database.

	
	

Felix	Alvaro

Acknowledgments
	

	

Firstly,	I	want	to	thank	God	for	giving	me	the	knowledge	and	inspiration	to
put	this	informative	book	together.	I	also	want	to	thank	my	parents,	my	brothers
and	my	partner	Silvia	for	their	support.

Table	of	Contents
	

	

Chapter	One:	SQL	Overview
-							History	of	SQL
-							Uses	of	SQL

-							People	Using	SQL
	

Chapter	Two:	The	Database	Essentials
-							Database	Fundamentals	-							Relational	Database	Fundamentals	-						
Database	Management	Systems	Chapter	Three:	The	SQL	Structure

-							SQL	Fundamental	Features	-							SQL	Command	Types	-							SQLite	Database
Features	and	Installation	Instructions

-																																																																																																																																																																																																																																																																						
	

Chapter	Four:	Data	Types
-							Definition	of	Data	-							Types	of	Data	-							User-Defined	Data	Type	Chapter

Five:	Data	Definition	Language	Statements							
-							CREATE	Statement	-							ALTER	Statement	-							DROP	Statement	Chapter

Six:	Data	Manipulation	Language	Statements
-							INSERT	Statement	-							UPDATE	Statement	-							DELETE	Statement

Chapter	Seven:	Data	Query	Language	Statements
-							SELECT	Statement	-							WHERE	Statement	-							ORDER	BY	and	GROUP

BY	Statements	Chapter	Eight:	Transactional	Control	Commands
-							COMMIT	Command	-							ROLLBACK	Command	-							SAVEPOINT

Command	Chapter	Nine:	Database	Views
-							Defining	Views	-							Creating	Views	-							Dropping	Views	Chapter	Ten:

Enhancing	Database	Designs
-							Assigning	Primary	and	Foreign	Keys	-							Understanding	Indexes	-						
Normalizing	Databases	Chapter	Eleven:	Database	Advance	Topics		

-							Cursors	-							Triggers	-							Errors	Recap	+	Final	Words
-							Recap	and	Final	words	-							Check	out	my	other	books

©	Copyright	2016	by	D.A.Alvaro	-	All	rights	reserved.
This	document	is	geared	towards	providing	exact	and	reliable	information	in
regards	to	the	topic	and	issue	covered.
It	is	not	legal	to	reproduce,	duplicate,	or	transmit	any	part	of	this	document	in
either	electronic	means	or	in	printed	format.	Recording	of	this	publication	is
strictly	prohibited.

Introduction
	
	
														Hi	there!	Thank	you	so	much	for	downloading	this	eBook	in	SQL

Programming	and	Database	Management	for	Beginners.	I	assure	you	that	you
have	made	a	wise	decision	in	investing	in	your	skills	as	a	database	professional.
This	eBook	will	teach	you	vital	information	on	the	fundamentals	of	database
programming	and	management	using	one	of	the	powerful	software	tools	–	the
SQL	language.	I	am	Felix,	who	also	started	as	a	simple	analyst	and	now
progressing	into	becoming	a	database	scientist.	Through	the	guidance	of	this
eBook,	you	will	have	a	better	understanding	of	the	countless	opportunities	that
this	SQL	language	can	bring	you.	I	will	be	presenting	you	step-by-step
instructions	in	learning	the	essential	skills	of	this	reliable	database	software.

	

At	first,	I	did	not	realize	how	important	it	is	for	one	to	comprehend	SQL	if
there	are	other	program	applications	you	can	use,	such	as	Microsoft	Excel,	to
process	and	present	information.	When	I	started	researching	for	the	value	of
SQL,	I	told	myself	that	if	I	continue	embarking	on	this	field	then	I	will	not	just
be	presenting	information	but	analyzing	data	as	well.	After	downloading	and
installing	the	software,	I	have	found	out	that	it	is	not	that	challenging	to	study
SQL	programming	after	all!	Taking	that	first	step	to	understanding	the	basic
database	concepts	will	lead	you	to	expanding	your	knowledge	in	becoming	one
of	the	most	sought-after	IT	professionals.

	

The	current	trend	in	information	technology	is	to	be	more	digital,	which
entails	manipulating	databases.	This	is	where	SQL	comes	in	place	–	a	software
language	that	is	powerful	yet	simple,	flexible,	portable	and,	most	of	all,
integrated	into	numerous	database	applications.	Deciding	to	become	a	database
professional	will	definitely	promise	you	a	secured	job	with	a	potential	high
remuneration.	On	the	average,	a	simple	database	analyst	in	the	United	States
earns	an	annual	salary	of	around	$92,000	USD.

	

To	start	your	journey	in	this	field	of	database	programming	and
management,	let	this	eBook	serve	as	your	initial	guide	in	educating	yourself	with
the	basics	of	SQL.	I	will	provide	you	an	overview	of	how	the	language	started,
the	various	features	of	the	software	and	its	environment,	the	different	commands
and	functions,	the	available	error-handling	tools,	some	advanced	topics	and
many	more!	My	ultimate	aim	is	for	you	to	appreciate	the	potentials	of	SQL	and
grasp	the	programming	concepts	in	a	cool	way.	So	what	are	you	waiting	for?	Let
us	get	started!

Chapter	One:		SQL	Overview
	

	

In	this	chapter	you	will	learn	a	brief	background	on	how	and	why	SQL
came	into	existence.	Gaining	knowledge	on	the	history	of	this	computer
language	will	help	you	understand	its	importance	to	most	IT	professionals	who
focus	on	the	field	of	data	manipulation.	You	will	also	have	an	idea	on	how	to
maximize	the	potentials	of	SQL	in	the	ever-changing	world	of	Information
Technology.

	

The	current	trend	in	most	businesses	today	is	to	invest	in	technology	that
will	gather	data	in	the	most	efficient	and	effective	way.	However,	gathering
information	is	only	the	start	of	the	extensive	process	of	data	manipulation.
Companies,	especially	multinational	ones,	require	experts	who	possess	the	skills
of	analyzing,	presenting,	managing	and	storing	data.	In	other	words,	they	need	to
use	computer	programs	that	will	transform	raw	company	data	to	useful
information.	Now,	thanks	to	Structured	Query	Language,	or	simply	SQL,	that
brought	about	such	transformation	in	accessing	and	manipulating	data	in	a	very
meaningful	way.

	

History	of	SQL

	

Pronounced	as	ees-que-ell	or	see’qwl,	SQL	is	a	computer	language	initially
invented	by	an	American	multinational	technology	and	consulting	company
known	as	IBM	(International	Business	Machines	Corporation)	way	back	1970s
using	Dr.	E.	F.	Codd’s	paper	on	“A	Relational	Model	of	Data	for	Large	Shared
Data	Banks”	for	the	prototype	design.	It	was	originally	called	SEQUEL
(Structured	English	QUEry	Language)	that	handled	queries	on	the	collection	and
organization	of	data	-	or	simply	known	as	a	database.	More	features	were	added
to	the	computer	software	to	improve	its	performance,	like	building	and
managing	database	security,	among	others.	When	IBM	researchers	learned	that
there	is	another	company	that	had	the	same	“Sequel”	trademark,	they	renamed	it
to	“S-Q-L”	(presently	expanded	as	Structured	Query	Language).

	

Since	it	was	first	released	to	the	public,	SQL	already	had	many	versions.	In
1979,	Relational	Software,	Incorporated	(which	later	became	the	Oracle
Corporation)	released	ORACLE,	the	first	SQL	product.	Now,	as	the	demand	for
computers	that	manage	data	has	increased,	the	more	SQL	has	become	an
industry	standard	in	the	field	of	Information	Technology.	Such	formal	standard	is
set	and	maintained	by	the	International	Standards	Organization,	or	simply
known	as	ISO.	It	was	on	1986,	based	on	IBM’s	implementation,	that	SQL	has
been	recognized	as	the	standard	language	in	database	communication.	The
following	year,	ISO	accepted	ANSI	SQL	as	the	international	standard.	ANSI
stands	for	American	National	Standards	Institute,	which	is	an	organization	that
approves	certain	standards	in	various	US	industries.	Many	revisions	of	the
standards	followed,	such	as	in	1992	(SQL-92)	and	in	1999	(SQL-99).	The	latest
one	is	now	called	SQL-2011,	which	was	officially	released	in	December	2011.

	

Uses	of	SQL

	

The	corporate	world	is	now	shifting	from	merely	producing	products	and
providing	services	to	investing	in	digital	technologies	that	handle	vast	amounts
of	data,	to	be	transformed	to	meaningful	pieces	of	information	that	will	generate
more	profitable	income	for	the	company.	This	is	the	primary	objective	of	SQL	–
to	access	and	manipulate	data	that	will	further	lead	to	business	insights.	This
flexible	computer	language	has	been	the	most	widely	used	communication	tool
in	handling	databases	(specifically	relational	databases	that	will	be	further
discussed	in	Chapter	3	of	this	book).

	

Try	to	imagine	that	you	are	going	to	a	foreign	country	for	a	vacation.	You
may	need	to	learn	that	country’s	language	to	find	your	way	around	as	you
explore	the	new	place.	When	you	try	ask	someone	for	directions,	who	is	local	to
that	place	and	only	speaks	the	country’s	language,	then	surely	you	will	have	a
hard	time	understanding	him.	In	this	scenario,	the	foreign	land	will	be	your
database	in	which	you	need	to	seek	information	while	SQL	is	the	language	that
you	will	use	to	get	what	you	need	from	the	database.

	

From	time	to	time,	you	will	encounter	the	term	query,	which	is	also	a	part
of	the	abbreviation	of	SQL.	Query	is	basically	the	question	written	using	an	SQL
statement	that	is	being	asked	from	the	database.	SQL	then	retrieves	the	needed
information	when	any	of	the	data	in	the	database	meets	the	requirements	of	the
conditions	of	the	given	query.	So	in	real-life	applications,	such	as	an	online
store,	when	you	execute	your	query	for	a	specific	item	by	entering	your	search
criteria,	SQL	programming	usually	takes	place	in	the	background	to	manage	the
database	connections.	You	are	actually	telling	the	database,	through	the	help	of
SQL,	what	information	you	want	to	see	and	how	you	want	it	to	be	presented	to
you.

	

People	Using	SQL

	

SQL	is	not	only	applicable	for	IT	professionals	or	geeks	who	possess
remarkable	programming	skills.	With	the	growing	corporate	world	of	today,	non-
IT	personnel	such	as	businessmen	and	managers,	can	also	benefit	from	learning
the	semantics	of	SQL.	This	is	because	the	computer	language	enables	them	to
understand	the	ins	and	outs	of	their	businesses	using	the	data	that	drives	every
company.	Moreover,	it	opens	several	career	opportunities	in	the	analytical,
managerial,	strategic	or	research	fields	-	for	those	who	want	to	step-up	from	their
current	positions.	On	the	IT	field,	SQL	knowledge	can	lead	to	more	challenging
roles	such	as	database	designers,	administrators	or	scientists,	systems	engineers,
project	managers	and	software	developers,	among	others.

	

In	this	chapter	you	have	learnt	an	overview	of	SQL	–	its	history,	its	primary
purpose	why	it	was	created	and	those	who	will	profit	from	learning	this	powerful
database	software.	In	the	next	chapter	you	will	learn	the	essentials	of	database,
which	is	the	primary	reason	why	SQL	was	designed	in	the	first	place.

Chapter	Two:		The	Database	Essentials
	

	

Before	you	start	learning	the	technicalities	of	SQL	as	a	computer	language,
this	chapter	will	discuss	first	what	a	database	is	and	its	fundamental
characteristics.	You	will	also	be	informed	why	the	business	world	is	now	driven
to	gather	and	manipulate	data	to	bring	forth	more	profitable	income.

	

Database	Fundamentals	There	are	many	ways	on	how	to	define	or	describe
what	a	database	is.	In	simple	terms,	it	can	be	defined	as	a	collection	of	items	that
can	exist	over	a	long	period	of	time.	Think	of	a	calling	card	holder	as	a	database
that	contains	business	cards	with	different	information	of	people	that	you	know
(e.g.	person’s	name,	job	title,	company	name,	contact	number).	Another	one	is	a
printed	telephone	directory	(more	popularly	known	as	the	yellow	pages)	that
contains	the	name,	phone	number	and	address	of	the	registered	residents	living
in	a	particular	area.

	

Some	define	database	more	professionally,	not	just	a	collection	of	data.	It	is
described	as	an	organized	tool	capable	of	keeping	data	or	information	that	you
can	retrieve	in	an	effective	and	efficient	way	when	the	need	arises.	It	can	also	be
more	strictly	defined	as	a	self-describing	collection	of	objects	that	are	integrated
to	one	another.	When	you	create	representations	of	these	physical	or	conceptual
objects	then	they	will	be	called	records.	From	the	previous	example	of	your
calling	card	holder,	if	you	wish	to	keep	track	of	your	business	contacts	then	you
have	to	assign	each	business	card	a	specific	record.	Every	record	contains
multiple	information	or	data,	such	as	individual	name,	job	title,	company	name
and	address,	phone	number	and	more	that	you	will	now	call	the	record’s
attributes.

	

A	database	does	not	only	contain	the	data	that	you	need,	but	also	what	you
call	its	metadata.	This	is	the	information	that	defines	or	describes	the	data’s
structure	within	the	given	database	(that	is	why	it	was	defined	earlier	as	a	self-
describing	entity),	stored	in	a	region	called	data	dictionary.	Thus,	data	retrieval

will	be	faster	if	you	know	how	information	is	arranged	and	stored.	Furthermore,
relationships	exist	among	the	data	items	since	they	are	integrated	to	one	another.
Check	the	following	figure	for	a	sample	illustration	of	what	a	database	is.

	

	

Whether	a	database	contains	a	simple	collection	of	a	few	records	or	a
massive	system	composed	of	millions	of	records,	it	can	be	categorized	into	three
types:	personal,	workgroup	or	departmental,	and	enterprise.	Each	category	is
characterized	by	the	database	size,	the	machinery	size	into	which	the	database
runs	and	how	big	the	organization	that	manages	it.	

	

Personal	Database	–	This	is	conceptualized	and	designed	by	a	single
person	on	a	stand-alone	computer.	Its	database	structure	is	rather
simple	and	the	size	is	relatively	small.	For	example,	your	personal
electronic	address	book.
	
Workgroup/Departmental	Database	–	This	is	designed	and	created
by	individuals	of	a	single	workgroup	or	department	within	a	certain
organization.	The	database	structure	is	larger	and	more	complex,	as
compared	to	the	personal	category,	which	is	also	accessed	by	multiple
users	at	the	same	time.
	
Enterprise	Database	–	Among	the	three	categories,	this	type	is
conceptualized	and	created	to	handle	the	entire	flow	of	information	of
very	large	organizations.	Thus,	the	database	design	involves	far	more

complex	structures.

	

Relational	Database	Fundamentals	Taking	the	discussion	further	into	a	more
technical	aspect,	a	relational	database	is	an	entity	consisting	of	logical	units
known	as	tables.	This	relational	database	model	was	first	formulated	by	Dr.	E.	F.
Codd	in	1970.	How	the	tables	are	related	to	each	other	defines	their
relationships.	In	this	scenario,	data	is	simplified	into	smaller	yet	more	logical
and	manageable	units	that	optimize	the	database	performance.	The	following
figure	shows	an	illustration	on	how	the	various	components	of	a	relational
database	are	connected	to	each	other.

	

	

A	table	consists	of	rows	and	columns	that	store	data.	In	a	relational
database,	these	tables	are	related	to	one	another	improving	the	data	retrieval
process	when	a	query	is	submitted	by	the	user.	For	you	to	clearly	picture	out	this
idea,	convert	the	information	found	on	the	calling	card	holder	into	a	spreadsheet
like	a	Microsoft	Excel	file.	Assume	that	these	are	your	contacts	from	companies
that	have	ordered	products	and	services	from	your	business.	You	will	have	at
least	a	CUSTOMER	TABLE	(containing	all	important	information	about	your
contacts)	similar	to	the	following:

CUSTOMER
ID

NAME POSITION COMPANY STATE CONTACT
NO

																					
1

Kathy
Ale

President Tile
Industrial

TX 3461234567

2 Kevin
Lord

VP Best
Tooling

NY 5181234567

3 Kim
Ash

Director Car	World CA 5101234567

4 Abby
Karr

Manager West	Mart NV 7751234567

	

You	will	also	have	an	ORDER	TABLE	that	will	store	information	such	as
order	ID,	date,	quantity	and	more.	Check	the	following	table:

ORDER
ID

ORDER
DATE

CUSTOMER
ID

PRODUCT
ID

ORDER
QTY

1 2016-05-23 1 4 300
2 2016-09-09 1 5 100
3 2016-02-17 3 2 150
4 2016-05-12 2 2 500

	

As	you	can	see,	each	table	looks	like	an	array	of	rows	and	columns.
Referring	to	the	CUSTOMER	TABLE,	a	row	is	also	called	a	record	or	a	tuple
that	holds	information	for	a	single	customer.	On	the	other	hand,	a	column	holds	a
single	attribute	of	the	customer	(i.e.,	name,	job	title	or	position,	company	name
and	address,	contact	number).	It	is	also	self-consistent,	meaning	it	contains	the
same	type	of	data	in	every	row.	So	if	a	column	contains	the	name	of	your
customer	in	the	first	row,	then	the	succeeding	rows	will	have	to	show	the	names
of	your	other	customers.	There	is	also	no	significance	which	row	or	column	will
appear	first	and	which	will	be	next,	since	there	is	no	particular	organization	that
is	followed.	Looking	at	both	tables,	you	will	notice	that	each	one	of	them	has	a
column	that	contains	the	same	data	value	–	CUSTOMER	ID.	This	is	now	called
the	common	key,	which	links	the	tables	to	one	another	in	a	relational	database.
The	existence	of	the	common	keys	makes	it	possible	to	merge	data	from	multiple
tables	in	forming	a	larger	set	of	data	entity.

	

The	relation	between	the	two	tables	consists	of	a	two-dimensional	array	of
data	stored	in	rows	and	columns.	The	intersection	of	a	row	and	a	column	is
called	a	cell.	Each	cell	contains	singe-valued	entries	and	each	row	is	unique.
Thus,	each	cell	has	only	one	value	and	no	duplicate	rows.	Going	back	to	the
CUSTOMER	and	ORDER	TABLES,	will	be	able	to	create	the	following	relation
by	adding	the	CUSTOMER	NAME	that	corresponds	to	the	given	CUSTOMER
ID:

ORDER
ID

CUSTOMER
ID

CUSTOMER
NAME

1 1 Kathy	Ale
2 1 Kathy	Ale
3 3 Kim	Ash
4 2 Kevin	Lord

	

You	will	see	that	there	is	no	empty	cell.	One	particular	order	referenced	by
the	ORDER	ID	is	associated	to	a	particular	customer,	indicated	by	the
CUSTOMER	ID	and	CUSTOMER	NAME.	There	are	no	two	customers	having
the	same	ORDER	ID.	That	is	why,	there	will	be	no	two	rows	that	are	exactly
identical.

	

Database	Management	Systems	A	database	management	system,	or	simply
DBMS,	is	an	important	programming	tool	that	consists	of	a	set	of	programs	that
define,	manage	and	process	databases	and	all	applications	associated	to	them.
Through	this,	you	are	able	to	build	a	structure	and	operate	on	the	valuable	data
that	the	database	holds	in	a	very	efficient	way.	There	are	two	main	types	of	users
that	work	on	DBMS	–	the	conventional	user	who	retrieves	or	modifies	data	and
the	administrator	who	is	responsible	for	maintaining	the	structure	of	the
database.

	

The	following	are	the	key	features	of	a	DBMS:

Allows	the	creation	of	new	databases	and	their	data	structures
Allows	data	query	and	modification	using	an	appropriate
programming	language
Allows	the	storage	of	vast	amounts	of	data	over	a	long	period	of	time

Enables	database	recovery	in	times	of	failure,	error	or	intentional
misuse
Controls	data	access	from	many	users	at	once

	

It	was	during	the	late	1960s	when	the	first	commercial	DBMS	appeared.	It
evolved	from	file	systems	that	basically	provided	data	storage	for	over	a	certain
period	of	time.	Though	such	systems	were	capable	of	storing	tremendous
amount	of	data,	computer	professionals	still	have	to	face	problems	of	data	loss
and	an	inefficient	information	retrieval	system.	There	were	also	issues	on	control
access	where	errors	occur	when	two	users	modify	the	same	file	at	the	same	time.
Some	examples	of	these	applications	are	airline	reservation	systems,	banking
systems	and	corporate	record	keeping	systems,	among	others.

	

With	the	advancement	of	technology	in	the	market	today,	you	can	find
numerous	programs	that	will	be	suitable	for	your	DBMS	requirements.	There	are
applications	that	run	on	a	small	scale	level	like	your	personal	computer	or	tablet.
Some	are	built	to	run	on	a	large	and	powerful	equipment,	like	those	being	used
by	multinational	companies.	Nevertheless,	the	on-going	trend	is	for	DBMS	to	be
executed	on	multiple	platforms	or	machines	(whether	large	or	small)	that	are
interconnected	to	one	another,	forming	an	immense	scalable	network.	IT	experts
have	also	found	ways	on	how	store	data	using	Internet	technology	in	powerful
data	centers	or	more	popularly	known	as	clouds.	This	cloud	can	be	public	entity
(managed	by	a	large	company	like	Microsoft	or	Google)	or	a	private	one
(maintained	and	stored	via	the	intranet	within	an	organization).

	

	

In	this	chapter	you	have	learnt	the	essential	features	of	a	database	and	how
it	transforms	to	become	a	relational	database.		Also,	you	had	an	overview	of	the
history	and	characteristics	of	database	management	systems.	In	the	next	chapter
you	will	learn	the	fundamental	structure	of	the	SQL	language	and	its
components.

Chapter	Three:		The	SQL	Structure
	

	

In	this	chapter	you	will	learn	the	fundamental	features	of	the	SQL	language
and	an	overview	of	its	programming	aspect.	In	addition,	you	will	be	presented
with	a	step-by-step	instruction	on	where	and	how	to	download	SQLite,	a	version
of	the	SQL	software	that	will	be	used	all	throughout	the	discussion	of	this	e-
Book.

	

SQL	Fundamental	Features	SQL	is	a	flexible	computer	language	that	you	can
deploy	in	different	ways	to	communicate	with	relational	databases.	This	software
has	some	distinct	features	that	differentiates	it	from	other	programming
applications.	First	and	foremost,	SQL	is	a	nonprocedural	language.	Most
computer	programs	(e.g.,	C,	C++	and	Java)	solve	problems	by	following	a
sequence	of	commands	that	is	called	a	procedure.	In	this	case,	one	specific
operation	is	performed	after	another	until	the	required	task	has	been
accomplished.	The	flow	of	operation	can	either	be	a	linear	sequence	or	a	looping
one,	depending	on	what	the	programmer	had	specified.	This	is	not	the	same	for
SQL.	In	using	this	application,	you	will	just	have	to	specify	the	output	that	you
want,	not	how	you	want	to	generate	the	output.	From	the	CUSTOMER	TABLE,
if	you	want	to	create	a	separate	list	of	contacts	whose	company	are	located	in
Texas	then	you	have	to	retrieve	the	rows	where	the	STATE	column	contains
“TX”	as	its	value.	In	writing	the	SQL	command,	you	don’t	have	to	indicate	how
the	information	should	be	retrieved.	It	is	the	primary	role	of	the	database
management	system	to	examine	the	database	and	decide	how	to	generate	the
results	you	wanted.

	

Learning	the	SQL	syntax	is	like	understanding	the	English	language
structure.	Its	command	language,	comprised	of	a	limited	number	of	statements,
performs	three	primary	data	functions	-	definition,	manipulation	and	control.	The
SQL	programming	language	also	includes	reserved	words	that	are	only	to	be
used	for	specific	purposes.	Thus,	you	cannot	use	these	words	as	names	for
variables,	tables	and	columns;	or	in	any	other	way	apart	from	their	intended	use.

Below	are	some	of	the	most	common	reserved	words	in	SQL:2011.

	
ABS ALL ALLOCATE ALTER AND ANY
ARE ARRAY AS AT AVG BEGIN

BETWEEN BINARY BOOLEAN BOTH BY CALL
CASCADED CASE CEILING CHAR CHARACTER CHECK
CLOSE COLLATE COLLECT COLUMN COMMIT CONDITION

CONNECT CONSTRAINT CONVERT COUNT CREATE CURSOR
CYCLE DATE DAY DEALLOCATE DEC DECIMAL

DECLARE DEFAULT DELETE DESCRIBE DISCONNECT DISTINCT
DOUBLE DROP DYNAMIC EACH ELEMENT ELSE
END ESCAPE EVERY EXCEPT EXECUTE EXISTS

EXTERNAL EXTRACT FALSE FETCH FILTER FLOAT
FLOOR FOR FOREVER FREE FROM FULL

FUNCTION FUSION GET GLOBAL GRANT GROUP
GROUPING HAVING HOLD HOUR HOURS IDENTITY

IN INNER INOUT INSERT INT INTEGER
INTERSECT INTERVAL INTO IS JOIN KEEP
LANGUAGE LARGE LEAD LEFT LIKE LOCAL
LOWER MATCH MAX MEMBER MERGE METHOD
MINUTE MOD MODULE MONTH MULTISET NATIONAL
NATURAL NEW NIL NO NONE NORMALIZE

NOT NULL NUMERIC OF OFFSET OLD
ON ONLY OPEN OR ORDER OUT

OVER OVERLAY PARAMETER PARTITION POSITION POWER
PRECISION PREPARE PRIMARY PROCEDURE RANGE RANK

REAL RECURSIVE REF REFERENCES REFERENCING RELEASE
RESULT RETURN REVOKE RIGHT ROLLBACK ROLLUP
ROW ROWS SCOPE SCROLL SEARCH SECOND

SELECT SET SIMILAR SOME SPECIFIC SQL
START STATIC SUM SYMMETRIC SYSTEM TABLE
THEN TIME TIMESTAMP TO TRANSLATE TREAT

TRIGGER TRUNCATE TRIM TRUE UNION UNIQUE
UNKNOWN UPDATE UPPER USER USING VALUE
VALUES VARCHAR VARYING VERSION WHEN WHENEVER
WHERE WINDOW WITH WITHIN WITHOUT YEAR

	

If	you	think	that	an	SQL	database	is	just	a	collection	of	tables,	then	you	are
wrong.	There	are	additional	structures	that	need	to	be	specified	to	maintain	the
integrity	of	your	data,	such	as	schemas,	domains	and	constraints.

	

Schema	–	This	is	also	called	the	conceptual	view	or	the	complete	logical

view	that	defines	the	entire	database	structure	and	provides	overall	table
organization.	Such	schema	is	considered	a	metadata	–	stored	in	tables	and
part	of	the	database	(just	like	tables	that	consist	of	regular	data).

	

Domain	–	This	specifies	the	set	of	all	finite	data	values	you	can	store	in	a
particular	table	column	or	attribute.	For	example,	in	our	previous
CUSTOMER	TABLE	the	STATE	column	can	only	contain	the	values
“TX”,	“NY”,	“CA”	and	“NV”	if	you	only	provide	products	and	services	in
the	states	of	Texas,	New	York,	California	and	Nevada	respectively.	So
these	four	state	abbreviations	are	the	domain	of	the	STATE	attribute.

	

Constraint	–	Often	ignored	but	one	of	the	important	database
components,	this	sets	down	the	rules	that	identify	what	data	values	a
specific	table	attribute	can	contain.	Incorporating	tight	constraints	assures
that	database	users	only	enter	valid	data	into	a	particular	column.	Together
with	defined	table	characteristics,	column	constraints	determine	its
domain.	Using	the	same	STATE	column	as	an	example	with	the	given
constraint	of	only	the	four	values,	if	a	database	user	enters	“NJ”	for	New
Jersey,	then	the	entry	will	not	be	accepted.	The	system	will	not	proceed
until	a	valid	value	is	entered	for	the	STATE	attribute,	unless	the	database
structure	needs	to	be	updated	due	to	sudden	business	changes.

	

SQL	Command	Types	Before	you	start	programming	in	SQL,	you	need	to
understand	its	basic	command	categories	in	performing	various	functions	–
database	creation,	object	manipulation,	data	population	and	update,	data
deletion,	query	submission,	access	control	and	database	administration,	among
others.	The	following	are	the	main	categories:

Data	Definition	Language	(DDL)

	

Data	Definition	Language	(or	simply	DDL)	enables	you	to	create,
change	or	restructure,	and	even	destroy	the	basic	elements	that	are
contained	in	a	relational	database.	DDL	focuses	only	on	the	structure,	not
the	data	contained	within	the	elements.	These	basic	elements	or	data
objects	include	tables,	schemas,	views	and	more.	Having	no	independent

physical	existence,	a	view	is	regarded	as	a	virtual	table	in	which	its
definition	only	exists	in	the	metadata.	However,	the	view’s	data	comes
from	the	table	(or	tables)	where	you	will	derive	the	view.	Stated	below
are	some	of	the	most	common	DDL	commands:

CREATE	–	This	command	statement	is	responsible	for	building
the	database	structure.	Its	syntax	is:

	

CREATE	TABLE
CREATE	VIEW

	

ALTER	–	This	command	statement	is	in	charge	of	changing	the
database	structure	after	it	has	been	created.	Its	syntax	is:

	

ALTER	TABLE
ALTER	VIEW

	

DROP	–	This	command	is	the	reverse	of	the	CREATE	statement,
which	destroys	the	database	structure.	Its	syntax	is:

	

DROP	TABLE
DROP	VIEW

	

Data	Manipulation	Language	(DML)

	

Data	Manipulation	Language	(or	simply	DML)	consists	of	SQL
commands	that	handle	data	maintenance	functions.	This	means	that	you
are	able	to	manipulate	the	data	contained	within	the	relational	database
objects.	The	command	statements,	which	read	like	normal	English
sentences,	will	allow	you	to	enter,	change,	remove	or	retrieve	data.	The
following	are	the	DML	statements	commonly	used:

INSERT	–	This	command	statement	is	used	to	insert	new	data

values	into	a	certain	table.	To	add	values	into	a	table	with	two
columns,	use	the	following	syntax:

	

INSERT	INTO	TABLE_NAME
VALUES	(‘value1’,	‘value2’);	TABLE_NAME	is	the
name	of	the	table	where	you	will	be	adding	the	new
values.	The	number	of	items	inside	the	VALUES
parenthesis	represents	the	number	of	columns	of	the
table,	which	are	arranged	in	the	same	order	as	the	said
columns.	If	the	values	are	of	character	or	date/time	data
types,	they	need	to	be	enclosed	by	single	quotation
marks.	This	is	not	required	for	numeric	or	null	values
(the	null	value	should	be	written	as	NULL).

													

UPDATE	–	This	command	statement	is	used	to	modify	or	alter
pre-existing	data	values	in	a	table,	not	add	or	remove	records.	The
update	is	done	one	table	at	a	time	or	multiple	rows/columns	of	one
table	within	a	database.	To	change	a	single	column,	use	the
following	syntax:

	

UPDATE	TABLE_NAME
SET	COLUMN_NAME	=	‘value’
[WHERE	CONDITION];	As	long	as	the	given	WHERE
clause	is	satisfied,	then	the	value	of	the
COLUMN_NAME	will	be	updated.	This	could	be	within
one	or	multiple	records	of	the	given	TABLE_NAME.

	

DELETE	–	This	command	statement	deletes	certain	records	or
even	the	entire	table,	not	data	values	from	specific	columns.	To
remove	a	single	row	or	multiple	records	from	a	table,	use	the
following	syntax:

	

DELETE	FROM	TABLE_NAME
[WHERE	CONDITION];	The	WHERE	clause	is	an

important	part	of	this	command	if	you	want	to	delete
selected	rows	from	the	TABLE_NAME.

													

Data	Query	Language	(DQL)

	

Data	Query	Language	(or	simply	DQL)	consists	of	commands	that
perform	data	selection,	which	is	the	main	focus	of	relational	database
users	in	the	world	of	SQL.	The	statement	used	is	SELECT	that	can	be
accompanied	by	other	clauses	or	options	so	that	your	extracted	results
will	be	in	an	organized	and	readable	format.	You	can	submit	a	query	to
the	database	using	a	separate	application	interface	or	just	a	single
command-line.	The	following	is	a	syntax	for	a	simple	SELECT	statement:
SELECT	[*	|	ALL	|	DISTINCT	COLUMN1,	COLUMN2]

FROM	TABLE1	[,	TABLE2];	Using	the	asterisk	(*)	means
that	all	columns	of	the	given	table	are	included	in	the	output	and
will	be	displayed.	The	ALL	option	extracts	and	displays	all	values,
even	duplicates,	for	a	column.	On	the	other	hand,	using	the
keyword	DISTINCT	prevents	duplicate	rows	from	being	included
and	displayed	in	the	output.	What	follows	the	FROM	keyword	is	a
list	of	one	or	more	tables	where	you	want	to	get	the	data.	The
columns	and	tables	specified	in	the	syntax	are	all	separated	by
commas.

	

Data	Control	Language	(DCL)

	

Data	Control	Language	(or	simply	DCL)	consists	of	commands
that	allow	you	to	manage	data	access	within	the	database.	Furthermore,
the	database	is	protected	from	accidental	or	intentional	misuse	by
controlling	user	privileges.	DCL	concentrates	on	transactions,	which
capture	all	SQL	statements	that	perform	database	operations	and	save
them	in	a	log	file.	The	following	are	the	common	DCL	command
statements:

GRANT	–	This	statement	provides	you	with	certain	privileges,

like	giving	you	the	permission	to	access	the	database.	Its	syntax	is:

	

GRANT	PRIVILEGE1,	PRIVILEGE2,	…	TO
USER_NAME

	

REVOKE	–	This	statement	revokes	your	privileges,	like	removing
your	permission	to	access	the	database.	Its	syntax	is:

	

REVOKE	PRIVILEGE1,	PRIVILEGE2,	…	TO
USER_NAME

	

Transactional	Control	Commands

	

Transactional	control	commands	allow	users	to	manipulate	various
transactions	in	maintaining	database	integrity.	In	SQL,	transactions	begin
when	applications	are	executed.	The	very	first	transaction	is	started	at	the
onset	of	the	SQL	application,	while	the	last	transaction	is	ended	when	the
application	is	terminated.	The	following	are	the	common	transactional
control	commands:

COMMIT	–	This	statement	completes	a	transaction	by	making	the
changes	you	made	to	the	database	permanent,	or	simply	saving	the
transactions.	Its	syntax	is:

	

COMMIT	[WORK];	In	the	previous	command	line,	the
keyword	WORK	is	optional.

	

ROLLBACK	–	This	statement’s	primary	function	is	to	restore	the
database	system	to	its	previous	state	or	undo	all	the	actions	that
took	place	in	the	transaction	log.	Its	syntax	is:

	

ROLLBACK	[WORK];	In	the	previous	command	line,

the	keyword	WORK	is	optional.
	

SAVEPOINT	–	This	statement	works	with	the	ROLLBACK
command,	wherein	it	creates	sections	or	points	within	groups	of
transactions	in	which	you	will	be	performing	the	ROLLBACK
command.	Its	syntax	is:

	

SAVEPOINT	SAVEPOINT_NAME;	SQLite	Installation
Instructions	and	Database	Features	Before	you	start
overwhelming	yourself	with	various	database	solutions
and	SQL	command	lines,	you	need	to	determine	first
your	purpose	why	you	are	creating	a	database.	This	will
further	determine	other	database	design	considerations
such	as	size,	complexity,	type	of	machine	where	the
application	will	run,	storage	medium	and	more.	When
you	start	thinking	of	your	database	requirements,	you
need	to	know	up	to	what	level	of	detail	should	be
considered	in	your	design.	Too	much	detail	will	result	to
a	very	complex	design	that	further	wastes	time	and
effort,	and	even	your	computer’s	storage	space.	Too
little	will	lead	to	a	poor	performing,	corrupt	and
worthless	database.	Once	you	are	done	with	the	design
phase,	then	you	can	decide	which	database	software	you
can	download	to	start	your	SQL	experience.

	

For	the	sake	of	this	e-Book’s	discussion,	SQLite,	a	simple	software	library,
will	be	used	as	a	starter	database	engine	to	design,	build	and	deploy	applications.
A	free	and	stand-alone	database	software	that	is	quick	to	download	and	easy	to
administer,	SQLite	was	developed	by	Richard	Hipp	and	his	team	of
programmers.	It	is	was	designed	so	that	it	can	be	easily	configured	and
implemented,	which	does	not	require	any	client-server	setup	at	all.	Thus,	SQLite
is	considered	as	one	of	the	most	widely	used	database	software	applications	in
the	world.

	

Stated	below	are	some	of	the	major	features	of	SQLite:

Transactions	are	atomic,	consistent,	isolated	and	durable
Compilation	is	simple	and	easy
System	crashes	and	power	failures	are	supported
Full	SQL	implementation	with	a	stand-alone	command-line	interface
client
Code	footprint	is	significantly	small
Adaptable	and	adjustable	to	larger	projects
Self-contained	with	no	external	dependencies
Portable	and	supports	other	platforms	like	Windows,	Android,	iOS,	Mac,
Solaris	and	more

	

In	using	SQLite,	you	need	to	download	SQLiteStudio	as	your	database
manager	and	editor.	With	its	intuitive	interface,	this	software	is	very	light	yet	fast
and	powerful.	You	don’t	even	need	to	install	it,	just	download,	unpack	and	run
the	application.	Follow	these	simple	steps	in	downloading	SQLiteStudio	on	a
Windows	10	computer:

1.	 Go	to	http://sqlitestudio.pl/?act=about.	You	should	get	the	following
page:

	

	

2.	 Check	the	version	of	your	computer’s	operating	system	then	click	the
appropriate	link	to	start	downloading	the	software.

	

http://sqlitestudio.pl/?act=about

	

3.	 After	downloading	the	software,	go	to	the	folder	where	the	application
was	saved	(usually	the	Downloads	Folder	in	Windows).	Click	on	the
Extract	tab	on	top	then	choose	the	Extract	all	option.

	

	

4.	 You	will	get	the	Extract	Compressed	(Zipped)	Folders	dialog	box.
Change	the	destination	folder	to	C:\SQL	then	click	the	Extract	button.
This	will	be	the	folder	where	all	your	SQLite	files	will	be	saved.

	

	

5.	 Once	all	the	files	have	been	extracted,	you	will	have	the	SQLiteStudio
subfolder.

	

	

6.	 Find	the	application	program	named	SQLiteStudio	inside	the	subfolder.
To	create	a	shortcut	on	your	desktop	(so	you	can	quickly	launch	the
application),	right-click	the	filename,	select	Send	to	option	then	choose
Desktop	(create	shortcut).

	

	

7.	 When	you	double-click	the	SQLiteStudio	icon	on	your	desktop,

	

	

8.	 you	should	get	the	following	screen:

	

	

														The	Database	Navigator	(left	pane)	shows	all	the	logical	units	of
the	database	such	as	tables	and	views.	The	gray	pane	at	the	right	is	the	SQL	Work
Area	where	you	will	write	your	query	statements.	You	will	have	a	better
understanding	of	this	program’s	graphical	user	interface	in	the	succeeding
chapters.

	

In	this	chapter	you	have	learnt	the	fundamental	features	of	the	SQL
database	language,	which	includes	program	flow,	syntax	characteristic,	reserved
words	list,	schema,	domain,	constraint	and	more.	The	main	categories	of	SQL
commands	were	also	introduced,	that	govern	the	various	functions	of	the
programming	language.	You	were	also	given	a	guide	on	how	to	download	and
install	SQLite	and	SQLiteStudio	for	your	application	software.		In	the	next
chapter	you	will	learn	the	definition	of	data	and	its	various	types	supported	by
the	different	SQL	implementations.

Chapter	Four:		Data	Types
	

	

In	this	chapter	you	will	learn	what	data	is,	its	characteristics	and	the
various	types	that	the	SQL	programming	language	supports.	There	are	different
general	types	of	data	that	are	further	categorized	into	several	subtypes.	However,
it	is	advisable	that	you	use	defined	data	types	to	ensure	the	portability	and
comprehensibility	of	your	database.

	

Definition	of	Data

	

Since	database	is	a	collection	of	information,	it	can	store	names,	numbers,
images,	calculations,	financial	amounts,	characters	and	so	on.	This	stored
information	is	what	you	call	data,	which	you	can	change	or	manipulate	anytime
you	want.	When	you	start	providing	rules	on	how	you	write	and	store	data,	then
you	are	dealing	with	data	types.	Data	types	take	into	consideration	the	length
allocated	by	the	database	for	every	column	in	the	table	and	what	values	it	could
contain	-	whether	it	is	alphanumeric,	just	numbers,	graphics,	date	or	time.	By
defining	what	data	is	stored	in	each	database	field,	you	are	preventing	the
occurrence	of	data	entry	errors.	This	form	of	validation	that	controls	incorrect
data	to	be	entered	into	the	database	is	also	called	field	definition.

	

Each	database	field	will	have	a	specific	value	if	it	contains	a	data	item.
There	are	times,	however,	that	a	certain	field	does	not	have	any	data	item	at	all.
In	this	case,	the	field’s	value	is	considered	null	-	meaning	the	value	is	not
known.	This	null	value	is	different	from	the	numeric	zero	value	or	the	blank
character	value,	since	zeroes	and	blanks	are	definite	values.	The	following	are
scenarios	when	you	may	have	a	null	value:

You	don’t	know	what	the	value	is	yet	even	if	it	possibly	exists.	
The	value	does	not	exist	yet.
The	value	is	out	of	range.
The	field	is	not	applicable	for	a	particular	row.

	

Types	of	Data

	

The	following	are	the	general	data	types	predefined	in	the	SQL	language
(that	are	further	categorized	into	subtypes):

	

Numeric	–	The	value	defined	by	the	numeric	data	type	is	some	kind
of	a	number,	which	could	either	be	expressed	with	an	exact	or	just	an
approximate	value.

	

Exact	Numeric

	

INTEGER	–	This	consists	only	of	whole	numbers	that
are	both	positive	and	negative.	It	does	not	contain	a
decimal	nor	a	fractional	part.	The	value	ranges	from
-2,147,483,648	to	2,147,483,647,	with	an	allocated	4
bytes	of	storage	size.

	

SMALLINT	–	This	is	used	in	replacement	of	integers	to
save	storage	space,	but	with	a	precision	that	cannot	be
larger	than	that	of	an	integer.	Precision	in	computer
programming	is	the	maximum	total	of	significant	digits	a
number	can	have.	The	value	ranges	from	-32,768	to
+32,767,	with	an	allocated	2	bytes	of	storage	size.

	

BIGINT	–	This	is	the	reverse	of	the	SMALLINT,	where
its	minimum	precision	is	the	same	as	the	INTEGER	data
type	or	greater.	The	value	ranges	from
-9,223,372,036,854,775,808	to
9,223,372,036,854,775,807,	with	an	allocated	8	bytes	of
storage	size.

	

NUMERIC	(p,	s)	–	In	addition	to	the	integer	part,	this
data	type	also	contains	a	fractional	component	that
indicates	the	precision	and	scale	of	the	value.	Scale	is	the
number	of	digits	or	places	reserved	in	a	fractional	part	of
the	data,	located	at	the	right	side	of	the	decimal	point.	In
NUMERIC	(p,	s),	‘p’	specifies	the	precision	while	‘s’	is
for	the	scale.	For	example,	NUMERIC	(6,	3)	means	that
the	number’s	absolute	value	will	only	be	up	to	999.999	(6
total	significant	digits	with	3	digits	following	the	decimal
point).

	

DECIMAL	(p,	s)	–	Like	the	NUMERIC	data	type,	this
has	a	fractional	component	where	you	can	specify	both
the	value	precision	and	scale.	However,	this	data	type
allows	greater	precision.	For	example,	DECIMAL	(6,	3)
can	contain	values	up	to	999.999	but	the	database	will	still
accept	values	larger	than	999.999.	Let	us	say	you	entered
the	number	123.4564,	this	will	be	rounded	off	to	123.456.
The	allocated	storage	size	for	this	data	type	is	based	on
the	given	precision.

	

Approximate	Numeric

	

REAL	(s)	–	This	consists	of	a	single-precision,	floating-
point	number	where	the	decimal	point	can	“float”	to
different	places	in	the	said	number.	This	means	that	this
data	type’s	decimal	value	has	a	limitless	precision	and	a
scale	of	variable	lengths.	For	example,	the	values	for	π
(pi)	can	include	3.14159,	3.14	and	3.1	(each	value	has	its
own	precision).	For	single-precision,	floating	point
numbers,	their	precision	is	between	1	and	21	inclusive.	It
also	allocates	4	bytes	of	storage	size	for	its	values.

	

DOUBLE	PRECISION	(p,	s)	–	This	consists	of	a

double-precision,	floating-point	number	and	the	capacity
is	twice	of	the	REAL	data	type.	This	data	type	comes	in
handy	when	you	require	more	precise	numbers,	like	in
most	scientific	field	of	disciplines.	For	double-precision,
floating	point	numbers,	their	precision	is	between	22	and
53	inclusive.	It	also	allocates	8	bytes	of	storage	size	for	its
values.

	

FLOAT	(p,	s)	–	This	is	the	data	type	that	allows	you	to
specify	the	precision	and	lets	the	computer	decide
whether	you	will	go	for	a	single-or	a	double-precision.	It
actually	pertains	to	both	REAL	and	DOUBLE
PRECISION,	depending	on	the	precision	you	have
specified.	Because	of	this	characteristic,	it	is	easier	to
move	the	database	from	one	computer	platform	to
another.

	

String	–	The	string	data	type	stores	alphanumeric	information	and	is
also	considered	as	one	of	the	most	commonly	used	data	types.

	

CHARACTER	(n)	or	CHAR	(n)	–	This	data	type	is	also
known	as	a	fixed-length	string	or	a	constant	character.	This
means	that	all	the	strings	stored	in	that	particular	column	have
the	same	length,	which	is	represented	by	‘n’	(the	number	of
characters	or	the	maximum	allocated	length	for	the	defined
field).	For	example,	if	you	set	the	column’s	data	type	to	CHAR
(23)	then	the	maximum	length	of	any	data	entered	in	the	field	is
23	characters.	If	the	string’s	length	is	less	than	23,	then	SQL
fills	the	remaining	spaces	with	blanks.	This	is	the	drawback	of
using	fixed-length	strings	because	storage	space	is	wasted.	On
the	other	hand,	if	there	is	no	value	provided	for	‘n’,	then	SQL
assumes	a	length	of	one	character.	The	maximum	length	for	the
CHARACTER	data	type	is	254.

	

CHARACTER	VARYING	(n)	or	VARCHAR	(n)	–	This	is
used	when	the	data	entries	are	of	different	lengths,	or	not
constant,	but	you	don’t	want	SQL	to	fill	the	remaining	spaces
with	blanks.	Thus,	the	exact	number	of	characters	you	enter	will
be	stored	in	the	database	-	further	saving	storage	space.	This
data	type	has	no	default	value	and	its	maximum	length	is	32,672
characters.

	

CHARACTER	LARGE	OBJECT	(CLOB)	–	Introduced	in
SQL:1999,	this	variable-length	data	type	is	used	to	contain
unicode	character-based	information	that	is	too	big	to	be	stored
as	a	CHARACTER	type,	such	as	large	documents.	The
maximum	value	of	a	CLOB	is	up	to	2,147,483,647	characters
long.

	

Date	and	Time	–	This	data	type	manages	any	information	concerning
dates	and	times.

	

DATE	–	This	data	type	provides	storage	for	the	year,	month	and
day	values	of	a	date,	in	that	particular	order.	The	year	value	is
expressed	using	four	digits,	which	can	be	represented	by	any
value	ranging	from	0001	up	to	9999.	As	for	the	month	and	day
values,	they	are	both	expressed	using	two	digits.	The	format	for
the	date	data	type	is	yyyy-mm-dd.

	

TIME	–	This	data	type	stores	and	displays	time	values	with	an
hour-minute-second	format	(“HH:MM:SS”).

	

DATETIME	–	When	the	value	contains	both	date	and	time
information	then	you	use	the	DATETIME	data	type,	which	is
displayed	using	the	“YYYY-MM-DD	HH:MM:SS”	format.	The
valid	range	of	values	for	this	type	is	from	“1000-01-01
00:00:00”	to	“9999-12-31	23:59:59”.

	

TIMESTAMP	–	This	is	similar	to	the	DATETIME	data	type
but	the	range	of	values	is	from	“1970-01-01	00:00:01”	UTC	to
“2038-01-19	03:14:07”	UTC.

	

Boolean	–	This	data	type	consists	of	values	that	are	used	for	data
comparison:	TRUE,	FALSE,	or	NULL.	For	data	to	be	returned,	all	the
conditions	of	the	specified	criteria	for	a	given	query	should	be	met	–
meaning	the	Boolean	value	is	TRUE.	If	data	is	not	returned,	then	the
value	is	either	FALSE	or	NULL.

	

User-Defined	Data	Type

	

After	learning	the	general	predefined	data	types,	you	will	now	move	to
user-defined	data	types	or	simply	UDTs.	By	the	name	itself,	these	are	the	data
values	that	the	user	defines	or	specifies	based	on	the	existing	data	types.	Thus,
customization	is	allowed	to	maximize	storage	space	and	meet	other	user
requirements.	Furthermore,	database	application	development	becomes	more
flexible	for	programmers.	This	means	that	you	can	use	UDTs	when	you	need	to
enter	the	same	type	of	data	in	a	column	that	will	be	defined	in	several	tables.	To
define	UDTs,	you	can	use	the	CREATE	TYPE	statement.

	

For	example,	if	you	want	to	define	and	differentiate	USDollar	and
UKPound	as	two	currencies	for	your	database	then	create	the	following	UDTS:

	

CREATE	TYPE	USDollar	AS	DECIMAL	(9,	2)	;

CREATE	TYPE	UKPound	AS	DECIMAL	(9,	2)	;

	

Even	if	both	data	types	were	created	using	the	predefined	DECIMAL	type,
each	has	its	own	function	and	characteristic	in	the	database.	Going	back	to	the
sample	customer	and	order	information	from	the	previous	chapters,	you	can	now
create	the	following	invoice	tables	that	include	the	two	UDTs:

	
CREATE	TABLE	AmericaInvoice	(
																												InvoiceID														INTEGER																												PRIMARY

KEY,
																												CustomerID														INTEGER,
																												OrderID														INTEGER,													
																												TotalSaleAmt														USDollar,
																												ShippingFee														USDollar

)	;

																											
CREATE	TABLE	UnitedKingdomInvoice	(
																												InvoiceID														INTEGER																												PRIMARY

KEY,
																												CustomerID														INTEGER,
																												OrderID														INTEGER,													
																												TotalSaleAmt														USDollar,
																												ShippingFee														USDollar

)	;

	

In	this	chapter	you	have	learnt	the	characteristics	of	the	various	data	types
available	in	the	SQL	language.	You	were	also	able	to	understand	the	need	to
create	user-defined	data	types	to	make	your	database	less	complicated	and	more
portable.	In	the	next	chapter	you	will	learn	how	to	use	the	different	Data
Definition	Language	statements	in	creating	database	objects	using	SQLiteStudio.

Chapter	Five:		Data	Definition	Language	Statements
	

	

In	this	chapter	you	will	gain	a	deeper	understanding	of	the	three	Data
Definition	Language	statements	–	CREATE,	ALTER	and	DROP.	Using
SQLiteStudio,	you	will	also	learn	how	to	encode	the	corresponding	SQL
statements	that	handle	the	database	structure.

	

Again,	a	database	object	is	any	defined	logical	unit	that	stores	or	references
data.	When	you	have	a	collection	of	database	objects,	you	create	a	schema	that	is
associated	with	one	particular	database	owner.	The	focus	of	this	chapter	is	the
basic	form	of	data	storage,	which	is	the	relational	database	table.	A	simple	table
further	consists	of	rows,	which	corresponds	to	the	records	of	data,	and	columns,
which	are	also	known	as	fields	that	contain	an	assigned	particular	type	of	data.	A
database	table	will	always	have	at	least	one	column	and	a	row	that	is	composed
of	one	or	more	fields.

	

CREATE	Statement	The	numerous	forms	of	the	SQL	CREATE	statement	are
responsible	for	constructing	vital	database	structures	and	objects	–	tables,	views,
schemas,	domains	and	so	on.	The	act	of	creating	tables	could	be	easy,	but	you
need	to	take	into	consideration	numerous	factors.	Planning	table	structures
before	actual	implementation	could	save	you	time	and	effort	since	you	do	not
need	to	reconfigure	after	the	tables	have	been	created.

	

Here	are	some	of	the	factors	to	take	into	consideration	through	when
creating	tables:

Type	of	data	the	table	will	contain
Table	and	column	names
Primary	key	(the	column	that	makes	each	row	of	data	unique	to	avoid
duplicate	records	in	a	table)
Column	length
Columns	containing	null	values

	

Syntax:	CREATE	TABLE	TABLE_NAME
(field1														DATA_TYPE														[not	null],	field2													

DATA_TYPE														[not	null],	field3														DATA_TYPE														[not	null],
field4														DATA_TYPE														[not	null],	field5													
DATA_TYPE														[not	null]);	The	column	names	(field1,	field2,	field3,	field4
and	field5)	and	the	field	data	types	are	written	inside	the	parenthesis,	separated
by	commas.	Anything	indicated	inside	the	brackets	are	considered	optional	and
the	syntax	statement	finally	ends	with	a	semicolon.

	

Using	the	CUSTOMER	TABLE	from	Chapter	2,	you	will	create	a	new
database	table	using	SQLiteStudio.

	

Create	a	New	Database

	

1.	 Open	SQLiteStudio	by	double-clicking	the	application	icon	on	your
desktop.

	

	

2.	 Click	the	DATABASE	menu	then	select	ADD	A	DATABASE.

	

3.	 Type	Sample_DB	inside	the	FILE	input	box	(which	is	the	name	of	the
new	database)	then	click	OK.

	

	
4.	 You	will	now	have	the	Sample_DB	object	inside	the	Database

Navigator	pane.

	

	

Create	a	New	Table

	

1.	 Click	the	TOOLS	menu	then	select	OPEN	SQL	EDITOR.	You	will
have	the	SQL	editor	area	at	the	right	pane.	If	you	double-click
Sample_DB,	you	will	see	TABLES	and	VIEWS	under	the	database
object.	Right	now,	there	are	no	tables	nor	views	present	so	you	will
create	one	using	the	SQL	Editor	pane.

	

	

2.	 Under	the	QUERY	Tab,	type	the	following	lines	of	code

	
CREATE	TABLE	Customer_TBL
(CustomerID	INTEGER	NOT	NULL	PRIMARY	KEY,

CustomerName	VARCHAR	NOT	NULL,	JobPosition	VARCHAR,
CompanyName	VARCHAR	NOT	NULL,	USState	VARCHAR	NOT	NULL,
ContactNo	BIGINTEGER	NOT	NULL);	

	

3.	 Click	the	EXECUTE	QUERY	button	 	on	top	of	the	QUERY	Tab
or	press	F9	on	the	keyboard.	You	will	now	have	the	Customer_TBL
table	with	6	columns.

	

	

ALTER	Statement	The	SQL	ALTER	statement	is	used	to	modify	database
objects,	specifically	tables.	Altering	table	elements	can	include	adding	and
dropping	columns,	changing	column	definitions,	adding	and	dropping
constraints,	modifying	table	storage	values	and	more.

	

Syntax:	ALTER	TABLE	TABLE_NAME	[modify]	[column
COLUMN_NAME]

[DATA	TYPE	|	null	not	null]
														[restrict	|	cascade]
														[drop]	[constraint	CONSTRAINT_NAME]
														[add]	[column]	COLUMN	DEFINITION;
Alter	a	Table	by	Adding	a	New	Column

	

1.	 A	new	column	that	contains	the	company	address	of	the	customer	will
be	added	to	the	Customer_TBL	table.	Type	the	following	lines	of	code
under	the	QUERY	tab:
	
ALTER	TABLE	Customer_TBL	ADD

CompanyAdd	VARCHAR;	

	

2.	 After	clicking	the	EXECUTE	QUERY	button	 ,	the
CompanyAdd	column	is	added	after	the	ContactNo	column.	This	field
contains	values	of	string	data	type.

	

	

DROP	Statement	You	use	the	SQL	DROP	statement	if	you	want	to	delete

database	objects.	Thus,	the	DROP	TABLE	statement	is	used	to	delete	tables	that
you	do	not	need	anymore.	Once	this	line	is	executed,	all	the	data	and	metadata
contained	in	the	table	are	also	removed.	DROP	TABLE	is	considered	to	be	the
easiest	command	to	execute.	However,	an	error	will	occur	if	the	table	to	be
deleted	is	being	referenced	by	another	table	in	the	database.	That	is	why	you
need	to	be	cautious	when	performing	the	DROP	statement	to	avoid	deleting
objects	by	mistake	(most	especially	if	there	are	multiple	users	who	access	the
database).

	

Syntax:	DROP	TABLE	TABLE_NAME	[restrict	|	cascade]

	

The	RESTRICT	option	is	used	if	an	error	is	to	be	returned	when	a	table
referenced	by	another	database	object	is	dropped.	On	the	other	hand,	the
CASCADE	option	allows	the	table	and	all	other	referencing	objects	to	be
deleted.	There	are	some	SQL	application	programs	that	do	not	permit	the
CASCADE	option	to	guarantee	that	there	will	be	no	invalid	database	objects.

	

Drop	an	Existing	Table

	

1.	 Since	there	is	only	one	table	in	the	database	(Customer_TBL),	you	do
not	need	to	worry	whether	to	use	the	RESTRICT	or	the	CASCADE
option.	Simply	enter	the	following	line	of	code	inside	the	QUERY	tab.

	

DROP	TABLE	Customer_TBL;	

	

2.	 Click	the	EXECUTE	QUERY	button	 	and	instantly	the
Customer_TBL	table	is	deleted.

	

	

In	this	chapter	you	have	learnt	how	to	encode	programming	lines	using	the
common	DDL	command	statements	in	creating,	altering	and	dropping	database
tables	in	SQL.	In	the	next	chapter	you	will	learn	the	different	DML	commands
that	will	allow	you	to	manipulate	information	contained	in	database	tables.

Chapter	Six:		Data	Manipulation	Language	Statements
	

	

In	this	chapter	you	will	learn	how	to	manipulate	database	tables	and	make
them	useful	through	data	insertion,	deletion	and	update.	To	accomplish	this,	you
will	be	programming	in	SQLiteStudio	using	three	Data	Manipulation	Language
statements	–	INSERT,	DELETE	and	DROP.

	

Normally,	such	tables	are	empty	after	they	have	been	created.	The	data	that
you	can	store	in	your	database	objects	can	be	in	various	formats	–	non-digital,
semi-digital	and	fully	digital.	Non-digital	format	means	that	the	data	needs	to	be
extracted	from	a	non-electronic	source,	like	customer	information	from	business
cards.	In	this	case,	you	are	required	to	store	the	data	manually	into	your
database.	As	for	the	semi-digital,	the	data	could	already	be	in	some	sort	of	digital
form	but	not	the	same	format	as	your	database	tables.	For	example,	you	could
have	records	of	your	customers’	business	cards	stored	in	a	Microsoft	Excel	file
that	you	may	need	to	translate	into	an	appropriate	format	fit	for	your	database.
Lastly,	fully	digital	means	that	all	of	your	customer	information	is	already	in
electronic	format	that	also	matches	the	layout	of	your	database.

	

The	current	data	format	will	further	determine	how	you	will	be	able	to
manipulate	your	database.	This	is	where	the	DML	commands	become	useful	in
entering	new	data,	updating	existing	data	and	deleting	data	from	tables.

	

INSERT	Statement

	

The	process	of	entering	new	data	could	be	done	either	manually	through
individual	commands	or	automatically	using	batch	process	programs.	There	are
also	factors	that	will	determine	what	and	how	much	data	you	can	insert	in	your
database	tables	–	field	length,	column	data	type,	table	size	and	more.	In
populating	tables	with	data,	you	will	use	the	INSERT	statement.

	

One	Row	at	a	Time
	

When	you	want	to	enter	all	the	data	into	a	single	row	of	your
database	table,	you	can	create	a	form-based	data	entry	application.	In	this
feature,	a	screen	is	designed	that	contains	fields	where	you	can	input	the
information	being	asked	-	for	every	column	in	the	table.	Use	the	following
syntax	in	adding	data	one	row	at	a	time:

	
INSERT	INTO	TABLE_NAME	[(column_1,	column_2,	…	,

column_n)]
VALUES	(value_1,	value_2,	…,	value_n)	;

	

Anything	inside	the	square	brackets	are	considered	optional,
meaning	you	don’t	need	to	list	the	column	names.	By	the	way,	“n”	is	the
maximum	number	of	table	columns.	The	default	order	of	the	column	list	is
the	same	order	as	your	column	tables.	Thus,	if	you	list	the	items	inside	the
VALUES	section	in	the	same	order	as	your	table	columns,	then	the	values
will	be	entered	in	the	correct	columns.	You	only	need	to	indicate	the
column	names	if	you	need	to	specify	the	values	in	a	different	order.

	

Now,	let	us	insert	records	to	our	Customer_TBL	table	using	the
customer	information	provided	in	the	Chapter	2.

	

1.	 Type	the	following	programming	lines	in	the	SQL	editor:

	
INSERT	INTO	Customer_TBL	(CustomerID,	CustomerName,

JobPosition,
CompanyName,	USState,	ContactNo)

VALUES	(1,	‘Kathy	Ale’,	‘President’,	‘Tile	Industrial’,	‘TX’,
3461234567)

	

	

2.	 Click	the	EXECUTE	QUERY	button	 	and	you	will	get	the
following	screen	(there	should	be	no	errors	in	the	Status	Area):

	

	

3.	 To	check	if	the	record	of	data	was	inserted	in	the	table,	double-
click	Customer_TBL	at	the	left	pane.	Click	the	DATA	tab	at	the
right	pane,	which	is	in	between	STRUCTURE	and
CONSTRAINTS	tabs.	Your	table	should	be	similar	to	what	is
shown	in	the	screen	below:

	

	

4.	 Click	the	 	option	at	the	bottom	left	corner	of	the
screen.	To	add	another	record	without	specifying	the	column
names,	delete	the	programming	codes	inside	the	QUERY	tab	and
type	the	following	lines:

	
INSERT	INTO	Customer_TBL
VALUES	(2,	‘Kevin	Lord’,	‘VP’,	‘Best	Tooling’,	‘NY’,
5181234567)

	

	

5.	 Click	the	EXECUTE	QUERY	button	 	and	provided	that
the	order	of	the	values	corresponds	exactly	to	the	order	of	the
Customer_TBL	table’s	columns,	then	there	should	be	no	errors
in	the	Status	Area.

	

	

6.	 Click	the	CUSTOMER_TBL	(SAMPLE_DB)	option

	

	

at	the	bottom	left	corner	of	the	screen.	Under	the	GRID	VIEW	tab,	click

the	REFRESH	TABLE	DATA	button	 	or	press	F5	on	your	keyboard.	You
should	see	the	new	record	added	to	the	table.

	

	

Multiple	Rows	at	a	Time

	

Multiple	inserts	are	beneficial	if	you	need	to	enter	a	number	of
records	into	your	table.	This	process	is	also	more	efficient	rather	than
inserting	one	record	at	a	time.	All	you	need	to	do	is	repeat	the	clause
following	the	VALUES	statement	and	make	sure	you	separate	them	with	a
comma.

	

To	insert	the	two	remaining	records	into	our	Customer_TBL	(see
Chapter	2	for	the	details)														:

	

1.	 Going	back	to	the	SQL	Editor,	enter	the	following	lines	of	codes
(without	specifying	the	column	names	anymore):

	
INSERT	INTO	Customer_TBL
VALUES
(3,	‘Kim	Ash’,	‘Director’,	‘Car	World’,	‘CA’,	5101234567),
(4,	‘Abby	Karr’,	‘Manager’,	‘West	Mart’,	‘NV’,	7751234567)

	

2.	 Click	the	EXECUTE	QUERY	button	 .

	

	

3.	 Go	to	the

	

option.	Make	sure	to	click	the

REFRESH	TABLE	DATA	button	 or	press	F5	on	your
keyboard.	You	should	now	see	two	more	records	inserted	to	the
database	table.

	

	

Only	Selected	Columns	at	a	Time

	

In	Chapter	5,	the	JobPosition	field	of	Customer_TBL	table	was
defined	to	allow	null	values.	If	in	case	you	have	a	new	customer	but	you
do	not	know	his	position	yet	in	the	company,	then	you	can	leave	the
JobPosition	field	blank	while	providing	the	necessary	information	for	the
rest	of	the	fields.

	

To	add	a	new	record	without	providing	data	for	the	JobPosition
field:

	

1.	 Enter	the	following	SQL	lines	(make	sure	you	indicate	the
column	names):

	
INSERT	INTO	Customer_TBL	(CustomerID,	CustomerName,
CompanyName,	USState,	ContactNo)
VALUES	(5,	‘Mike	Armhs’,	‘1	Driving	School’,	‘NJ’,
2011234567)

	

2.	 Click	the	EXECUTE	QUERY	button	 	on	top	of	the
QUERY	tab.
	

3.	 Go	to	the	 	option	then	click	the	REFRESH

TABLE	DATA	button	 or	press	F5	on	your	keyboard.	Notice
that	since	you	did	not	provide	any	information	for	the	JobPosition

field,	it	contains	a	NULL	value.

	

	

UPDATE	Statement

	

Since	change	is	inevitable,	SQL	provides	a	way	for	you	to	update	existing
data	stored	in	your	database.	Depending	on	your	needs,	you	can	modify	a	single
record	or	multiple	records	at	one	time	using	the	UPDATE	command.	However,
only	one	table	is	generally	updated	at	a	time	in	a	given	database.	The	standard
syntax	for	this	DML	statement	is:

	
UPDATE	TABLE_NAME
																												SET	column_1	=	EXPRESSION_1,
																																				column_2	=	EXPRESSION_2,
																																				…

								column_n	=	EXPRESSION_N
[WHERE	predicates];

	

Again,	anything	inside	the	brackets	that	is	indicated	in	the	WHERE	clause
statement	is	optional	and	the	maximum	number	of	columns	is	represented	by
“n”.	The	said	clause	identifies	which	rows	need	to	be	updated	-	this	means	that	if
the	WHERE	clause	is	not	present	then	all	the	records	of	the	table	are
automatically	modified.

	

One	Record	at	a	Time

	

From	the	previous	discussion,	you	added	a	record	of	customer
information	without	providing	data	for	the	JobPosition	field.	If	in	case	you
have	learned	that	the	contact	person	is	the	vice-president	of	the	company,
then	you	can	modify	this	existing	record.

	

1.	 Go	back	to	the	SQL	EDITOR	by	clicking	the	
option.	Enter	the	following	lines	of	code:
	
UPDATE	Customer_TBL

																																										SET	JobPosition	=	‘VP’
																																										WHERE	CustomerName	=	‘Mike	Armhs’;

	

2.	 Click	the	EXECUTE	QUERY	button	 	on	top	of	the
QUERY	tab.

	

	

3.	 Click	the	 	option	then	click	the

REFRESH	TABLE	DATA	button	 or	press	F5	on	your
keyboard.	You	will	now	see	‘VP’	under	the	JobPosition	field	for
the	customer	named	Mike	Armhs.

	

	

Multiple	Records	at	a	Time

																											

Now,	if	you	want	to	modify	the	‘VP’	value	of	the	JobPosition	field
to	‘Vice-President’	so	it	will	be	more	comprehensible	to	database	users,
then	you	have	to	update	multiple	records	at	one	time.

	

1.	 Click	the	 	option	at	the	bottom	left	corner	of
the	screen	and	then	change	the	programming	lines	into	the
following:

	
UPDATE	Customer_TBL

																																										SET	JobPosition	=	‘Vice-President’
														WHERE	JobPosition	=	‘VP’;

	

2.	 Click	the	EXECUTE	QUERY	button	 	on	top	of	the	QUERY
tab.

	

	

3.	 Click	the	 	option	then	click	the

REFRESH	TABLE	DATA	button	 or	press	F5	on	your
keyboard.	You	should	now	see	that	the	previous	‘VP’	value	has
been	changed	to	‘Vice-President’.

	

	

All	Records	at	a	Time

	

If	you	want	to	give	more	emphasis	to	the	customer	name	by
changing	it	to	upper	case	letters,	then	you	can	modify	all	the	records	of	the
database	table	at	one	time.	In	this	case,	you	will	not	be	needing	the
WHERE	clause	anymore.

	

1.	 Click	the	 	option	at	the	bottom	left	corner	of
the	screen	and	then	enter	the	following	programming	lines:

	
UPDATE	Customer_TBL

SET	CustomerName	=	UPPER(CustomerName)
	

2.	 Click	the	EXECUTE	QUERY	button	 	on	top	of	the
QUERY	tab.

	

	

3.	 Click	the	 	option	then	click	the

REFRESH	TABLE	DATA	button	 or	press	F5	on	your
keyboard.	Notice	that	the	format	of	the	customer	name	for	all	the
records	in	the	table	have	been	changed	to	capital	letters.

	

	

DELETE	Statement

	

The	DELETE	statement	is	a	DML	command	that	will	remove	records	from
a	table	but	will	still	keep	its	existence	in	the	database.	This	happens	when	you
don’t	need	a	particular	information	in	your	database,	either	because	they	are
obsolete	or	have	no	use	anymore.	Thus,	you	can	free	up	some	storage	space.	You
can	execute	the	DELETE	command	to	remove	just	one	record,	multiple	records
or	even	all	the	records	of	the	table	at	one	time.	Just	a	reminder,	this	command
does	not	delete	values	from	a	specific	column,	but	removes	an	entire	row	or	a
full	record.	That	is	why	you	have	to	be	very	careful	when	executing	this
command.	There	is	a	possibility	that	the	effect	of	the	DELETE	command	is
permanent	and	you	may	not	be	able	to	recover	the	erased	data.	The	standard
syntax	for	this	DML	statement	is:

	

DELETE	FROM	TABLE_NAME
[WHERE	CONDITION];

	

Even	if	the	WHERE	clause	is	an	optional	part,	you	are	required	to	include
it	when	you	want	to	delete	selected	rows	of	data	from	a	certain	table.	Without	the
WHERE	clause,	you	will	be	removing	all	the	records	from	the	table.

	

To	demonstrate	the	function	of	the	DELETE	statement,	you	will	create	a
copy	of	the	Customer_TBL	table	first.	In	this	way,	you	will	still	be	able	keep	the
original	table	to	be	used	for	further	exercises.

	

1.	 Go	to	the	DATABASE	NAVIGATOR	then	right-click	on
Customer_TBL.	Choose	CREATE	A	SIMILAR	TABLE.

	

	

2.	 You	will	be	asked	to	provide	a	name	for	your	table.	Type
Customer_TBL2	inside	the	TABLE	NAME	input	box.

	

	

3.																																																																																																																																																												Click	on	the

COMMIT	STRUCTURE	CHANGES	button	 under	the
STRUCTURE	tab.	You	will	get	the	screen	below.

	

	

4.	 Click	on	the	OK	button	and	a	new	Customer_TBL2	table	will	be
created.	This	will	be	the	table	that	you	will	work	around	to	demonstrate
the	DELETE	command.

	

	

At	this	point	in	time	Customer_TBL2	table	is	empty,	so	you	have	to	copy
the	records	from	Customer_TBL	table.	To	do	this,	follow	the	steps	below:

	

1.	 Click	the	 	option	then	click	the

REFRESH	TABLE	DATA	button	 or	press	F5	on	your	keyboard.
This	will	ensure	that	your	data	in	the	database	table	is	updated.
	

2.	 Click	on	top	of	the	first	row,	just	before	the	CustomerID	column
heading.	This	will	highlight	all	the	records	in	the	table.

	

	

3.	 To	copy	the	values,	right-click	on	the	first	highlighted	cell	(just	under	the
CustomerID	column)	then	choose	COPY.

	

	

4.	 Double-click	on	Customer_TBL2	located	in	the	left	pane.	Click	the
DATA	tab	and	make	sure	that	you	are	on	the	GRID	VIEW	tab.	You	will
see	the	same	columns	as	in	the	original	table,	which	you	will	be
populating	with	the	data	you	copied	from	the	Customer_TBL	table.	

	

	

5.	 Click	the	drop	down	arrow	beside	the	INSERT	ROW	button	
(just	below	the	GRID	VIEW	tab).	Select	INSERT	MULTIPLE	ROWS
option.

	

	

6.	 Inside	the	NUMBER	OF	ROWS	TO	INSERT	input	box	type	5.	Click
OK.					

	

	

7.	 Your	table	will	now	have	5	rows	of	data	that	contain	NULL	values.	This
is	where	you	will	insert	the	values	that	you	copied	from	the
Customer_TBL	table.

	

	

8.	 Right-click	on	the	first	cell	then	choose	the	PASTE	option.

	

	

9.	 All	the	data	values	from	the	Customer_TBL	table	will	be	inserted	to	the
Customer_TBL2	table,	which	you	will	manipulate	to	demonstrate	the
DELETE	command.

	

	

10.															Click	on	the	COMMIT	STRUCTURE	CHANGES	button	

to	save	the	data	in	the	table.

	

Single	Record

	

To	delete	only	one	record	of	data	from	the	Customer_TBL2	table
where	the	customer’s	name	matches	to	‘KATHY	ALE’:

	

1.	 Click	the	 	option,	type	the	following	lines	of	code
in	the	QUERY	tab	and	then	click	the	EXECUTE	QUERY	button	

.

	
DELETE	FROM	Customer_TBL2

														WHERE	CustomerName	=	‘KATHY	ALE’;													
													

	

	
	

2.	 To	check	if	the	record	has	been	deleted,	go	to	the
Customer_TBL2	table	by	clicking	on	

.	Then	click	on	the

REFRESH	TABLE	DATA	button	 or	press	F5	on	your
keyboard	to	update	the	values.	You	will	notice	that	the	record	has
been	deleted	already.

	
	

	
	

Multiple	Records

	

To	delete	2	records	of	data	from	the	Customer_TBL2	table	where
the	customer’s	position	matches	to	‘Vice-President’:

1.	 Click	the	 	option,	type	the	following	lines	of

code	and	then	click	the	EXECUTE	QUERY	button	 .

	
DELETE	FROM	Customer_TBL2

														WHERE	JobPosition	=	‘Vice-President’;																											

	

	
2.	 To	check	if	the	record	has	been	deleted,	go	to	the

Customer_TBL2	table	by	clicking	on	

.	Then	click	on	the

REFRESH	TABLE	DATA	button	 or	press	F5	on	your
keyboard	to	update	the	values.	You	will	notice	that	the	two
records	have	been	deleted	already.

	

	

Whole	Table

	

To	delete	all	the	remaining	records	from	the	Customer_TBL2	table
at	one	time:

	

1.	 Click	the	 	option,	type	the	following	lines	of
code	in	the	QUERY	tab	and	then	click	the	EXECUTE	QUERY

button	 .

	
DELETE	FROM	Customer_TBL2

	

	
2.	 To	check	if	the	record	has	been	deleted,	go	to	the

Customer_TBL2	table	by	clicking	on	

.	Then	click	on	the	REFRESH

TABLE	DATA	button	 or	press	F5	on	your	keyboard	to
update	the	values.	You	will	notice	that	executing	the	single
DELETE	command	has	deleted	all	the	records	from	the	table.

	

In	this	chapter	you	have	learnt	how	to	encode	programming	lines	using	the
most	commonly	used	DML	command	statements	in	inserting,	updating	and
deleting	records	from	database	tables	in	SQL.	In	the	next	chapter	you	will	learn
the	different	DQL	commands	that	will	allow	you	to	retrieve	valuable	information
contained	in	database	tables.

Chapter	Seven:		Data	Query	Language	Statements
	

	

In	this	chapter	you	will	learn	how	to	use	the	available	Data	Query
Language	statements	in	retrieving	data	from	database	tables.	Through
SQLiteStudio,	you	will	be	able	to	use	SELECT,	WHERE,	ORDER	BY	and
GROUP	BY	statements	in	requesting	and	displaying	significant	database
information.

	

Once	you	have	created	and	populated	your	tables	with	data	values,	there
will	come	a	time	that	you	will	need	to	perform	database	queries	to	retrieve
relevant	information.	A	query	is	a	valid	inquiry	into	the	database	to	extract	and
display	data	in	a	readable	or	understandable	format,	depending	on	the	user’s
request.	The	main	challenge	in	SQL	is	to	correctly	instruct	the	computer	what	to
search	for	by	manipulating	the	database	through	row	selection.	Once	you	have
selected	the	values	you	need	then	you	can	further	perform	various	operations
such	as	data	addition,	deletion,	modification	and	more.

	

SELECT	Statement

													

Retrieving	data	values	is	the	most	performed	manipulation	task	by
database	users.	In	doing	such	operation	you	need	to	use	the	DML	command
statement	called	SELECT.	You	have	the	option	to	retrieve	just	one	row,	a
number	of	rows	or	all	the	rows	of	the	database	table.

	

Using	the	SELECT	statement	in	retrieving	all	the	records	of	a	particular
table	is	the	basic	form	of	this	DML	command	statement.	Even	if	the	SELECT
command	is	considered	to	be	the	most	powerful	statement,	it	requires	other
clauses	to	function	correctly	in	performing	a	query.	The	syntax	in	its	simplest
form	is:	SELECT	*	FROM	TABLE_NAME;	In	the	programming	line	above,	the
asterisk	sign	(*)	signifies	everything.	This	means	that	the	wildcard	character	is	a
shortcut	for	the	listing	of	all	the	column	names	of	a	particular	table.

	

To	select	all	the	data	rows	from	the	Customer_TBL	table:

1.	 Click	the	 	option	and	then	type	the	following	lines	of
code:

	

SELECT	*	FROM	Customer_TBL;

	

2.	 Click	the	EXECUTE	QUERY	button	 .	The	result	of	this	SELECT
command	is	displayed	inside	the	GRID	VIEW	tab.

	

	

														The	result	basically	shows	the	entire	data	of	the	Customer_TBL
table	since	the	code	instructs	the	database	to	select	all	the	rows	and	columns	of
the	said	table.

	

WHERE	Statement

	

When	you	want	to	be	more	specific	in	selecting	rows	of	data	from	your
database	tables	then	you	need	to	add	a	bit	of	complexity	to	your	programming
lines.	At	this	point,	you	need	the	function	of	the	WHERE	clause,	which	means
that	the	SELECT	operation	will	be	performed	once	the	stated	condition	inside
such	clause	is	true.	The	syntax	of	the	SELECT	statement	with	the	WHERE
clause	is	as	follows:	SELECT	COLUMN_LIST

														FROM	TABLE_NAME
														WHERE	CONDITION;																											

	

To	select	only	the	rows	of	data	where	the	job	position	of	the	customer	is
Vice-President:

1.	 Click	the	 	option	and	then	type	the	following	lines	of
code:

	
SELECT	*
FROM	Customer_TBL
WHERE	JobPosition	=	‘Vice-President’;

	

2.	 Click	the	EXECUTE	QUERY	button	 .	The	result	of	this	SELECT
command	is	displayed	inside	the	GRID	VIEW	tab.

	

	

The	result	shows	the	records	of	the	two	customers	named	Kevin	Lord	and
Mike	Armhs	who	are	both	Vice-Presidents	of	their	respective	companies.

	

What	if	you	only	want	to	select	certain	columns	of	the	table,	maybe	just	the
full	name	and	company	of	the	customer?	You	will	now	modify	your	lines	of
code	into	the	following:

1.	 In	the	QUERY	tab,	change	the	wildcard	character	*	(asterisk	sign)	into
CustomerName	and	CompanyName	by	typing	the	following:

	

SELECT	CustomerName,	CompanyName
FROM	Customer_TBL
WHERE	JobPosition	=	‘Vice-President’;

	

2.	 Click	the	EXECUTE	QUERY	button	 .	The	result	of	this
SELECT	command	is	displayed	inside	the	GRID	VIEW	tab.

	

	

By	specifying	the	columns	you	want	to	select,	you	are	trying	to	customize
what	data	you	want	to	retrieve	and	how	you	want	them	to	be	displayed.	In	the
previous	example,	you	only	wanted	to	know	the	customer’s	name	and	his
company	where	the	job	position	is	vice-president.

	

ORDER	BY	and	GROUP	BY	Statements

	

When	you	want	the	data	you	retrieve	to	be	displayed	and	sorted	in	some
way,	then	you	need	to	include	the	ORDER	BY	or	GROUP	BY	operator	at	the
end	of	your	SQL	statement.	The	primary	function	of	the	ORDER	BY	statement
is	basically	to	arrange	data	using	a	specific	order,	whether	ascending	or
descending.	On	the	other	hand,	the	GROUP	BY	statement	is	used	to	put	identical
data	together	and	arrange	the	query	output	into	groups.

	

The	standard	syntax	for	the	ORDER	BY	clause	is:	SELECT
COLUMN_LIST

														FROM	TABLE_NAME
														ORDER	BY	COLUMN_LIST	[ASC	|	DESC];	By	default,	ORDER

BY	sorts	individual	rows	in	ascending	order.	If	you	want	to	arrange	your	records
in	descending	order	then	you	have	to	indicate	the	DESC	operator	at	the	end	of
the	ORDER	BY	clause.

	

To	retrieve	all	customer	records	from	the	Customer_TBL	table	and	display
them	in	ascending	order	by	US	state:

1.	 Click	the	 	option	and	then	type	the	following	lines	of
code:

	
SELECT	*
FROM	Customer_TBL
ORDER	BY	USState;

	

2.	 Click	the	EXECUTE	QUERY	button	 .	The	result	of	this	SELECT
command	is	displayed	inside	the	GRID	VIEW	tab.

	

	

Since	you	did	not	specify	how	the	records	will	be	sorted,	the	data	rows
were	arranged	alphabetically	(in	an	ascending	order)	using	the	USState	column.
If	you	want	to	sort	your	records	in	descending	order:

1.	 Inside	the	QUERY	tab,	add	DESC	after	USState	in	the	ORDER	BY
clause.

	
SELECT	*
FROM	Customer_TBL
ORDER	BY	USState	DESC;

	

2.	 Click	the	EXECUTE	QUERY	button	 .	The	result	of	this
SELECT	command	is	displayed	inside	the	GRID	VIEW	tab.

	

	

If	you	want	to	determine	something	about	a	group	of	records	or	need	to
combine	columns	with	duplicate	values	in	a	logical	way,	then	it	is	time	to	use	the
GROUP	BY	clause.	Other	terms	similar	to	grouping	are	aggregating,
summarizing	and	rolling	up.	To	illustrate	this,	if	you	want	to	know	how	many
customers	are	there	for	every	job	position	in	the	Customer_TBL	table	then	we
need	to	count	the	number	of	records	and	display	the	total	number	of	customers
per	job	position.

	

1.	 Click	the	 	option	and	then	type	the	following	lines	of
code:

	

SELECT	JobPosition,	COUNT(*)	AS	number_of_record	FROM
Customer_TBL

GROUP	BY	JobPosition;

	

2.	 Click	the	EXECUTE	QUERY	button	 .	The	result	of	this	SELECT
command	is	displayed	inside	the	GRID	VIEW	tab.

	

	

In	the	example	above,	the	COUNT	function	was	introduced	to	arrange	the
data	in	groups.	The	following	is	a	summary	of	the	common	aggregate	functions
used	together	with	the	GROUP	BY	statement	(x	denotes	the	column	name	where
you	want	to	perform	the	function):

AVG(x)	–	computes	the	average	of	all	the	column	values	(null	values
removed)
	
COUNT(x)	–	counts	the	number	of	non-null	values	in	the	column

	
COUNT(*)	–	counts	the	number	of	records

	
MAX(x)	–	computes	the	maximum	value	in	the	column	(null	values
removed)

	
MIN(x)	-	computes	the	minimum	value	in	the	column	(null	values
removed)

	
SUM(x)	–	computes	the	sum	or	total	of	the	values	in	the	column	(null
values	ignored)

	

Going	back	to	the	GROUP	BY	example,	the	data	in	the	JobPosition	column
is	retrieved	and	for	each	instance	of	the	value,	a	record	is	counted	using	the
COUNT	function.	The	number_of	record	is	a	new	column	created	that	displays
the	total	number	of	records	per	job	position.	The	Director,	Manager	and
President	positions	have	1	record	each	while	the	Vice-President	has	2.	This	is
because	there	are	two	customers	who	are	vice-presidents	–	Kevin	Lord	and	Mike
Armhs.	If	you	can	also	notice,	the	records	displayed	are	sorted	in	an	ascending
order	by	default.

	

Altering	your	SQL	statements	to	display	the	job	position	in	a	descending
order	will	require	you	to	add	the	ORDER	BY	statement	after	the	GROUP	BY
clause	(ORDER	BY	will	always	come	after	the	GROUP	BY	statement).	Change
your	lines	of	code	into	the	following	and	then	click	the	EXECUTE	QUERY

button	 	on	top	of	the	QUERY	tab:	SELECT	JobPosition,	COUNT(*)	AS
number_of_record	FROM	Customer_TBL

GROUP	BY	JobPosition
														ORDER	BY	JobPosition	DESC;	

	

In	this	chapter	you	have	learnt	how	to	encode	programming	lines	using	the
most	commonly	used	DQL	command	statements	in	selecting,	ordering	and
grouping	records	from	database	tables	in	SQL.	In	the	next	chapter	you	will	learn
the	different	transactional	control	commands	that	will	allow	you	to	manage
several	relational	database	transactions.

Chapter	Eight:		Transactional	Control	Commands
	

	

In	this	chapter	you	will	learn	how	to	use	three	of	the	available	transactional
control	commands	in	a	relational	database	management	system	(RDBMS)	using
SQLiteStudio	–	COMMIT,	ROLLBACK	and	SAVEPOINT.	Controlling
transactions	requires	you	to	be	able	to	manage	certain	database	changes	that	are
usually	brought	about	by	the	insert,	update	and	delete	commands.

	

Executing	a	database	transaction	seems	to	have	been	successfully
completed	when	you	notice	that	the	table’s	data	or	structure	has	been	changed.
What	is	actually	happening	during	a	transaction	execution	is	that	information	is
stored	in	a	temporary	space	in	the	database	(or	what	you	can	call	a	rollback
area).	When	you	want	to	finalize	these	transactions	and	store	the	information
permanently,	then	you	either	save	or	discard	the	changes	made	to	the	database
tables	by	issuing	the	appropriate	transactional	control	command.	Only	then	that
the	rollback	area	is	emptied.

	

COMMIT	Command

	

Using	the	COMMIT	command	saves	all	the	transactions	into	your
database.	Normally,	in	SQLiteStudio,	whenever	you	execute	a	CREATE,
INSERT	or	DELETE	transaction	by	writing	programming	lines	in	the	SQL
Editor,	the	changes	are	automatically	saved.	You	have	first	encountered	the
COMMIT	command	through	the	COMMIT	CHANGES	STRUCTURE	button	in
Chapter	6,	where	you	created	a	copy	of	the	Customer_TBL	table.	Now,	to
demonstrate	this	command	again	in	SQLiteStudio,	you	will	manipulate	the	table
structure	by	adding	a	new	record	to	the	Customer_TBL	table	in	GRID	VIEW
mode.

	

1.	 Click	the	 	option.	To	ensure	that	there	are	no

transactions	currently	running	in	the	database,	type	the	following
programming	line	in	the	QUERY	tab	then	click	the	EXECUTE	QUERY

button	 :

END	TRANSACTION;

	

	

2.	 Double-click	Customer_TBL	under	the	TABLES	list	in	the
DATABASE	NAVIGATOR	pane.	Click	the	DATA	tab	at	the	right	and
make	sure	that	the	GRID	View	is	displayed.	You	will	see	all	the	records
of	the	Customer_TBL	table.

	

	

3.	 Click	the	first	column	of	the	last	row	of	the	table,	which	is	CustomerID
5.

	

	

4.	 Click	the	drop-down	arrow	beside	the	INSERT	ROW	(INS)	button	and
select	PLACE	NEW	ROWS	BELOW	SELECTED	ROW	option.

	

	

5.	 This	time	click	the	INSERT	ROW	(INS)	button	and	you	will	see	a	new
empty	row	added	to	the	table.

	

	

6.	 Add	the	following	data	values	in	the	new	record:

CustomerID:																												6
CustomerName:														JOHN	DEPP
JobPosition:																												President
CompanyName:														Rockers	Mine	Company
USState:																												TX
ContactNo:																												3467654321
	

	

7.	 Click	the	COMMIT	button	 to	permanently	save	the	new	data
values	added	to	the	table.

	

ROLLBACK	Command

	

If	the	COMMIT	command	saves	all	the	changes	to	the	database,	the
ROLLBACK	command	is	the	reverse	where	all	the	unsaved	changes	will	be
discarded.	However,	you	can	only	undo	transactions	since	the	last	COMMIT	or
ROLLBACK	statement	executed.	The	standard	syntax	for	this	transactional
control	command	is:

	

ROLLBACK	[WORK];

	

Also,	before	you	can	perform	a	ROLLBACK	command,	make	sure	that
transactions	have	started.	This	means	that	you	need	to	execute	the	following
programming	statement	at	the	very	beginning:

	

BEGIN	TRANSACTION;

	

To	demonstrate	how	a	ROLLBACK	statement	works,	you	will	modify	the
DROP	TABLE	command	in	SQLiteStudio:

	

1.	 Click	the	 	option.	In	the	QUERY	tab,	type	the	following

programming	statement	and	click	the	EXECUTE	QUERY	button	 :

	

BEGIN	TRANSACTION;

	

	

2.	 Click	the	 	option	and	clear	the	QUERY	tab.	Type	the

following	and	then	click	the	EXECUTE	QUERY	button	 .	You	will
notice	that	the	Customer_TBL	table	is	now	removed	from	the	Tables
list.

	

														DROP	TABLE	Customer_TBL;

	

	

3.	 Click	the	 	option	again	and	clear	the	QUERY	tab.	Type

the	following	and	then	click	the	EXECUTE	QUERY	button	 :
	

														ROLLBACK;
	

	

4.	 To	check	if	the	ROLLBACK	command	reversed	the	deletion	of	the
Customer_TBL	table,	right-click	anywhere	inside	the	DATABASE
NAVIGATOR	pane.	Choose	REFRESH	ALL	DATABASE	SCHEMAS
option.

	

	

5.	 Click	the	TABLE	list	at	the	left	pane.	You	should	now	see	that	the
Customer_TBL	table	is	back	under	the	TABLE	list.

	

	

SAVEPOINT	Command

	
When	you	want	to	reverse	the	transaction	just	back	to	a	certain	point	and

not	the	entire	transaction,	then	you	have	to	execute	the	SAVEPOINT	command
before	performing	a	ROLLBACK	action.	This	is	how	you	manage	several
transactions	into	smaller	groups	of	SQL	commands.	The	standard	syntax	for	this
transactional	control	command	is:

	

SAVEPOINT	SAVEPOINT_NAME;

	

When	using	the	SAVEPOINT	and	the	ROLLBACK	commands	together,
the	syntax	is:

	

ROLLBACK	TO	SAVEPOINT_NAME;

	

A	savepoint	name	can	be	the	same	as	the	database	object’s	name	to	which
you	will	be	performing	the	SQL	transactions.	However,	you	should	remember	to
make	them	unique,	different	from	the	group	of	transactions	that	you	want	to
break	down	into	several	points	or	segments.

	

To	demonstrate	how	a	SAVEPOINT	with	a	ROLLBACK	command	works,
you	will	delete	certain	records	from	the	Customer_TBL	table	and	reverse	this
transaction.

	

1.				Click	the	 	option.	In	the	QUERY	tab,	type	the
following	programming	statement	and	click	the	EXECUTE	QUERY

button	 :

	

BEGIN	TRANSACTION;

	

	

2.				Click	the	 	option	again	and	clear	the	QUERY	tab.
Then	type	the	following:

	

SAVEPOINT	Customer_SP1;

	

Click	the	EXECUTE	QUERY	button	 .	A	savepoint	section	is
created	before	deleting	the	last	record	of	the	Customer_TBL	table.

	

	
	

	

3.				To	delete	the	last	record	of	the	Customer_TBL	table,	click	the	

	option	and	clear	the	QUERY	tab.	Type	the	following	and

then	click	the	EXECUTE	QUERY	button	 :

	

DELETE	FROM	Customer_TBL	WHERE	CustomerID	=	6;

	

	

4.				To	check	if	the	record	was	deleted,	double-click	Customer_TBL
under	the	TABLES	list	in	the	DATABASE	NAVIGATOR	pane	then	click
the	DATA	tab	at	the	right.	Under	the	GRID	VIEW	tab,	click	the

REFRESH	TABLE	DATA	button	 	or	press	F5	on	your	keyboard.
Your	table	should	be	the	same	as	the	following:

	

	

5.				To	create	the	second	savepoint	section,	click	the	 	option
again.	Clear	the	QUERY	tab	and	then	type	the	following:

	

SAVEPOINT	Customer_SP2;

	

Click	the	EXECUTE	QUERY	button	 .	This	time	a	savepoint	section
is	created	before	deleting	the	record	where	the	CustomerID	is	equal	to	5.

	

	

6.				To	delete	the	record	where	the	CustomerID	is	equal	to	5,	click	the	

	option	again	and	clear	the	QUERY	tab.	Type	the	following

and	click	the	EXECUTE	QUERY	button	 :

	

DELETE	FROM	Customer_TBL	WHERE	CustomerID	=	5;

	

	

7.				To	check	if	the	record	was	deleted,	click	the	

option	at	the	bottom	left	corner	of	the	screen	then	click	the	DATA	tab	at
the	right.	Under	the	GRID	VIEW	tab,	click	the	REFRESH	TABLE

DATA	button	 	or	press	F5.	Your	table	should	be	the	same	as	the
following:

	

	

8.				To	reverse	the	last	transaction	done,	click	the	 	option
again	and	clear	the	QUERY	tab.	Type	the	following	and	then	click	the

EXECUTE	QUERY	button	 	:

	

ROLLBACK	TO	Customer_SP2;

	

	

9.				To	check	if	the	record	deletion	was	reversed,	click	the	

option	and	then	click	the	DATA	tab	at	the	right.	Under

the	GRID	VIEW	tab,	click	the	REFRESH	TABLE	DATA	button	 	or
press	F5.	Your	table	should	be	the	same	as	the	one	below:

	

	

10.																		To	undo	the	first	record	deleted,	click	the	
option	again	and	clear	the	QUERY	tab.	Type	the	following	and	then	click

the	EXECUTE	QUERY	button	 :
	

ROLLBACK	TO	Customer_SP1;

	

	

1.				To	check	if	the	record	deletion	was	reversed,	click	the	

	option		and	then	click	the	DATA	tab	at	the	right.
Under	the	GRID	VIEW	tab,	click	the	REFRESH	TABLE	DATA	button	

	or	press	F5.	Your	table	should	be	the	same	as	the	one	below:

	

	

In	this	chapter	you	have	learnt	the	primary	functions	of	the	three
transactional	control	commands	in	saving	or	discarding	changes	in	an	SQL
database.	In	the	next	chapter	you	will	learn	the	importance	of	views	and	how	to
manipulate	them	using	CREATE,	UPDATE	and	DROP	commands.

Chapter	Nine:		Database	Views
	

	

In	this	chapter	you	will	learn	what	a	database	view	is	and	its	importance	in
SQL	programming.	In	addition,	you	will	be	able	to	perform	the	existing	SQL
commands	in	creating,	updating	and	dropping	views.

	

Defining	Views	A	view	is	a	database	object	formed	when	your	SELECT	queries
are	saved	in	the	database	for	future	use.	This	means	that	a	view	exists	because	of
the	tables	where	its	data	values	were	derived	from.	Thus,	one	or	more	tables	can
create	a	database	view.	Also,	it	has	the	same	characteristics	similar	to	the	actual
table	except	that	you	don’t	need	some	physical	space	to	store	it	(temporarily
saved	in	the	computer’s	memory).	Moreover,	being	a	virtual	table,	you	cannot
modify	its	data	values.

	

When	executing	a	SELECT	statement	to	create	the	view,	you	can	either	get
the	column	names	from	a	particular	table	or	perform	certain	functions	and
calculations	that	will	manipulate	the	given	data	values.	Once	created,	these
views	can	perform	any	of	the	following	tasks:

Simplify	data	retrieval	-	Some	end	users	may	not	have	the	knowledge	to
perform	database	operations	to	get	the	query	result	they	need.	So	to	make
things	easier,	you	can	create	different	views	from	the	tables	that	users
require.

	

Implement	database	security	–	There	are	times	that	you	have	to	restrict
certain	users	on	what	they	can	access	from	your	database,	whether	they	are
allowed	to	modify	data	or	just	view	information.	To	ensure	that	the	tables
are	secured,	you	can	generate	views	that	only	display	the	data	values	that
you	allow	users	to	access.

	

Support	data	summarization	and	report	generation	–	Through	views,	you
are	able	to	turn	a	complicated	SELECT	query	into	a	simple	summarized

data	that	you	can	generate	from	multiple	tables.	This	summary	or	report
could	be	generated	and	updated	from	time	to	time.	That	is	why	instead	of
composing	complex	programming	lines	you	can	just	use	aggregate
functions	incorporated	in	the	creation	of	views.

	

Creating	Views	The	SQL	statement	CREATE	VIEW	is	used	in	generating	views
from	one	or	more	tables,	and	even	from	another	view.	The	following	is	the	most
basic	syntax	used	in	creating	a	view	from	a	single	table:	CREATE	VIEW
VIEW_NAME	AS

																												SELECT	COLUMN_LIST
																												FROM	TABLE_NAME;

Creating	a	View	from	the	Entire	Content	of	a	Single	Table
	

For	this	exercise,	you	will	be	using	the	Customer_TBL	table	of	the
Sample_DB	database	to	create	a	Customer_VW	view	in	SQLiteStudio.

1.	 Click	the	 	option	and	delete	everything	inside	the	QUERY
tab.	Then	type	the	following	lines	of	code:

	
CREATE	VIEW	Customer_VW	AS
SELECT	*
FROM	Customer_TBL;

2.	 Click	the	EXECUTE	QUERY	button	 	on	top	of	the	QUERY	tab.
You	will	now	notice	that	there	is	a	Customer_VW	view	under	the
VIEWS	section,	inside	the	DATABASE	NAVIGATOR	pane.

	

	
																											

3.	 To	check	the	content	of	the	view,	double-click	Customer_VW	in	the
left	pane	then	the	DATA	tab	in	SQL	WORK	AREA.	The
Customer_VW	view	should	contain	all	the	records	of	the
Customer_TBL	table.

	

	

Creating	a	View	from	Selected	Columns	of	a	Single	Table

	

If	you	want	to	create	a	view	that	contains	only	the	contact	details	of
the	customer	(CustomerName,	CompanyName	and	ContactNo),	then	you
will	select	certain	columns	from	the	Customer_TBL	table.

													

1.	 Click	the	 	option	and	delete	everything	inside	the
QUERY	tab.	Then	type	the	following	lines	of	code:

	

CREATE	VIEW	CustContactDeatails_VW	AS
SELECT	CustomerName,	CompanyName,	ContactNo	FROM

Customer_TBL;	You	need	to	provide	a	different	name	for	this	new	view.
SQLiteStudio	will	not	allow	you	to	create	a	new	view	with	the	same
name	as	an	existing	view.

	

2.	 Click	the	EXECUTE	QUERY	button	 	on	top	of	the	QUERY	tab.
You	will	now	notice	that	there	is	a	CustContactDetails_VW	view
under	the	VIEWS	section,	just	on	top	of	the	Customer_VW	view.	The
VIEWS	list	is	alphabetically	arranged	in	ascending	order.

	

	
3.	 To	check	the	content	of	this	newly	created	view,	double-click

CustContactDetails_VW	in	the	left	pane	then	click	the	DATA	tab
again.	This	view	should	contain	only	three	columns,	namely
CustomerName,	CompanyName	and	ContactNo,	from	the
Customer_TBL	table.

	

	

Creating	a	View	from	Multiple	Tables

	

When	you	require	multiple	database	tables	to	create	the	view	you
need,	ensure	that	the	tables	involved	will	have	to	be	joined	by	columns
that	are	common	to	them.	For	example,	you	may	have	another	table	that
contains	information	on	the	customers’	orders	such	as	the	date	when	they
ordered,	what	product	they	ordered,	the	quantity	and	more.	This	new	table
will	be	called	the	ORDER	TABLE	and	it	is	related	to	the	first
CUSTOMER	TABLE	because	every	order	is	associated	to	a	particular
customer.

	

Now,	you	will	create	a	view	from	two	tables	that	will	show
database	users	to	which	company	and	state	each	order	was	shipped	to	or
delivered.	The	basic	syntax	for	creating	a	view	using	multiple	tables	is:
CREATE	VIEW	VIEW_NAME	AS

														SELECT	COLUMN_LIST
														FROM	TABLE_LIST
														WHERE	CONDITION;	To	create	the	ORDER	TABLE:

1.	 Using	the	data	values	in	Chapter	2	for	the	ORDER	table,	create

another	table	using	the	SQL	Editor.	Click	the	
option	and	delete	everything	inside	the	QUERY	tab.	Type	the
following	lines	of	code	for	the	new	ORDER	table:

	
CREATE	TABLE	Order_TBL

(OrderID	INTEGER	NOT	NULL	PRIMARY	KEY,
OrderDate	DATE	NOT	NULL,	CustomerID	INTEGER	NOT	NULL,
ProductID	INTEGER	NOT	NULL,	OrderQty	BIGINTEGER	NOT
NULL);

2.	 Click	the	EXECUTE	QUERY	button	 	on	top	of	the	QUERY
tab.	You	will	now	have	the	Order_TBL	table	under	the	TABLES

list	in	the	left	pane.

	

	

3.	 Double-click	the	Order_TBL	in	the	left	pane	then	click	on
DATA	tab	at	the	left.	You	will	populate	this	table	with	data	values
in	GRID	VIEW	mode.

	

	

4.	 Click	the	INSERT	ROW	button	 	and	then	select	the
first	option	–	INSERT	MULTIPLE	ROWS.

	

	

5.	 Enter	“4”	in	the	NUMBER	OF	ROWS	TO	INSERT	input	box
(since	there	are	4	records	in	the	ORDER	TABLE	from	Chapter	2)
then	click	OK.

	

	

6.	 The	Order_TBL	table	will	now	have	4	rows	and	5	columns.
Instead	of	using	SQL	statements	to	populate	this	table,	you	will
enter	the	values	directly	into	the	table	(check	the	data	values	in
Chapter	2).

	

+

	

7.	 Click	the	COMMIT	button	 	to	save	all	the	data	values	of
the	Order_TBL	table.

	

To	create	the	view	that	will	tell	you	to	which	company	and	state
every	order	was	shipped	to	or	delivered:

1.	 Click	the	 	option,	empty	QUERY	tab	and	then	type
the	following	lines	of	code:

	
CREATE	VIEW	OrderDelivery_VW	AS
SELECT	Order_TBL.OrderID,
Customer_TBL.CompanyName	AS	CompanyDeliveredTo,
Customer_TBL.USState	AS	StateDestination,
Order_TBL.OrderQty	FROM	Customer_TBL,	Order_TBL
WHERE	Order_TBL.CustomerID	=

Customer_TBL.CustomerID;

2.	 Click	the	EXECUTE	QUERY	button	 	on	top	of	the
QUERY	tab.	You	will	now	have	a	new	view	named
OrderDelivery_VW.

	

	

3.	 To	check	the	content	of	this	view,	double-click
OrderDelivery_VW	in	the	left	pane	then	click	the	DATA	tab	at
the	right.

	

													

In	this	view,	two	columns	were	selected	and	renamed	from	the
Customer_TBL	table	-	CompanyName	changed	to
CompanyDeliveredTo	and	USState	changed	to
StateDestination.	The	other	two	were	from	Order_TBL	table
—OrderID	and	OrderQty	(the	original	column	names	were
retained).	The	rows	retrieved	from	both	tables	are	those	records
where	the	CustomerID	of	the	Customer_TBL	table	matches	the
CustomerID	of	the	Order_TBL	table.

	

Dropping	Views	The	DROP	VIEW	command	is	the	statement	used	to	destroy
an	existing	view	from	the	database.	The	basic	syntax	is:	DROP	VIEW
VIEW_NAME;	To	drop	or	delete	the	entire	Customer_VW	view:

1.	 Click	the	 	option,	empty	QUERY	tab	and	then	type	the
following	lines	of	code:

	

DROP	VIEW	Customer_VW;

2.	 Click	the	EXECUTE	QUERY	button	 	on	top	of	the	QUERY	tab.
You	will	notice	that	the	Customer_VW	view	is	already	deleted	from	the
Views	list.

	

	

In	this	chapter	you	have	learnt	the	definition	and	importance	of	database
views	in	SQL.	You	have	also	performed	common	operations	in	manipulating
views,	such	as	creating	and	dropping	them.	In	the	next	chapter	you	will	learn
more	in-depth	concepts	in	designing	databases	in	SQL	–	primary	and	foreign
keys,	indexes	and	normalized	databases.

Chapter	Ten:		Enhancing	Database	Designs
	

	

In	this	chapter	you	will	gain	more	in-depth	knowledge	on	enhancing
database	designs	with	the	use	of	primary	and	foreign	keys,	indexes	and
normalization	techniques.	Having	a	better	understanding	of	designing	databases
will	provide	the	software	application	you	are	using	an	edge	by	performing
queries	more	effectively	and	maintaining	data	integrity	at	all	times.

	

Assigning	Primary	and	Foreign	Keys	It	is	one	of	the	best	practices	to	assign	a
primary	key	when	you	define	a	database	table.	In	a	relational	database,	the
primary	key	is	a	special	field	or	combination	of	fields	that	make	each	record	in
the	table	unique.	Since	the	presence	of	the	primary	key	does	not	permit	the
duplication	of	values	on	the	column	to	which	it	was	assigned,	then	data	integrity
is	guaranteed.	Also,	fields	that	are	designated	as	primary	keys	cannot	contain
null	values.	Defining	a	primary	key,	whether	it	is	explicit	or	implied,	occurs
during	table	creation.	Normally,	the	tables	with	primary	keys	are	regarded	as
parent	tables,	meaning	these	tables	provide	information	to	another	table	or	what
is	termed	as	the	child	table.	Consequently,	child	tables	are	dependent	on	the
parent	table.

	

In	the	previous	chapters,	you	have	been	dealing	with	the	CUSTOMER
table	and	the	ORDER	Table.	What	if	you	have	another	table	called	the
PRODUCT	Table	that	contains	the	following	fields	or	columns:	Product	ID,
Product	Name	and	Price	per	Unit?	You	will	have	the	following	relationship	from

these	three	tables:	

	

From	the	figure	above,	the	CUSTOMER_TBL	and	the	PRODUCT_TBL
are	the	parent	tables	of	the	child	table	ORDER_TBL	(this	describes	a	parent-
child	relationship	in	database	design).	As	you	can	see,	the	fields	named
CustomerID	and	ProductID	are	the	primary	keys	of	the	parent	tables.	These	two
fields	are	also	present	in	the	child	table.	They	now	become	foreign	keys	of	the
ORDER_TBL	table.	In	other	words,	a	foreign	key	is	a	column	or	field	present	in
the	child	table	that	references	to	the	primary	key	of	its	parent	table.

	

Unlike	the	primary	key,	a	foreign	key	does	not	need	to	be	unique	all	the
time.	In	addition,	the	name	of	the	foreign	key	could	be	different	from	the	name
of	the	primary	key	that	it	references	to.	Furthermore,	the	ProductID	of	the	parent
table	(PRODUCT_TBL)	can	never	have	duplicate	entries,	but	not	the
corresponding	ProductID	in	the	child	table	(ORDER_TBL).	However,	you
should	not	define	and	create	a	foreign	key	value	if	there	is	no	matching	primary
key	value.

	

Understanding	Indexes

													

When	a	database	starts	to	slow	down,	specifically	its	SQL	queries,	you	can

create	and	implement	indexes	to	improve	its	performance.	Such	indexes	are
important	objects	that	serve	as	pointers	associated	to	the	data	of	a	particular
table.	The	primary	function	of	an	index	is	to	determine	the	exact	physical
location	of	the	data	when	a	query	is	executed	to	improve	its	retrieval	process.	It
works	like	a	book’s	alphabetically	arranged	index	that	helps	you	find	the
information	you	need	in	a	much	easier	way	using	its	page	numbers.	Thus,	time	is
saved,	since	you	do	not	need	to	scan	one	row	at	a	time	(most	especially	in
extremely	large	databases)	and	just	go	directly	to	the	required	record.

	

The	storage	spaces	of	an	index	and	the	table	from	which	it	was	created	are
separate.	Such	allocated	physical	space	can	also	increase	tremendously,	even
larger	than	the	table	it	references.	That	is	why	storage	requirements	are	taken
into	consideration	when	designing	databases.	Just	like	tables	and	views,	indexes
can	also	be	created	or	dropped.	When	designed	correctly,	they	actually	speed	up
SELECT	queries	but	could	slow	down	DELETE,	UPDATE	and	INSERT
statements.	For	enormous	databases,	data	retrieval	will	definitely	consume	so
much	time.	However,	such	index	transactions	have	no	effect	on	the	table’s	data.

	

Creating	Indexes

	

An	index	is	associated	to	a	particular	column	when	it	is	created.	It
then	holds	the	location	of	the	data	values	of	the	table	that	contains	that
particular	indexed	column.	Whenever	new	data	is	added	to	the	table,	it	will
also	be	added	to	the	index.	Let’s	say	you	execute	a	SELECT	statement
with	a	certain	condition	specified	in	the	WHERE	clause	that	checks	the
column	that	is	indexed.	The	first	thing	that	will	happen	is	that	the	index	is
first	searched	and	will	only	return	the	exact	location	if	the	data	value	is
found.

	

For	example,	you	wanted	to	select	all	the	records	from	the	ORDER
table	where	the	Customer	ID	matches	to	1.	You	will	then	issue	the
following	query:	SELECT	*

FROM	Order_TBL
WHERE	CustomerID	=	1;	If	the	ORDER_TBL	table	is	indexed	on

the	CustomerID	column,	then	the	records	will	be	arranged	in	an
ascending	order	based	on	that	column.	Thus,	the	CustomerID	index
makes	it	easier	for	the	search	process	to	take	place	and	finally	resolves
the	location	of	all	the	data	with	the	matching	Customer	ID.	Once	the
location	is	determined,	the	corresponding	rows	of	data	will	be	retrieved
from	the	ORDER_TBL	table.	Without	the	existence	of	the	index,	a	full
scan	will	be	performed,	which	will	not	be	efficient	if	the	table	contains
hundreds	or	even	thousands	of	records.

	

	

The	basic	syntax	is	for	creating	an	index	is:	CREATE	INDEX
INDEX_NAME	ON	TABLE_NAME	[(COLUMN_NAME)];	This	statement
can	vary	by	adding	specifications	such	as	the	column	name	to	be	indexed,
ordering	(whether	ascending	or	descending)	and	many	more.	Now,	to
create	the	ColumnID	index	of	the	ORDER_TBL	table	in	SQLiteStudio:

1.	 Click	the	 	option	and	make	sure	the	QUERY	tab	is
empty.	Then	type	the	following:

	

CREATE	INDEX	CustomerID_IDX	ON	Order_TBL

(CustomerID);	

	

2.	 Click	the	EXECUTE	QUERY	button	 	on	top	of	the	QUERY
tab.	You	will	now	have	CustomerID_IDX	under	the	INDEXES
list	in	the	Order_TBL	table.

	

	

Dropping	Indexes

	

Just	like	dropping	a	table	or	a	view,	you	will	use	the	following	basic
syntax:	DROP	INDEX	INDEX_NAME;	Remember	that	you	can	re-

create	the	index	after	it	has	been	deleted,	but	make	sure	you	take
extra	precaution	when	performing	such	transactions.	Also,	when	you
delete	a	table,	you	will	also	be	deleting	all	the	corresponding	indexes
with	it.	Sometimes	you	may	only	need	to	delete	the	index	and	retain
the	table.	Such	implementation	happens	when	you	only	want	to	fix
an	index	problem	to	optimize	the	database	performance	and	reduce
fragmentation.

	

To	drop	the	index	that	we	have	created	previously:

1.	 Click	the	 	option	and	make	sure	the	QUERY	tab	is
empty.	Then	type	the	following:

	

DROP	INDEX	CustomerID_IDX;	

	

2.	 Click	the	EXECUTE	QUERY	button	 	on	top	of	the	QUERY
tab.	You	will	now	notice	that	the	CustomerID_IDX	index	has
been	deleted	from	the	Indexes	list.

	

	

Normalizing	Databases

	

Why	do	you	need	to	normalize	a	database?	This	is	because	in	designing	a
database	you	need	to	ensure	that	information	is	well	organized,	easily	managed,
always	accurate	and	there	is	no	unnecessary	duplication.	Basically,
normalization	is	the	process	of	designing	and	redesigning	a	database	by	reducing
one	big	table	into	two	smaller	tables,	where	the	same	type	of	data	are	grouped
together.	For	example,	if	you	only	have	one	table	by	merging	the	customer
information	of	the	CUSTOMER_TBL	table	with	the	ORDER_TBL	table,	then
you	will	get	a	table	that	is	not	normalized:
ORDER

ID
ORDER
DATE

CUSTOMER
ID

NAME POSITION COMPANY STATE CONTACT
NO

PRODUCT
ID

1 2016-
05-23

1 Kathy
Ale

President Tile
Industrial

TX 3461234567 4

2 2016-
09-09

1 Kathy
Ale

President Tile
Industrial

TX 3461234567 5

3 2016-
02-17

3 Kim
Ash

`Director Car	World CA 5101234567 2

4 2016-
05-12

2 Kevin
Lord

VP Best
Tooling

NY 5181234567 2

	

As	you	can	see,	there	is	a	redundancy	of	data	on	the	part	of	storing	the
customer	information.	That	is	why	it	is	way	better	to	divide	this	table	into	two

smaller	ones	through	the	normalization	process.	Always	bear	in	mind	to	keep
data	redundancy	to	a	minimum,	if	possible,	to	save	storage	space	and	avoid
information	confusion.	If	you	have	customer	information	for	every	table	and	one
table	does	not	match	such	information	with	another,	then	how	will	you	be	able	to
verify	which	one	is	correct?	If	you	have	to	update	a	customer	address,	then	you
are	required	to	update	the	data	in	all	of	the	tables	where	it	is	included.	Thus,	time
and	effort	in	managing	the	database	is	wasted.

	

The	way	of	measuring	the	depth	or	level	to	which	a	database	has	been
normalized	is	called	a	normal	form.	There	are	three	common	normal	forms,
where	each	form	is	dependent	on	the	previous	normalization	steps	performed	on
the	database.

	

First	Normal	Form	(1NF)													

	

Given	a	set	of	base	data,	the	first	normal	form	(1NF)	aims	to	divide
this	into	logical	units	or	tables	of	related	information	with	an	assigned
primary	key.	Every	cell	contained	in	any	of	the	2-dimensional	tables
should	only	have	a	single	value.	Each	row	of	a	particular	table	refers	to	a
certain	record	of	information	and	must	always	be	unique.	As	for	the
column,	it	is	given	a	unique	name	and	consists	of	data	values	of	the	same
type,	which	pertains	to	a	single	attribute	of	the	information	contained	in
the	table.	Moreover,	there	is	no	particular	order	that	the	columns	nor	the
rows	should	be	arranged.

	

Modifying	the	given	database	in	Chapter	2	by	adding	employee
information,	you	will	have	the	following	base	data	for	the	company:	

	

Based	from	the	figure	above,	the	entire	company	database	was
divided	into	two	smaller	tables	–	EMPLOYEE_TBL	and
CUSTOMER_TBL.	The	primary	key	for	these	tables	are	EmployeeID	and
CustomerID	respectively.	In	this	way,	it	is	easier	to	read	and	manage	the
information	as	compared	to	one	big	table	with	so	many	columns	and	rows.
The	data	values	stored	in	each	table	refer	to	two	separate	entities,	meaning
those	pieces	of	information	describing	the	company’s	employees	are	only
present	in	the	EMPLOYEE_TBL	table	while	those	that	only	pertain	to	the
customers	are	stored	in	the	CUSTOMER_TBL	table.

	

Second	Normal	Form	(2NF)

	

After	you	are	done	with	the	first	normal	form,	the	next	step	is
deriving	the	second	normal	form	(2NF).	This	process	focuses	on
functional	dependency	that	describes	the	relationships	between	attributes.
When	an	attribute	determines	the	value	of	another,	then	there	is	functional
dependency	between	them.	In	this	case,	you	will	store	data	values	from	the
Employee	and	Customer	tables	that	are	partly	dependent	on	their	primary
keys	into	separate	tables.

	

	

The	figure	above	shows	that	those	attributes	that	are	partly
dependent	on	the	EmployeeID	primary	key	have	been	removed	from
EMPLOYEE_TBL	and	stored	in	a	new	table	called
EMPLOYEE_SALARY_TBL.	The	attributes	that	were	retained	in	the
original	table	are	fully	dependent	on	the	primary	key	–	meaning	that	for
every	record	of	last	name,	first	name,	address	and	contract	number	there	is
a	corresponding	particular	employee	ID.	Unlike	the
EMPLOYEE_SALARY_TBL,	a	particular	employee	ID	does	not
reference	a	unique	employee	position	nor	salary	rate.	There	could	be	more
than	one	employee	with	the	same	position	(EmpPosition),	pay	rate
(Payrate)	and	bonus	(Bonus).

	

	

For	the	CUSTOMER_TBL	table,	customer’s	order	information
does	not	directly	depend	on	the	general	customer	information	found	in	the
original	table.	That	is	why	four	attributes	(OrderID,	OrderDate,	ProductID
and	OrderQty)	were	moved	to	a	separate	table	called	ORDER_TBL.

	

Third	Normal	Form	(3NF)

	

With	the	third	normal	form	(3NF),	you	will	have	to	separate	pieces
of	information	from	the	table	that	are	completely	not	dependent	on	the
primary	key.	Going	back	to	the	CUSTOMER_TBL,	the	job	position
(JobPosition)	and	its	description	(JobDescription)	are	totally	independent
of	the	CustomerID	primary	key.	This	is	because,	in	general,	any	job
position	will	have	the	same	duties	and	responsibilities	regardless	of	who
the	customer	is.	Thus,	we	will	separate	the	JobPosition	and	JobDescription
attributes	into	another	table	called	POSITION_TBL.

	

	

In	this	chapter	you	have	learnt	that	there	are	design	practices	that	you	can
apply	to	boost	the	performance	of	your	databases.	Duplicate	data	values	are
avoided	by	assigning	primary	and	foreign	keys	in	tables.	Search	queries	are
heightened	through	the	implementation	of	table	indexes.	Data	consistency	and
security	are	improved	because	of	the	normalization	process.	Thus,	overall
database	organization	is	enhanced.	In	the	next	chapter	you	will	learn	some
advance	topics	in	SQL	design	that	includes	cursors,	triggers	and	errors.

Chapter	Eleven:		Database	Advance	Topics
	

	

In	this	chapter	you	will	be	introduced	to	some	advance	topics	in	SQL	that
goes	beyond	basic	database	transactions.	Even	if	this	section	only	includes	an
overview	of	cursors,	triggers	and	errors,	such	knowledge	could	possibly	help
you	extend	the	features	of	your	SQL	implementations.

	

Cursors

	

Generally,	SQL	commands	manipulate	database	objects	using	set-based
operations.	This	means	that	transactions	are	performed	on	a	group	or	block	of
data.	A	cursor,	on	the	other	hand,	processes	data	from	a	table	one	row	at	a	time.
It	is	created	using	a	compound	a	statement	and	destroyed	upon	exit.	The
standard	syntax	for	declaring	a	cursor	is	(which	may	differ	for	every
implementation):

	

DECLARE	CURSOR	CURSOR_NAME
IS	{SELECT_STATEMENT}

	

You	can	perform	operations	on	a	cursor	only	after	it	has	been	declared	or
defined.

	

Open	a	Cursor

	

Once	declared,	you	perform	an	OPEN	operation	to	access	the
cursor	and	then	execute	the	specified	SELECT	statement.	The	results	of
the	SELECT	query	will	be	saved	in	a	certain	area	in	the	memory.	The
standard	syntax	for	opening	a	cursor	is:

	

OPEN	CURSOR_NAME;

	

Fetch	Data	from	a	Cursor

	

The	FETCH	statement	is	performed	if	you	want	to	retrieve	the
query	results	or	the	data	from	the	cursor.	The	standard	syntax	for	fetching
data	is:

	

FETCH	NEXT	FROM	CURSOR_NAME	[INTO	FETCH_LIST]

	

In	SQL	programming,	the	optional	statement	inside	the	square
brackets	will	let	you	assign	the	data	retrieved	into	a	certain	variable.

	

Close	a	Cursor

	

There	is	a	corresponding	CLOSE	statement	to	be	executed	when
you	open	a	particular	cursor.	Once	the	cursor	is	closed,	all	the	names	and
resources	used	will	be	deallocated.	Thus,	the	cursor	is	no	longer	available
for	the	program	to	use.	The	standard	syntax	for	closing	a	cursor	is:

	

CLOSE	CURSOR_NAME

	

Triggers

	

There	are	instances	when	you	want	certain	SQL	operations	or	transactions
to	occur	after	performing	some	specific	actions.	This	scenario	describes	an	SQL
statement	that	triggers	another	SQL	statement	to	take	place.	Essentially,	a	trigger
is	an	SQL	procedure	that	is	compiled	in	the	database	that	execute	certain
transactions	based	on	other	transactions	that	have	previously	occurred.	Such
triggers	can	be	performed	before	or	after	the	execution	of	DML	statements

(INSERT,	DELETE	and	UPDATE).	In	addition,	triggers	can	validate	data
integrity,	maintain	data	consistency,	undo	transactions,	log	operations,	modify
and	read	data	values	in	different	databases.

	

Create	a	Trigger

	

The	standard	syntax	for	creating	a	trigger	is:

	

CREATE	TRIGGER	TRIGGER_NAME
														TRIGGER_ACTION_TIMETRIGGER_EVENT

ON	TABLE_NAME
[REFERENCING	OLD_OR_NEW_VALUE_ALIAS_LIST]
TRIGGERED_ACTION

	

TRIGGER_NAME	-	the	unique	identifying	name	for	this	object

TRIGGER_ACTION_TIMETRIGGER_EVENT	-	the	specified	time
that	the	set	of	triggered	actions	will	occur	(whether	before	or	after
the	triggering	event).

TABLE_NAME	–	the	table	for	which	the	DML	statements	have	been
specified

TRIGGERED_ACTION	–	specifies	the	actions	to	be	performed	once
an	event	is	triggered

	
Once	a	trigger	has	been	created,	it	cannot	be	altered	anymore.	You	can	just

either	re-create	or	replace	it.	How	a	trigger	works	depends	what	conditions	you
specify	–	whether	it	will	fire	at	once	when	a	DML	statement	is	performed	or	it
will	fire	multiple	times	for	every	table	row	affected	by	the	DML	statement.	You
can	also	include	a	threshold	value	or	a	Boolean	condition,	that	when	such
condition	is	met	will	trigger	a	course	of	action.

	

Drop	a	Trigger

	

The	basic	syntax	for	dropping	a	trigger	is	the	same	as	dropping	a
table	or	a	view:

	

DROP	TRIGGER	TRIGGER_NAME;

	

Errors

	

An	error-free	design	or	implementation	is	one	of	the	ultimate	goals	in	any
programming	language.	You	can	commit	errors	by	simply	not	following	naming
conventions,	improperly	writing	the	programming	codes	(syntax	or	typo	errors
like	a	missing	apostrophe	or	parenthesis)	or	even	when	the	data	entered	does	not
match	the	data	type	defined.

	

To	make	things	easier,	SQL	has	devised	a	way	to	return	error	information
so	that	programmers	will	be	aware	of	what	is	going	on	and	be	able	to	undertake
the	appropriate	actions	to	correct	the	situation.	Some	of	these	error-handling
mechanisms	are	the	status	parameter	SQLSTATE	and	the	WHENEVER	clause.

	

SQLSTATE

	

The	status	parameter	or	host	variable	SQLSTATE	is	an	error-
handling	tool	that	includes	a	wide	selection	of	anomalous	condition.	It	is	a
string	that	consists	of	five	characters	(uppercase	letters	from	A	to	Z	and
numerals	from	0	to	9),	where	the	first	two	characters	refer	to	the	class	code
while	the	next	three	is	the	subclass	code.	The	class	code	identifies	the
status	after	an	SQL	statement	has	been	completed	–	whether	it	is
successful	or	not	(if	not	successful,	then	one	of	the	major	types	of	error
conditions	are	returned).	Supplementary	information	about	the	execution
of	the	SQL	statement	is	also	indicated	in	the	subclass	code.

	

The	SQLSTATE	is	updated	after	every	operation.	If	the	value	is
‘00000’	(five	zeroes),	it	means	that	the	execution	was	successful	and	you

can	proceed	to	the	next	operation.	If	it	contains	a	five-character	string
other	than	‘00000’,	then	you	have	to	check	your	programming	lines	to
rectify	the	error	committed.	There	are	numerous	ways	on	how	to	handle	a
certain	SQL	error,	depending	on	the	class	code	and	subclass	code	specified
in	the	SQLSTATE.

	

WHENEVER	Clause

	

The	WHENEVER	clause	error-handling	mechanism	focuses	on
execution	exceptions.	With	this,	an	error	is	acknowledged	and	gives	the
programmer	the	option	to	correct	it.	This	is	better	than	not	being	able	to	do
something	if	an	error	occurs.	If	you	cannot	rectify	or	reverse	the	error	that
was	committed,	then	you	can	just	gracefully	terminate	the	application
program.

	

The	WHENEVER	clause	is	written	before	the	executable	SQL
code,	specifically	in	the	SQL	declaration	section.	The	basic	syntax	is:

	

WHENEVER	CONDITION	ACTION;

	

CONDITION	–	value	can	either	be	SQLERROR	(returns	TRUE	if
SQLSTATE	class	code	is	other	than	00,	01	or	02)	or	NOT	FOUND
(returns	TRUE	if	SQLSTATE	is	02000)

ACTION	–	value	can	either	be	CONTINUE	(execution	of	the
program	is	continued	normally)	or	GOTO	address	(execution	of	a
designated	program	address)

	

In	this	chapter	you	have	learnt	the	primary	role	of	cursors,	how	triggers
work	and	the	importance	of	handling	errors	in	SQL	programming.	Learning
these	advance	topics	is	one	step	closer	in	maximizing	the	potentials	of	your	SQL
implementations.

Chapter	Twelve:		Exercises
	

	

Exercise	#1

Create	an	invoice	table	named	OrderInvoice_TBL	in	SQLiteStudio	with
the	following	fields:	InvoiceID	–	primary	key,	integer	data	type	CustomerID	–
integer	data	type	OrderID	–	integer	data	type	TaxAmt	–	decimal	data	type	with	a
precision	of	9	and	a	scale	of	2

																												TotalSaleAmt	–	decimal	data	type	with	a	precision	of	9
and	a	scale	of	2

																												ShippingFee	–	decimal	data	type	with	a	precision	of	9	and
a	scale	of	2

Exercise	#2

After	creating	the	OrderInvoice	table,	populate	the	fields	using	the
INSERT	statement	with	the	following	data	values:

Invoice	ID Customer
ID

Order	ID Tax
Amount

Total
Sales

Shipping
Fee

2016001 1 1005

$523.80 $198023.05

$1981.78

2016002 3 1006

$302.83 $198302.03

$2005.10

2016003 3 1007

$217.02 $20021.70

$1983.12

2016004 2 1008

$909.00 $200009.09

$19827.22

	

Exercise	#3

Create	a	view	named	OrderLargeSales_VW	from	OrderInvoice	table
where	the	total	sales	is	greater	than	$	150,000.00	and	the	tax	amount	is	less
than	$600.	The	view	will	only	consist	of	the	following	fields:	Customer	ID,
Order	ID,	Tax	Amount	and	Total	Sales.

Exercise	#4

Delete	the	OrderInvoice_TBL	table	and	the	OrderInv_VW	view	using	the
DML	command	DROP.

Exercise	Answers
	

	

Answers	for	Exercise	#1

1.	 Launch	SQLiteStudio.	Click	on	TOOLS	menu	and	then	choose	OPEN
SQL	EDITOR	option.
	

2.	 Click	the	QUERY	tab	at	the	right	and	type	the	following	programming
lines:
	
CREATE	TABLE	OrderInvoice_TBL	(
														InvoiceID																	INTEGER			PRIMARY	KEY,	CustomerID		
														INTEGER	,	OrderID														INTEGER,	TaxAmt													
DECIMAL(9,	2),	TotalSaleAmt														DECIMAL(9,	2),
ShippingFee														DECIMAL(9,	2));
	

3.	 Click	the	EXECUTE	QUERY	button	 .

Answers	for	Exercise	#2

1.	 Launch	SQLiteStudio.	Click	on	TOOLS	menu	and	then	choose	OPEN
SQL	EDITOR	option.
	

2.	 Click	the	QUERY	tab	at	the	right	and	type	the	following	programming
lines:
	
INSERT	INTO	OrderInvoice_TBL
														VALUES
														(2016001,	1,	1005,	523.80,	198023.05,	1981.78),	(2016002,	3,
1006,	302.83,	198302.03,	2005.10),	(2016003,	3,	1007,	217.02,
20021.70,	1983.12),	(2016004,	2,	1008,	909.00,	200009.09,	19827.22);

3.	 Click	the	EXECUTE	QUERY	button	 .

Answers	for	Exercise	#3

1.	 Launch	SQLiteStudio.	Click	on	TOOLS	menu	and	then	choose	OPEN
SQL	EDITOR	option.
	

2.	 Click	the	QUERY	tab	at	the	right	and	type	the	following	programming
lines:
CREATE	VIEW	OrderInv_VW	AS

SELECT	CustomerID,	OrderID,	TaxAmt,	TotalSaleAmt
FROM	OrderInvoice_TBL
WHERE	TotalSaleAmt	>	150000	AND	TaxAmt	<	600;

Answers	for	Exercise	#4

1.	 Launch	SQLiteStudio.	Click	on	TOOLS	menu	and	then	choose	OPEN
SQL	EDITOR	option.

	
2.	 Click	the	QUERY	tab	at	the	right	and	type	the	following	programming

lines	to	delete	the	table:
	
DROP	TABLE	OrderInvoice_TBL;

	

3.	 Click	the	EXECUTE	QUERY	button	 .
	

4.	 To	delete	the	view,	type	the	following	programming	lines	and	then

click	the	EXECUTE	QUERY	button	 .
	
	
DROP	VIEW	OrderInv_VW;

Here	is	a	quick	recap	of	what	we	covered	in	case	you
need	a	refresher	on	a	certain	step:

	

	
1.	 You	now	have	an	understanding	of	the	history	and	uses	of	the	SQL

language.
2.	 You	learnt	how	to	describe	relational	databases	and	database	management

systems.
3.	 You	learnt	how	to	use	the	different	SQL	command	types	and	install

SQLiteStudio.
4.	 You	learnt	how	to	define	and	use	the	various	data	types.
5.	 You	learnt	how	to	use	the	CREATE,	ALTER	and	DROP	statements.
6.	 You	learnt	how	to	use	the	INSERT,	UPDATE	and	DELETE	statements.
7.	 You	learnt	how	to	use	the	SELECT,	WHERE,	ORDER	BY	and	GROUP

BY	statements.
8.	 You	learnt	how	to	use	the	COMMIT,	ROLLBACK	and	SAVEPOINT

commands.
9.	 You	also	learnt	how	to	define,	create	and	drop	views.

10.																						You	learnt	how	to	assign	primary	and	foreign	keys,	create
indexes	and	normalize	databases.
11.																						You	learnt	how	to	use	cursors,	triggers	and	errors.

Final	Words
	

	

I	hope	that	you	have	truly	enjoyed	learning	the	essentials	of	SQL
programming	and	database	management	using	SQLiteStudio	through	this
eBook.	I	had	made	sure	that	you	will	tremendously	benefit	from	reading	this	by
meeting	your	goals	in	understanding	what	SQL	database	is	at	an	affordable
price.	I	am	sure	that	with	the	knowledge	you	have	gained	through	the	guidelines
of	this	eBook,	you	can	now	plan,	design	and	create	your	very	own	databases	in
SQLiteStudio.

	

You	may	also	consider	learning	other	programming	languages,	your
knowledge	of	SQL	Programming	will	give	you	a	tremendous	advantage	if	you
wish	to	learn	other	languages.	You	can	find	other	popular	programming	books
HERE.

	

By	the	way,	I	would	greatly	appreciate	if	you	can	provide	any	constructive
feedback	or	reviews	that	will	further	improve	my	skills	as	a	writer.	Please	feel
free	to	send	me	an	email,	especially	if	you	have	anything	to	clarify	or	ask	(even
if	you	just	want	to	drop	by	and	say	hello!).	My	email	address	is
Felix_Alvaro@mail.com.

	

														Again,	thank	you	and	God	bless	always!

	

Felix	Alvaro

http://www.amazon.com/Felix-Alvaro/e/B015JCBZN4/ref=dp_byline_cont_ebooks_1
mailto:Felix_Alvaro@mail.com

