SL

EASY SQL PROGRAMMING & DATABASE
MANAGEMENT FOR BEGINNERS

YOUR STEP-BY-STEP GUIDE TO
LEARNING THE SQL DATABASE

FELI X ALVARIE

SQL

Easy SQL Programming & Database
Management For Beginners. Your Step-By-
Step Guide To Learning The SQL Database.

Felix Alvaro

Acknowledgments

Firstly, I want to thank God for giving me the knowledge and inspiration to
put this informative book together. I also want to thank my parents, my brothers
and my partner Silvia for their support.

Table of Contents

Chapter One: SQL Overview

- History of SQL
- Uses of SQL
- People Using SQL

Chapter Two: The Database Essentials

- Database Fundamentals - Relational Database Fundamentals -
Database Management Systems Chapter Three: The SQL Structure

SQL Fundamental Features - SQL Command Types - SQLite Database
Features and Installation Instructions

Chapter Four: Data Types

Definition of Data - Types of Data - User-Defined Data Type Chapter
Five: Data Definition .anguage Statements

- CREATE Statement - ALTER Statement - DROP Statement Chapter
Six: Data Manipulation L.anguage Statements

- INSERT Statement - UPDATE Statement - DELETE Statement
Chapter Seven: Data Query L.anguage Statements

- SELECT Statement - WHERE Statement - ORDER BY and GROUP
BY Statements Chapter Eight: Transactional Control Commands

- COMMIT Command - ROLLBACK Command - SAVEPOINT
Command Chapter Nine: Database Views

- Defining Views - Creating Views - Dropping Views Chapter Ten:
Enhancing Database Designs

- Assigning Primary and Foreign Keys - Understanding Indexes -
Normalizing Databases Chapter Eleven: Database Advance Topics

- Cursors - Triggers - Errors Recap + Final Words

- Recap and Final words - Check out my other books

© Copyright 2016 by D.A.Alvaro - All rights reserved.

This document is geared towards providing exact and reliable information in
regards to the topic and issue covered.

It is not legal to reproduce, duplicate, or transmit any part of this document in
either electronic means or in printed format. Recording of this publication is
strictly prohibited.

Introduction

Hi there! Thank you so much for downloading this eBook in SQL
Programming and Database Management for Beginners. I assure you that you
have made a wise decision in investing in your skills as a database professional.
This eBook will teach you vital information on the fundamentals of database
programming and management using one of the powerful software tools — the
SQL language. I am Felix, who also started as a simple analyst and now
progressing into becoming a database scientist. Through the guidance of this
eBook, you will have a better understanding of the countless opportunities that
this SQL language can bring you. I will be presenting you step-by-step
instructions in learning the essential skills of this reliable database software.

At first, I did not realize how important it is for one to comprehend SQL if
there are other program applications you can use, such as Microsoft Excel, to
process and present information. When I started researching for the value of
SQL, I told myself that if I continue embarking on this field then I will not just
be presenting information but analyzing data as well. After downloading and
installing the software, I have found out that it is not that challenging to study
SQL programming after all! Taking that first step to understanding the basic
database concepts will lead you to expanding your knowledge in becoming one
of the most sought-after IT professionals.

The current trend in information technology is to be more digital, which
entails manipulating databases. This is where SQL comes in place — a software
language that is powerful yet simple, flexible, portable and, most of all,
integrated into numerous database applications. Deciding to become a database
professional will definitely promise you a secured job with a potential high
remuneration. On the average, a simple database analyst in the United States
earns an annual salary of around $92,000 USD.

To start your journey in this field of database programming and
management, let this eBook serve as your initial guide in educating yourself with
the basics of SQL. I will provide you an overview of how the language started,
the various features of the software and its environment, the different commands
and functions, the available error-handling tools, some advanced topics and
many more! My ultimate aim is for you to appreciate the potentials of SQL and
grasp the programming concepts in a cool way. So what are you waiting for? Let
us get started!

Chapter One: SQL Overview

In this chapter you will learn a brief background on how and why SQL
came into existence. Gaining knowledge on the history of this computer
language will help you understand its importance to most IT professionals who
focus on the field of data manipulation. You will also have an idea on how to
maximize the potentials of SQL in the ever-changing world of Information
Technology.

The current trend in most businesses today is to invest in technology that
will gather data in the most efficient and effective way. However, gathering
information is only the start of the extensive process of data manipulation.
Companies, especially multinational ones, require experts who possess the skills
of analyzing, presenting, managing and storing data. In other words, they need to
use computer programs that will transform raw company data to useful
information. Now, thanks to Structured Query Language, or simply SQL, that
brought about such transformation in accessing and manipulating data in a very
meaningful way.

History of SQL

Pronounced as ees-que-ell or see’qwl, SQL is a computer language initially
invented by an American multinational technology and consulting company
known as IBM (International Business Machines Corporation) way back 1970s
using Dr. E. F. Codd’s paper on “A Relational Model of Data for Large Shared
Data Banks” for the prototype design. It was originally called SEQUEL
(Structured English QUEry Language) that handled queries on the collection and
organization of data - or simply known as a database. More features were added
to the computer software to improve its performance, like building and
managing database security, among others. When IBM researchers learned that
there is another company that had the same “Sequel” trademark, they renamed it
to “S-Q-L” (presently expanded as Structured Query Language).

Since it was first released to the public, SQL already had many versions. In
1979, Relational Software, Incorporated (which later became the Oracle
Corporation) released ORACLE, the first SQL product. Now, as the demand for
computers that manage data has increased, the more SQL has become an
industry standard in the field of Information Technology. Such formal standard is
set and maintained by the International Standards Organization, or simply
known as ISO. It was on 1986, based on IBM’s implementation, that SQL has
been recognized as the standard language in database communication. The
following year, ISO accepted ANSI SQL as the international standard. ANSI
stands for American National Standards Institute, which is an organization that
approves certain standards in various US industries. Many revisions of the
standards followed, such as in 1992 (SQL-92) and in 1999 (SQL-99). The latest
one is now called SQL-2011, which was officially released in December 2011.

Uses of SQL

The corporate world is now shifting from merely producing products and
providing services to investing in digital technologies that handle vast amounts
of data, to be transformed to meaningful pieces of information that will generate
more profitable income for the company. This is the primary objective of SQL —
to access and manipulate data that will further lead to business insights. This
flexible computer language has been the most widely used communication tool
in handling databases (specifically relational databases that will be further
discussed in Chapter 3 of this book).

Try to imagine that you are going to a foreign country for a vacation. You
may need to learn that country’s language to find your way around as you
explore the new place. When you try ask someone for directions, who is local to
that place and only speaks the country’s language, then surely you will have a
hard time understanding him. In this scenario, the foreign land will be your
database in which you need to seek information while SQL is the language that
you will use to get what you need from the database.

From time to time, you will encounter the term query, which is also a part
of the abbreviation of SQL. Query is basically the question written using an SQL
statement that is being asked from the database. SQL then retrieves the needed
information when any of the data in the database meets the requirements of the
conditions of the given query. So in real-life applications, such as an online
store, when you execute your query for a specific item by entering your search
criteria, SQL programming usually takes place in the background to manage the
database connections. You are actually telling the database, through the help of
SQL, what information you want to see and how you want it to be presented to
you.

People Using SQL

SQL is not only applicable for IT professionals or geeks who possess
remarkable programming skills. With the growing corporate world of today, non-
IT personnel such as businessmen and managers, can also benefit from learning
the semantics of SQL. This is because the computer language enables them to
understand the ins and outs of their businesses using the data that drives every
company. Moreover, it opens several career opportunities in the analytical,
managerial, strategic or research fields - for those who want to step-up from their
current positions. On the IT field, SQL knowledge can lead to more challenging
roles such as database designers, administrators or scientists, systems engineers,
project managers and software developers, among others.

In this chapter you have learnt an overview of SQL — its history, its primary
purpose why it was created and those who will profit from learning this powerful
database software. In the next chapter you will learn the essentials of database,
which is the primary reason why SQL was designed in the first place.

Chapter Two: The Database Essentials

Before you start learning the technicalities of SQL as a computer language,
this chapter will discuss first what a database is and its fundamental
characteristics. You will also be informed why the business world is now driven
to gather and manipulate data to bring forth more profitable income.

Database Fundamentals There are many ways on how to define or describe
what a database is. In simple terms, it can be defined as a collection of items that
can exist over a long period of time. Think of a calling card holder as a database
that contains business cards with different information of people that you know
(e.g. person’s name, job title, company name, contact number). Another one is a
printed telephone directory (more popularly known as the yellow pages) that
contains the name, phone number and address of the registered residents living
in a particular area.

Some define database more professionally, not just a collection of data. It is
described as an organized tool capable of keeping data or information that you
can retrieve in an effective and efficient way when the need arises. It can also be
more strictly defined as a self-describing collection of objects that are integrated
to one another. When you create representations of these physical or conceptual
objects then they will be called records. From the previous example of your
calling card holder, if you wish to keep track of your business contacts then you
have to assign each business card a specific record. Every record contains
multiple information or data, such as individual name, job title, company name
and address, phone number and more that you will now call the record’s
attributes.

A database does not only contain the data that you need, but also what you
call its metadata. This is the information that defines or describes the data’s
structure within the given database (that is why it was defined earlier as a self-
describing entity), stored in a region called data dictionary. Thus, data retrieval

will be faster if you know how information is arranged and stored. Furthermore,
relationships exist among the data items since they are integrated to one another.
Check the following figure for a sample illustration of what a database is.

DATAY

USERSY) OBJECTSY
]
]
g

\
—

QUERIESY DATAT ~~_| PROCESSESY

~
N g

Whether a database contains a simple collection of a few records or a
massive system composed of millions of records, it can be categorized into three
types: personal, workgroup or departmental, and enterprise. Each category is
characterized by the database size, the machinery size into which the database
runs and how big the organization that manages it.

Personal Database — This is conceptualized and designed by a single
person on a stand-alone computer. Its database structure is rather
simple and the size is relatively small. For example, your personal
electronic address book.

Workgroup/Departmental Database — This is designed and created
by individuals of a single workgroup or department within a certain
organization. The database structure is larger and more complex, as
compared to the personal category, which is also accessed by multiple
users at the same time.

Enterprise Database — Among the three categories, this type is
conceptualized and created to handle the entire flow of information of
very large organizations. Thus, the database design involves far more

complex structures.

Relational Database Fundamentals Taking the discussion further into a more
technical aspect, a relational database is an entity consisting of logical units
known as tables. This relational database model was first formulated by Dr. E. F.
Codd in 1970. How the tables are related to each other defines their
relationships. In this scenario, data is simplified into smaller yet more logical
and manageable units that optimize the database performance. The following
figure shows an illustration on how the various components of a relational
database are connected to each other.

RELATIONSHIP
USERS
el
P
.-"-’{f
TABLE 1 TABLE2 | ~~ | _—{ QUERIES
- OBJECTS
DATA DATA ==
I'\-~-.__‘____\-
———_ PROCESSES

R e

A table consists of rows and columns that store data. In a relational
database, these tables are related to one another improving the data retrieval
process when a query is submitted by the user. For you to clearly picture out this
idea, convert the information found on the calling card holder into a spreadsheet
like a Microsoft Excel file. Assume that these are your contacts from companies
that have ordered products and services from your business. You will have at
least a CUSTOMER TABLE (containing all important information about your
contacts) similar to the following:

CUSTOMER NAME POSITION COMPANY STATE CONTACT
ID NO
Kathy President Tile X 3461234567
1 Ale Industrial
2 Kevin VP Best NY 5181234567
Lord Tooling
3 Kim Director CarWorld CA 5101234567
Ash
4 Abby Manager West Mart NV 7751234567
Karr

You will also have an ORDER TABLE that will store information such as
order ID, date, quantity and more. Check the following table:

ORDER ORDER CUSTOMER PRODUCT ORDER

ID DATE ID ID QTY
1 2016-05-23 1 4 300
2 2016-09-09 1 5 100
3 2016-02-17 3 2 150
4 2016-05-12 2 2 500

As you can see, each table looks like an array of rows and columns.
Referring to the CUSTOMER TABLE, a row is also called a record or a tuple
that holds information for a single customer. On the other hand, a column holds a
single attribute of the customer (i.e., name, job title or position, company name
and address, contact number). It is also self-consistent, meaning it contains the
same type of data in every row. So if a column contains the name of your
customer in the first row, then the succeeding rows will have to show the names
of your other customers. There is also no significance which row or column will
appear first and which will be next, since there is no particular organization that
is followed. Looking at both tables, you will notice that each one of them has a
column that contains the same data value — CUSTOMER ID. This is now called
the common key, which links the tables to one another in a relational database.
The existence of the common keys makes it possible to merge data from multiple
tables in forming a larger set of data entity.

The relation between the two tables consists of a two-dimensional array of
data stored in rows and columns. The intersection of a row and a column is
called a cell. Each cell contains singe-valued entries and each row is unique.
Thus, each cell has only one value and no duplicate rows. Going back to the
CUSTOMER and ORDER TABLES, will be able to create the following relation
by adding the CUSTOMER NAME that corresponds to the given CUSTOMER
ID:

ORDER CUSTOMER CUSTOMER
ID ID NAME

Kathy Ale
Kathy Ale
Kim Ash
Kevin Lord

A WN -
N W R =

You will see that there is no empty cell. One particular order referenced by
the ORDER ID is associated to a particular customer, indicated by the
CUSTOMER ID and CUSTOMER NAME. There are no two customers having
the same ORDER ID. That is why, there will be no two rows that are exactly
identical.

Database Management Systems A database management system, or simply
DBMS, is an important programming tool that consists of a set of programs that
define, manage and process databases and all applications associated to them.
Through this, you are able to build a structure and operate on the valuable data
that the database holds in a very efficient way. There are two main types of users
that work on DBMS — the conventional user who retrieves or modifies data and
the administrator who is responsible for maintaining the structure of the
database.

The following are the key features of a DBMS:

e Allows the creation of new databases and their data structures

e Allows data query and modification using an appropriate
programming language

e Allows the storage of vast amounts of data over a long period of time

e Enables database recovery in times of failure, error or intentional
misuse
e (Controls data access from many users at once

It was during the late 1960s when the first commercial DBMS appeared. It
evolved from file systems that basically provided data storage for over a certain
period of time. Though such systems were capable of storing tremendous
amount of data, computer professionals still have to face problems of data loss
and an inefficient information retrieval system. There were also issues on control
access where errors occur when two users modify the same file at the same time.
Some examples of these applications are airline reservation systems, banking
systems and corporate record keeping systems, among others.

With the advancement of technology in the market today, you can find
numerous programs that will be suitable for your DBMS requirements. There are
applications that run on a small scale level like your personal computer or tablet.
Some are built to run on a large and powerful equipment, like those being used
by multinational companies. Nevertheless, the on-going trend is for DBMS to be
executed on multiple platforms or machines (whether large or small) that are
interconnected to one another, forming an immense scalable network. I'T experts
have also found ways on how store data using Internet technology in powerful
data centers or more popularly known as clouds. This cloud can be public entity
(managed by a large company like Microsoft or Google) or a private one
(maintained and stored via the intranet within an organization).

USER 1

In this chapter you have learnt the essential features of a database and how
it transforms to become a relational database. Also, you had an overview of the
history and characteristics of database management systems. In the next chapter
you will learn the fundamental structure of the SQL language and its
components.

Chapter Three: The SQL Structure

In this chapter you will learn the fundamental features of the SQL language
and an overview of its programming aspect. In addition, you will be presented
with a step-by-step instruction on where and how to download SQLite, a version
of the SQL software that will be used all throughout the discussion of this e-
Book.

SQL Fundamental Features SQL is a flexible computer language that you can
deploy in different ways to communicate with relational databases. This software
has some distinct features that differentiates it from other programming
applications. First and foremost, SQL is a nonprocedural language. Most
computer programs (e.g., C, C++ and Java) solve problems by following a
sequence of commands that is called a procedure. In this case, one specific
operation is performed after another until the required task has been
accomplished. The flow of operation can either be a linear sequence or a looping
one, depending on what the programmer had specified. This is not the same for
SQL. In using this application, you will just have to specify the output that you
want, not how you want to generate the output. From the CUSTOMER TABLE,
if you want to create a separate list of contacts whose company are located in
Texas then you have to retrieve the rows where the STATE column contains
“TX” as its value. In writing the SQL command, you don’t have to indicate how
the information should be retrieved. It is the primary role of the database
management system to examine the database and decide how to generate the
results you wanted.

Learning the SQL syntax is like understanding the English language
structure. Its command language, comprised of a limited number of statements,
performs three primary data functions - definition, manipulation and control. The
SQL programming language also includes reserved words that are only to be
used for specific purposes. Thus, you cannot use these words as names for
variables, tables and columns; or in any other way apart from their intended use.

Below are some of the most common reserved words in SQL:2011.

ABS
ARE
BETWEEN
CASCADED
CLOSE
CONNECT
CYCLE
DECLARE
DOUBLE
END
EXTERNAL
FLOOR
FUNCTION
GROUPING
IN
INTERSECT
LANGUAGE
LOWER
MINUTE
NATURAL
NOT
ON
OVER
PRECISION
REAL
RESULT
ROW
SELECT
START
THEN
TRIGGER
UNKNOWN
VALUES
WHERE

ALL
ARRAY
BINARY

CASE
COLLATE
CONSTRAINT
DATE
DEFAULT
DROP
ESCAPE
EXTRACT

FOR
FUSION
HAVING

INNER
INTERVAL
LARGE
MATCH
MOD
NEW
NULL
ONLY
OVERLAY
PREPARE
RECURSIVE
RETURN
ROWS

SET

STATIC
TIME
TRUNCATE
UPDATE
VARCHAR
WINDOW

ALLOCATE
AS
BOOLEAN
CEILING
COLLECT
CONVERT
DAY
DELETE
DYNAMIC
EVERY
FALSE
FOREVER
GET
HOLD
INOUT
INTO
LEAD
MAX
MODULE
NIL
NUMERIC
OPEN

PARAMETER

PRIMARY
REF
REVOKE
SCOPE
SIMILAR
SUM

TIMESTAMP

TRIM
UPPER
VARYING
WITH

ALTER
AT
BOTH
CHAR
COLUMN
COUNT
DEALLOCATE
DESCRIBE
EACH
EXCEPT
FETCH
FREE
GLOBAL
HOUR
INSERT
IS
LEFT
MEMBER
MONTH
NO
OF
OR
PARTITION
PROCEDURE
REFERENCES
RIGHT
SCROLL
SOME
SYMMETRIC
TO
TRUE
USER
VERSION
WITHIN

AND
AVG
BY
CHARACTER
COMMIT
CREATE
DEC
DISCONNECT
ELEMENT
EXECUTE
FILTER
FROM
GRANT
HOURS
INT
JOIN
LIKE
MERGE
MULTISET
NONE
OFFSET
ORDER
POSITION
RANGE
REFERENCING
ROLLBACK
SEARCH
SPECIFIC
SYSTEM
TRANSLATE
UNION
USING
WHEN
WITHOUT

ANY
BEGIN
CALL
CHECK
CONDITION
CURSOR
DECIMAL
DISTINCT
ELSE
EXISTS
FLOAT
FULL
GROUP
IDENTITY
INTEGER
KEEP
LOCAL
METHOD
NATIONAL
NORMALIZE
OLD
ouT
POWER
RANK
RELEASE
ROLLUP
SECOND
SQL
TABLE
TREAT
UNIQUE
VALUE
WHENEVER
YEAR

If you think that an SQL database is just a collection of tables, then you are
wrong. There are additional structures that need to be specified to maintain the
integrity of your data, such as schemas, domains and constraints.

e Schema — This is also called the conceptual view or the complete logical

view that defines the entire database structure and provides overall table
organization. Such schema is considered a metadata — stored in tables and
part of the database (just like tables that consist of regular data).

e Domain — This specifies the set of all finite data values you can store in a
particular table column or attribute. For example, in our previous
CUSTOMER TABLE the STATE column can only contain the values
“TX”, “NY”, “CA” and “NV” if you only provide products and services in
the states of Texas, New York, California and Nevada respectively. So
these four state abbreviations are the domain of the STATE attribute.

e Constraint — Often ignored but one of the important database
components, this sets down the rules that identify what data values a
specific table attribute can contain. Incorporating tight constraints assures
that database users only enter valid data into a particular column. Together
with defined table characteristics, column constraints determine its
domain. Using the same STATE column as an example with the given
constraint of only the four values, if a database user enters “NJ” for New
Jersey, then the entry will not be accepted. The system will not proceed
until a valid value is entered for the STATE attribute, unless the database
structure needs to be updated due to sudden business changes.

SQL Command Types Before you start programming in SQL, you need to
understand its basic command categories in performing various functions —
database creation, object manipulation, data population and update, data
deletion, query submission, access control and database administration, among
others. The following are the main categories:

e Data Definition Language (DDL)

Data Definition Language (or simply DDL) enables you to create,
change or restructure, and even destroy the basic elements that are
contained in a relational database. DDL focuses only on the structure, not
the data contained within the elements. These basic elements or data
objects include tables, schemas, views and more. Having no independent

physical existence, a view is regarded as a virtual table in which its
definition only exists in the metadata. However, the view’s data comes
from the table (or tables) where you will derive the view. Stated below
are some of the most common DDL commands:

o CREATE - This command statement is responsible for building
the database structure. Its syntax is:

CREATE TABLE
CREATE VIEW

o ALTER - This command statement is in charge of changing the
database structure after it has been created. Its syntax is:

ALTER TABLE
ALTER VIEW

o DROP - This command is the reverse of the CREATE statement,
which destroys the database structure. Its syntax is:

DROP TABLE
DROP VIEW

e Data Manipulation Language (DML)

Data Manipulation Language (or simply DML) consists of SQL
commands that handle data maintenance functions. This means that you
are able to manipulate the data contained within the relational database
objects. The command statements, which read like normal English
sentences, will allow you to enter, change, remove or retrieve data. The
following are the DML statements commonly used:

e INSERT - This command statement is used to insert new data

values into a certain table. To add values into a table with two
columns, use the following syntax:

INSERT INTO TABLE_NAME

VALUES (‘valuel’, ‘value2’); TABLE_NAME is the
name of the table where you will be adding the new
values. The number of items inside the VALUES
parenthesis represents the number of columns of the
table, which are arranged in the same order as the said
columns. If the values are of character or date/time data
types, they need to be enclosed by single quotation
marks. This is not required for numeric or null values
(the null value should be written as NULL).

UPDATE - This command statement is used to modify or alter
pre-existing data values in a table, not add or remove records. The
update is done one table at a time or multiple rows/columns of one
table within a database. To change a single column, use the
following syntax:

UPDATE TABLE NAME

SET COLUMN_NAME = ‘value’

[WHERE CONDITION]; As long as the given WHERE
clause is satisfied, then the value of the
COLUMN_NAME will be updated. This could be within
one or multiple records of the given TABLE_NAME.

DELETE — This command statement deletes certain records or
even the entire table, not data values from specific columns. To
remove a single row or multiple records from a table, use the
following syntax:

DELETE FROM TABLE NAME
[WHERE CONDITION]; The WHERE clause is an

important part of this command if you want to delete
selected rows from the TABLE NAME.

Data Query Language (DQL)

Data Query Language (or simply DQL) consists of commands that
perform data selection, which is the main focus of relational database
users in the world of SQL. The statement used is SELECT that can be
accompanied by other clauses or options so that your extracted results
will be in an organized and readable format. You can submit a query to
the database using a separate application interface or just a single
command-line. The following is a syntax for a simple SELECT statement:
SELECT [* | ALL | DISTINCT COLUMN1, COLUMN?Z2]

FROM TABLE1 [, TABLEZ?]; Using the asterisk (*) means
that all columns of the given table are included in the output and
will be displayed. The ALL option extracts and displays all values,
even duplicates, for a column. On the other hand, using the
keyword DISTINCT prevents duplicate rows from being included
and displayed in the output. What follows the FROM keyword is a
list of one or more tables where you want to get the data. The
columns and tables specified in the syntax are all separated by
commas.

Data Control Language (DCL)

Data Control Language (or simply DCL) consists of commands
that allow you to manage data access within the database. Furthermore,
the database is protected from accidental or intentional misuse by
controlling user privileges. DCL concentrates on transactions, which
capture all SQL statements that perform database operations and save
them in a log file. The following are the common DCL command
statements:

e GRANT - This statement provides you with certain privileges,

like giving you the permission to access the database. Its syntax is:

GRANT PRIVILEGEI1, PRIVILEGE?2, ... TO
USER_NAME

e REVOKE - This statement revokes your privileges, like removing
your permission to access the database. Its syntax is:

REVOKE PRIVILEGE1, PRIVILEGEZ, ... TO
USER_NAME

e Transactional Control Commands

Transactional control commands allow users to manipulate various
transactions in maintaining database integrity. In SQL, transactions begin
when applications are executed. The very first transaction is started at the
onset of the SQL application, while the last transaction is ended when the
application is terminated. The following are the common transactional
control commands:

e COMMIT - This statement completes a transaction by making the
changes you made to the database permanent, or simply saving the
transactions. Its syntax is:

COMMIT [WORK]; In the previous command line, the
keyword WORK is optional.

e ROLLBACK - This statement’s primary function is to restore the
database system to its previous state or undo all the actions that
took place in the transaction log. Its syntax is:

ROLLBACK [WORK]; In the previous command line,

the keyword WORK is optional.

e SAVEPOINT - This statement works with the ROLLBACK
command, wherein it creates sections or points within groups of
transactions in which you will be performing the ROLLBACK
command. Its syntax is:

SAVEPOINT SAVEPOINT_NAME; SQLite Installation
Instructions and Database Features Before you start
overwhelming yourself with various database solutions
and SQL command lines, you need to determine first
your purpose why you are creating a database. This will
further determine other database design considerations
such as size, complexity, type of machine where the
application will run, storage medium and more. When
you start thinking of your database requirements, you
need to know up to what level of detail should be
considered in your design. Too much detail will result to
a very complex design that further wastes time and
effort, and even your computer’s storage space. Too
little will lead to a poor performing, corrupt and
worthless database. Once you are done with the design
phase, then you can decide which database software you
can download to start your SQL experience.

For the sake of this e-Book’s discussion, SQLite, a simple software library,
will be used as a starter database engine to design, build and deploy applications.
A free and stand-alone database software that is quick to download and easy to
administer, SQLite was developed by Richard Hipp and his team of
programmers. It is was designed so that it can be easily configured and
implemented, which does not require any client-server setup at all. Thus, SQLite
is considered as one of the most widely used database software applications in
the world.

Stated below are some of the major features of SQLite:

Transactions are atomic, consistent, isolated and durable

Compilation is simple and easy

System crashes and power failures are supported

Full SQL implementation with a stand-alone command-line interface
client

Code footprint is significantly small

Adaptable and adjustable to larger projects

Self-contained with no external dependencies

Portable and supports other platforms like Windows, Android, iOS, Mac,
Solaris and more

In using SQLite, you need to download SQLiteStudio as your database

manager and editor. With its intuitive interface, this software is very light yet fast
and powerful. You don’t even need to install it, just download, unpack and run
the application. Follow these simple steps in downloading SQLiteStudio on a
Windows 10 computer:

1. Go to http://sqlitestudio.pl/?act=about. You should get the following

page:
Lol [|
i) ey i, Ay ! 2QLite
[] k F "
Studio
LRl bl ebane L117L i plgin 1.4
mmmm—::- II
Wt 134 e AT r—

13-ba (R T,

2. Check the version of your computer’s operating system then click the

appropriate link to start downloading the software.

http://sqlitestudio.pl/?act=about

Rantest sintie rrinane ULTL

wirdaw T-EE Timmgy
Linu 178k mamgT
L -tk TINE1DT
SR T e Weamiar
Irive For o
ar Soapces oph iedegendeni 3 IWE pa7 EMAARE
L —— gk Incsgerdent 2B 10T
Storage Far R
Your Dowcs,
Shides Ansd < A0 e CRCE here
Spreads heets
510, Moathy
[

3. After downloading the software, go to the folder where the application
was saved (usually the Downloads Folder in Windows). Click on the
Extract tab on top then choose the Extract all option.

4 o 3 WOLVERINE * Dowrloads

Ouick sooess
sofiteshndio-30.7

N

4. You will get the Extract Compressed (Zipped) Folders dialog box.
Change the destination folder to C:\SQL then click the Extract button.
This will be the folder where all your SQLite files will be saved.

Estract Compiessed (Tpsd] Foldes

Estract Canee

5. Once all the files have been extracted, you will have the SQLiteStudio
subfolder.

s Local Dk (T SCLibeSbudia

6. Find the application program named SQLiteStudio inside the subfolder.
To create a shortcut on your desktop (so you can quickly launch the
application), right-click the filename, select Send to option then choose

Desktop (create shortcut).

¥ Sppieabion fociy S0lAsStudic ¥ Fun mn administrtor
Hame hurs o Wanage Trodilethiot comgatibiiny
Ll - Fin to Start
X = ;
- L. x Scan with Windews Defende L
- Miwe € Dalste Raname . Wi -
a3 . bnirla @ Sean &
o Sheed
e NOLVERME + O5(C) » 501 + SOlieStudin Pin b kaskibar
s agich ~ Rt previcun vericnt
o 3
o= Lecal Dik (D9 fL e a— Sendin ¥ 0 Whetoath device
£5) KODAK ([HESerpLAl Cut Cormpresied [Bpped) fodde
- IG 155wl Copy I Deskiog foresbe shartost)
CHSWidgets di Diguments
160 Crmabs vharbout
- CHSkeidl by i il P recipeent
Deee
87 KO0 i quaspdi Felli] respant
- - Famame
BROTHER v oy B Sope
agfined Al Froperhes 25 MDDAK [
g Netmivs # SOLAEShadis i e ampn i
I A-WaRMERVORLD T seftestutiscti 4P S — -r
B8 AOUTER belBE.dl
B WO ERPE- DL Ty LipdateSol Sty
w kbl i ! w
B

7. When you double-click the SQLiteStudio icon on your desktop,

SQLiteStudio

8. you should get the following screen:

SCuibetoudio (LAT) = a x
Dotabass Sruchien View Took Help

a2 BE5 B s G maen BO O EES ORRAEAENE S

| Catatiases L]

v

DATABASE STATUS AREA SQL WORK AREA

v

NAVIGATOR

The Database Navigator (left pane) shows all the logical units of
the database such as tables and views. The gray pane at the right is the SQL Work
Area where you will write your query statements. You will have a better
understanding of this program’s graphical user interface in the succeeding
chapters.

In this chapter you have learnt the fundamental features of the SQL
database language, which includes program flow, syntax characteristic, reserved
words list, schema, domain, constraint and more. The main categories of SQL
commands were also introduced, that govern the various functions of the
programming language. You were also given a guide on how to download and
install SQLite and SQLiteStudio for your application software. In the next
chapter you will learn the definition of data and its various types supported by
the different SQL implementations.

Chapter Four: Data Types

In this chapter you will learn what data is, its characteristics and the
various types that the SQL programming language supports. There are different
general types of data that are further categorized into several subtypes. However,
it is advisable that you use defined data types to ensure the portability and
comprehensibility of your database.

Definition of Data

Since database is a collection of information, it can store names, numbers,
images, calculations, financial amounts, characters and so on. This stored
information is what you call data, which you can change or manipulate anytime
you want. When you start providing rules on how you write and store data, then
you are dealing with data types. Data types take into consideration the length
allocated by the database for every column in the table and what values it could
contain - whether it is alphanumeric, just numbers, graphics, date or time. By
defining what data is stored in each database field, you are preventing the
occurrence of data entry errors. This form of validation that controls incorrect
data to be entered into the database is also called field definition.

Each database field will have a specific value if it contains a data item.
There are times, however, that a certain field does not have any data item at all.
In this case, the field’s value is considered null - meaning the value is not
known. This null value is different from the numeric zero value or the blank
character value, since zeroes and blanks are definite values. The following are
scenarios when you may have a null value:

You don’t know what the value is yet even if it possibly exists.
The value does not exist yet.

The value is out of range.

The field is not applicable for a particular row.

Types of Data

The following are the general data types predefined in the SQL language
(that are further categorized into subtypes):

e Numeric — The value defined by the numeric data type is some kind
of a number, which could either be expressed with an exact or just an
approximate value.

o Exact Numeric

INTEGER - This consists only of whole numbers that
are both positive and negative. It does not contain a
decimal nor a fractional part. The value ranges from
-2,147,483,648 to 2,147,483,647, with an allocated 4
bytes of storage size.

SMALLINT - This is used in replacement of integers to
save storage space, but with a precision that cannot be
larger than that of an integer. Precision in computer
programming is the maximum total of significant digits a
number can have. The value ranges from -32,768 to
+32,767, with an allocated 2 bytes of storage size.

BIGINT - This is the reverse of the SMALLINT, where
its minimum precision is the same as the INTEGER data
type or greater. The value ranges from
-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807, with an allocated 8 bytes of
storage size.

NUMERIC (p, s) — In addition to the integer part, this
data type also contains a fractional component that
indicates the precision and scale of the value. Scale is the
number of digits or places reserved in a fractional part of
the data, located at the right side of the decimal point. In
NUMERIC (p, s), ‘p’ specifies the precision while ‘s’ is
for the scale. For example, NUMERIC (6, 3) means that
the number’s absolute value will only be up to 999.999 (6
total significant digits with 3 digits following the decimal
point).

DECIMAL (p, s) — Like the NUMERIC data type, this
has a fractional component where you can specify both
the value precision and scale. However, this data type
allows greater precision. For example, DECIMAL (6, 3)
can contain values up to 999.999 but the database will still
accept values larger than 999.999. Let us say you entered
the number 123.4564, this will be rounded off to 123.456.
The allocated storage size for this data type is based on
the given precision.

o Approximate Numeric

REAL (s) — This consists of a single-precision, floating-
point number where the decimal point can “float” to
different places in the said number. This means that this
data type’s decimal value has a limitless precision and a
scale of variable lengths. For example, the values for nt
(pi) can include 3.14159, 3.14 and 3.1 (each value has its
own precision). For single-precision, floating point
numbers, their precision is between 1 and 21 inclusive. It
also allocates 4 bytes of storage size for its values.

DOUBLE PRECISION (p, s) — This consists of a

double-precision, floating-point number and the capacity
is twice of the REAL data type. This data type comes in
handy when you require more precise numbers, like in
most scientific field of disciplines. For double-precision,
floating point numbers, their precision is between 22 and
53 inclusive. It also allocates 8 bytes of storage size for its
values.

m FLOAT (p, s) — This is the data type that allows you to
specify the precision and lets the computer decide
whether you will go for a single-or a double-precision. It
actually pertains to both REAL and DOUBLE
PRECISION, depending on the precision you have
specified. Because of this characteristic, it is easier to
move the database from one computer platform to
another.

e String — The string data type stores alphanumeric information and is
also considered as one of the most commonly used data types.

e}

CHARACTER (n) or CHAR (n) — This data type is also
known as a fixed-length string or a constant character. This
means that all the strings stored in that particular column have
the same length, which is represented by ‘n’ (the number of
characters or the maximum allocated length for the defined
field). For example, if you set the column’s data type to CHAR
(23) then the maximum length of any data entered in the field is
23 characters. If the string’s length is less than 23, then SQL
fills the remaining spaces with blanks. This is the drawback of
using fixed-length strings because storage space is wasted. On
the other hand, if there is no value provided for ‘n’, then SQL
assumes a length of one character. The maximum length for the
CHARACTER data type is 254.

(e}

CHARACTER VARYING (n) or VARCHAR (n) — This is
used when the data entries are of different lengths, or not
constant, but you don’t want SQL to fill the remaining spaces
with blanks. Thus, the exact number of characters you enter will
be stored in the database - further saving storage space. This
data type has no default value and its maximum length is 32,672
characters.

CHARACTER LARGE OBJECT (CLOB) — Introduced in
SQL:1999, this variable-length data type is used to contain
unicode character-based information that is too big to be stored
as a CHARACTER type, such as large documents. The
maximum value of a CLOB is up to 2,147,483,647 characters
long.

¢ Date and Time — This data type manages any information concerning
dates and times.

o

DATE - This data type provides storage for the year, month and
day values of a date, in that particular order. The year value is
expressed using four digits, which can be represented by any
value ranging from 0001 up to 9999. As for the month and day
values, they are both expressed using two digits. The format for
the date data type is yyyy-mm-dd.

TIME — This data type stores and displays time values with an
hour-minute-second format (“HH:MM:SS”).

DATETIME — When the value contains both date and time
information then you use the DATETIME data type, which is
displayed using the “YYYY-MM-DD HH:MM:SS” format. The
valid range of values for this type is from “1000-01-01
00:00:00” to “9999-12-31 23:59:59”.

o TIMESTAMP - This is similar to the DATETIME data type
but the range of values is from “1970-01-01 00:00:01” UTC to
“2038-01-19 03:14:07” UTC.

e Boolean — This data type consists of values that are used for data
comparison: TRUE, FALSE, or NULL. For data to be returned, all the
conditions of the specified criteria for a given query should be met —
meaning the Boolean value is TRUE. If data is not returned, then the
value is either FALSE or NULL.

User-Defined Data Type

After learning the general predefined data types, you will now move to
user-defined data types or simply UDTs. By the name itself, these are the data
values that the user defines or specifies based on the existing data types. Thus,
customization is allowed to maximize storage space and meet other user
requirements. Furthermore, database application development becomes more
flexible for programmers. This means that you can use UDTs when you need to
enter the same type of data in a column that will be defined in several tables. To
define UDTs, you can use the CREATE TYPE statement.

For example, if you want to define and differentiate USDollar and
UKPound as two currencies for your database then create the following UDTS:

CREATE TYPE USDollar AS DECIMAL (9, 2) ;
CREATE TYPE UKPound AS DECIMAL (9, 2) ;

Even if both data types were created using the predefined DECIMAL type,
each has its own function and characteristic in the database. Going back to the
sample customer and order information from the previous chapters, you can now
create the following invoice tables that include the two UDTs:

KEY,

KEY,

CREATE TABLE Americalnvoice (

InvoicelD INTEGER PRIMARY
CustomerID INTEGER,
OrderID INTEGER,
TotalSaleAmt USDollar,
ShippingFee USDollar
)

CREATE TABLE UnitedKingdomInvoice (

InvoicelD INTEGER PRIMARY
CustomerID INTEGER,
OrderID INTEGER,
TotalSaleAmt USDollar,
ShippingFee USDollar
)

In this chapter you have learnt the characteristics of the various data types

available in the SQL language. You were also able to understand the need to
create user-defined data types to make your database less complicated and more
portable. In the next chapter you will learn how to use the different Data
Definition Language statements in creating database objects using SQLiteStudio.

Chapter Five: Data Definition Language Statements

In this chapter you will gain a deeper understanding of the three Data
Definition Language statements — CREATE, ALTER and DROP. Using
SQLiteStudio, you will also learn how to encode the corresponding SQL
statements that handle the database structure.

Again, a database object is any defined logical unit that stores or references
data. When you have a collection of database objects, you create a schema that is
associated with one particular database owner. The focus of this chapter is the
basic form of data storage, which is the relational database table. A simple table
further consists of rows, which corresponds to the records of data, and columns,
which are also known as fields that contain an assigned particular type of data. A
database table will always have at least one column and a row that is composed
of one or more fields.

CREATE Statement The numerous forms of the SQL CREATE statement are
responsible for constructing vital database structures and objects — tables, views,
schemas, domains and so on. The act of creating tables could be easy, but you
need to take into consideration numerous factors. Planning table structures
before actual implementation could save you time and effort since you do not
need to reconfigure after the tables have been created.

Here are some of the factors to take into consideration through when
creating tables:

e Type of data the table will contain

e Table and column names

e Primary key (the column that makes each row of data unique to avoid
duplicate records in a table)

e Column length

e Columns containing null values

Syntax: CREATE TABLE TABLE_NAME

(field1 DATA _TYPE [not null], field2
DATA _TYPE [not null], field3 DATA TYPE [not null],
field4 DATA TYPE [not null], field5
DATA _TYPE [not null]); The column names (field1, field2, field3, field4

and field5) and the field data types are written inside the parenthesis, separated
by commas. Anything indicated inside the brackets are considered optional and
the syntax statement finally ends with a semicolon.

Using the CUSTOMER TABLE from Chapter 2, you will create a new
database table using SQLiteStudio.

e Create a New Database

1. Open SQLiteStudio by double-clicking the application icon on your
desktop.

=

SQLiteStudio

2. Click the DATABASE menu then select ADD A DATABASE.

3. Type Sample_DB inside the FILE input box (which is the name of the
new database) then click OK.

| sampie_re

arree o the fat)
| Sampie_te |] Generate automascaly

Opbiora
[Permarsent (keep it in configuration)

Tesl connecson

4. You will now have the Sample_DB object inside the Database
Navigator pane.

! 8] il

F AN 0 -
Databases &
Filter by name

E' Sample DB (SQLte3) |

e Create a New Table

1. Click the TOOLS menu then select OPEN SQL EDITOR. You will
have the SQL editor area at the right pane. If you double-click
Sample_DB, you will see TABLES and VIEWS under the database
object. Right now, there are no tables nor views present so you will
create one using the SQL Editor pane.

T Query Hstory

SOLiteStudio (3.0.7) - [SOL editor 1) (] »
¢ Database Structure View Took Help 2 =
F a2 SRS BRI 7 »
L. _ T i & A R

v {5 Sample B (S0lme3
Tables

Gk Wiews

.tl

Grid waew Form view

2. Under the QUERY Tab, type the following lines of code

CREATE TABLE Customer_TBL

(CustomerID INTEGER NOT NULL PRIMARY KEY,
CustomerName VARCHAR NOT NULL, JobPosition VARCHAR,

CompanyName VARCHAR NOT NULL, USState VARCHAR NOT NULL,

ContactNo BIGINTEGER NOT NULL);

Query History

1 CREATE TABLE Customer_TBL

2 (CustomerID INTEGER NOT NULL PRIMARY KEY,
CustomerName VARCHAR NOT NULL,
JobPosition VARCHAR,

CompanyName VARCHAR NOT NULL,
Usstate VARCHAR NOT MNULL,

Contactio BIGINTEGER NOT NULL);

s Oh LA B LY

3. Click the EXECUTE QUERY button

table with 6 columns.

on top of the QUERY Tab
or press F9 on the keyboard. You will now have the Customer_TBL

SOLiveStudio (3.0.7) - [SOL editor 1]

¢ Database Structure View Tools
¥4 B F S B a
Databases

Help

ol Tableg [
il Customer_TEL
w [l Columns 06
| CustomerD
| Customeriams
| JobPasition
[| Companytlame
I usstate
II| Contactio
& Indexes
¥ Triggers
& Views

- :
v I Semple DB MR

[DATA TYPE | null not null]
[restrict | cascade]

ALTER Statement The SQL ALTER statement is used to modify database
objects, specifically tables. Altering table elements can include adding and
dropping columns, changing column definitions, adding and dropping

constraints, modifying table storage values and more.

Syntax: ALTER TABLE TABLE_NAME [modify] [column
COLUMN_NAME)]

[drop] [constraint CONSTRAINT _NAME]
[add] [column] COLUMN DEFINITION;

under the QUERY tab:

Alter a Table by Adding a New Column

1. A new column that contains the company address of the customer will
be added to the Customer_TBL table. Type the following lines of code

ALTER TABLE Customer_TBL ADD

Query History

1 ALTER TABLE Customer TEL ADD
2 Companyadd VARCHaR;|

CompanyAdd VARCHAR;

4
2. After clicking the EXECUTE QUERY button , the
CompanyAdd column is added after the ContactNo column. This field
contains values of string data type.

SOLiteStudio (3.0.7) - [SOL editor 1) — O x,
l_- Database Sructure View Tools Help - & x
32 EFE B DEG & % | @ b B w law »
tabazes -] - |
{ O r T L3 e W O =
v A sample D§ (aunes ey CTNS
v =l Tables 0 1 ALTER TABLE Customer TEL ADD
2 Companyadd VARCHAR;|
b Cusfomer_THL
~ [l Columns 7
Il Customerin
Il Custamerhams
I JobPosition
Il Companytiame
Il usstate
L | Grdview Formview
I Companyidd {
o In:;es:e-.s S (] d &3 f wd | MW »
& Triggers
BF Views
Satus B X
0 [20:27:33) Query finiched in 0.081 seconds),
|k 501 editor 1

DROP Statement You use the SQL. DROP statement if you want to delete

database objects. Thus, the DROP TABLE statement is used to delete tables that
you do not need anymore. Once this line is executed, all the data and metadata
contained in the table are also removed. DROP TABLE is considered to be the
easiest command to execute. However, an error will occur if the table to be
deleted is being referenced by another table in the database. That is why you
need to be cautious when performing the DROP statement to avoid deleting
objects by mistake (most especially if there are multiple users who access the
database).

Syntax: DROP TABLE TABLE_NAME [restrict | cascade]

The RESTRICT option is used if an error is to be returned when a table
referenced by another database object is dropped. On the other hand, the
CASCADE option allows the table and all other referencing objects to be
deleted. There are some SQL application programs that do not permit the
CASCADE option to guarantee that there will be no invalid database objects.

e Drop an Existing Table

1. Since there is only one table in the database (Customer_TBL), you do
not need to worry whether to use the RESTRICT or the CASCADE
option. Simply enter the following line of code inside the QUERY tab.

Query History

1 DROP TABLE Customer_TBL;

DROP TABLE Customer_TBL;

b
2. Click the EXECUTE QUERY button and instantly the
Customer_TBL table is deleted.

& S0LieStudio 3.0.7] - [90L editor 1] — 0O W
¢ Database Sructure View Tools Help
- A ; * = [.
o : T - L] s =
] Hstor
- Sample_DO 500
Tatdey L DROP TEALE Customsr TEL;|
Grid diew Porm view
a8 -
Stabis 8 =
0 [2:23:41) Query firisked in (.13 second|s)
SO =difor 1

In this chapter you have learnt how to encode programming lines using the
common DDL command statements in creating, altering and dropping database
tables in SQL. In the next chapter you will learn the different DML commands
that will allow you to manipulate information contained in database tables.

Chapter Six: Data Manipulation Language Statements

In this chapter you will learn how to manipulate database tables and make
them useful through data insertion, deletion and update. To accomplish this, you
will be programming in SQLiteStudio using three Data Manipulation Language
statements — INSERT, DELETE and DROP.

Normally, such tables are empty after they have been created. The data that
you can store in your database objects can be in various formats — non-digital,
semi-digital and fully digital. Non-digital format means that the data needs to be
extracted from a non-electronic source, like customer information from business
cards. In this case, you are required to store the data manually into your
database. As for the semi-digital, the data could already be in some sort of digital
form but not the same format as your database tables. For example, you could
have records of your customers’ business cards stored in a Microsoft Excel file
that you may need to translate into an appropriate format fit for your database.
Lastly, fully digital means that all of your customer information is already in
electronic format that also matches the layout of your database.

The current data format will further determine how you will be able to
manipulate your database. This is where the DML commands become useful in
entering new data, updating existing data and deleting data from tables.

INSERT Statement

The process of entering new data could be done either manually through
individual commands or automatically using batch process programs. There are
also factors that will determine what and how much data you can insert in your
database tables — field length, column data type, table size and more. In
populating tables with data, you will use the INSERT statement.

One Row at a Time

When you want to enter all the data into a single row of your
database table, you can create a form-based data entry application. In this
feature, a screen is designed that contains fields where you can input the
information being asked - for every column in the table. Use the following
syntax in adding data one row at a time:

INSERT INTO TABLE_NAME [(column_1, column_2, ...,
column_n)]
VALUES (value_1, value_2, ..., value_n) ;

Anything inside the square brackets are considered optional,
meaning you don’t need to list the column names. By the way, “n” is the
maximum number of table columns. The default order of the column list is
the same order as your column tables. Thus, if you list the items inside the
VALUES section in the same order as your table columns, then the values
will be entered in the correct columns. You only need to indicate the
column names if you need to specify the values in a different order.

Now, let us insert records to our Customer_TBL table using the
customer information provided in the Chapter 2.

1. Type the following programming lines in the SQL editor:

INSERT INTO Customer_TBL (CustomerID, CustomerName,
JobPosition,
CompanyName, USState, ContactNo)
VALUES (1, ‘Kathy Ale’, ‘President’, “Tile Industrial’, “TX’,
3461234567)

Quesry History

1 INSERT INTO Cuttomér TEL (CustomerID, Customérname, JobPosition; CompanyMmame, usstate, Contactmo)
2 WALUES (1, 'Eathy ale’ President’ trial®; "Tx'; 38E1234557)

12118 Thdis
]] =il AT

4
2. Click the EXECUTE QUERY button and you will get the
following screen (there should be no errors in the Status Area):

& SOLieStudia [20.7) - [S0L adites 1]

- u] b
Databese Stnpctore View Took Hep e
Ff 2 BB R B w B I = ¢ @ s B & A . JETT
Catbases & b T &5 & 8 B - Savgie T8~
T ¥
v 1 Serqe D Gtui Cuery Mo
ar Tables, (1 1 INSERT ENTD Customer THL [Cestomertn, Customeruase, Johrosition, CompanyMame, USSTate, Contactwe
B - 3 WALWES (1, "Esthy Ale", ‘President’, ‘Tile Industrisl » MELFISSET}
™ s Customer T
v B Coluara
[} CustomerD
I Customerinme
|| JobPasition
1| Companyhlame
1| USState
1l Contacthin Grid ey Form wisw
¥ Indewes d B B & B B Ttotrowskadsd: 0 Bow: 0
r ‘I-Wl
Tk WEAs
Siakes F X
B [ME21:57] Query finishied in (L0ES secondis), Fows sffected: 1
S0 elibor §

3. To check if the record of data was inserted in the table, double-
click Customer_TBL at the left pane. Click the DATA tab at the
right pane, which is in between STRUCTURE and
CONSTRAINTS tabs. Your table should be similar to what is
shown in the screen below:

Structure Data Constraints Indexes Triggers DOL

Grid view Form view
B -8 8 68 B0 :8 6 a2 K &K &

CustomerID CustomerMame JobPosition CompanyMame @ USState ContactNo

8] : Kathy Ale President Tile Industrial TX 3461234567

| .+ SQL editor 1
4. Click the option at the bottom left corner of the

screen. To add another record without specifying the column
names, delete the programming codes inside the QUERY tab and
type the following lines:

INSERT INTO Customer_TBL
VALUES (2, ‘Kevin Lord’, “VP’, ‘Best Tooling’, ‘NY”,
5181234567)

Query History

1 INSERT INTO Customer TBL

|2 VALUES (2, 'Kevin Lord', 'VP', 'Best Tooling', 'NY', 5181234567)

b’-..
5. Click the EXECUTE QUERY button and provided that

the order of the values corresponds exactly to the order of the
Customer_TBL table’s columns, then there should be no errors
in the Status Area.

Query History
I
|1 INSERT INTO Customer TEl
[2 vALUES (2, 'Kevin Lord', "wP', "Best Tooling', "WNY', 51B1238567)

Grid view Form view

E d B Ld R 1 RS R B Tofal rows loaded: 0

Status
O [10:48:34] Query finished in 0,087 secondis). Rows affected: 1

6. Click the CUSTOMER_TBL (SAMPLE_DB) option

. | Customer_TBL (Sample_DE)

at the bottom left corner of the screen. Under the GRID VIEW tab, click

the REFRESH TABLE DATA button E or press F5 on your keyboard. You
should see the new record added to the table.

Structure Data Constrants Indexes Triggers DOL

Grid view Fafm wew
B -8B 86 060: 880 » K &
CompanyName LISState Contactho

Tile Industrial TX 461234567
5181234587

&k

CustomerlD CustomerMame JobPostion
1] i Kathy Ale President
2 Kevin Lord VP Best Tooling NY

2

e Multiple Rows at a Time

Multiple inserts are beneficial if you need to enter a number of
records into your table. This process is also more efficient rather than
inserting one record at a time. All you need to do is repeat the clause
following the VALUES statement and make sure you separate them with a
comma.

To insert the two remaining records into our Customer_TBL (see
Chapter 2 for the details)

1. Going back to the SQL Editor, enter the following lines of codes
(without specifying the column names anymore):

INSERT INTO Customer_TBL

VALUES

(3, ‘Kim Ash’, ‘Director’, ‘Car World’, ‘CA’, 5101234567),
(4, ‘Abby Karr’, ‘Manager’, “West Mart’, ‘NV’, 7751234567)

2. Click the EXECUTE QUERY button

Query History

1 ENSERT INTO Customer_TEL

2 VALUES

3 (3, 'kim ash', "Director’, "Car world', "CA", 5181234567),
14 (4, ‘Abby Earr', “Manager’, ‘West mart', "RV°, TI51234587)

Grid view Form visw

B B 8 @ 8 1 8 B m Tosrowskbaded: o

Status

& [11:29:13] Query finished in 0.161 second(s). Rows affected: 2

3. Go to the

! | Customer_TBL (Sample_DB)

option. Make sure to click the

REFRESH TABLE DATA button aor press F5 on your
keyboard. You should now see two more records inserted to the
database table.

Structure Data Constraints Indexes Triggers DDOL

Grid view Form view

CustomerlD CustomerMame — JobPosiion CompanyName USState ContactNo
T, | Kathy Ale President Tile Industrial TX 3461234567
Kevin Lord VP Best Tooling NY 3181234567
Kim Ash Director Car World CA 310N 234567
Abby Karr Manager West Mart MY 7731234567

e Only Selected Columns at a Time

In Chapter 5, the JobPosition field of Customer_TBL table was
defined to allow null values. If in case you have a new customer but you
do not know his position yet in the company, then you can leave the
JobPosition field blank while providing the necessary information for the
rest of the fields.

To add a new record without providing data for the JobPosition
field:

1. Enter the following SQL lines (make sure you indicate the
column names):

INSERT INTO Customer_TBL (CustomerID, CustomerName,
CompanyName, USState, ContactNo)
VALUES (5, ‘Mike Armhs’, ‘1 Driving School’, ‘NJ’,

2011234567)
Query History -
1 INSERT IH‘II:IHE;._:“t:m:r_TE'_ {l:-;t.:lﬂerI-ET;L;-stmer‘.ane, CompanyNamé, USState, Contactho)
2 vaLues s, 'mike armhs®, "1 Driving School®, "NI°, 2011234567)
i,t.
2. Click the EXECUTE QUERY button on top of the
QUERY tab.

3. Go to the | ™™= EWEM | ghtion then click the REFRESH

TABLE DATA button Qor press F5 on your keyboard. Notice
that since you did not provide any information for the JobPosition

field, it contains a NULL value.

Structure Data Constraints Indexes Triggers DL

Grid view Form view

a8-8 > I Ve . 2 ® 3 &K B |m
CustomerID Customeriame JobPosition Companyilame USState Confacthio

11 | Kathy Ale President TileIndustrial TX 3461234567

2 2 Kevin Lord VP Best Tooling MY 3181234567

33 Kim Ash Director Car World CA 5101234567

4 4 Abby Karr Manager West Mart NV T731234567

55 Mike Armhs 1 Driving School MNJ 2011234567

UPDATE Statement

Since change is inevitable, SQL provides a way for you to update existing
data stored in your database. Depending on your needs, you can modify a single
record or multiple records at one time using the UPDATE command. However,
only one table is generally updated at a time in a given database. The standard
syntax for this DML statement is:

UPDATE TABLE NAME
SET column_1 = EXPRESSION 1,
column_2 = EXPRESSION 2,

column_n = EXPRESSION_N
[WHERE predicates];

Again, anything inside the brackets that is indicated in the WHERE clause
statement is optional and the maximum number of columns is represented by
“n”. The said clause identifies which rows need to be updated - this means that if
the WHERE clause is not present then all the records of the table are
automatically modified.

e One Record at a Time

From the previous discussion, you added a record of customer
information without providing data for the JobPosition field. If in case you
have learned that the contact person is the vice-president of the company,
then you can modify this existing record.

| _» SQL editor 1

1. Go back to the SQL EDITOR by clicking the
option. Enter the following lines of code:

UPDATE Customer_TBL
SET JobPosition = ‘VP’
WHERE CustomerName = ‘Mike Armhs’;

P
2. Click the EXECUTE QUERY button on top of the
QUERY tab.

Queery Hislary

1 LUPDATE Customer_THL
2 SET lobPosition = "
3 WHERE Customeriame « “Mike Armhs'j

Grid veEw Foirm i

] e : d 1| Ed &l M |Totarows baded: 0

Status
0 [02:24:41] Quesy finished in 0278 second(s), Rows affected: 1

| | Customer_TBL (Sample_DB)
3. Click the option then click the

REFRESH TABLE DATA button E or press F5 on your
keyboard. You will now see “VP’ under the JobPosition field for
the customer named Mike Armbhs.

Structure Data Constraints Indexes Triggers 0oL
Grid view Form view

B 8-8 8 8 B8 :8 8 m K &K & |Fieds
CustomerID CustomerMame JobPosition CompanyMame |LIS5tate ContactMNo

1 [Kathy Ale President Tile Industrial TX 3461234567

2|2 Kevin Lord WP Best Tocling MY 3181234567

33 Kirn Ash Director Car World CA 5101234567

4 4 Abby Karr Manager West Mart NY 7751234567

5|3 Mike Armhs vp 1 Driving School NJ 201234567

e Multiple Records at a Time

Now, if you want to modify the “VP’ value of the JobPosition field
to ‘Vice-President’ so it will be more comprehensible to database users,
then you have to update multiple records at one time.

| ¢ SQL editor 1

1. Click the option at the bottom left corner of
the screen and then change the programming lines into the
following:

UPDATE Customer TBL
SET JobPosition = ‘Vice-President’
WHERE JobPosition = ‘VP’;

2. Click the EXECUTE QUERY button ' on top of the QUERY
tab.

Query History

1 UPDATE Customer_TEL
Z SET JobPosition = "vice-President’
3 WHERE JebPosition = "wP';

C TBL (Sample_DB
3. Click thel e option then click the

REFRESH TABLE DATA button Eor press F5 on your
keyboard. You should now see that the previous ‘VP’ value has
been changed to ‘Vice-President’.

Structure Data Constraints Ingexes Triggers DDL

Grid view Form view

B -8 88 008 :180 =2 K EK»a
CustomerID Customerilame JobPosition CompanyMame USSiate Contaciho

1 I k:ihy Ale President Tile Industrial TX 3461234567

22 Kevin Lord Vice-President Best Tooling WY 5181234567

33 Kirn Ash Director Car World CA 3101234567

4 4 Abbyy Karr Manager West Mart MY T751234567

535 Mike Armhs Vice-President | 1 Driving School NJ 2011234567

e All Records at a Time

If you want to give more emphasis to the customer name by
changing it to upper case letters, then you can modify all the records of the
database table at one time. In this case, you will not be needing the
WHERE clause anymore.

| ¢ SQL editor 1
1. Click the option at the bottom left corner of
the screen and then enter the following programming lines:

UPDATE Customer_TBL
SET CustomerName = UPPER(CustomerName)

P
2. Click the EXECUTE QUERY button on top of the
QUERY tab.

Query History

1 UPDATE Customer _TBL
2 SET CustomerName = UPPER(Customerhame)

! | Customer_TBL (Sample_DEB)
3. Click the option then click the

REFRESH TABLE DATA button @or press F5 on your
keyboard. Notice that the format of the customer name for all the
records in the table have been changed to capital letters.

Grid view Form view

B 8- B O) m AR K D
CustomerID CustomerMame JobPosition CompanyMame USState ContactNo
11 I KATHYALE President Tile Industrial ~ TX 3461234567
22 KEVIN LORD Vice-President Best Tooling MY 5181234567
3.3 KIM ASH Director Car World CA 5101234567
4 4 ABBY KARR Manager West Mart MY 7751234567
55 MIKE ARMHS Vice-President 1 Driving School NI 2011234567

DELETE Statement

The DELETE statement is a DML command that will remove records from
a table but will still keep its existence in the database. This happens when you
don’t need a particular information in your database, either because they are
obsolete or have no use anymore. Thus, you can free up some storage space. You
can execute the DELETE command to remove just one record, multiple records
or even all the records of the table at one time. Just a reminder, this command
does not delete values from a specific column, but removes an entire row or a
full record. That is why you have to be very careful when executing this
command. There is a possibility that the effect of the DELETE command is
permanent and you may not be able to recover the erased data. The standard
syntax for this DML statement is:

DELETE FROM TABLE_NAME
[WHERE CONDITIONT;

Even if the WHERE clause is an optional part, you are required to include
it when you want to delete selected rows of data from a certain table. Without the
WHERE clause, you will be removing all the records from the table.

To demonstrate the function of the DELETE statement, you will create a
copy of the Customer_TBL table first. In this way, you will still be able keep the
original table to be used for further exercises.

1. Go to the DATABASE NAVIGATOR then right-click on
Customer _TBL. Choose CREATE A SIMILAR TABLE.

@ 50LibeShadin (J07) - (504 edibor 1]
o Dotabaie Sructide Veew Tesls Helg
YA LBE BGOG & @
& X,
Datbaes ¥ T & B I3
v B Savgle D8 Emi Quary iy
* i Tt
v B -
w [Coiy Ll Cneste & tabls
[& 0 Eckt tha table
IL 2|75 Delebe the table
I x
[ool Add & coturme
L sy Creste s index
_I' Sl Creste b trgger
I Mucieud form view
¥ Trgge G5 Impert imo the lekle }
i 45 Eportthetnble o=
% Popedabe table
L Cinate i tabile
ad Peset mubpnorement sequence
W Enese tabde dap
I Datshase v
Loy ik C
L
Ld Delete sebectad tems Dl
Bl Select sl Cirle
& Pafrest ol dutabiase wcherman ShifteFS |
501, e 1 Comforrer TEL [Sarnpde_DH]

2. You will be asked to provide a name for your table. Type
Customer_TBL2 inside the TABLE NAME input box.

B 8 8 i m @ & 8
Table name: |Cu57c>mr_'r_TB-..2_| | [] wimHouT ROWID
Mame Data type P F u H L] = Default value

| 1 CustomerlD INTEGER - MULL
| 2 CustomerMame VARCHAR e ANLLL
| 3 JobPosition VARCHAR PULL
| 4 CompanyMame VARCHAR) PILLL
| 5 USState VARCHAR e PULL
| 6 ContactMNo BIGINTEGER - MULL

Click on the

COMMIT STRUCTURE CHANGES button u under the
STRUCTURE tab. You will get the screen below.

Crueries to be eoeuted ? !

CREATE TAELE Customer TELZ (CustomerID INMTEGER PRIMARY KEY NOT WULL, Cuitomertame
VAZCHAR NOT MULL, JobPosition WARCHAR, ComparyMame VASDHAR NOT MULL, usstate

WARCHAR NOT WMULL, Contaltyo BIGINTEGER MOT WULL};

|__Ja11d'nnagw IE Cancel

4. Click on the OK button and a new Customer_TBL.2 table will be

created. This will be the table that you will work around to demonstrate
the DELETE command.

Databases

o ; sample_pa SOLRe 3
v Tables (2
e Customer _TBL
v |l Colmns (6
[l customertD
Customerams
JobPosition

UsState
ContactMo
' Indexes

fi
fi
I companyMame
Il

¥ Triggers

w || Customer THL2
v [l Colurnrs &

[customerID
[JobPosition
Il CompanyMame
[l usstate
[l contactio

& Indexes

Triggers
= Views

At this point in time Customer_TBL2 table is empty, so you have to copy
the records from Customer_TBL table. To do this, follow the steps below:

1. Click the

| | Customer_TBL (Sample_DB)

option then click the

REFRESH TABLE DATA button Qor press F5 on your keyboard.
This will ensure that your data in the database table is updated.

2. Click on top of the first row, just before the CustomerID column
heading. This will highlight all the records in the table.

Struchure Data Constrants Indexes Triggers DOL
Grid view Form view

B D-0 8 80 00 :18080 8 K & & |Fierdn .

1FJ_:I|TH'!' ALE | President | Tile industnal | TX
EVIN LORD ;'i'ltt'prt'ﬁldtnt | Best Tooling

M ASH | Director | Car Werld [CA

BY KARR _ |Manager | West Mart i
| MIKE ARMMHS Vice-President | 1 Drving School | N

Click here

3. To copy the values, right-click on the first highlighted cell (just under the
CustomerID column) then choose COPY.

Structure Data Constraints Indexes Triggers DODL
Grid view Form view

B -8 8 8 Bﬂlﬂ.!ﬁﬁﬁlljterce:a

s :
2 m ¥ Erase values Alt+Backspace
3 E 3 Set MULL values Backspace
. E T3 Edit value in editor Alt+Return
5

L Paste Ctrl+V
E!_r Tabs on top

—I Tabs at bottom

4. Double-click on Customer_TBL2 located in the left pane. Click the
DATA tab and make sure that you are on the GRID VIEW tab. You will
see the same columns as in the original table, which you will be
populating with the data you copied from the Customer_TBL table.

F 2 %

| Database Sructure VYiew Toals

&£ s0LiteStudio (3.0.7) - [Custamer_TBL2 (Sample_D8))

Help

¥ A B G O0DE & ¢« » @ o B E B OF K

§ | Structure Data Constrants Indexes Triggers

Diatabases

G Wi Form valys

v & sample_DE
v [FF Tables

~ [

Ll
£
o

BE Views

L 500 edior 1

e

&

|1} Customer TBL

Cokurrng (6

IF| CustomesiD

U| Customerfisme
[F Jobrosition
[l] Companyhiame
|0 usstate

IH| Contactho

&' Indeves
o Triggers
I Customer TBL2

=T
Indeyes
Triggers

B 8- 8 8 G @

I customer_TEL (Sample_DE) | || Customer_TBLZ (Sample_DE)

kd

DOL

0

-

MH -

i A B

CustomerID Customerbams JobPesitian Companyblame LUSSkak= ConbactMo

ks

L3

& x

5. Click the drop down arrow beside the INSERT ROW button

v

(just below the GRID VIEW tab). Select INSERT MULTIPLE ROWS

option.

Grid view

Form view

B-8 88 80806 :08
Custc 9% |nsert multiple rows

Place new rows above selected row
Place new rows below selected row

Place new rows at the end of the data view

6. Inside the NUMBER OF ROWS TO INSERT input box type 5. Click
OK.

Grid wiew Form view
B U0 8 G068 168 B =
Customer]D CustomerMame JobPosition CompanyMName

| Insert multip..,. 7 ;

Mumber of rows to insert:

'5
o 1| o

7. Your table will now have 5 rows of data that contain NULL values. This
is where you will insert the values that you copied from the
Customer_TBL table.

Structure Data Constraints Indexes Triggers oL

Grid view Form view
8 -8B 860 G606 :86 =2 K& 9
CustomerID CustomerMame JobPosition CompanyMame LUSState ContaciMNo

W e) R

NULL

8. Right-click on the first cell then choose the PASTE option.

Grid view Form view
8 8- 8 8 8 6 B & = K
.__a;nmeri.l-l_mﬂsma'r_\l.amu JobPosition CompanyMame LI;
- -
gl N | Commit Ctrl+Return
3 Commit selected cells
4 B Follback Ctrl+Backspace
| 5
- E3 Follback selected cells
¥ Erasevalues Alt+Backspace
@ Set MULL values Backspace
17 Edit value in editor Alt+Return
L7 Copy Ctrl+C
0 Paste Ctrl+V
L. Tabs on top
L Tabs at bottomn

9. All the data values from the Customer_TBL table will be inserted to the
Customer_TBL2 table, which you will manipulate to demonstrate the

DELETE command.

sOLiteStudso (3.0.7) - [Custorner_TBL2 [Sample_DE]] - O
Database Sructure View Tooks Help -
32 BRI B EGOR & v = @ SRR T RN R STl
Databases & Structure D% Constraints Dndexes Triggers DOL
Rt Grid view Form wiew
AR R SR B 0-BB0 C0:00 @ XXa
v [Tables @
|| Customer_THL CustomerlD CustomerName JobPpsition CompanyMame USSkale Conlactie
DY o 1 1 EIR k=THY ALE Presdent | Tielndustnal T4 JI34612345
& Indexes 2|2 KEVIM LORD Wice-Pres Best Tnaulinﬂ MY I!]Bl?_ﬂs
& Triggers 313 EIN A5H Directos o 'Warld CA 51012345...
v 7 customer TRz 1 44 ABEY KARR Manager | West Mart [T 77513345
w | Columns = 515 MIKE ARMHS f¥icePresi.. |1 Drnaing School W) 112545,
I CustomeriD
I Customertiame
Il JobPositon
I} Companyhiame
I UEStte
I Contacttie
& Indexes
¥ Trggers
L views

10.

Click on the COMMIT STRUCTURE CHANGES button

N
to save the data in the table.

¢ Single Record

To delete only one record of data from the Customer_TBL?2 table
where the customer’s name matches to ‘KATHY ALE’:

) | ¢+ SQL editor 1) o
1. Click the =™ option, type the following lines of code

in the QUERY tab and then click the EXECUTE QUERY button

4

DELETE FROM Customer_TBL?2
WHERE CustomerName = ‘KATHY ALE’;

Query History

1 DELETE FRO®M Customer TBL2
2 WHERE CustomerMame = 'KATHY ALE";

2. To check if the record has been deleted, go to the
Customer_TBL.2 table by clicking on

. Customer TBL2 (Sample_DB)
. Then click on the

REFRESH TABLE DATA button Bor press F5 on your
keyboard to update the values. You will notice that the record has

been deleted already.

Grid view Form view

B B-8 88 008 :18 8 & K &
USState Contacto

2 ¥

CustomerID CustomerMame JobPosition CompanyMame

|1 BB KEVINLORD Vice-President Best Tooling MY §181234567
23 KIM ASH Director Car World CA 3101234567
34 ABBY KARR Manager West Mart MY T751234567

145 MIKE ARMHS Vice-President 1Driving School NJ 2011234567

e Multiple Records

To delete 2 records of data from the Customer TBL?2 table where
the customer’s position matches to ‘Vice-President’:

| ¢ SQL editor 1
1. Click the option, type the following lines of

code and then click the EXECUTE QUERY button

DELETE FROM Customer_TBL2
WHERE JobPosition = ‘Vice-President’;

Query History

1 DELETE FROM Customer TBL2
2 WHERE JobPosition = “vice-President”;

2. To check if the record has been deleted, go to the
Customer_TBL.2 table by clicking on

. Customer TBL2 (Sample_DB)
. Then click on the

REFRESH TABLE DATA button Eor press F5 on your
keyboard to update the values. You will notice that the two
records have been deleted already.

Grid view Form view
B -0 8 8 B8 :8 8 = K &8 & »

CustomerID Customerhlame JobPasition Comparyyhlarms USState Contactio

1 E v AsH Director Car World CA 5101234567
24 ABEY EARR Manager West Mart MY 7731234567

e Whole Table

To delete all the remaining records from the Customer_TBL?2 table
at one time:

| _»SQL editor 1
1. Click the option, type the following lines of

code in the QUERY tab and then click the EXECUTE QUERY

P
button

DELETE FROM Customer_TBL?2

Query History

1 DELETE FROM Customer TBL2

2. To check if the record has been deleted, go to the
Customer_TBL?2 table by clicking on

|| Customer_TBL2 (Sample_DB) .
. Then click on the REFRESH

TABLE DATA button @ or press F5 on your keyboard to
update the values. You will notice that executing the single
DELETE command has deleted all the records from the table.

In this chapter you have learnt how to encode programming lines using the
most commonly used DML command statements in inserting, updating and
deleting records from database tables in SQL. In the next chapter you will learn
the different DQL commands that will allow you to retrieve valuable information
contained in database tables.

Chapter Seven: Data Query Language Statements

In this chapter you will learn how to use the available Data Query
Language statements in retrieving data from database tables. Through
SQLiteStudio, you will be able to use SELECT, WHERE, ORDER BY and
GROUP BY statements in requesting and displaying significant database
information.

Once you have created and populated your tables with data values, there
will come a time that you will need to perform database queries to retrieve
relevant information. A query is a valid inquiry into the database to extract and
display data in a readable or understandable format, depending on the user’s
request. The main challenge in SQL is to correctly instruct the computer what to
search for by manipulating the database through row selection. Once you have
selected the values you need then you can further perform various operations
such as data addition, deletion, modification and more.

SELECT Statement

Retrieving data values is the most performed manipulation task by
database users. In doing such operation you need to use the DML command
statement called SELECT. You have the option to retrieve just one row, a
number of rows or all the rows of the database table.

Using the SELECT statement in retrieving all the records of a particular
table is the basic form of this DML command statement. Even if the SELECT
command is considered to be the most powerful statement, it requires other
clauses to function correctly in performing a query. The syntax in its simplest
form is: SELECT * FROM TABLE_NAME; In the programming line above, the
asterisk sign (*) signifies everything. This means that the wildcard character is a
shortcut for the listing of all the column names of a particular table.

To select all the data rows from the Customer TBL table:

, | ¢+ SQL editor 1 . .
1. Click the = option and then type the following lines of

code:

SELECT * FROM Customer_TBL;

2. Click the EXECUTE QUERY button € . The result of this SELECT
command is displayed inside the GRID VIEW tab.

Query History
1 SELECT * FROM Customer_TBL;

Grid view Form view
E 4 k3 B3 E3 (1 El E B Total rows baded: 5

CustomerlD CustomerMame JobPosition CompanyMame USSate Contacto

1 I «oHY ALE President Tile Industrial T 3461234567
22 EEVIN LORD Vice-President | Best Tooling NY 181234567
33 KM ASH Director Car World CA 5101234567
4 4 ABBEY KARR Manager West Mart NV TT51234567
55 MIKE ARMHS Vice-President | 1 Driving School NJ 2011234567
Status [

O [r0:726] CQuery finished in 0.001 second(s).

The result basically shows the entire data of the Customer_TBL
table since the code instructs the database to select all the rows and columns of
the said table.

WHERE Statement

When you want to be more specific in selecting rows of data from your
database tables then you need to add a bit of complexity to your programming
lines. At this point, you need the function of the WHERE clause, which means
that the SELECT operation will be performed once the stated condition inside
such clause is true. The syntax of the SELECT statement with the WHERE
clause is as follows: SELECT COLUMN_LIST

FROM TABLE_NAME
WHERE CONDITION;

To select only the rows of data where the job position of the customer is
Vice-President:

. . ¢ SQL editor 1 , -
1. Click the ™ option and then type the following lines of

code:

SELECT *
FROM Customer_TBL
WHERE JobPosition = ‘Vice-President’;

*.(P..
2. Click the EXECUTE QUERY button . The result of this SELECT

command is displayed inside the GRID VIEW tab.

Query History

1 BELECT *
2 FROM Customer TBL
3 WHERE Jobrosition =

Grid view Faim Vi
M Total rows loaded: 2

& £
CustomerlD CustormerMName JobPosition CompanyMame USState ContactMo

12 KEVIN LORD Vice-President Best Tooling NY 5181234567

25 MIKE ARMHS Vice-President 1 Driving School NJ 20111234567

Status F X

O [12:50:40] Query finished in 0.001 second(s).

The result shows the records of the two customers named Kevin Lord and
Mike Armhs who are both Vice-Presidents of their respective companies.

What if you only want to select certain columns of the table, maybe just the
full name and company of the customer? You will now modify your lines of

code into the following:
1. In the QUERY tab, change the wildcard character * (asterisk sign) into
CustomerName and CompanyName by typing the following:

SELECT CustomerName, CompanyName

FROM Customer_TBL
WHERE JobPosition = ‘Vice-President’;

s
2. Click the EXECUTE QUERY button . The result of this
SELECT command is displayed inside the GRID VIEW tab.

Query History
1 hElEl‘T Customeryane, CompanyName

2 FROM Customer_TBL
3 WHERE lobPosition « “vice-Presicent®;

Grid view Form wiew
El . Y B Toftal rows loaded: 2

CustomerMame Companyilame

1 KEVIN LORD Best Tocking
2 MIKE ARMHS 1 Driving School

Status & x

ﬂ [13:15:33] Cruery finished in 0.000 second(s).

By specifying the columns you want to select, you are trying to customize
what data you want to retrieve and how you want them to be displayed. In the
previous example, you only wanted to know the customer’s name and his
company where the job position is vice-president.

ORDER BY and GROUP BY Statements

When you want the data you retrieve to be displayed and sorted in some
way, then you need to include the ORDER BY or GROUP BY operator at the
end of your SQL statement. The primary function of the ORDER BY statement
is basically to arrange data using a specific order, whether ascending or
descending. On the other hand, the GROUP BY statement is used to put identical
data together and arrange the query output into groups.

The standard syntax for the ORDER BY clause is: SELECT
COLUMN_LIST

FROM TABLE_NAME
ORDER BY COLUMN_LIST [ASC | DESC]; By default, ORDER

BY sorts individual rows in ascending order. If you want to arrange your records
in descending order then you have to indicate the DESC operator at the end of

the ORDER BY clause.

To retrieve all customer records from the Customer_TBL table and display
them in ascending order by US state:

L4 SQL editor 1
1. Click the option and then type the following lines of

code:

SELECT *
FROM Customer_TBL
ORDER BY USState;

4
2. Click the EXECUTE QUERY button . The result of this SELECT
command is displayed inside the GRID VIEW tab.

Query History

1 BELECT *

2 FROM LLiti-‘.‘Er_'EL
3 DRDER BY USState;

Grid wiew Form view

B @ &8 @ 8 18 E = Totsrowshaded:s
CustomerlD CustomerMame JobPosition CompanyMame USState ContactMo

13 KIM A5SH Director Car World CA 5101234567

2.5 MIKE ARMHS Vice-President 1 Driving School NJ 2011234567

3 4 ABEY KARR Manages West Mart NV TT31234567

4 2 KEVIM LORD Vice-President Best Tooling MY 5181234567

51 EATHY ALE President Tile Imdustrial TX 3461234567

Status B X

O 4137 Cery finished in 0.002 second(s).

Since you did not specify how the records will be sorted, the data rows
were arranged alphabetically (in an ascending order) using the USState column.
If you want to sort your records in descending order:

1. Inside the QUERY tab, add DESC after USState in the ORDER BY

clause.

SELECT *
FROM Customer_TBL
ORDER BY USState DESC;

V
2. Click the EXECUTE QUERY button . The result of this
SELECT command is displayed inside the GRID VIEW tab.

Query History

1 BELECT *
2 FROM Customer_TBL
3 ORDER BY UsState DESC;

Grid view Form view

a B | L B 1 kd B @R Tolal rows loaded: 5
CustomerlD CustomerMame JobPosition CompanyMame USState ContactMNo
11 KATHY ALE President Tile Industrial TX 3461234567
22 KEVIMN LORD Vice-President Best Tooling MY 5181234567
34 AEBY KARR Manager West Mart MV 7751234567
45 MIKE ARMHS Vice-President 1 Driving School B 2011234567
53 KiM ASH Director Car World CA 3101234367
Status 8 X

@ [16:53:57] Query finished in 0,000 second(s).

If you want to determine something about a group of records or need to
combine columns with duplicate values in a logical way, then it is time to use the
GROUP BY clause. Other terms similar to grouping are aggregating,
summarizing and rolling up. To illustrate this, if you want to know how many
customers are there for every job position in the Customer_TBL table then we
need to count the number of records and display the total number of customers
per job position.

, | ¢+ SQL editor 1 . o
1. Click the = option and then type the following lines of

code:

SELECT JobPosition, COUNT(*) AS number_of_record FROM
Customer_TBL
GROUP BY JobPosition;

2. Click the EXECUTE QUERY button

. The result of this SELECT

command is displayed inside the GRID VIEW tab.

Query History

1 BELECT JobPosition, COUNT(*) AS number_of_record
2 FROM Customer_TBL
3 GROUP BY JobPosition;

Grid view Form view

JobPosition number_of_record
1 Director 1

2 Manager 1

3 President

4 Vice-President 2

Status
& [17:11:38] Query finished in 0.001 second(s).

(&] X - I M Total rows loaded: 4

In the example above, the COUNT function was introduced to arrange the
data in groups. The following is a summary of the common aggregate functions
used together with the GROUP BY statement (x denotes the column name where

you want to perform the function):

e AVG(x) — computes the average of all the column values (null values

removed)

e COUNT(x) — counts the number of non-null values in the column

e COUNT(*) — counts the number of records

e MAX(x) — computes the maximum value in the column (null values

removed)

e MIN(x) - computes the minimum value in the column (null values
removed)

e SUM(x) — computes the sum or total of the values in the column (null
values ignored)

Going back to the GROUP BY example, the data in the JobPosition column
is retrieved and for each instance of the value, a record is counted using the
COUNT function. The number_of record is a new column created that displays
the total number of records per job position. The Director, Manager and
President positions have 1 record each while the Vice-President has 2. This is
because there are two customers who are vice-presidents — Kevin Lord and Mike
Armbhs. If you can also notice, the records displayed are sorted in an ascending
order by default.

Altering your SQL statements to display the job position in a descending
order will require you to add the ORDER BY statement after the GROUP BY
clause (ORDER BY will always come after the GROUP BY statement). Change
your lines of code into the following and then click the EXECUTE QUERY

U:I.
button on top of the QUERY tab: SELECT JobPosition, COUNT(*) AS

number_of record FROM Customer_ TBL

GROUP BY JobPosition
ORDER BY JobPosition DESC;

Query History
1 BELECT JobPosition, COUNT(®) AS number_of_record
7 FROM Customsr TEL

3 GROUP BY Jobfosition
4 DRDER BY JobPosition DESC;

Grid view Form wview

d B B B8 1 8 B @& Totlrowskaded: 4
JobPosition number_of record

1 Vice-President 2

2 President 1

3 Manager 1

4 Director 1

Status
O [19:34:40] Query finished in 0.001 second(s).

In this chapter you have learnt how to encode programming lines using the
most commonly used DQL command statements in selecting, ordering and
grouping records from database tables in SQL. In the next chapter you will learn
the different transactional control commands that will allow you to manage

several relational database transactions.

Chapter Eight: Transactional Control Commands

In this chapter you will learn how to use three of the available transactional
control commands in a relational database management system (RDBMS) using
SQLiteStudio — COMMIT, ROLLBACK and SAVEPOINT. Controlling
transactions requires you to be able to manage certain database changes that are
usually brought about by the insert, update and delete commands.

Executing a database transaction seems to have been successfully
completed when you notice that the table’s data or structure has been changed.
What is actually happening during a transaction execution is that information is
stored in a temporary space in the database (or what you can call a rollback
area). When you want to finalize these transactions and store the information
permanently, then you either save or discard the changes made to the database
tables by issuing the appropriate transactional control command. Only then that
the rollback area is emptied.

COMMIT Command

Using the COMMIT command saves all the transactions into your
database. Normally, in SQLiteStudio, whenever you execute a CREATE,
INSERT or DELETE transaction by writing programming lines in the SQL
Editor, the changes are automatically saved. You have first encountered the
COMMIT command through the COMMIT CHANGES STRUCTURE button in
Chapter 6, where you created a copy of the Customer_TBL table. Now, to
demonstrate this command again in SQLiteStudio, you will manipulate the table
structure by adding a new record to the Customer_TBL table in GRID VIEW
mode.

. . ¢ SQL editor 1 .
1. Click the ™ option. To ensure that there are no

transactions currently running in the database, type the following
programming line in the QUERY tab then click the EXECUTE QUERY

button
END TRANSACTION;
P &2 T L & @ B kl~E |sspeps ~| [

Query History

|1 END TRANSACTION;

2. Double-click Customer_TBL under the TABLES list in the
DATABASE NAVIGATOR pane. Click the DATA tab at the right and
make sure that the GRID View is displayed. You will see all the records

of the Customer_TBL table.

Caraburses

-

W 8 Sample DB GGl

W

Tables)

I columns [
¥ Indeves
¥ Triggers

E Views

Struure
Grid wiew

Data Comtranis

Form wview

B -8 84

CustomeriD [T

1 EATHY ALE
2 KEVIM LORD
3 EIM ASH

4 ABEY KARR

| MIKE hAMHS

Indexes Triggesns Do

B A &

XabPogition Companyhane
President Tile Industrial
Wice-President Eest Tooling
Dérector Car World
Manager West Man
Wice-President 1 Driving School

H

LS5 e
TH
MY
Ca
MY
]

Contacihio

HE123456T
181234567
SN 2456T
TTN456T
20234567

3. Click the first column of the last row of the table, which is CustomerID

5.

Structure Data Constraints Indexes Triggers DOL
Grid view Form wview

a G-8 8 a8 G 08 :88 = iR A H

CustomerlD CustomerMame JobPosition CompanyMame USState ContactMo

1 1 KATHY ALE President Tile Industrial TX 3461234567
2 2 KEVIN LORD Vice-President Best Tooling MY 5181234567
3 3 KIM ASH Director Car World CA 5101234567
A4 4 ABEY KARR Manager West Mart MY 7751234567
s IR MIKE ARMHS Vice-President 1 Driving School NJ 2011234567

4. Click the drop-down arrow beside the INSERT ROW (INS) button and
select PLACE NEW ROWS BELOW SELECTED ROW option.

Structure Data Constraints Indexes Triggers DDL

Grid view Form view

a G-8 4886 G 8 :8 a8 - AR @ B

Custoi %ﬁ Insert multiple rows e USState ContactMo
1 X 3461234567
2 Place new rows above selected row MY 5181234567
3 * Place new rows below selected row CA 3101234567
4 : MY 7751234567
5 - Place new rows at the end of the data vlew- ol N 2011234567

5. This time click the INSERT ROW (INS) button and you will see a new
empty row added to the table.

Structure Data Constrants Indexes Triggers DOL
Grad view Form view

] E-8 88 G e :1808 - AR R 3
Custbm]._'whme JobPosition CompanyMName USState ContactMo

1 1 KATHY ALE President Tile Industrial TX 3461234567
Fd 2 KEVIN LORD Vice-President Best Tooling MY 5181234567
3 3 KIM ASH Director Car World CA 5101234567
4 4 ABEY KARR Manager West Mart NV 7731234367
5 5 MIKE ARMHS Vice-President 1 Driving School MJ 2011234567
s Il I | I I]

6. Add the following data values in the new record:

CustomerID: 6

CustomerName: JOHN DEPP

JobPosition: President

CompanyName: Rockers Mine Company

USState: X

ContactNo: 3467654321
Structure Data Constraints Indexes Triggers DOL
Grid view Form wview
B 0-8 800 000 & KX»

Cust-}mr_rli] Custuml:rﬂﬂrnl: JobPosition CompanyMame U;:'&:rtt ContactNo

i 1 KATHY ALE President Tile Industrial TX 3461234567
2 2 KEVIM LORD Vice-President Best Tooling MY 5181234567
3 3 KM ASH Dhrector Car World CA 310234567
4 4 ABBY KARR Manager West Mart MWV 7751234567
5 5 MIKE ARMHS Vice-President 1 Driving School M 2011234567
66 [1oHM DERE | President [[Rockers Mine Company |[TX E' T i"gl

7. Click the COMMIT button uto permanently save the new data
values added to the table.

ROLLBACK Command

If the COMMIT command saves all the changes to the database, the
ROLLBACK command is the reverse where all the unsaved changes will be
discarded. However, you can only undo transactions since the last COMMIT or
ROLLBACK statement executed. The standard syntax for this transactional
control command is:

ROLLBACK [WORKJ;

Also, before you can perform a ROLLBACK command, make sure that
transactions have started. This means that you need to execute the following
programming statement at the very beginning;:

BEGIN TRANSACTION;

To demonstrate how a ROLLBACK statement works, you will modify the
DROP TABLE command in SQLiteStudio:

. | _+ SQL editor 1 . .
1. Click the option. In the QUERY tab, type the following

programming statement and click the EXECUTE QUERY button

BEGIN TRANSACTION;

SOLiteStwdio (3.0.7) - [SOL editor 1]

H

o Database Structure View Tools Help

5 D ¥ =B g o LA Em ‘o 3 -] — e = 4 b & an 3% &

[Datzbases = L4 T s N B =T Sample_DE

Query Histor
v [§ Semple DB 30U i, :

W Tables 11 1 FEGEH TRANSACTION;
v 7] Cumtomer TBL '
& Indexes
‘- _Ilu:tlt,
E vigws

¢ SQL editor 1

2. Click the = option and clear the QUERY tab. Type the

E\.
following and then click the EXECUTE QUERY button . You will
notice that the Customer _TBL table is now removed from the Tables
list.

DROP TABLE Customer_TBL;

T Query

7| |1 DRO® TABLE Cu

T 3 &

History

stomer_TEL;

Samgple

3. Click the = 2 sditor 1

option again and clear the QUERY tab. Type

the following and then click the EXECUTE QUERY button

ROLLBACK;

N Senge D8PS L
Tables
K Views

Databases 2

Cuery

Hstory
| |1 mOLLB&CK;

4. To check if the ROLLBACK command reversed the deletion of the
Customer_TBL table, right-click anywhere inside the DATABASE
NAVIGATOR pane. Choose REFRESH ALL DATABASE SCHEMAS

option.

Databases 2) T L &8 § &- Sampl= [

. 2 Query i
ad Sampie D8 (50Lm 3 = ooy

Tables

E Views

1 RiILLBACK;

Database L
Grauping L]
e FOrm v
i Select all Cirl=£& B Total rows kag
i, Refresh all database schemas Shift+F3

5. Click the TABLE list at the left pane. You should now see that the
Customer_TBL table is back under the TABLE list.

Databases & r T e [] 0 =~ Sample_DB
w | Sawcle DA (S0UW3 Query History
L&y) | FT YT
Customer_TEL
U Yiews
SAVEPOINT Command

When you want to reverse the transaction just back to a certain point and
not the entire transaction, then you have to execute the SAVEPOINT command
before performing a ROLLBACK action. This is how you manage several
transactions into smaller groups of SQL commands. The standard syntax for this
transactional control command is:

SAVEPOINT SAVEPOINT_NAME;

When using the SAVEPOINT and the ROLLBACK commands together,
the syntax is:

ROLLBACK TO SAVEPOINT_NAME;

A savepoint name can be the same as the database object’s name to which
you will be performing the SQL transactions. However, you should remember to
make them unique, different from the group of transactions that you want to
break down into several points or segments.

To demonstrate how a SAVEPOINT with a ROLLBACK command works,
you will delete certain records from the Customer_TBL table and reverse this
transaction.

. | ¢+ SQL editor 1 .
1. Click the = option. In the QUERY tab, type the

following programming statement and click the EXECUTE QUERY

button
BEGIN TRANSACTION;
SO iteStudio (3.0.7) - [SOL edstor 1]
o Database Structure View Tools Help
4 B FS B DEG » : =
ety B) T s & = 3 = -
= . Query | Hstory
W Tabbes (1 1 BEGIN TRANSACTION;

) | ¢+ SQL editor 1 .)
2. Click the ™ option again and clear the QUERY tab.

Then type the following:

SAVEPOINT Customer_SP1;

4
Click the EXECUTE QUERY button . A savepoint section is
created before deleting the last record of the Customer_TBL table.

b T i & = B &~ Sampie_DB

Queery History
1 SAVEPOINT Customer_5F1;

3. To delete the last record of the Customer_TBL table, click the

L4 B option and clear the QUERY tab. Type the following and

.

then click the EXECUTE QUERY button

DELETE FROM Customer_TBL WHERE CustomerID = 6;

r T 5 & W [E w~E |sawgeps -

Queary Histary
|1 DELETE FROM Customer_TBL WHERE CustomerID = 6;

4. To check if the record was deleted, double-click Customer_TBL
under the TABLES list in the DATABASE NAVIGATOR pane then click
the DATA tab at the right. Under the GRID VIEW tab, click the

REFRESH TABLE DATA button Q or press F5 on your keyboard.
Your table should be the same as the following:

Structure Data Constraints Indexes Triggers DOL

Grid view Form wview

a -8B 80 00188 & K & A |[fecds
CustomerID CustomerMame JobPosition CompanyMame USState ContactMo

1 1| KATHY ALE President Tile Industrial TX 3461234567

2 2| KEVIMN LORD Vice-President Best Tooling MNY 5181234567

3 3| KIM ASH Director Car World CA 5101234567

4 4 ABBY KARR Manager West Mart NV 7731234567

g 5| MIKE ARMHS Vice-President 1 Driving S5chool NJ 2011234567

. . . ¢ SQL editor 1
5. To create the second savepoint section, click the = 2

again. Clear the QUERY tab and then type the following:

option

SAVEPOINT Customer_SP2;

Click the EXECUTE QUERY button " This time a savepoint section
is created before deleting the record where the CustomerlID is equal to 5.

F T | & m B &~ Sample_DB E

Query Hestory

1 SAVEPOINT Customer SP2;

6. To delete the record where the CustomerID is equal to 5, click the
7 St nisinl option again and clear the QUERY tab. Type the following

and click the EXECUTE QUERY button

DELETE FROM Customer_TBL WHERE CustomerID = 5;

F T [K = g = - Sample_DE =

Query History

1 DELETE FROM Customer TEL WHERE CustomerID = 5;

Customer_TBL (Sample_D8)

7. To check if the record was deleted, click the

option at the bottom left corner of the screen then click the DATA tab at
the right. Under the GRID VIEW tab, click the REFRESH TABLE

DATA button E or press F5. Your table should be the same as the
following:

Structure Data Constraints Indexes Triggers DOL
Grid view Form view
B G-0 88 B0 :8 68 =& B X & |[Firds

CustomerID CustomerMame JobPosition CompanyMame USState ContactMo
| ________________________________ ‘I KATHY ALE President Tile Industrial T 3461234567
2 2 KEVIM LORD Vice-President Best Tooling MY 5181234567
3 3 KIM ASH Director Car World CA 5101234567
4 4 ABBY KARR Manager West Mart MV 7751234567

7 SQL editor 1
. . i .
8. To reverse the last transaction done, click the = option

again and clear the QUERY tab. Type the following and then click the

EXECUTE QUERY button

ROLLBACK TO Customer_SP2;

P 2 T [E m B EH - E |sameDs =l | B=

Query History

1 ROLLBACK TO Customer_SP2;

9. To check if the record deletion was reversed, click the

customer T8 G559 option and then click the DATA tab at the right. Under

the GRID VIEW tab, click the REFRESH TABLE DATA button e or
press F5. Your table should be the same as the one below:

Structure Data Constraints Indexes Triggers DOL

Grid view Form view

B 0-8 88 0818 8 =& K & & |fierdata
CustomerID CustomerMame JobPosition CompanyMame US5tate ContactMo

R A 1} KATHY ALE President Tile Industrial ~ TX 3461234567

2 2 KEVIMN LORD Vice-President Best Tooling MY 5181234567

3 3 EIM ASH Director Car World CA 5101234567

4 4 ABBY KARR Manager West Mart MY 7751234567

5 5 MIKE ARMHS Vice-President 1 Driving School M 2011234567

* SQL editor 1
. . |..._1
10. To undo the first record deleted, click the

option again and clear the QUERY tab. Type the following and then click

the EXECUTE QUERY button

ROLLBACK TO Customer_SP1;

¥ T [& B &~ Sampie DB -

Query History
1 ROLLBACK TO Customer_SP1;

1. To check if the record deletion was reversed, click the

I || Customer_TBL (Sample_DH)

option and then click the DATA tab at the right.
Under the GRID VIEW tab, click the REFRESH TABLE DATA button

@ or press F5. Your table should be the same as the one below:

Grid view Form view
B B-B 06 E:8 68 & K X & data
CustomerID CustomerMame JobPosition CompanyMame USState ContactMo
1 ________________________________ 'I KATHY ALE President Tile Industrial TX 3461234567
2 2 KEVIMN LORD Vice-President Best Tooling MY 5181234567
3 3 KIM ASH Director Car World CA 5101234567
4 4 ABBY KARR Manager West Mart MV 751234567
5 5 MIKE ARMHS Vice-President 1 Driving School Ml 2011234567
] & JOHM DEPP President Rockers Mine Company TX 3467654321

In this chapter you have learnt the primary functions of the three
transactional control commands in saving or discarding changes in an SQL
database. In the next chapter you will learn the importance of views and how to
manipulate them using CREATE, UPDATE and DROP commands.

Chapter Nine: Database Views

In this chapter you will learn what a database view is and its importance in
SQL programming. In addition, you will be able to perform the existing SQL
commands in creating, updating and dropping views.

Defining Views A view is a database object formed when your SELECT queries
are saved in the database for future use. This means that a view exists because of
the tables where its data values were derived from. Thus, one or more tables can
create a database view. Also, it has the same characteristics similar to the actual
table except that you don’t need some physical space to store it (temporarily
saved in the computer’s memory). Moreover, being a virtual table, you cannot
modify its data values.

When executing a SELECT statement to create the view, you can either get
the column names from a particular table or perform certain functions and
calculations that will manipulate the given data values. Once created, these
views can perform any of the following tasks:

e Simplify data retrieval - Some end users may not have the knowledge to
perform database operations to get the query result they need. So to make
things easier, you can create different views from the tables that users
require.

e Implement database security — There are times that you have to restrict
certain users on what they can access from your database, whether they are
allowed to modify data or just view information. To ensure that the tables
are secured, you can generate views that only display the data values that
you allow users to access.

e Support data summarization and report generation — Through views, you
are able to turn a complicated SELECT query into a simple summarized

data that you can generate from multiple tables. This summary or report
could be generated and updated from time to time. That is why instead of
composing complex programming lines you can just use aggregate
functions incorporated in the creation of views.

Creating Views The SQL statement CREATE VIEW is used in generating views
from one or more tables, and even from another view. The following is the most
basic syntax used in creating a view from a single table: CREATE VIEW
VIEW_NAME AS

SELECT COLUMN_LIST
FROM TABLE_NAME;

¢ Creating a View from the Entire Content of a Single Table

For this exercise, you will be using the Customer_TBL table of the
Sample_DB database to create a Customer_VW view in SQLiteStudio.

1. Click the = i ol option and delete everything inside the QUERY

tab. Then type the following lines of code:

CREATE VIEW Customer VW AS
SELECT *
FROM Customer_TBL;

i,

2. Click the EXECUTE QUERY button on top of the QUERY tab.
You will now notice that there is a Customer VW view under the
VIEWS section, inside the DATABASE NAVIGATOR pane.

* S0O1iteStudio (3.0.7) - [SOL editor 1]

¢+ Database Sructure View Tools Help

F a2 B F S 2 - 2 ¥ |G
Databases -2 r T i B & |
—— T Hstory
v & sample DB 50U 3 | ey |y

e Tableg 1 CREATE VIEW Customer \Vid AS
2 SELECT *
Customer_TEL 3 FROM Customer TEL;
Customer_TBL2
~ B Views ([
3! Customer Vil

3. To check the content of the view, double-click Customer_VW in the
left pane then the DATA tab in SQL WORK AREA. The
Customer_VW view should contain all the records of the
Customer_TBL table.

Databases # Query Dats Trggers DOL
: Grid view Form view
w & Sample DB G0Um3 5 | (e ' S
o i [2] i & -BENE -] M Total rows loaded: 5
Customer_TBEL Customer1D Customerflams JobPesition Compary®ame USStats Contacthio
Customer_THL2 1 | KATHY ALE President Tile Industrial TX 3461234567
b Views (1 22 KEWIM LORD Wice-Presadent Best Tooling WY 5181234567
v il Cstomer w3 KIM A5 Director CarWarld CA 5101234567
¥ Triggers 4 4 AEEY KARR Manager West Mart WY TT31234567
5 5 MIKE ARMHS Vice-Presidert 1 Driving School W 211234567

¢ Creating a View from Selected Columns of a Single Table

If you want to create a view that contains only the contact details of
the customer (CustomerName, CompanyName and ContactNo), then you
will select certain columns from the Customer TBL table.

, | _¢+ SQL editor 1 . L
1. Click the ™ option and delete everything inside the

QUERY tab. Then type the following lines of code:

CREATE VIEW CustContactDeatails_ VW AS
SELECT CustomerName, CompanyName, ContactNo FROM
Customer_TBL; You need to provide a different name for this new view.
SQLiteStudio will not allow you to create a new view with the same
name as an existing view.

2. Click the EXECUTE QUERY button . on top of the QUERY tab.
You will now notice that there is a CustContactDetails_VW view
under the VIEWS section, just on top of the Customer_VW view. The
VIEWS list is alphabetically arranged in ascending order.

= .
Databases ¥ T |3 & &8 I - B o
r . r TR Query Histor
v £ Sample DB (5Clrel 4
w I Tables (2 i FREA.TE VIEW CustContactDeatails W AS
i 2 SELECT CustomerName, CompanyName, Contactho
|| Customer_TBL 3 FROM Customer_TBL;
Customer _TBL2
v [BE Views (2
| CustContactDeatsis VW
7| Customer VW

3. To check the content of this newly created view, double-click
CustContactDetails_VW in the left pane then click the DATA tab
again. This view should contain only three columns, namely
CustomerName, CompanyName and ContactNo, from the
Customer_TBL table.

Databases # Query Data Trigaers oL
Filter by name | Grid view Form view
v & Sample DB (50lne3 E y
o ke Kl i 3
v Tables 2 —
Customer_TBL Customeriame CompanyMName ContactMo
7| Customer_TBL2 1 (KATHY ALE | Tile Industrial 3461234567
v iEgRvews® 000000 | 12 KEVIN LORD Best Tooling 5181234567
7 CustContactOeatals W0 1 3 KIMASH CarWerld 5101234567
7| Customer Vi 4 ABBY KARR West Mart T151234567
5 MIKE ARMHS 1 Drving School 2011234567

Creating a View from Multiple Tables

When you require multiple database tables to create the view you
need, ensure that the tables involved will have to be joined by columns
that are common to them. For example, you may have another table that
contains information on the customers’ orders such as the date when they
ordered, what product they ordered, the quantity and more. This new table
will be called the ORDER TABLE and it is related to the first
CUSTOMER TABLE because every order is associated to a particular
customer.

Now, you will create a view from two tables that will show
database users to which company and state each order was shipped to or
delivered. The basic syntax for creating a view using multiple tables is:
CREATE VIEW VIEW_NAME AS

SELECT COLUMN_LIST
FROM TABLE_LIST
WHERE CONDITION; To create the ORDER TABLE:

1. Using the data values in Chapter 2 for the ORDER table, create

.) i | ¢+ SQL editor 1
another table using the SQL Editor. Click the =~

option and delete everything inside the QUERY tab. Type the
following lines of code for the new ORDER table:

CREATE TABLE Order_TBL
(OrderID INTEGER NOT NULL PRIMARY KEY,
OrderDate DATE NOT NULL, CustomerID INTEGER NOT NULL,
ProductID INTEGER NOT NULL, OrderQty BIGINTEGER NOT
NULL);

v

P
2. Click the EXECUTE QUERY button on top of the QUERY
tab. You will now have the Order_TBL table under the TABLES

list in the left pane.

Daiat?ases 2) & THE X é B H-~
v 1 Sample D8 550t Query History
G Tables 2 1 [REATE TABLE Order_ THL
2 (OrderID INTEGER [not null] PRIMARY KEY,
[| Customer_TEBL 3 orderDate DATE [not null],
Customer TBLZ 4 CustomerID INTEGER [not null],
= | |S ProductIn INTEGER [not null],
i & oOrderQty BIGINTEGER [mot null]):
W
1| CustContactDeatails_vW
&| Customer_WW
3. Double-click the Order_TBL in the left pane then click on
DATA tab at the left. You will populate this table with data values
in GRID VIEW mode.
Datsbases Stucture Data Constrants Indexes Triggers *f)d
st s Grid view Form wiew
v:%’_m::-;ﬂf:m: .EI B-BE8 8 BaE:& 8 -
| Customer_TBL OrderID OrderDate CustomerID ProductlD OrderQty
Codem
v Tl yewe (O
B custContactDeatails_vw
B customer W

4. Click the INSERT ROW button

+ B

first option — INSERT MULTIPLE ROWS.

and then select the

Grid view Form view
& B -8 &8 B8 L3 &4 |1 K1 EJ »
Orderll 45 |nsert multiple rows

® Place new rows above selected row

Place new rows below selected row

Place new rows at the end of the data view

5. Enter “4” in the NUMBER OF ROWS TO INSERT input box
(since there are 4 records in the ORDER TABLE from Chapter 2)
then click OK.

' Insert multip... ? X

MNumber of rows to insert:
4

Ll

oK Cancel

6. The Order_TBL table will now have 4 rows and 5 columns.
Instead of using SQL statements to populate this table, you will
enter the values directly into the table (check the data values in
Chapter 2).

Grid view Form view
B -8 88 G4 :108 &

OrderID OrderDate CustomerID ProductlD OrderQty

11 2016-05-23 |1 4 300
2[2 2016-09-09 |1 5 100
3(3 2016-02-17]3 2 150
Jald 2016-05-12]2 2 500

7. Click the COMMIT button a to save all the data values of
the Order_TBL table.

To create the view that will tell you to which company and state
every order was shipped to or delivered:

|7 SQL editor 1
1. Click the L43Q : option, empty QUERY tab and then type

the following lines of code:

CREATE VIEW OrderDelivery_ VW AS
SELECT Order_TBL.OrderID,
Customer_TBL.CompanyName AS CompanyDeliveredTo,
Customer_TBL.USState AS StateDestination,
Order_TBL.OrderQty FROM Customer_TBL, Order_TBL
WHERE Order_TBL.CustomerID =
Customer_TBL.CustomerlID;

2. Click the EXECUTE QUERY button on top of the
QUERY tab. You will now have a new view named
OrderDelivery_VW.

Epiees 2) T b &8 B &~ sample DB < |»

: e Query History
v 2| Sample DB (50Lite3 M v bmsisce, —_
1 CREATE VIEW Ordertelivery_vW AS

b Tables
2 SELECT Ordeér_TBL.OrderID, Customer_TEL.Companyhame AS
Customer_TEL CompanyDeliveredTo, Customer TBL.USState AS StateDestination,
Customer TEL2 Order_TBL.Ordergty
3 FROM Customer TEL, Order THL
Clraley TR 4 WHERE Order_TEBL.CustomerID = Customer_TEL.CustomerID;
v (B Views 3
3| CustContactDeatails VW
7| Customer_ WV
{0 OrderDelvery VW

o

3. To check the content of this view, double-click
OrderDelivery_VW in the left pane then click the DATA tab at
the right.

Query Data Triggers DoL

Grid view Form view

& % 4 1 K E M Total rows loaded: 4

OrderID CompanyDeliveredTo StateDestination OrderQty

1i1_____;Tileindustrial TX 300
2 2 Tile Industnal ™ 100
3 3 Car World CA 150
4 4 Best Tooling NY 500

In this view, two columns were selected and renamed from the
Customer_TBL table - CompanyName changed to
CompanyDeliveredTo and USState changed to
StateDestination. The other two were from Order_TBL table
—OrderID and OrderQty (the original column names were
retained). The rows retrieved from both tables are those records
where the CustomerID of the Customer_TBL table matches the
CustomerID of the Order_TBL table.

Dropping Views The DROP VIEW command is the statement used to destroy
an existing view from the database. The basic syntax is: DROP VIEW
VIEW_NAME; To drop or delete the entire Customer_VW view:

.2 SQL editor 1
1. Click the ™ option, empty QUERY tab and then type the

following lines of code:
DROP VIEW Customer_VW;

W

2. Click the EXECUTE QUERY button on top of the QUERY tab.
You will notice that the Customer_VW view is already deleted from the
Views list.

Databases = P 2 T | B m B &~ 22

Fiiter by name

¥ = Sample_DB (5Clie3)
W [Tables (2 1 DROP VIEW Customer \l;

Query History

- Customer_TBL
______ Customer_TBLZ2
£ | Order_TBL
v [EE Views @
17 CustContactDeatails_VW
37 OrderDelivery VW

In this chapter you have learnt the definition and importance of database
views in SQL. You have also performed common operations in manipulating
views, such as creating and dropping them. In the next chapter you will learn
more in-depth concepts in designing databases in SQL — primary and foreign
keys, indexes and normalized databases.

Chapter Ten: Enhancing Database Designs

In this chapter you will gain more in-depth knowledge on enhancing
database designs with the use of primary and foreign keys, indexes and
normalization techniques. Having a better understanding of designing databases
will provide the software application you are using an edge by performing
queries more effectively and maintaining data integrity at all times.

Assigning Primary and Foreign Keys It is one of the best practices to assign a
primary key when you define a database table. In a relational database, the
primary key is a special field or combination of fields that make each record in
the table unique. Since the presence of the primary key does not permit the
duplication of values on the column to which it was assigned, then data integrity
is guaranteed. Also, fields that are designated as primary keys cannot contain
null values. Defining a primary key, whether it is explicit or implied, occurs
during table creation. Normally, the tables with primary keys are regarded as
parent tables, meaning these tables provide information to another table or what
is termed as the child table. Consequently, child tables are dependent on the
parent table.

In the previous chapters, you have been dealing with the CUSTOMER
table and the ORDER Table. What if you have another table called the
PRODUCT Table that contains the following fields or columns: Product ID,
Product Name and Price per Unit? You will have the following relationship from

CUSTOMER_TBL

® Customer]D (PK)

-:::-Custm'rlle_fhame ORDER_TBL
o JobPosition
o CompanyName » OrderlD (PK)
oUSState o OrderDate
o ContactNo o ©CustomerID

»| oProductlD

o OrderQty
PRODUCT_TBL

® Product]D (PK)
o ProductName
o PricePerUnit

these three tables:

From the figure above, the CUSTOMER_TBL and the PRODUCT_TBL
are the parent tables of the child table ORDER_TBL (this describes a parent-
child relationship in database design). As you can see, the fields named
CustomerID and ProductID are the primary keys of the parent tables. These two
fields are also present in the child table. They now become foreign keys of the
ORDER_TBL table. In other words, a foreign key is a column or field present in
the child table that references to the primary key of its parent table.

Unlike the primary key, a foreign key does not need to be unique all the
time. In addition, the name of the foreign key could be different from the name
of the primary key that it references to. Furthermore, the ProductID of the parent
table (PRODUCT _TBL) can never have duplicate entries, but not the
corresponding ProductID in the child table (ORDER_TBL). However, you
should not define and create a foreign key value if there is no matching primary
key value.

Understanding Indexes

When a database starts to slow down, specifically its SQL queries, you can

create and implement indexes to improve its performance. Such indexes are
important objects that serve as pointers associated to the data of a particular
table. The primary function of an index is to determine the exact physical
location of the data when a query is executed to improve its retrieval process. It
works like a book’s alphabetically arranged index that helps you find the
information you need in a much easier way using its page numbers. Thus, time is
saved, since you do not need to scan one row at a time (most especially in
extremely large databases) and just go directly to the required record.

The storage spaces of an index and the table from which it was created are
separate. Such allocated physical space can also increase tremendously, even
larger than the table it references. That is why storage requirements are taken
into consideration when designing databases. Just like tables and views, indexes
can also be created or dropped. When designed correctly, they actually speed up
SELECT queries but could slow down DELETE, UPDATE and INSERT
statements. For enormous databases, data retrieval will definitely consume so
much time. However, such index transactions have no effect on the table’s data.

¢ Creating Indexes

An index is associated to a particular column when it is created. It
then holds the location of the data values of the table that contains that
particular indexed column. Whenever new data is added to the table, it will
also be added to the index. Let’s say you execute a SELECT statement
with a certain condition specified in the WHERE clause that checks the
column that is indexed. The first thing that will happen is that the index is
first searched and will only return the exact location if the data value is
found.

For example, you wanted to select all the records from the ORDER
table where the Customer ID matches to 1. You will then issue the
following query: SELECT *

FROM Order_TBL
WHERE CustomerID = 1; If the ORDER_TBL table is indexed on

the CustomerID column, then the records will be arranged in an
ascending order based on that column. Thus, the CustomerID index
makes it easier for the search process to take place and finally resolves
the location of all the data with the matching Customer ID. Once the
location is determined, the corresponding rows of data will be retrieved
from the ORDER_TBL table. Without the existence of the index, a full
scan will be performed, which will not be efficient if the table contains
hundreds or even thousands of records.

INDEX TABLE
DATA LOCATION LOCATION DATA
(Customer ID) (Customer 1D
1 [et - 1 1
1 2 BN I Sl 1
2 4 3 5
3 3 4 2

The basic syntax is for creating an index is: CREATE INDEX
INDEX_NAME ON TABLE_NAME [(COLUMN_NAME)]; This statement
can vary by adding specifications such as the column name to be indexed,
ordering (whether ascending or descending) and many more. Now, to
create the ColumnID index of the ORDER_TBL table in SQLiteStudio:

» SQL editor 1
1. Click the = e option and make sure the QUERY tab is

empty. Then type the following:

CREATE INDEX CustomerID_IDX ON Order TBL

Query History

1 CREATE INDEX CustomerID IDX ON Order TEBL {Eustmer.‘r:ﬂ}ﬂ

(CustomerID);

4
2. Click the EXECUTE QUERY button on top of the QUERY
tab. You will now have CustomerID_IDX under the INDEXES
list in the Order_TBL table.

Databases) &5 TD He B Wi »

Query History
1 CREATE INDEX CustomerID _IDX ON Order_TBL (CustomerID);

¥ I Sample_DB (50ti=3
W L Tables @
. Customer TBL
v 35 Order TBL
() Columns (5
v @& Indexes (1
CustomerID_IDX
& Triggers
v [EE Views (2

;. CustContactDeatads VW Grid view Farm view

iy OrderDelivery_VW
a v I ud |l e e | B ""

e Dropping Indexes

Just like dropping a table or a view, you will use the following basic
syntax: DROP INDEX INDEX_NAME; Remember that you can re-

create the index after it has been deleted, but make sure you take
extra precaution when performing such transactions. Also, when you
delete a table, you will also be deleting all the corresponding indexes
with it. Sometimes you may only need to delete the index and retain
the table. Such implementation happens when you only want to fix
an index problem to optimize the database performance and reduce
fragmentation.

To drop the index that we have created previously:

1. Click the = i ol option and make sure the QUERY tab is

empty. Then type the following:

DROP INDEX CustomerID_IDX;

Query History
1 DROP INDEX CustomerID IDX;

L2

V
2. Click the EXECUTE QUERY button on top of the QUERY
tab. You will now notice that the CustomerID_IDX index has
been deleted from the Indexes list.

Databases = v T . s B E m T L
w 3| Sample_DB EQlie T _QLEI oty
v §5 Tables (2 1
Customer_TBL
W Order_THL
[Columns
% Indexes
Tripgers
w B Views 2
1 CustContactDeatais W
OrderDelivery_VW Grid wiew Form view
[} - »

Normalizing Databases

Why do you need to normalize a database? This is because in designing a
database you need to ensure that information is well organized, easily managed,
always accurate and there is no unnecessary duplication. Basically,
normalization is the process of designing and redesigning a database by reducing
one big table into two smaller tables, where the same type of data are grouped
together. For example, if you only have one table by merging the customer
information of the CUSTOMER_TBL table with the ORDER_TBL table, then

you will get a table that is not normalized:
ORDER ORDER CUSTOMER NAME POSITION COMPANY STATE CONTACT PROD

ID DATE ID NO IC

1 2016- 1 Kathy President Tile TX 3461234567 4
05-23 Ale Industrial

2 2016- 1 Kathy President Tile TX 3461234567 5
09-09 Ale Industrial

3 2016- 3 Kim “Director Car World CA 5101234567 2
02-17 Ash

4 2016- 2 Kevin VP Best NY 5181234567 2
05-12 Lord Tooling

As you can see, there is a redundancy of data on the part of storing the
customer information. That is why it is way better to divide this table into two

smaller ones through the normalization process. Always bear in mind to keep
data redundancy to a minimum, if possible, to save storage space and avoid
information confusion. If you have customer information for every table and one
table does not match such information with another, then how will you be able to
verify which one is correct? If you have to update a customer address, then you
are required to update the data in all of the tables where it is included. Thus, time
and effort in managing the database is wasted.

The way of measuring the depth or level to which a database has been
normalized is called a normal form. There are three common normal forms,
where each form is dependent on the previous normalization steps performed on
the database.

¢ First Normal Form (1NF)

Given a set of base data, the first normal form (1NF) aims to divide
this into logical units or tables of related information with an assigned
primary key. Every cell contained in any of the 2-dimensional tables
should only have a single value. Each row of a particular table refers to a
certain record of information and must always be unique. As for the
column, it is given a unique name and consists of data values of the same
type, which pertains to a single attribute of the information contained in
the table. Moreover, there is no particular order that the columns nor the
rows should be arranged.

Modifying the given database in Chapter 2 by adding employee
information, you will have the following base data for the company:

EMPLOYEE_TEL

Em ployeelD
Employee LastName
Employee_FirstName
Employee_Address
Employee ContactNo
DateHire

Em pPostion

Payrate

Bonus

COMPANY DATABASE

Em ployeelD
Emplovee LastName
Emplovee FustName
Em ployee_Address
Employee_ContactNo
DateHire

Em pPostion

Payrate

Bonus

Custom edD

Customer LastName
Custom er_FirstNam e
JobPostion
JobDescription
CompanyName

State

Custom er_ContactNo
OrdedD

OrderDate

ProductID

OrderQty

CUSTOMER TBL

Custom ed D
Customer_LastNam e
Custom es_FirstNam ¢
JobPosition
JobDescrption
CompanyName

State

Custom er_ContactNo
OrdedD

OrderDate

ProductlD

OrderQty

Based from the figure above, the entire company database was
divided into two smaller tables - EMPLOYEE_TBL and
CUSTOMER_TBL. The primary key for these tables are EmployeelD and
CustomerID respectively. In this way, it is easier to read and manage the
information as compared to one big table with so many columns and rows.
The data values stored in each table refer to two separate entities, meaning
those pieces of information describing the company’s employees are only
present in the EMPLOYEE_TBL table while those that only pertain to the
customers are stored in the CUSTOMER_TBL table.

Second Normal Form (2NF)

After you are done with the first normal form, the next step is
deriving the second normal form (2NF). This process focuses on
functional dependency that describes the relationships between attributes.
When an attribute determines the value of another, then there is functional
dependency between them. In this case, you will store data values from the
Employee and Customer tables that are partly dependent on their primary
keys into separate tables.

EMPLOYEE_TBL

EMPLOYEE TBL
= EmploveelD

Emploves LastName
—| Emplovee_FirstName
Emploves Address

Emplovee ContactNo

EmplovyeelD
Emploves LastName
Emplovee FirstName
Emploves Address
Emplovee ContactNo

DateHire
Ept o EMPLOYEE_SALARY TBL
Payrate i i
Hasms EmploveelD

EmpPosition

Payrate

Bonus

The figure above shows that those attributes that are partly
dependent on the EmployeelD primary key have been removed from
EMPLOYEE_TBL and stored in a new table called
EMPLOYEE_SALARY_TBL. The attributes that were retained in the
original table are fully dependent on the primary key — meaning that for
every record of last name, first name, address and contract number there is
a corresponding particular employee ID. Unlike the
EMPLOYEE_SALARY_TBL, a particular employee ID does not
reference a unique employee position nor salary rate. There could be more
than one employee with the same position (EmpPosition), pay rate
(Payrate) and bonus (Bonus).

CUSTOMER_TBL

CUSTOMER_TBL CustomerlD

Customer_LastMame

UsTO el D Custo or Lasti 0 Sy c =R
CustomerlD Customer_LastMame Customer FirstName

Customer_FirstMame lobPosition

lobPosition
lobQescription JobDescription
CompanyMame CompanyName
State Srate
Lustomer_CLonaciio Customer ContaciMo
Orderl
OrderCate
FroductlD ORDER_TBL
Orderdzy

Order D

OrderCate

ProductiD

OrderQty

For the CUSTOMER_TBL table, customer’s order information
does not directly depend on the general customer information found in the
original table. That is why four attributes (OrderID, OrderDate, ProductID
and OrderQty) were moved to a separate table called ORDER_TBL.

Third Normal Form (3NF)

With the third normal form (3NF), you will have to separate pieces
of information from the table that are completely not dependent on the
primary key. Going back to the CUSTOMER_TBL, the job position
(JobPosition) and its description (JobDescription) are totally independent
of the CustomerID primary key. This is because, in general, any job
position will have the same duties and responsibilities regardless of who
the customer is. Thus, we will separate the JobPosition and JobDescription
attributes into another table called POSITION_TBL.

CUSTOMER_TEL

CUSTOMER_TEL CustomerlD

Customer_LastMame

CustomerlD Customer_LastMame customier FirstMame

Customer_Firsthame JobPosition

HY JobPosition
JobDescription CompanyMame
CompanyMame } State .

State Customer_ContactMo
Customer_ContactMo

OrderlD

OrderDate

ProductiD

OrderCty POSITION_TBL

lobPosition
lobDescription

In this chapter you have learnt that there are design practices that you can
apply to boost the performance of your databases. Duplicate data values are
avoided by assigning primary and foreign keys in tables. Search queries are
heightened through the implementation of table indexes. Data consistency and
security are improved because of the normalization process. Thus, overall
database organization is enhanced. In the next chapter you will learn some
advance topics in SQL design that includes cursors, triggers and errors.

Chapter Eleven: Database Advance Topics

In this chapter you will be introduced to some advance topics in SQL that
goes beyond basic database transactions. Even if this section only includes an
overview of cursors, triggers and errors, such knowledge could possibly help
you extend the features of your SQL implementations.

Cursors

Generally, SQL. commands manipulate database objects using set-based
operations. This means that transactions are performed on a group or block of
data. A cursor, on the other hand, processes data from a table one row at a time.
It is created using a compound a statement and destroyed upon exit. The
standard syntax for declaring a cursor is (which may differ for every
implementation):

DECLARE CURSOR CURSOR_NAME
IS {SELECT_STATEMENT}

You can perform operations on a cursor only after it has been declared or
defined.

e Open a Cursor

Once declared, you perform an OPEN operation to access the
cursor and then execute the specified SELECT statement. The results of
the SELECT query will be saved in a certain area in the memory. The
standard syntax for opening a cursor is:

OPEN CURSOR_NAME;

e Fetch Data from a Cursor

The FETCH statement is performed if you want to retrieve the
query results or the data from the cursor. The standard syntax for fetching
data is:

FETCH NEXT FROM CURSOR_NAME [INTO FETCH_LIST]

In SQL programming, the optional statement inside the square
brackets will let you assign the data retrieved into a certain variable.

e Close a Cursor

There is a corresponding CLOSE statement to be executed when
you open a particular cursor. Once the cursor is closed, all the names and
resources used will be deallocated. Thus, the cursor is no longer available
for the program to use. The standard syntax for closing a cursor is:

CLOSE CURSOR_NAME

Triggers

There are instances when you want certain SQL operations or transactions
to occur after performing some specific actions. This scenario describes an SQL
statement that triggers another SQL statement to take place. Essentially, a trigger
is an SQL procedure that is compiled in the database that execute certain
transactions based on other transactions that have previously occurred. Such
triggers can be performed before or after the execution of DML statements

(INSERT, DELETE and UPDATE). In addition, triggers can validate data
integrity, maintain data consistency, undo transactions, log operations, modify
and read data values in different databases.

e Create a Trigger

The standard syntax for creating a trigger is:

CREATE TRIGGER TRIGGER_NAME
TRIGGER_ACTION_TIMETRIGGER_EVENT
ON TABLE_NAME
[REFERENCING OLD_OR_NEW_VALUE_ALIAS_LIST]
TRIGGERED_ACTION

TRIGGER_NAME - the unique identifying name for this object

TRIGGER_ACTION_TIMETRIGGER_EVENT - the specified time
that the set of triggered actions will occur (whether before or after
the triggering event).

TABLE_NAME - the table for which the DML statements have been
specified

TRIGGERED_ACTION - specifies the actions to be performed once
an event is triggered

Once a trigger has been created, it cannot be altered anymore. You can just
either re-create or replace it. How a trigger works depends what conditions you
specify — whether it will fire at once when a DML statement is performed or it
will fire multiple times for every table row affected by the DML statement. You
can also include a threshold value or a Boolean condition, that when such
condition is met will trigger a course of action.

¢ Drop a Trigger

The basic syntax for dropping a trigger is the same as dropping a
table or a view:

DROP TRIGGER TRIGGER_NAME;

Errors

An error-free design or implementation is one of the ultimate goals in any
programming language. You can commit errors by simply not following naming
conventions, improperly writing the programming codes (syntax or typo errors
like a missing apostrophe or parenthesis) or even when the data entered does not
match the data type defined.

To make things easier, SQL has devised a way to return error information
so that programmers will be aware of what is going on and be able to undertake
the appropriate actions to correct the situation. Some of these error-handling
mechanisms are the status parameter SQLSTATE and the WHENEVER clause.

e SQLSTATE

The status parameter or host variable SQLSTATE is an error-
handling tool that includes a wide selection of anomalous condition. It is a
string that consists of five characters (uppercase letters from A to Z and
numerals from 0 to 9), where the first two characters refer to the class code
while the next three is the subclass code. The class code identifies the
status after an SQL statement has been completed — whether it is
successful or not (if not successful, then one of the major types of error
conditions are returned). Supplementary information about the execution
of the SQL statement is also indicated in the subclass code.

The SQLSTATE is updated after every operation. If the value is
‘00000’ (five zeroes), it means that the execution was successful and you

can proceed to the next operation. If it contains a five-character string
other than ‘00000’, then you have to check your programming lines to
rectify the error committed. There are numerous ways on how to handle a
certain SQL error, depending on the class code and subclass code specified
in the SQLSTATE.

e WHENEVER Clause

The WHENEVER clause error-handling mechanism focuses on
execution exceptions. With this, an error is acknowledged and gives the
programmer the option to correct it. This is better than not being able to do
something if an error occurs. If you cannot rectify or reverse the error that
was committed, then you can just gracefully terminate the application
program.

The WHENEVER clause is written before the executable SQL
code, specifically in the SQL declaration section. The basic syntax is:

WHENEVER CONDITION ACTION;

CONDITION - value can either be SQLERROR (returns TRUE if
SQLSTATE class code is other than 00, 01 or 02) or NOT FOUND
(returns TRUE if SQLSTATE is 02000)

ACTION - value can either be CONTINUE (execution of the
program is continued normally) or GOTO address (execution of a
designated program address)

In this chapter you have learnt the primary role of cursors, how triggers
work and the importance of handling errors in SQL programming. Learning
these advance topics is one step closer in maximizing the potentials of your SQL
implementations.

Chapter Twelve: Exercises

Exercise #1

Create an invoice table named OrderInvoice_TBL in SQLiteStudio with
the following fields: InvoicelD — primary key, integer data type CustomerID —
integer data type OrderID — integer data type TaxAmt — decimal data type with a
precision of 9 and a scale of 2

TotalSaleAmt — decimal data type with a precision of 9
and a scale of 2

ShippingFee — decimal data type with a precision of 9 and
a scale of 2

Exercise #2

After creating the OrderInvoice table, populate the fields using the
INSERT statement with the following data values:

Invoice ID Customer Order ID Tax Total Shipping
ID Amount Sales Fee

2016001 1 1005

$523.80 $198023.05

$1981.78

2016002 3 1006

$302.83 $198302.03

$2005.10

2016003 3 1007

$217.02 $20021.70

$1983.12

2016004 2 1008

$909.00 $200009.09

$19827.22

Exercise #3

Create a view named OrderLargeSales_ VW from OrderInvoice table
where the total sales is greater than $ 150,000.00 and the tax amount is less
than $600. The view will only consist of the following fields: Customer ID,
Order ID, Tax Amount and Total Sales.

Exercise #4

Delete the OrderInvoice_TBL table and the OrderInv_VW view using the
DML command DROP.

Exercise Answers

Answers for Exercise #1

1. Launch SQLiteStudio. Click on TOOLS menu and then choose OPEN
SQL EDITOR option.

2. Click the QUERY tab at the right and type the following programming
lines:

CREATE TABLE OrderInvoice_TBL (
InvoicelD INTEGER PRIMARY KEY, CustomerID
INTEGER , OrderID INTEGER, TaxAmt
DECIMAL(9, 2), TotalSaleAmt DECIMAL(9, 2),
ShippingFee DECIMAL(S, 2));

3. Click the EXECUTE QUERY button

Answers for Exercise #2

1. Launch SQLiteStudio. Click on TOOLS menu and then choose OPEN
SQL EDITOR option.

2. Click the QUERY tab at the right and type the following programming
lines:

INSERT INTO OrderInvoice_ TBL

VALUES

(2016001, 1, 1005, 523.80, 198023.05, 1981.78), (2016002, 3,
1006, 302.83, 198302.03, 2005.10), (2016003, 3, 1007, 217.02,
20021.70, 1983.12), (2016004, 2, 1008, 909.00, 200009.09, 19827.22);

3. Click the EXECUTE QUERY button

Answers for Exercise #3

1. Launch SQLiteStudio. Click on TOOLS menu and then choose OPEN
SQL EDITOR option.

2. Click the QUERY tab at the right and type the following programming
lines:

CREATE VIEW Orderlnv_ VW AS
SELECT CustomerID, OrderID, TaxAmt, TotalSaleAmt
FROM OrderInvoice_TBL
WHERE TotalSaleAmt > 150000 AND TaxAmt < 600;

Answers for Exercise #4

1. Launch SQLiteStudio. Click on TOOLS menu and then choose OPEN
SQL EDITOR option.

2. Click the QUERY tab at the right and type the following programming
lines to delete the table:

DROP TABLE OrderInvoice_TBL;

3. Click the EXECUTE QUERY button

4. To delete the view, type the following programming lines and then

click the EXECUTE QUERY button

DROP VIEW Orderlnv_VW;

Here is a quick recap of what we covered in case you

need a refresher on a certain step:

You now have an understanding of the history and uses of the SQL
language.

You learnt how to describe relational databases and database management
systems.

You learnt how to use the different SQL command types and install
SQLiteStudio.

You learnt how to define and use the various data types.
You learnt how to use the CREATE, ALTER and DROP statements.
You learnt how to use the INSERT, UPDATE and DELETE statements.

You learnt how to use the SELECT, WHERE, ORDER BY and GROUP
BY statements.

You learnt how to use the COMMIT, ROLLBACK and SAVEPOINT
commands.

You also learnt how to define, create and drop views.

10. You learnt how to assign primary and foreign keys, create
indexes and normalize databases.

11. You learnt how to use cursors, triggers and errors.

Final Words

I hope that you have truly enjoyed learning the essentials of SQL
programming and database management using SQLiteStudio through this
eBook. I had made sure that you will tremendously benefit from reading this by
meeting your goals in understanding what SQL database is at an affordable
price. I am sure that with the knowledge you have gained through the guidelines
of this eBook, you can now plan, design and create your very own databases in
SQLiteStudio.

You may also consider learning other programming languages, your
knowledge of SQL Programming will give you a tremendous advantage if you
wish to learn other languages. You can find other popular programming books
HERE.

By the way, I would greatly appreciate if you can provide any constructive
feedback or reviews that will further improve my skills as a writer. Please feel
free to send me an email, especially if you have anything to clarify or ask (even
if you just want to drop by and say hello!). My email address is
Felix_Alvaro@mail.com.

Again, thank you and God bless always!

Felix Alvaro

http://www.amazon.com/Felix-Alvaro/e/B015JCBZN4/ref=dp_byline_cont_ebooks_1
mailto:Felix_Alvaro@mail.com

