

H e l l o W, o r l !d

ProJecTs
IN PYTHON

codinG
®R

US_001_half_title.indd 1 16/01/17 9:43 am

US_002-003_full_title.indd 2 16/01/17 9:43 am

ProJecTs
IN PYTHON®R

codinG

US_002-003_full_title.indd 3 06/02/17 4:00 pm

DK INDIA
Project editor Suefa Lee

Art editor Sanjay Chauhan
Assistant editor Isha Sharma

Assistant art editors Yashashvi Choudhary,
Simar Dhamija, Sonakshi Singh

Jacket designer Juhi Sheth
Jackets editorial coordinator Priyanka Sharma
Managing jackets editor Sreshtha Bhattacharya

DTP designer Sachin Gupta
Senior DTP designer Harish Aggarwal
Senior managing editor Rohan Sinha

Deputy managing art editor Anjana Nair
Pre-production manager Balwant Singh

DK UK
Senior editors Ben Morgan, Steve Setford

Senior art editor Peter Radcliffe
US editors Jill Hamilton, Margaret Parrish

Consultant editor Craig Steele
Jacket design development manager Sophia MTT

Jacket editor Claire Gell
Producer, pre-production Robert Dunn, Nadine King

Producer Anna Vallarino
Managing editor Lisa Gillespie

Managing art editor Owen Peyton Jones
Publisher Andrew Macintyre

Associate publishing director Liz Wheeler
Art director Karen Self

Design director Phil Ormerod
Publishing director Jonathan Metcalf

First American Edition, 2017
Published in the United States by DK Publishing
345 Hudson Street, New York, New York 10014

Copyright © 2017 Dorling Kindersley Limited
DK, a Division of Penguin Random House LLC

17 18 19 20 21 10 9 8 7 6 5 4 3 2 1
001–299420–June/2017

All rights reserved.
Without limiting the rights under the copyright reserved above, no part of this publication may be reproduced,

stored in or introduced into a retrieval system, or transmitted, in any form, or by any means (electronic, mechanical,
photocopying, recording, or otherwise), without the prior written permission of the copyright owner.

Published in Great Britain by Dorling Kindersley Limited.

A catalog record for this book is available from the Library of Congress.

ISBN 978-1-4654-6188-9

DK books are available at special discounts when purchased in bulk for sales promotions, premiums,
fund-raising, or educational use. For details, contact: DK Publishing Special Markets, 345 Hudson Street,

New York, New York 10014 or SpecialSales@dk.com
Printed in China

A WORLD OF IDEAS:
SEE ALL THERE IS TO KNOW

www.dk.com

US_004-005_imprint.indd 4 16/01/17 5:39 pm

CAROL VORDERMAN MBE is one of Britain’s best-loved TV presenters and
is renowned for her mathematical skills. She has hosted numerous TV shows
on science and technology, from Tomorrow’s World to How 2, and was co-host
of Channel 4’s Countdown for 26 years. A Cambridge University engineering
graduate, she has a passion for communicating science and technology
and has a keen interest in coding.

CRAIG STEELE is a specialist in Computing Science education. He is Project
Manager for CoderDojo Scotland, which runs free coding clubs for young people.
Craig has previously worked for the Raspberry Pi Foundation, Glasgow Science
Centre, and the BBC micro:bit project. Craig’s first computer was a ZX Spectrum.

DR. CLAIRE QUIGLEY studied Computing Science at Glasgow University,
where she earned a BS and PhD. She has worked in the Computer Laboratory
at Cambridge University and Glasgow Science Centre, and is currently
working on a project to develop a music and technology resource for primary
schools in Edinburgh. She is a mentor at CoderDojo Scotland.

DANIEL McCAFFERTY holds a degree in Computer Science from the University
of Strathclyde. He has worked as a software engineer for companies big and
small in industries from banking to broadcasting. Daniel lives in Glasgow with
his wife and daughter and when not teaching young people to code, he enjoys
bicycling and spending time with family.

DR. MARTIN GOODFELLOW has a PhD in computer science and experience
of teaching coding up to university level. He has developed educational
content and workshops for CoderDojo Scotland, Skills Development
Scotland, Glasgow Life, and Highlands and Islands Enterprises, and has
consulted on digital content for the BBC. He is currently the Scottish
Ambassador for National Coding Week.

DR. JON WOODCOCK studied physics at Oxford University and computational
astrophysics at the University of London. An avid coder since the age of eight,
he has programmed all kinds of computers from single-chip microcontrollers
to world-class supercomputers. He is author of DK’s bestselling Coding Games
in Scratch and has written or contributed to six other DK coding books.

US_004-005_imprint.indd 5 06/02/17 4:00 pm

Contents
8 F O R E W O R D

 STARTING WITH PYTHON

12 What is coding?

14 Meet Python

16 Installing Python

18 Using IDLE

 FIRST STEPS

22 Your first program

24 Variables

28 Making decisions

32 Loopy loops

36 Animal Quiz

44 Functions

48 Fixing bugs

52 Password Picker

58 Modules

60 Nine Lives

 TURTLE GRAPHICS

72 Robot Builder

82 Kaleido-spiral

90 Starry Night

98 Mutant Rainbow

 PLAYFUL APPS

110 Countdown Calendar

120 Ask the Expert

130 Secret Messages

142 Screen Pet

US_006-007_Contents.indd 6 02/03/17 4:53 pm

Let’sssss get
sssstarted!

Find out more at:
www.dk.com/computercoding

 GAMES IN PYTHON

158 Caterpillar

168 Snap

180 Matchmaker

190 Egg Catcher

 REFERENCE

202 Project reference

220 Glossary

222 Index

224 Acknowledgments

US_006-007_Contents.indd 7 02/03/17 4:53 pm

Foreword

We live in a digital world, and computers are part of almost everything we do. Not so
long ago, computers were bulky, noisy machines that lived mainly on desks, but now
they are tiny, silent devices hidden inside our phones, cars, TVs, and even watches.
We use them to work, play games, watch movies, go shopping, and keep in touch with
our friends and family.

Today’s computers are so simple to use that anyone can operate them. But not as
many people know how to write the code that makes them work. Becoming a coder
allows you to look under the hood and see how a computer really works. With a bit
of practice, you can build your own apps, write your own games, or just tinker with
other people’s programs and customize your own ingenious creations.

As well as being an addictive hobby, coding is a skill that’s in huge demand all over
the world. Learn how to code and it will set you in good stead wherever your life
leads, whether you’re interested in science, art, music, sport, or business.

Today, there are hundreds of coding languages you can learn, from simple, drag-and-
drop languages like ScratchTM to web-programming languages like JavaScript®. This
book is based on Python®, one of the world’s most widely used coding languages.
Equally popular with students and professionals, Python is easy to pick up yet powerful
and versatile. It ’s a great language to learn whether you’re a beginner or moving up
from a simple language like Scratch.

US_008-009_Foreword.indd 8 16/01/17 9:43 am

The best way to learn to code is to get immersed, and that’s how this book is designed
to work. Just follow the numbered steps and you’ll be building apps, games, graphics,
and puzzles in no time. Learning to code is easier if you’re having fun, so we’ve tried
to make the projects as much fun as possible.

If you’re new to programming, start at the beginning and work your way through.
Don’t worry if you don’t understand every detail—it doesn’t matter. The more projects
you build, the better you’ll get. And don’t worry if your programs don’t work the first
time you run them. Even the pros have to debug their work.

Once you’ve finished building each project, there are tips on how to tweak and adapt
it. Feel free to try your own hacks. With a little bit of imagination and skill, there’s
no limit to what a coder can achieve.

Have fun coding!

US_008-009_Foreword.indd 9 16/01/17 9:43 am

US_010-011_Chapter_1_opener.indd 10 16/01/17 9:43 am

Starting
with Python

US_010-011_Chapter_1_opener.indd 11 16/01/17 9:43 am

12 S T A R T I N G W I T H P Y T H O N

What is coding?
Computer programmers, or “coders,” are people
who write step-by-step instructions that can
make a computer perform a task. Coders can get
computers to do addition, make music, move a
robot across a room, or fly a rocket to Mars.

Dumb boxes
A computer can’t do anything of its own accord—it just
sits there like a dumb box until it’s told exactly what to
do. Because computers can’t think for themselves and can
only do as they’re told, coders have to do the thinking for
them and write their instructions carefully.

Programming languages
In order to tell a computer what to do, you need
to learn a programming language. Visual languages
are easy for beginners to learn, while professional
coders use text-based languages. This book is based
on the popular text-based language Python.

▽ Scratch
Scratch is a visual programming language.
It’s great for creating games, animations, and
interactive stories. You write code in Scratch
by snapping together blocks of instructions.

▽ Python
Python is a text-based programming
language. In Python, programmers write
code using words, abbreviations, numbers,
and symbols. Instructions are typed in using
the computer’s keyboard.

△ Performing pet
By learning how to code, you’ll be able
to write your own programs and make
the computer do what you want. It’s a
bit like having an electronic pet that
you can teach to perform tricks!

Both these bits of code
do the same thing.

The answer to the sum
is shown on the screen
in a “thinks” bubble.

You hit the enter/return key
to see the result.

>>> 3 + 3

6

Why don’t you say
something?

6

when clicked

think 3 + 3

US_012-013_What_is_coding.indd 12 02/03/17 4:53 pm

13W H A T I S C O D I N G ?

Anyone can code
To be a coder you just need to learn a few basic rules and
commands, and then you can start writing programs to
suit your skills and interests. If you’re into science, for
example, you could make an app that draws graphs from
the results of your experiments. Or you could use your art
skills to design an alien world for your own video game.

Get coding
Coding may sound daunting, but learning how
to do it is easy. The secret is to just jump in. This
book is designed to teach you how to code by
guiding you through simple projects. Just follow
the numbered steps and you’ll be creating
games, apps, and digital art in no time.

▽ Think logically
Coders need to think logically and carefully to write
good code. If the instructions aren’t quite right or the
steps are in the wrong order, a program won’t work
properly. Think through each step and make sure things
happen in a logical order—after all, you wouldn’t put
your coat on before your sweater, would you!

▽ Pay attention to detail
If you’re good at spot-the-difference puzzles, you’ll
probably be a great coder. An important skill in
coding is spotting mistakes in your code. These
mistakes are called bugs, and even tiny bugs can
cause big problems. Eagle-eyed coders can pick out
spelling mistakes and faults with the logic or order
of the instructions. Debugging a program can be
tricky, but learning from your mistakes is a great way
to improve your coding powers.

I knew you’d get
that wrong!

Keep those eyes
peeled!

I’m on a
bug hunt!

L I N G O

Bugs
Bugs are errors in code that make
programs behave in unexpected ways.
They are so-called because early
computers sometimes went wrong when
insects got stuck in their circuits!

US_012-013_What_is_coding.indd 13 12/01/17 2:33 pm

14 S T A R T I N G W I T H P Y T H O N

Meet Python
Python is one of the most popular computer
programming languages in the world. It was
first released in the 1990s and is now used to
build millions of apps, games, and websites.

Why Python?
Python is a great language for getting started
with computer programming. Many schools
and universities use it to teach coding. Here
are some of the reasons that Python’s so useful.

It’s easy to read
and write!

△ Easy to read and write
Python is a text-based computer programming
language. You write the instructions using a
mixture of English words, punctuation characters,
symbols, and numbers. This makes Python code
simple to read, write, and understand.

▽ Batteries included
Programmers say Python has “batteries
included.” This is because it comes with
everything you need to start coding
right away.

△ Works everywhere
Python is portable. This means you can write and
run Python code on lots of different computers.
The same Python code will work on PCs, Macs,
Linux machines, and Raspberry Pi computers. The
programs behave the same way on each machine.

▷ Great support
Python has well-written
documentation. It has a
guide to getting started, a
reference section for looking
up what things mean, and
a bunch of example code.

△ Handy tools
Python is packed with lots of useful tools and
preprogrammed code that you can use in your
programs. This is called the Standard Library.
Using these tools makes it easier and quicker
for you to build your own programs.

L I N G O

Python
Python isn’t named after the type of
snake. It’s actually named after a
British comedy group called “Monty
Python’s Flying Circus.” The creator of
Python, Guido van Rossum, was a big
fan of the group and their quirky
humor. Python programmers often
use the group’s jokes and famous
quotes in their code as a tribute.

US_014-015_Meet_Python.indd 14 02/03/17 4:53 pm

15M E E T P Y T H O N

Python in action
Python isn’t just an educational tool.
It’s such a powerful program it’s used
for many interesting and exciting tasks
in business, medicine, science, and the
media. It can even be used to control
the lights and heating in your home.

E X P E R T T I P S

The interpreter
Some programming languages use an interpreter.
The interpreter is a program that can translate from
one programming language into another. Every time
you run a Python program, the interpreter translates
each line of Python code into a special code that the
computer can understand, known as machine code.

Action!

I’m a mighty
powerful program!

▽ Crawling the web
Python is widely used on the Internet.
Parts of Google’s search engine are
written in Python. Much of YouTube
is also built using Python code.

△ Serious business
Python helps banks keep track of the money
in their accounts, and big store chains to set
the prices of the goods they sell.

△ Out of this world
Software engineers used Python to create tools for
NASA’s Mission Control Center. These tools help the crew
prepare for and monitor the progress of each mission.

△ In the movies
Disney uses Python to automate repetitive parts of
the animation process. Rather than animators carrying
out the same steps over and over, they use a Python
program to repeat the steps automatically. This saves
work, shortening the time it takes to make a film.

Don’t worry, this won’t
hurt—much!

△ Medical marvels
Python can be used to program robots to perform
tricky operations. A Python-programmed robot
surgeon can work more quickly than a human one,
and be more accurate and less likely to make errors.

We’ve been
expecting you!

Python? It’s a serious
 business!

US_014-015_Meet_Python.indd 15 12/01/17 2:33 pm

16 S T A R T I N G W I T H P Y T H O N

Installing Python
All the projects in this book use Python 3, so
make sure you download the correct version
from the website. Follow the instructions
that match your computer.

Open IDLE
When the installation is finished, check that it was
successful by opening the IDLE program. Go to the
“Start” menu, choose “All Apps”, then select “IDLE”.
A window like the one below should open up.

Download Python
Click on the latest version of Python for Windows,
beginning with the number 3. The installer file will
download automatically. Of the different installer
options, select “executable installer”.

Go to the Python website
Type the address below into your web
browser to go to the Python website.
Then click on “Downloads” to open the
download page.

Python on Windows
Before you install Python 3 on a Windows PC, find out
if it uses the 32-bit or 64-bit version of windows. Click
“Start”, right-click “Computer”, and left-click “Properties”.
Then choose “System” if the option appears.

If you have a 32-bit
version of Windows,
use this installer.

If you have a 64-bit
version of Windows,
use this installer.

Click the
installer.

Run the installer
Double-click the installer file to install Python.
Choose “install for all users” and click “next” at each
prompt, without changing the default settings.

• Python 3.6.0a4 - 2016-08-15
 • Windows x86 executable installer
 • Windows x86-64 executable installer

• https://www.python.org/

L I N G O

IDLE
IDLE (short for Integrated
Development Environment) is
a free app that you get when
you install Python. Designed for
beginners, IDLE includes a basic
text editor that allows you to write
and edit Python code.

1

3

2

4

Python 3.6.0a4 (v3.6.0a4:017cf260936b, Aug 15 2016, 00:45:10) [MSC v.1900 32

bit (Intel)] on win32

Type "copyright", "credits" or "license()" for more information.

>>>

Python 3.6.0a4 Shell

IDLE File Edit Shell Debug Window Help

US_016-017_Installing_Python.indd 16 06/02/17 4:01 pm

17I N S T A L L I N G P Y T H O N

Go to the Python website
Type the address below into your web browser
to go to the Python website. Then click on
“Downloads” to open the download page.

Open IDLE
When the intallation is finished, check that it was
successful by opening the IDLE program. Open the
“Applications” folder, and then the “Python” folder.
Double-click “IDLE” and a window like this should appear.

Download Python
From the downloads options, click on the
latest version of Python 3 that matches your
operating system. The Python.pkg file will
download to your Mac automatically.

Install Python
You’ll find the .pkg file in the “Downloads” folder. Its
icon looks like an opened parcel. Double-click it to
start the installation. At the prompts, click “Continue”
and then “Install” to accept the default settings.

I M P O R T A N T !

Ask permission
Never install Python or any other
program unless you have permission
to do so from the computer’s owner.
You may also need to ask the owner
to provide an administration password
during installation.

Python on a Mac
Before you install Python 3 on a Mac, check which
operating system the computer uses. Click the
Apple icon in the top left of the screen and choose
“About this Mac” from the drop-down menu.

The version number might not be
exactly the same as this one—just
make sure you download the one
that has a 3 at the beginning.

Click the package
to run the installer.

• Python 3.6.0a4 - 2016-08-15
 • Download macOS X 64-bit/32-bit installer

https://www.python.org/

Python 3.6.0a4 (v3.6.0a4:017cf260936b, Aug 15 2016, 13:38:16)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "copyright", "credits" or "license()" for more information.

>>>

Python 3.6.0a4 Shell

IDLE File Edit Shell Debug Window Help

21

3

4

US_016-017_Installing_Python.indd 17 06/02/17 4:01 pm

18 S T A R T I N G W I T H P Y T H O N

Using IDLE
IDLE has two different windows in which you can
work. The editor window can be used to write
and save programs, while the shell window runs
Python instructions immediately.

The shell window
When you open IDLE, the shell window pops up.
This is the best place to get started in Python
because you don’t have to create a new file first.
Just type the code directly into the shell window.

>>> print('I am 10 years old')

>>> ''.join(reversed('Time to code'))

>>> 123 + 456 * 7 / 8

You should come
out of your shell

more!

E X P E R T T I P S

Different windows
To help you know which window you
should type your code in, we’ve given
each window in IDLE a different color.

Shell window

Editor window

▽ Give the shell a test run
Type each of these code snippets into the shell window
and press the enter/return key after each one. The first
line displays a message and the second line does a
calculation. Can you work out what the third line does?

▽ Working in the shell
The code you type can be run straight away,
and any messages or "bugs" (errors) are
displayed. You can use the shell window like a
notepad, to test out snippets of code before
you add them into a bigger program.

This line
shows which

version of
Python you

have.

You type
in code at

the >>>
prompt.

Python 3.6.0a4 (v3.6.0a4:017cf260936b, Aug 15 2016, 13:38:16)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type 'copyright', 'credits' or 'license()' for more information.

>>>from turtle import *

>>>forward(200)

>>>left(90)

>>>forward(300)

>>>

Python 3.6.0a4 Shell

IDLE File Edit Shell Debug Window Help

The text here
will depend
on which
operating
system you
have.

These four lines of code are
a simple drawing program;
try it out for yourself.

US_018-019_Using_Idle.indd 18 12/01/17 2:34 pm

19U S I N G I D L E

I love idling!

The editor window
The shell can’t save your code, so when you close the
shell window the code you typed is lost forever. That’s
why you should use IDLE’s editor window when you
work on a project. This window lets you save your code.
It also has built-in tools to help you write your programs
and to trouble-shoot any errors.

▽ The editor window
To open the editor window in IDLE,
click on the File menu at the top
and choose New File. An empty
editor window will then appear.
You’ll use the editor window to
write and run programs for the
projects in this book.

You can run your
programs from
this menu.

The name of the
file is shown here.You type the code in

here. This program
prints a list that tells
you which numbers
are even and which

ones are odd.

Anything you tell
Python to print

gets displayed in
the shell window.

The menu bar for
the editor window
is different to the
one for the shell.

for counter in range(10):
 if (counter % 2) == 0):
 print(counter)
 print('is even')
 else:
 print(counter)
 print('is odd')

EvensandOdds.py

IDLE File Edit Format Run Window Help

E X P E R T T I P S

Colors in the code
IDLE automatically colors
the text to highlight
different parts of the code.
The colors make it easier to
understand the code, and
they’re useful when you’re
trying to spot mistakes.

◁ Built-in commands
Python commands,
such as “print”, are
shown in purple.

◁ Text in quotes
Text in quote marks is
green. A green bracket
around text shows you’re
missing a quote mark.

◁ Symbols and names
Most code text is colored
black.

◁ Output
Any text produced when
a program runs is blue.

◁ Keywords
Certain words, such as
“if” and “else”, are special
words that Python uses.
They are called keywords
and are shown in orange.

◁ Errors
Python uses red to
alert you to any errors
in your code.

US_018-019_Using_Idle.indd 19 02/03/17 4:54 pm

US_020-021_Chapter_2_opener.indd 20 16/01/17 9:43 am

First
steps

US_020-021_Chapter_2_opener.indd 21 16/01/17 9:43 am

F I R S T S T E P S22

How it works
The program first displays the message “Hello,
World!” and then asks your name. Once you’ve
typed in your name, it says hello again, but this
time it includes your name in the greeting. The
program uses something called a variable to
remember your name. A variable is used in
coding to store information.

Say hello

Ask user to type
their name

Start

Say hello, adding
user’s name

End

Your first program
Now that you’ve installed Python and IDLE, it’s
time to write your first program in Python.
Follow these steps to create a simple program
that greets the user with a cheery message.

Hello Cedric!

Type the first line
In the editor window, type this line of text.
The word “print” is a Python instruction that
tells the computer to display something on
the screen, such as the words “Hello, World!”

Close

Save

Save As...

1 Launch IDLE
A shell window appears when you start IDLE.
Ignore it and click on File in the IDLE menu.
Choose New File to create an empty editor
window where you can write your program.

New File

Open

Open Module

Recent Files

Class Browser

Path Browser

3

2

print('Hello, World!')

Save your file
Before you can run the code, you must save
it. Go to the File menu and choose Save.

Hello, World!

▷ Hello World flowchart
Programmers use diagrams
called flowcharts to plan their
programs and to show how they
work. Each step is shown in a
box, with an arrow leading to
the next step. Sometimes the
steps are questions and have
more than one arrow leading
onward, depending on the
answer to the question.

US_022-023_Your_first_program.indd 22 16/01/17 5:40 pm

Y O U R F I R S T P R O G R A M 23

This line asks for the user’s name and
stores it in a variable called “person”.

Python Shell

Check Module

Run Module

5

print('Hello, World!')

person = input('What’s your name?')

print('Hello,', person)

Save the file
A pop-up box will appear. Type in a name for your
program, such as “helloworld.py”, and click Save.

Check it works
Now run the first line of the program
to see if it works. Open the Run menu
and choose Run Module. You should
see the message “Hello, World!” in the
shell window.

Fix mistakes
If the code isn’t working, stay calm!
Every programmer makes mistakes,
and finding these “bugs” is vital if you
want to become an expert at coding.
Go back and check your code for
typing errors. Did you include the
brackets? Did you spell the word
“print” correctly? Fix any mistakes,
then try running the code again.

Add more lines
Go back to the editor window and add two more lines to
your script. Now the middle line asks for your name and
then stores it in a variable. The last line uses your name
to print a new greeting. You can change it to a different
greeting if you prefer—as polite or as rude as you like!

Final task
Run the code again to check it. When you type in your
name and hit the enter/return key, the shell should show
a personalized message. Congratulations on completing
your first Python program! You’ve taken your first steps
towards becoming a powerful programmer.

6

7

8

E X P E R T T I P S

Keyboard shortcut
A handy shortcut to run a program from
the editor window is simply to press F5 on
your keyboard. This is a lot quicker than
selecting “Run” and then “Run Module”.

>>>

Hello, World!

>>>

Hello, World!

What's your name?Josh

Hello, Josh

L I N G O

.py files
Python programs usually have
a name ending with “.py”,
which makes them easy to
recognize. When you save a
program, Python automatically
adds “.py” at the end, so you
don’t need to type it in.

Save As:

Documents

Cancel Save

helloworld.py

Tags:

Where:
Type the
name of
your
program
here.

The message will
appear in the shell.

User’s
name

4

US_022-023_Your_first_program.indd 23 02/03/17 4:54 pm

F I R S T S T E P S24

Variables
If you want to write useful code, you’ll need to be able
to store and label pieces of information. That’s what
variables do. Variables are great for all sorts of things—
from tracking your score in a game to performing
calculations and holding lists of items.

How to create a variable
A variable needs a name. Think of a name that will remind
you what’s inside the variable. Then decide what you want
to store in the variable. This is the variable’s value. Type
the name, followed by an equals sign, followed by the
value. We call this “assigning a value” to the variable.

This is the variable’s name.

The print() function prints the value
of the variable between the brackets.

The value of age

This value will be stored in the variable.

1 Assign a value
In the shell window, type this line of code to
create the variable age and assign a value
to it. Use your own age if you want.

>>> age = 12

Print the value
Now type the line of code shown on the right
into the shell window. Hit the enter/return
key to see what happens.

2

△Storage box
A variable is like a box with a
name label. You can store data
in the box and then use the
name to find the data again
when you need to use it.

>>> print(age)

12

E X P E R T T I P S

Naming variables
Choosing good names for your variables
will make your program easier to
understand. For example, a variable
tracking a player’s lives in a game could
be called lives_remaining, rather
than just lives or lr. Variable names
can contain letters, numbers, and
underscores, but they should begin
with a letter. Follow the rules shown
here and you won’t go wrong.

Dos and don’ts
• Start the variable’s name with a letter.

• Any letter or number can be used in the name.

• Symbols such as -, /, #, or @ aren’t allowed.

• Spaces can’t be used.

• An underscore (_) can be used instead of a space.

• Uppercase (capitals) and lowercase letters are different.
Python will treat “Score” and “score” as two different variables.

• Avoid words Python uses as commands, such as “print”.

US_024-025_Variables_1.indd 24 02/03/17 4:54 pm

V A R I A B L E S 25

>>> x = 6

>>> y = x * 7

>>> print(y)

42

Using numbers
Variables can be used to store numbers and do sums.
You can use them with symbols to do calculations,
just like you do in maths. Some of these symbols will
be familiar, but watch out for the symbols meaning
“multiply” and “divide”—they’re slightly different
from the ones you use in class. Some of the Python math symbols

Create a new variable, x, and give it the value 6.

Change the value of x.
The result of the calculation

Print the
value of y.

Multiply x by 7 and
store the result in y.

The result hasn’t changed;
next we’ll find out why. Update the value of y.

1 sheep (an integer)
0.5 sheep
(a float)

L I N G O

Integers and floats
In coding, whole numbers are called “integers”,
while numbers with a decimal point in them
are known as “floats”. Programs usually count
things using integers. Floats are more often
used for measurements.

1 A simple calculation
Type this code in a shell window. It uses
numbers stored in two variables, named x
and y, to carry out a simple multiplication.
Hit the enter/return key to get the answer.

>>> x = 10

>>> print(y)

42

>>> x = 10

>>> y = x * 7

>>> print(y)

70

2 Change a value
To change the value of a variable, you just
assign a new value to it. In your code, change
the value of x to 10 and run the calculation
again. What do you expect the result to be?

Update the value
The value of y needs to be updated to get the
correct result. Type these lines. Now the code
assigns the new value to y after x has been
changed. If you update the value of one
variable in your own programs, always check
to see if you need to update any others.

3

Symbol Meaning

+

–

*

/

add

subtract

multiply

divide

US_024-025_Variables_1.indd 25 12/01/17 2:34 pm

F I R S T S T E P S26

>>> name = 'Ally Alien'

>>> greeting = 'Welcome to Earth, '

>>> message = greeting + name

>>> print(message)

Welcome to Earth, Ally Alien

Working with strings
Coders use the word “string” for any data
made up of a sequence of letters or other
characters. Words and sentences are
stored as strings. Almost all programs use
strings at some point. Every character that
you can type on your keyboard, and even
those you can’t, can be stored in a string.

The + symbol
joins one string
to another.The quote marks

aren’t shown when
you print a string.

Remember the
quote marks.

The quote marks show that
the variable contains a string.

Hit the enter/return
key to print the string.

A string is simply a
sequence of characters.

>>> name = 'Ally Alien'

>>> print(name)

Ally Alien

The number of
characters counted

>>> len(message)

 28

E X P E R T T I P S

Length of a string
You can use a handy trick, len(), to
count the number of characters in a string
(including the spaces). The command
len() is an example of what coders call a
function. (You’ll use lots of functions in this
book.) To find out how many characters
there are in 'Welcome to Earth, Ally
Alien', type the line below into the
shell once you’ve created the string, then
hit enter/return.

Take me to your
leader...

He doesn’t have
a clue!

Strings in variables
Strings can be put into variables. Type this
code into the shell window. It assigns the
string 'Ally Alien' to the variable name
and then displays it. Strings must always have
quotation marks at the beginning and end.

Combining strings
Variables become really useful when you
combine them to make new variables. If you
add two strings together, you can store the
combination in a new variable. Try this out.

P Y T H
0

N

1

2

US_026-027_Variables_2.indd 26 12/01/17 2:34 pm

V A R I A B L E S 27

>>> rockets_player_1 = 'Rory'

>>> rockets_player_2 = 'Rav'

>>> rockets_player_3 = 'Rachel'

>>> planets_player_1 = 'Peter'

>>> planets_player_2 = 'Pablo'

>>> planets_player_3 = 'Polly'

>>> rockets_players = ['Rory', 'Rav',

'Rachel', 'Renata', 'Ryan', 'Ruby']

>>> planets_players = ['Peter', 'Pablo',

'Polly', 'Penny', 'Paula', 'Patrick']

>>> rockets_players[0]

'Rory'

>>> planets_players[5]

'Patrick'

This line gets the first item
in the list, from position 0.

This line gets the last item
in the list, from position 5.

Hit enter/return to
retrieve the item.

Lists
When you want to store a lot of data, or
perhaps the order of the data is important,
you may need to use a list. A list can hold
many items together and keep them in order.
Python gives each item a number that shows
its position in the list. You can change the
items in the list at any time.

This list is stored in the
variable planets_players.

The list items must be
separated by commas.

With three players per team,
you’d need six variables.

Put a list in a variable
...but what if there were six players per team?
Managing and updating so many variables
would be difficult. It would be better to use a
list. To create a list, you surround the items you
want to store with square brackets. Try out
these lists in the shell.

Getting items from a list
Once your data is in a list, it’s easy to work with.
To get an item out of a list, first type the name
of the list. Then add the item’s position in the
list, putting it inside square brackets. Be careful:
Python starts counting list items from 0 rather
than 1. Now try getting different players’ names
out of your team lists. The first player is at
position 0, while the last player is at position 5.

3

2

Multiple variables
Imagine you’re writing a multiplayer game
and want to store the names of the players
in each team. You could create a variable for
each player, which might look like this...

1

US_026-027_Variables_2.indd 27 02/03/17 4:54 pm

28 F I R S T S T E P S

Making decisions
Every day you make decisions about what to do
next, based on the answers to questions you ask
yourself. For example, “Is it raining?”, “Have I done
my homework?”, “Am I a horse?” Computers also
make decisions by asking questions.

Questions that compare
The questions that computers ask themselves usually
involve comparing one thing with another. For example,
a computer might ask if one number is bigger than
another. If it is, the computer might then decide to
run a block of code that would otherwise be skipped.

▷ Boolean values
The answers to the questions computers ask
have only two possible values: True or False.
Python calls these two values Boolean values,
and they must always start with a capital letter.
You can store a Boolean value in a variable.

▽ Logical operators
These symbols tell computers to make
comparisons. Programmers call them
logical operators. You may have used
some of them in math. The words “and”
and ”or” can also be used as logical
operators in computer code.

>>> answer_one = True

>>> answer_two = False

Am I a
horse?

Err...

Are you sure you
want to do that?

Symbol Meaning

==
!=
<
>

equal to
not equal to
less than
greater than

Boolean value

Variable

>>> age = 10

>>> if age == 10:

 print('You are ten years old.')

This compares your
age with the variable.

The code prints the message if the two match.

This sets the value of the variable.

I'm greater
than you!

E X P E R T T I P S

Equals signs
In Python, you can use a single equals sign, =, or a double
equals sign, ==. They mean slightly different things. Use
a single equals sign when you want to set the value of a
variable. Typing age = 10, for example, sets the value of
the variable age to 10. Use a double equals sign when
you want to compare two values, as in the example below.

US_028-029_Making_decisions_1.indd 28 02/03/17 4:54 pm

29M A K I N G D E C I S I O N S

Pineapples and zebras
Let’s try an example using the shell. We can
represent having five pineapples and two
zebras by using the variables pineapples
and zebras. Type these lines into the shell.

The number of zebras is less
than the number of pineapples.

The number of pineapples is
greater than the number of zebras.

The number of pineapples and the
number of zebras aren’t equal.

>>> zebras < pineapples

True

>>> pineapples > zebras

True

>>> pineapples == zebras

False

▽ ▷ Make comparisons
Now try typing the following lines of code to compare
the values of the two variables. After you’ve typed each
line, press the return key and Python will tell you if the
statements are True or False.

One part (pineapples == 3) is
incorrect, so the statement is False.

One part is correct (zebras == 2),
so the statement is True.

>>> (pineapples == 3) and (zebras == 2)

False

>>> (pineapples == 3) or (zebras == 2)

True

▽ Multiple comparisons
You can use and and or to combine more than one
comparison. If you use and, both parts of the comparison
must be correct for the statement to be True. If you use
or, only one part needs to be correct.

L I N G O

Boolean expressions
Statements about variables and values that use
the logical operators always give us a Boolean
value, such as True or False. Because of this,
these statements are called Boolean expressions.
All of our statements about pineapples and
zebras are Boolean expressions.

This variable stores the number of zebras.

>>> pineapples = 5

>>> zebras = 2

This variable stores the
number of pineapples.

>>> pineapples != zebras

True

Logical operator

Variable

Variable

Boolean value

US_028-029_Making_decisions_1.indd 29 02/03/17 4:54 pm

30 F I R S T S T E P S

Ride the rollercoaster
A sign at the theme park says you must be over 8 years
old and taller than 4 feet 7 inches to ride the
rollercoaster. Mia is 10 years old and 5 feet tall. Let’s use
the shell to check whether she can go for a ride. Type
the following lines of code to create variables for Mia’s
age and height and assign the correct values to them.
Type the rules for going on the rollercoaster as a
Boolean expression, then hit the enter/return key.

Branching
Computers often need to make decisions about
which parts of a program to run. This is because
most programs are designed to do different
things in different situations. The route through
the program splits like a path branching off into
side paths, each leading to a different place.

Mia can go on the
rollercoaster!

>>> age = 10

>>> height = 1.5

>>> (age > 8) and (height > 53 inches)

True

These two lines
assign values to

the variables.

This is a Boolean
expression meaning
“older than 8 and more
than 4 ft 7 in tall”.

▷ School or park?
Imagine you have to decide what route
to walk each day based on the answer
to the question “Is today a weekday?” If
it’s a weekday, you take the route to
school; if it’s not, you take the route to
the park. In Python, the different routes
through a program lead to different
blocks of code. A block can be one
statement or several, all indented by
four spaces. The computer uses a test
called a condition to figure out which
blocks it should run next.

But I’m 100
years old!

You can’t ride –
you’re too small!

L I N G O

Condition
A condition is a Boolean
expression (a True-or-
False comparison) that
helps a computer decide
which route to take
when it reaches a branch
in the code.

US_030-031_Making_decisions_2.indd 30 12/01/17 2:34 pm

31M A K I N G D E C I S I O N S

▷ One branch
The simplest branching command is an if
statement. It only has one branch, which
the computer takes if the condition is True.
This program asks the user to say if it’s
dark outside. If it is, the program pretends
that the computer is going to sleep! If it’s
not dark, is_dark == 'y' is False, so the
“Goodnight!” message isn’t displayed.

▷ Two branches
Do you want a program to do one thing if
a condition’s True and another thing if it’s
False? If so, you need a command with two
branches, called an if-else statement.
This program asks if the user has tentacles.
If they answer “Yes”, it decides they must
be an octopus! If they answer “No”, it
decides they’re human. Each decision
prints a different message.

▷ Multiple branches
When there are more than
two possible paths, the
statement elif (short for
“else-if”) comes in handy. This
program asks the user to type
in the weather forecast: either
“rain”, “snow”, or “sun”. It then
chooses one of three branches
and weather conditions.

This branch is taken if
the condition is True.

This block runs if the
condition is True.

is_dark = input('Is it dark outside? y/n)')

if is_dark == 'y':

 print('Goodnight! Zzzzzzzzzzzzzzz....')

tentacles = input('Do you have tentacles? (n/y)')

if tentacles == 'y':

 print('I never knew octopuses could type!')

else:

 print('Greetings, human!')

weather = input ('What is the forecast for today? (rain/snow/sun)')

if weather == 'rain':

 print('Remember your umbrella!')

elif weather == 'snow':

 print('Remember your wooly gloves!')

else:

 print('Remember your sunglasses!')

Condition

This block runs if the
condition is False.

This block runs if the
second condition is True.

This block runs if the
first condition is True.

This block runs if both
conditions are False.

Condition

First condition

Second
condition

The code shows this message
in the shell window.

This line asks the user to reply “y” (yes) or “n” (no).

This line asks for input from the user.

△ How it works
An elif statement must always come after if and
before else. In this code, elif checks for snow only
when the condition set by the if statement is False.
You could insert additional elif statements to check
for more types of weather.

US_030-031_Making_decisions_2.indd 31 06/02/17 4:01 pm

32 F I R S T S T E P S

For loops
When you know how many times you want to run a
block of code, you can use a for loop. In this example,
Emma has written a program to make a sign for her
door. It prints “Emma’s Room—Keep Out!!!” ten times.
Try out her code for yourself in the shell. (After typing
the code and hitting enter/return, press backspace to
remove the indent and then hit enter/return again.)

Loopy loops
Computers are great at doing boring tasks without
complaining. Programmers aren’t, but they are good at
getting computers to do repetitive work for them—by
using loops. A loop runs the same block of code over
and over again. There are several different types of loop.

This is the loop
variable.

The loop runs 10 times.

Loop variable = 1 Loop variable = 2 Loop variable = 3

First loop Second loop Third loop

The line that gets repeated
is called the loop body.

Indent the commands in
the body 4 spaces.

>>> for counter in range(1, 11):

 print('Emma\'s Room - Keep Out!!!')

▽ Loop variable
The loop variable keeps track of how many times we’ve gone
around the loop so far. The first time round it’s equal to the first
number in the list specified by range(1, 11). The second time
around it’s equal to the second number in the list, and so on.
When we’ve used all the numbers in the list, we stop looping.

Emma’s Room—Keep Out!!!

Emma’s Room—Keep Out!!!

Emma’s Room—Keep Out!!!

Emma’s Room—Keep Out!!!

Emma’s Room—Keep Out!!!

Emma’s Room—Keep Out!!!

Emma’s Room—Keep Out!!!

Emma’s Room—Keep Out!!!

Emma’s Room—Keep Out!!!

Emma’s Room—Keep Out!!!

Emma’s Room—Keep Out!!!

Range
In Python code, the word “range”
followed by two numbers within
brackets stands for “all the
numbers from the first number to
one less than the second number”.
So range(1, 4) means the
numbers 1, 2, and 3—but not 4.
In Emma’s “Keep Out” program,
range(1, 11) is the numbers
1, 2, 3, 4, 5, 6, 7, 8, 9, and 10.

E X P E R T T I P S

US_032-033_Loopy_Loops_1.indd 32 02/03/17 4:54 pm

33L O O P Y L O O P S

While loops
What happens if you don’t know how many times
you want to repeat the code? Do you need a
crystal ball or some other way of seeing into the
future? No, it’s okay! You can use a while loop.

▷ Loop condition
A while loop doesn’t have a loop variable that’s set to a
range of values. Instead it has a loop condition. This is a
Boolean expression that can be either True or False. It’s a bit
like a bouncer at a disco asking you if you’ve got a ticket. If
you have one (True), head straight for the dance floor; if you
don’t (False), the bouncer won’t let you in. In programming,
if the loop condition isn’t True, you won’t get into the loop!

? ! ?

You can’t come in—
your loop condition

isn’t true!

I’m off!

I can see the future,
and it’s completely

loopy!

E X P E R T T I P S

Escape character (\)
The backslash in Emma\'s Room tells Python to ignore the
apostrophe so that it doesn’t treat it as the quotation mark that
closes the whole string. A backslash used like this is called an
escape character. It tells Python not to count the next character
when working out if the line makes sense or contains errors.

>>> hippos = 0

>>> answer = 'y'

>>> while answer == 'y':

 hippos = hippos + 1

 print(str(hippos) + ' balancing hippos!')

 answer = input('Add another hippo? (y/n)')

This variable stores the
number of hippos.

Ahmed's reply
becomes the new
value of answer.

This line displays a message
showing the total number
of balancing hippos.

Add another
hippo to the

number balanced.

▽ Balancing act
In this example, Ahmed has written a program to keep track
of how many of his troupe of acrobatic hippopotamuses
have balanced on top of each other to make a tower. Read
through the code and see if you can figure out how it works.

This variable stores
the answer to the

question “Add
another hippo?”

Loop condition

US_032-033_Loopy_Loops_1.indd 33 06/02/17 4:01 pm

34 F I R S T S T E P S

>>> while True:

 print('This is an infinite loop!')

>>> while True:

 answer = input('Are you bored yet? (y/n)')

 if answer == 'y':

 print('How rude!')

 break

There is no False option
to escape the loop.

The True condition is that the
user is not bored yet ('n').

The False condition
('y') triggers the
break command.

▽ Escaping infinity
You can deliberately use an infinite loop to get input from
the user. This (annoying) program asks if the user is bored. As
long as they type “n”, it keeps asking the question. If they get
fed up and type “y”, it tells them they’re rude and uses the
break command to leave the loop!

△ Into infinity
You make an infinite loop by setting the loop condition to a
constant value: True. Because this value never changes, the
loop will never exit. Try this while loop in the shell. It has no
False option, so the loop will print “This is an infinite loop!”
nonstop until you quit the program.

▷ How it works
The loop condition in Ahmed’s program is
answer == 'y'. This means that the user
wants to add a hippo. In the body of the
loop we add one to the number of hippos
balanced, then ask the user if they want to
add another. If they answer by typing “y”
(for yes), the loop condition is True so we
go around the loop again. If they answer “n”
(no), the loop condition is False and the
program leaves the loop.

Infinite loops
Sometimes you may want a while
loop to keep going for as long as the
program is running. This kind of loop
is called an infinite loop. Lots of
video-game programs use an infinite
loop known as a main loop.

Hmm... maybe
I’ll add just one

more hippo?

E X P E R T T I P S

Stopping the loop
If you don’t want an infinite loop, it’s
important to make sure that the body
of a while loop does something that
could make the loop condition False.
But don’t worry—if you accidentally
code an infinite loop, you can escape
from it by pressing the C key while
holding down the Ctrl (control) key.
You may have to press Ctrl-C several
times before you quit the loop.

Ctrl-C

US_034-035_Loopy_Loops_2.indd 34 06/02/17 4:01 pm

35L O O P Y L O O P S

◁ How it works
The whole of the inner for loop
is inside the body of the outer
for loop. Each time we do one
repeat of the outer loop, we
have to do two repeats of the
inner loop. This means the body
of the outer loop is run three
times in total, but the body of
the inner loop is run six times.

I like Russian dolls—but
they’re always so full

of themselves!

Loops inside loops
Can the body of a loop have another loop
within it? Yes! This is called a nested loop.
It’s like Russian dolls, where each doll fits
inside a larger doll. In a nested loop, an
inner loop runs inside an outer loop.

▷ One loop inside another
In this example, Emma has
changed her “Keep Out” program
into a “Three Cheers” program
that prints “Hip, Hip, Hooray!”
three times. Because each cheer
includes the word “Hip” twice,
she uses a nested loop to print it.

>>> for hooray_counter in range(1, 4):

 for hip_counter in range(1, 3):

 print('Hip')

 print('Hooray!')

The loop variable of the outer
loop is hooray_counter.

The body of the inner loop is
indented another 4 spaces.

The body of
the outer
loop is indented
4 spaces.

The loop variable of the inner
loop is hip_counter.

E X P E R T T I P S

Indent the body
The code in the body of a loop should be indented
four spaces. If it isn’t, Python will show an error
message and the code won’t run. With nested
loops (one loop inside another), the body of the
inner loop must be indented an extra four spaces.
Python automatically indents new lines in loops,
but you should always check that each line is
indented by the correct number of spaces.

hooray_counter = 1 hip_counter = 1

hip_counter = 1

hip_counter = 1

hooray_counter = 2

hip_counter = 2

hip_counter = 2

hip_counter = 2
hooray_counter = 3

Hip

Hip

Hooray!

Hip

Hip

Hooray!

Hip

Hip

Hooray!

SyntaxError

OK

unexpected indent

US_034-035_Loopy_Loops_2.indd 35 06/02/17 4:01 pm

F I R S T S T E P S36

Animal Quiz
Are you a fan of quizzes? Would you like to make one
yourself? In this project, you’ll build an animal quiz. Even
though the questions are about animals, this project can
be easily modified to be about any other topic.

This is your score out of
a possible 3 points.

If you guess incorrectly,
you get another go.

Type in your
answer here.

This is how the game
looks—it all happens
in the shell window.

What happens
The program asks the player some questions about animals.
They get three chances to answer each question—you don’t
want to make the quiz too difficult! Each correct answer will
score one point. At the end of the quiz, the program reveals
the player’s final score.

Python 3.5.2 Shell

Guess the Animal!

Which bear lives at the North Pole? polar bear

Correct answer

Which is the fastest land animal? cheetah

Correct answer

Which is the largest animal? giraffe

Sorry, wrong answer. Try again. elephant

Sorry, wrong answer. Try again. rhinoceros

The correct answer is blue whale

Your score is 2
After three wrong guesses,
the program shows you the
correct answer.

I thought I was the
largest animal.

US_036-037_Animal_Quiz_1.indd 36 16/01/17 9:42 am

A N I M A L Q U I Z 37

How it works
This project makes use of a function—a
block of code with a name that performs
a specific task. A function lets you use the
same code repeatedly, without having to
type it all in every time. Python has lots
of built-in functions, but it also lets you
create functions of your own.

▷ Calling functions
When you want to use a
function, you “call it” by typing
its name in your code. In
Animal Quiz, you’ll make a
function that compares the
player’s guess to the true
answer to see if it’s correct.
You’ll call it for each question
in the quiz.

L I N G O

Ignore the case!
When comparing the player’s guess to the
correct answer, it shouldn’t matter if the player
types capital letters or lower-case letters—all
that matters is that the words are the same.
This isn’t true for all programs. For example, if
a program that checks passwords ignores case,
the passwords might become easier to guess,
and less secure. However, in Animal Quiz, it
doesn’t matter if the player answers “bear”
or “Bear”—both will be recognized as correct.

▽ Animal Quiz flowchart
The program keeps checking whether there are any
questions left to ask and whether the player has used
up all of their chances. The score is stored in a variable
during the game. Once all the questions have been
answered, the game ends.

Set score to 0

Check answer

Add 1 to score

Display score

Is answer
correct?

Start

Display “Guess
the Animal!”

Ask question and
get user’s answer

End

Are there more
questions?

Are there any
chances left?

Y

Y

Y

N

N

N

US_036-037_Animal_Quiz_1.indd 37 02/03/17 4:54 pm

38 F I R S T S T E P S

Create a new file
Open IDLE. Under the File menu,
select New File. Save the file as
“animal_quiz.py”.

Create the score variable
Type in the code shown here to
create a variable called score
and set its starting value to 0.

Introduce the game
Next, create a message to introduce
the game to the player. This will be
the first thing that the player sees
on the screen.

Run the code
Now try running the code. From
the Run menu, choose Run Module.
What happens next? You should
see the welcome message in the
shell window.

Ask a question (user input)
The next line of code asks a
question and waits for the player’s
response. The answer (the user
input) is saved in the variable
guess1. Run the code to make
sure the question appears.

score = 0

print('Guess the Animal!')

score = 0

print('Guess the Animal!')

guess1 = input('Which bear lives at the North Pole? ')

Putting it together
It’s now time to build your quiz! First you’ll create
the questions and the mechanism for checking the
answers. Then you’ll add the code that gives the
player three attempts to answer each question.

1

2

3

4

5

Python Shell

Check Module

Run Module

Save

Save As

Run

File

This phrase will appear
in the shell window.

The variable guess1
stores whatever the
user types in.

You’ll use this variable
to keep track of the
player’s score.

I hope I’m not
venomous—I’ve just

bitten my tongue!

US_038-039_Animal_Quiz_2.indd 38 16/01/17 9:43 am

39A N I M A L Q U I Z

guess1 = input('Which bear lives at the North Pole? ')

check_guess(guess1, 'polar bear')

Build a check function
The next task is to check if the player’s
guess is correct. Type this code at the
top of your script, before score = 0.
The code creates a function, called
check_guess(), that will check if
the player’s guess matches the correct
answer. The two words in brackets
are “parameters”—bits of information
the function needs. When you call
(run) a function, you assign (give)
values to its parameters.

Call the function
Now add a line at the end
of the script to call (run) the
check_guess() function. This
code tells the function to use
the player’s guess as the first
parameter and the phrase “polar
bear” as the second parameter.

Test the code
Try running the code again and
type in the correct answer. The
shell window should look like this.

6

7

8

def check_guess(guess, answer):

 global score

 if guess == answer:

 print('Correct answer')

 score = score + 1

score = 0

The first line gives
the function a name
and parameters.

This line says the
score variable is
a global variable.
It ensures that
changes to the
variable can be
seen throughout
the whole program.

Add 1 to the
player’s score.

Don’t forget
the brackets.

Correct answer

Guess the Animal!

Which bear lives at the North Pole? polar bear

Correct answer

Add some more questions
It takes more than one question to make a quiz!
Add two more questions to the program, following
the same steps as before. We’ll store the player’s
answers in the variables guess2 and guess3.

score = 0

print('Guess the Animal!')

guess1 = input('Which bear lives at the North Pole? ')

check_guess(guess1, 'polar bear')

guess2 = input('Which is the fastest land animal? ')

check_guess(guess2, 'cheetah')

guess3 = input('Which is the largest animal? ')

check_guess(guess3, 'blue whale')

9

This tells the program
to check guess1.

This tells the program
to check guess3.

First question

Let me add
some more.

US_038-039_Animal_Quiz_2.indd 39 02/03/17 4:54 pm

F I R S T S T E P S40

Display the score
The next line of code will reveal the player’s score
in a message when the quiz ends. Add it to the
bottom of the file, under the last question.

guess3 = input('Which is the largest animal? ')

check_guess(guess3, 'blue whale')

print('Your score is ' + str(score))

Test the code again
Run your code for a third time. Try typing the
correct answers using a mixture of capitals and
lower-case letters and see what happens.

12

10

This creates a message giving
the player’s score and displays
it on the screen.

△ How it works
For this step, you have to use the str() function
to change a number into a string. This is because
Python shows an error if you try to add a string
and an integer (whole number) together.

Ignore case
What happens if the player types
“Lion” instead of “lion”? Will they still
get a point? No, the code will tell
them it’s the wrong answer! To fix this,
you need to make your code smarter.
Python has a lower() function, which
changes words into all lower-case
characters. In your code, replace
if guess == answer: with the
line shown on the right in bold.

def check_guess(guess, answer):

 global score

 if guess.lower() == answer.lower():

 print('Correct answer')

 score = score + 1

11

Change this line. △ How it works
Both the guess and the answer
will be converted into lower-case
characters before being checked.
This ensures that the code works
whether the player uses all
capital letters, all lower-case
letters, or a mixture of the two.

Guess the animal!

Which bear lives at the North Pole? polar bear

Correct answer

Which is the fastest land animal? Cheetah

Correct answer

Which is the largest animal? BLUE WHALE

Correct answer

Your score is 3 The case is ignored when deciding
whether an answer is correct or not.

US_040-041_Animal_quiz_3.indd 40 16/01/17 9:43 am

A N I M A L Q U I Z 41

Give the player more chances
The player currently has only one chance
to get the answer right. You can make it
a bit easier for them by giving them three
chances to answer a question. Change the
check_guess() function to look like this.

def check_guess(guess, answer):

 global score

 still_guessing = True

 attempt = 0

 while still_guessing and attempt < 3:

 if guess.lower() == answer.lower():

 print('Correct answer')

 score = score + 1

 still_guessing = False

 else:

 if attempt < 2:

 guess = input('Sorry wrong answer. Try again. ')

 attempt = attempt + 1

 if attempt == 3:

 print('The correct answer is ' + answer)

score = 0

13

A while loop runs the check
code three times or until the
player gets the answer correct—
whichever comes first.

This variable will hold one of only
two values: True or False.

Add 1 to the number of
guesses the player has had.

This code displays the correct
answer after three wrong guesses.

Make sure each line of
code has the correct indent.

The else variable asks the
player to enter another answer
if they get it wrong.

△ How it works
To know if the player has gotten the
right answer, you need to create a
variable called still_guessing.
You then set the variable to True
to show that the right answer hasn’t
been found. It’s set to False when the
player gets the right answer.

Largest animal?
I don’t know.

Give me three guesses!

Don’t forget to save
your work.

US_040-041_Animal_quiz_3.indd 41 06/02/17 4:01 pm

42 F I R S T S T E P S

◁ Make it longer
Add more questions to the quiz. Some
examples could be “Which animal has a long
trunk?” (elephant) or “What kind of mammal
can fly?” (bat). Or, a bit harder: “How many
hearts does an octopus have?” (three).

◁ Make a multiple-choice quiz
This code shows how to create
multiple-choice questions, which
give the player several possible
answers to choose from.

Use a backslash character if you need to
split a long line of code over two lines.

guess = input('Which one of these is a fish? \

A) Whale B) Dolphin C) Shark D) Squid. Type A, B, C, or D')

check_guess(guess, 'C')

guess = input('Which one of these is a fish?\n \

A) Whale\n B) Dolphin\n C) Shark\n D) Squid\n \

Type A, B, C, or D ')

check_guess(guess, 'C')

Which one of these is a fish?

 A) Whale

 B) Dolphin

 C) Shark

 D) Squid

Type A, B, C, or D

R E M E M B E R

Breaking the line
You can use \n to make a new line
anywhere. Multiple-choice questions
are easier to understand if the
question and possible answers
appear on different lines. To show
the fish question as a list of options,
type it like this.

This is how
the question
appears in the
shell window.

Hacks and tweaks
Mix up your quiz! Make it longer or harder, use different
types of questions, or even change the subject of the
quiz. You can try any or all of these hacks and tweaks,
but remember to save each one as a separate Python
file so that you don’t mess up the original game.

US_042-043_Animal_Quiz_4.indd 42 06/02/17 4:01 pm

43A N I M A L Q U I Z

▷ Change the difficulty
To make the quiz harder, give the
player fewer chances to get the right
answer. If you make a true-or-false
quiz, you’ll only want the player to
have one guess per question, and
perhaps no more than two guesses
per question if it’s a multiple-choice
quiz. Can you figure out what you’d
need to change the highlighted
numbers to for true-or-false or
multiple-choice questions?

◁ Better score for fewer attempts
Reward the player for getting the answer right with
fewer guesses. Give 3 points if they get it in one try,
2 points for needing two attempts, and 1 point for
using all three chances. Make this change to the line
that updates the score. Now it will give 3 points minus
the number of unsuccessful attempts. If the player
gets the answer right first time, 3 – 0 = 3 points are
added to their score; on the second guess, it’s 3 – 1 = 2
points; and on the third guess, it’s 3 – 2 = 1 point.

▷ Make a true-or-false quiz
This code shows how to create
true-or-false questions, which
have only two possible answers.

def check_guess(guess, answer):

 global score

 still_guessing = True

 attempt = 0

 while still_guessing and attempt < 3:

 if guess.lower() == answer.lower():

 print('Correct Answer')

 score = score + 1

 still_guessing = False

 else:

 if attempt < 2:

 guess = input('Sorry wrong answer.Try again. ')

 attempt = attempt + 1

 if attempt == 3:

 print('The correct answer is ' + answer)

▷ Choose another topic
Create a quiz on a different subject, such as
general knowledge, sports, movies, or music.
You could even make a quiz about your family
or friends and include some cheeky questions,
like “Who has the most annoying laugh?”

guess = input('Mice are mammals. True or False? ')

check_guess(guess, 'True')

This line
replaces
score + 1.

 while still_guessing and attempt < 3:

 if guess.lower() == answer.lower():

 print('Correct Answer')

 score = score + 3 – attempt

 still_guessing = False

 else:

 if attempt < 2:

Not as easy as I thought
it would be...

Change this number.

Change this number.

Change this number.

US_042-043_Animal_Quiz_4.indd 43 06/02/17 4:01 pm

F I R S T S T E P S44

Functions
Programmers love shortcuts that make writing
code easier. One of the most common shortcuts
is to give a name to a block of code that does an
especially useful job. Then, instead of having to
type out the whole block each time you need it,
you simply type its name. These named blocks
of code are called functions.

How to use a function
Using a function is also known as “calling” it. To call a
function, you just type the function’s name, followed by
a set of brackets that contain any parameters you want
the function to work with. Parameters are a bit like
variables that belong to the function, and they allow you
to pass data between different parts of your program.
When a function doesn’t need any parameters, the
brackets are left empty.

Built-in functions
Python has a number of built-in
functions that you can use in your code.
These are helpful tools that let you do
lots of tasks, from inputting information
and showing messages on the screen to
converting one type of data into another.
You’ve already used some of Python’s
built-in functions, such as print() and
input(). Have a look at these examples.
Why not try them out in the shell?

△ input() and print()
These two functions are like opposites. The input() function
lets the user give instructions or data to the program by typing
them in. The print() function sends output to the user by
displaying messages or results on the screen.

This shows the content of the
variable greeting on the screen.

>>> name = input('What is your name?')

What is your name? Sara

>>> greeting = 'Hello' + name

>>> print(greeting)

Hello Sara

This asks the user to
type in their name.

L I N G O

Function terms
There are a number of special
words that coders use when
talking about functions.

Call To use a function.

Define When you use the def
keyword and write the code
for a function, coders say you
“define” the function. You also
define a variable when you first
set its value.

Parameter A piece of data
(information) that you give to
a function to use.

Return value Data that you
pass from a function back to the
main code. You get it using the
keyword return.

US_044-045_Functions_1.indd 44 12/01/17 2:35 pm

F U N C T I O N S 45

Another way of calling
Some of the different types of data we’ve
come across so far, such as integers, strings,
and lists, have their own functions. These
functions must be called in a special way.
You type the data or the name of the
variable holding the data, followed by a dot,
the function’s name, and finally brackets.
Test out these code snippets in the shell.

▽ max()
The max() function selects the maximum value from
the parameters you give it. Hit the enter/return key to
see the value on the screen. This function takes multiple
parameters, which must be separated by commas.

▽ min()
The function min() does the opposite of max(). It
selects the minimum value from the parameters you
put inside its brackets. Experiment for yourself with
the max() and min() functions.

△ reverse()
Use this function when you want to reverse the order of the
items in a list. Here, it’s used to reverse a list of numbers
stored in the variable countdown. Instead of printing the list
as [1, 2, 3], the function makes it print [3, 2, 1].

When you hit the enter/return key, the
code shows you the lowest number.

Always separate multiple
parameters with commas.

The maximum
value is the
highest number
in the brackets.

△ upper()
The upper() function takes an existing string and
returns a new string in which all the lower-case
characters are changed to upper-case (capitals).

Empty brackets mean
that no parameters
are needed.

This is the new string, all in capitals.

Don’t forget
the dot.

>>> 'bang'.upper()

'BANG'

△ replace()
Two parameters are needed for this function: the first is
the part of a string you want to replace, while the second
is the string you want to put in its place. The function
returns a new string with the replacements made.

The new string replaces
happy with :D.

The function has two parameters.

>>> message = 'Python makes me happy'

>>> message.replace('happy', ':D')

'Python makes me :D'

>>> countdown = [1, 2, 3]

>>> countdown.reverse()

>>> print(countdown)

[3, 2, 1]

>>> max(10, 16, 30, 21, 25, 28)

30

>>> min(10, 16, 30, 21, 25, 28)

10

The list of numbers
stored in the variable

The list is now
reversed.

I just love
the shell!

US_044-045_Functions_1.indd 45 02/03/17 4:54 pm

F I R S T S T E P S46

2 Add parameters
If you want to give your function any values to work
with, you put them inside the brackets as parameters.
For example, to find out the total number of seconds
in a particular number of days, change your code to
look like this. The function now has the parameter
days. You can specify the number of days when you
call the function. Try it out yourself.

def print_seconds_per_day(days):

 hours = days * 24

 minutes = hours * 60

 seconds = minutes * 60

 print(seconds)

print_seconds_per_day(7)

The function’s
parameter

This line uses the
parameter days.

Gives a value (7) to
the parameter days

The number of seconds in 7 days

Making a function
The best functions have a clear purpose
and a good name that explains what
they do—think of the check_guess()
function you used in Animal Quiz.
Follow these instructions to create, or
“define”, a function that calculates the
number of seconds in a day and then
prints the answer on the screen.

The name of
the function

There are no
parameters yet.

This command calls the function.

The number of seconds in a day appears in the shell.

def print_seconds_per_day():

 hours = 24

 minutes = hours * 60

 seconds = minutes * 60

 print(seconds)

print_seconds_per_day()

86400

604800

1 Define the function
Create a new file in IDLE. Save it as “functions.py”.
Type these lines into the editor window. An indent is
added at the start of each line in the function. Save
the file again, then run the code to see what happens.

This line prints
the value of the
variable seconds.

Variables
The keyword def tells Python that

this block of code is a function.

The lines after the name must be
indented 4 spaces, to show Python that

they are part of the function.

E X P E R T T I P S

Top advice
It’s important to define
your functions before
you use them in your
main code. When you’re
learning to code with
Python, it’s helpful to put
your functions at the top
of your file, after any
import statements. By
doing this, you won’t
make the mistake of
trying to call a function
before you’ve defined it.

Existing lines of code
are shown in grey and
new lines of code in bold.

US_046-047_Functions_2.indd 46 06/02/17 4:01 pm

F U N C T I O N S 47

4

3 Return a value
Once you have a function that does something
useful, you’ll want to use the results from that
function in the rest of your code. You can get
values out of a function by “returning” them.
Change your code as shown here to get the
return value from your function. You should
rename the function to match its new purpose.
Don’t try to run the code just yet.

Store and use the return value
You can store the return value from a function
in a variable to use later in your code. Add this
code under your function. It stores the return
value and uses it to calculate the number of
milliseconds (thousandths of a second). Try it
out and experiment with the number of days.

def convert_days_to_seconds(days):

 hours = days * 24

 minutes = hours * 60

 seconds = minutes * 60

 return seconds

def convert_days_to_seconds(days):

 hours = days * 24

 minutes = hours * 60

 seconds = minutes * 60

 return seconds

total_seconds = convert_days_to_seconds(7)

milliseconds = total_seconds * 1000

print(milliseconds)

This calls the function and gives a
value (7) to the parameter days.

The line that called the function
is deleted, as the function now
has a new name and purpose.

This is the number of
milliseconds in 7 days.

The total number of seconds
is converted into milliseconds

and stored in the variable
milliseconds.

The keyword return gives the
value of the variable seconds.

604800000

The function’s
new name

E X P E R T T I P S

Naming your functions
In Step 3, you changed the name of your
function from print_seconds_per_day() to
convert_days_to_seconds(). Just like with
variables, it’s important that the name you use
accurately explains what the function does. This
makes your code much easier to understand.

The return value is stored in the
variable total_seconds.

This line prints the value
of milliseconds.

The rules for naming functions are similar to
those for variables. Function names can contain
letters, numbers, and underscores, but they
should begin with a letter. If there are several
words in the name, the words should be
separated by underscores.

US_046-047_Functions_2.indd 47 02/03/17 4:54 pm

F I R S T S T E P S48

Fixing bugs
If something’s wrong with your code, Python will try to help
by showing an error message. These messages can seem a
bit puzzling at first, but they’ll give you clues about why
your program isn’t working and how to fix it.

Error messages
Both the IDLE editor and the shell window can
show error messages if mistakes are detected.
An error message tells you what type of error
has occurred and where to look in your code.

This pop-up box
tells you there’s a

syntax error, which
means there’s a
typing mistake.

SyntaxError

OK

invalid syntax

>>>

Traceback (most recent call last):

 File "Users/Craig/Developments/top-secret-python-book/age.py", line 21, in module>

 print('I am'+ age + 'years old')

TypeError: Can't convert 'int' object to str implicitly

▽ Messages in the shell
Python displays error messages in
red text in the shell window. The
program stops working when an
error message appears. The message
tells you which line of code caused
the error to happen.

▽ Messages in the IDLE editor
A pop-up box warns you there’s an error. Click
OK to return to your program. There will be a
red highlight on or near the error.

E X P E R T T I P S

Finding bugs
When an error message
appears in the shell, right-click
it and choose “Go to file/line”
on the drop-down menu. The
IDLE editor jumps straight to
that line of code so you can
start debugging.

line 21
Cut

Copy

Paste

Go to file/line

I’ll find those
pesky bugs!

This line tells you it’s a
type error (see page 50).

The error is on line 21.

US_048-049_Fixing_bugs_1.indd 48 16/01/17 5:40 pm

F I X I N G B U G S 49

Syntax errors
When you get a syntax error message,
it’s a hint that you’ve typed something
incorrectly. Perhaps your fingers slipped
and hit a wrong letter? Don’t worry—
these are the easiest errors to fix. Check
through your code carefully and try to
spot what went wrong.

Indentation errors
Python uses indentation to understand where
blocks of code start and stop. An indentation
error means something is wrong with the way
you’ve structured the code. Remember: if a
line of code ends with a colon (:), the next
line must be indented. Press the space bar
four times to manually indent a line.

The closing bracket is missing—it
needs another curved bracket here.

The first quotation mark is missing.
It needs to be a single quote to match.

This is a spelling mistake—it
should be short_shots.

This line of code would trigger an
indentation error message.

You need to indent the code on the
second line like this to fix the error.

Four
spaces

The indents tell Python which lines
of code belong to which block.

input('What is your name?'

print(It is your turn')

total_score = (long_shots * 3) + (shoort_shots * 2)

▷ Things to look out for
Are you missing a bracket or quotation
mark? Do your pairs of brackets and
quotation marks match? Have you
made a spelling mistake? All these
things can cause syntax errors.

▽ Indent each new block
In your Python programs, you’ll often have one
block of code within another block, such as a
loop that sits inside a function. Every line in a
particular block must be indented by the same
amount. Although Python helps by automatically
indenting after colons, you still need to check
that each block is indented correctly.

if weekday == True:

print('Go to school')

if weekday == True:

 print('Go to school')
Ow! That must be
what they call an
indentation error!

Block 1

Block 2

Block 3

Block 2, continuation

Block 1, continuation

US_048-049_Fixing_bugs_1.indd 49 06/02/17 4:01 pm

F I R S T S T E P S50

◁ Examples of type errors
Type errors occur when you ask Python to do
something that doesn’t make sense to it, such
as multiplying with strings, comparing two
completely different types of data, or telling
it to find a number in a list of letters.

▷ Name errors
A name error in this code stops Python from
displaying the message “I live in Moscow”.
You need to create the variable hometown
first, before you use the print() function.

Type errors
A type error isn’t a typing error—it means your code has
mixed up one type of data with another, such as confusing
numbers with strings. It’s like trying to bake a cake in your
refrigerator—it won’t work, because the refrigerator isn’t
meant for baking! If you ask Python to do something
impossible, don’t be surprised if it won’t cooperate!

Name errors
A name error message appears if your code uses the name
of a variable or function that hasn’t yet been created. To
avoid this, always define your variables and functions
before you write code to use them. It’s good practice
to define all your functions at the top of your program.

I thought they
were taking a long

time to cook!

You can’t do
multiplication
with strings!

You can multiply two numbers
in Python, but you can’t do
multiplication with strings.

Python can’t check to see if
a string is greater than a
number, because they are
different data types.

This function is expecting you to
give it a list of numbers, but you’ve
given it a list of letters instead!

The print() instruction needs
to come after the variable.

budget = 'Fifty' * 'Five'

hot_day = '20 degrees' > 15

list = ['a','b','c']

find_biggest_number(list)

print('I live in ' + hometown)

hometown = 'Moscow'

REFRIGERATOR

US_050-051_Fixing_bugs_2.indd 50 12/01/17 2:35 pm

F I X I N G B U G S 51

Logic errors
Sometimes you can tell something has gone wrong even
if Python hasn’t given you an error message, because your
program isn’t doing what you expected. It could be that
you’ve got a logic error. You may have typed in the code
correctly, but if you missed an important line or put the
instructions in the wrong order it won’t run properly.

Logic error! Does
not compute...

print('Oh no! You've lost a life!')

print(lives)

lives = lives – 1

◁ Can you spot the bug?
This code will run with no error messages, but
there’s a logic error in it. The value of lives is
shown on the screen before the number of lives
is reduced by one. The player of this game will
see the wrong number of lives remaining! To fix it,
move the instruction print(lives) to the end.

◁ Line by line
Logic errors can be tricky to find, but as you get
more experienced you’ll get good at tracking
them down. Try to identify logic errors by
checking your code slowly, line by line. Be
patient and take your time—you’ll find the
problem in the end.

Ask yourself...
• If you build one of the projects in this book and it doesn’t work, check
that the code you’ve typed matches the book exactly.

• Is everything spelled correctly?

• Do you have unnecessary spaces at the start of a line?

• Have you confused any numbers for letters, such as 0 and O?

• Have you used upper-case and lower-case letters in the right places?

• Do all open parentheses have a matching closing parenthesis? () [] { }

• Do all single and double quotes have a matching closing quote? ‘ ‘ “ ”

• Have you asked someone else to check your code against the book?

• Have you saved your code since you last made changes?

E X P E R T T I P S

Bug-busting checklist
Sometimes you might think
that you’ll never get a program
to work, but don’t give up! If
you follow the tips in this
handy checklist, you’ll be able
to identify most errors.

All the lines of code are correct,
but two are in the wrong order.

US_050-051_Fixing_bugs_2.indd 51 12/01/17 2:35 pm

F I R S T S T E P S52

Password Picker
Passwords stop other people from accessing our computers,
personal emails, and website login details. In this project,
you’ll build a tool that makes secure, memorable passwords
to help keep your private information safe.

A name is easy to
remember, but it

wouldn’t be
difficult to guess.

Alice

This is secure but easy
to remember. Just think
of two tired dinosaurs
going to bed! It could
take a cracker over a
million years to guess
this password correctly.

Sleepydinosaur2!

This password could
take a hacker over 1,000

years to crack, but it’s
hardly memorable.

GH7pqZ2!?

▷ Password tips
A good password is easy
to remember but hard for
a person or a password
cracker to guess.

What happens
Password Picker will enable you to
create strong passwords by combining
words, numbers, and characters. When
you run the program, it will create a new
password and show it on the screen.
You can ask it to keep creating new
passwords until you find one you like.

L I N G O

Password cracker
A cracker is a program used by hackers to guess
passwords. Some crackers can make millions of
guesses every second. A cracker usually starts
by guessing commonly used words and names.
An unusual password made up of several
different parts will help protect against crackers.

This password
looks complicated,
but it could take a
cracker less than 2
seconds to guess.

Fym5

US_052-053_Password_Picker_1.indd 52 12/01/17 2:35 pm

P A S S W O R D P I C K E R 53

How it works
This project will show you how to use Python’s random
module. The program uses random choices from
groups of adjectives, nouns, numbers, and punctuation
characters to assemble each password. You’ll soon
be making crazy, hard-to-forget passwords, such as
“fluffyapple14(“ or “smellygoat&”!

This line shows a message
to welcome the user.

adjective + noun + number + punctuation

A describing word
A random number
from 0 to 99

A character such
as “!” or “?”

The name
of a thing

Choose a random
adjective

N

Y

Create the secure
password

Display the secure
password

End

Choose a random
number between

0 and 100

Choose a random
noun

Start

Want another
password?

Create a new file
Open IDLE. Under the File menu,
select New File. Save the file as
“password_picker.py”.

Add the modules
Import the string and
random modules from
the Python library. Type
these two lines at the top
of your file, so you can
use the modules later.

Welcome the user
First create a message
to welcome the user to
the program.

1

import random

import string

import random

import string

print('Welcome to Password Picker!')

▽ Password Picker flowchart
The program randomly selects each of
the password’s four parts, puts them
together, and displays the password in
the shell window. If you want another
password, it repeats those steps again.
If you don’t, the program ends.

Choose a
random punctuation

character

Clever yet simple!
The program does clever things with
passwords, but there isn’t a lot of code
in it, so it won’t take long to make.

That string is
totally random!

The string module lets you do useful
things with strings, like splitting them
apart or changing the way they appear.

The random module helps
you make choices.

2

3

US_052-053_Password_Picker_1.indd 53 02/03/17 4:55 pm

F I R S T S T E P S54

Make an adjective list
You’ll need adjectives and nouns to
generate new passwords. In Python,
you can keep a group of related things
together as a list. First create the
variable adjectives to store your
list by typing this new block of code
between the print() command and
the import statements. Put the whole
list in square brackets, and separate
each item with a comma.

Make a noun list
Next create a variable that holds a list
of nouns. Put it under the adjective list
and above the print() command.
Remember to use commas and square
brackets, like you did in Step 5.

 'white', 'proud', 'brave']

nouns = ['apple', 'dinosaur', 'ball',

 'toaster', 'goat', 'dragon',

 'hammer', 'duck', 'panda']

print('Welcome to Password Picker!')

Use commas and
square brackets.

import string

adjectives = ['sleepy', 'slow', 'smelly',

 'wet', 'fat', 'red',

 'orange', 'yellow', 'green',

 'blue', 'purple', 'fluffy',

 'white', 'proud', 'brave']

print('Welcome to Password Picker!')

The list is stored in the
variable adjectives.

Put a comma
after each item.

Each item
is a string.

The list is in
square brackets.

E X P E R T T I P S

Random numbers
Rolling a dice, picking a card from a
deck, or tossing a coin are all things
you can simulate by generating a
random number. You can read more
about how to use Python’s random
module in the “Docs” section of the
“Help” menu.

Pick the words
To create the password, you’ll need to pick a random
adjective and a random noun. You do this using the
choice() function from the random module. Type this
code below the print() command. (You can use this
function any time you want to select a random item from
a list. Just give it the variable containing the items.)

One of the nouns from the list is
chosen and stored in this variable.

print('Welcome to Password Picker!')

 adjective = random.choice(adjectives)

 noun = random.choice(nouns)

Try out the code
Run your code. The welcome message
should appear in the shell window.

Welcome to Password Picker!

6

5

4

7

Search

IDLE Help

Python Docs

Help This variable holds
a word chosen
randomly from
the adjectives list.

US_054-055_Password_Picker_2.indd 54 06/02/17 4:01 pm

P A S S W O R D P I C K E R 55

Select a number
Now use the randrange() function from the
random module to select a random number from
0 to 99. Put this line at the bottom of your code.

 noun = random.choice(nouns)

 number = random.randrange(0, 100)

>>> import string

>>> print(string.punctuation)

!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~

Select a special character
Using the random.choice() function again, add
this line to pick a random punctuation character.
This will make your password even harder to crack!

 number = random.randrange(0, 100)

 special_char = random.choice(string.punctuation)

E X P E R T T I P S

Characters in this constant

>>> print('route '+66)

Traceback (most recent call last):

 File '<pyshell#0>', line 1, in <module>

 print('route '+66)

TypeError: Can't convert 'int' object to str implicitly

The number goes inside the
brackets of the str() function.

>>> print('route '+str(66))

route 66

E X P E R T T I P S

Strings and integers
The str() function turns a
whole number (an integer)
into a string. If you don’t use
this function, Python shows an
error when you try to add an
integer to a string. Test it: type
print('route '+66) into
the shell window.

To avoid this error, use the
str() function to change
the number into a string first.

Constants
A constant is a special type of variable
whose contents can’t be changed.
The constant string.punctuation
holds a string of characters used for
punctuation. To see what it holds, type
import string into the shell, followed
by print(string.punctuation).

Create the new secure password
It’s time to assemble all the different
parts to create the new secure
password. Type these two lines of
code at the end of your program.

This is a constant.

 password = adjective + noun + str(number) + special_char

 print('Your new password is: %s' % password)

Your secure password will
be stored in this variable.

This changes the
random number
into a string.

This displays the new
password in the shell.

Error message

8

9

10

US_054-055_Password_Picker_2.indd 55 02/03/17 4:55 pm

F I R S T S T E P S56

print('Welcome to Password Picker!')

while True:

 adjective = random.choice(adjectives)

 noun = random.choice(nouns)

 number = random.randrange(0, 100)

 special_char = random.choice(string.punctuation)

 password = adjective + noun + str(number) + special_char

 print('Your new password is: %s' % password)

 response = input('Would you like another password? Type y or n: ')

 if response == 'n':

 break

Another one?
You can use a while loop to generate another
password if the user says they want a different
one. Add this code to your program. It asks the
user if they require a new password, then stores
the reply in a variable called response.

Welcome to Password Picker!

Your new password is: bluegoat92=

Test the program
This is a good point to test your code. Run it
and look in the shell to see the result. If you
have errors, don’t worry. Look back over your
code carefully to spot any mistakes.

11

Pick a perfect password
That’s it – you’ve finished. Now you can create
hard-to-crack passwords that are fun to remember!

Welcome to Password Picker!

Your new password is: yellowapple42}

Would you like another password? Type y or n: y

Your new password is: greenpanda13*

Would you like another password? Type y or n: n

Type “y”at this prompt
to get a new password.

Type “n” at this prompt
to quit the program.

You need to
indent these
existing lines
to make sure
they’re in the
while loop.

The input() function
asks the user to enter a
response into the shell.

The while loop
starts here.

The while loop
ends here.

If the answer’s “yes” (y),
the loop returns to the
start. If it’s “no” (n), the
program exits the loop.

Don’t forget to save
your work.

12

13

Your random password
will probably be different.

US_056-057_Password_Picker_3.indd 56 12/01/17 2:35 pm

P A S S W O R D P I C K E R 57

Add a random colour.

Hacks and tweaks
Try remixing your program to add these extra
features. Can you think of any other ways to
make it even more cracker-proof?

nouns = ['apple', 'dinosaur', 'ball',

 'toaster', 'goat', 'dragon',

 'hammer', 'duck', 'panda',

 'telephone', 'banana', 'teacher']

Your new password is: hairybluepotato33%

while True:

 for num in range(3):

 adjective = random.choice(adjectives)

 noun = random.choice(nouns)

 number = random.randrange(0, 100)

 special_char = random.choice(string.punctuation)

 password = adjective + noun + str(number) + special_char

 print('Your new password is: %s' % password)

 response = input('Would you like more passwords? Type y or n: ')

▷ Add more words
To increase the number of possible
passwords, add more words to the lists of
nouns and adjectives. Think of unusual or
silly words that will stick in your mind if
they appear in a password.

△ Get multiple passwords
Change the code so your program will
create and display three passwords at
once. You will need to use a for loop.
Put it inside the while loop.

▷ Make it longer
Make the password longer and more secure
by adding another word into each password.
You could create a list of colors, then select a
random color to add to each password.

I’ll never find
the right key!

Keep these
lines indented.

The for loop runs 3 times, and
selects 3 different passwords.

Mmm! Hairy,
blue potatoes!

US_056-057_Password_Picker_3.indd 57 06/02/17 4:01 pm

F I R S T S T E P S58

Modules
Modules are bundles of code that help you deal with
common coding challenges. Modules provide the less
exciting bits of code, letting you focus on the fun stuff.
Also, because modules are used by a lot of people, they
are likely to work well and be free of bugs.

Built-in modules
There are lots of useful modules included
with Python. This collection of modules is
known as the Standard Library. Here are
some interesting modules from the library
that you might want to experiment with.

▷ webbrowser
You can control the
computer’s web
browser with this
module, allowing
you to open web
pages directly from
your code.

▷ random
You used this module to
make random selections
in Password Picker. It’s
great for adding an
element of chance to
a game or program.

▷ socket
The socket module allows programs
to communicate across networks and
the Internet. It could be used to create
an online game.

▷ datetime
This module lets you work
with dates. You can get
today’s date, or work
out how long it is until
a special day.

△ statistics
Use statistics to calculate averages
or find the most common value in a list
of numbers. It’s handy if you need to
work out an average score in a game.

This is the
best one so far!

2
3
5

Monday

2ndSunday

1st Tuesday

3rd

Wednesday

4th
My

Bir thday

7
9
1

3
3
8

4
7
9

1
8
5

2
4

US_058-059_Modules.indd 58 12/01/17 2:40 pm

M O D U L E S 59

Using a module
To use a module in your code, you have to tell Python
that you would like to include it. You instruct Python
which modules to include using import statements.
There are a few different ways that you can do this,
depending on what you need from the module.

▷ import...
Typing the keyword import allows you to
use all the contents of a module. However,
you need to put the module’s name before
any function you use. This code imports all
the webbrowser() module and uses its
open() function to open the Python
website in the computer’s browser.

▷ from... import...
If you only want to use a particular part
of a module, you can import just that part
by adding the from keyword. Now you
can just use the function name on its own.
This code imports the random module’s
choice() function. The function picks a
random item from any list you give it.

▷ from... import... a...
Sometimes you may want to change the
name of an imported module or function,
perhaps because you’ve already used
that name or maybe it isn’t clear enough.
To do this, use the as keyword followed
by the new name. In the example shown
here, the time() function, which
we’ve renamed time_now() , gives us
the current time. The time given is the
exact number of seconds since 00:00 on
January 1, 1970—a date used by most
computers as the start of their clock.

The name of the
module comes
before the function.

This line imports the whole
webbrowser module.

Only the choice
function is imported from
the random module.

The code prints a
random direction.

The number of seconds since
00:00 on January 1, 1970

This line imports and renames
the time() function.

>>> import webbrowser

>>> webbrowser.open('https://docs.python.org/3/library')

>>> from time import time as time_now

>>> now = time_now()

>>> print(now)

1478092571.003539

>>> from random import choice

>>> direction = choice([‘N’, ‘S’, ‘E’, ‘W’])

>>> print(direction)

W

You’re exactly
1478092571.003539

seconds late!

This variable uses the
function’s new name.

No module name
is needed.

US_058-059_Modules.indd 59 12/01/17 2:40 pm

F I R S T S T E P S60

['?', '?', '?', '?', '?']

Lives left:

Guess a letter or the whole word: a

['?', '?', '?', '?', 'a']

Lives left:

Guess a letter or the whole word: i

['?', 'i', '?', '?', 'a']

Lives left:

Guess a letter or the whole word: y

Incorrect. You lose a life

['?', 'i', '?', '?', 'a']

Lives left:

Guess a letter or the whole word: p

['p', 'i', '?', '?', 'a']

Lives left:

Guess a letter or the whole word: t

Incorrect. You lose a life

['p', 'i', '?', '?', 'a']

Lives left:

Guess a letter or the whole word: pizza

You won! The secret word was pizza

Each wrong guess makes
a heart disappear.

Each correct letter guessed
reveals one or more letters

in the secret word.

If you know the word, type
it in to win the game.

The number of
lives you have left
is shown by hearts.

The clue shows the mystery
word as question marks.

I guess “P”!You have seven lives
remaining. What’s your

next guess?

What happens
The program shows you a mystery word with
its letters replaced by question marks. If you
guess a letter correctly, the program replaces
the question mark with the correct letter.
When you think you know what the word is,
type it out in full. The game ends once you
enter the correct word or have no lives left.

Nine Lives
In this nerve-shredding game, you have
to guess the secret word one letter at
a time. If your guess is wrong, you lose
a life. Choose your letters carefully,
because you only have nine lives. Lose
all your lives, and it’s game over!

i? z az

US_060-061_Nine_Lives_1.indd 60 16/01/17 9:43 am

N I N E L I V E S 61

E X P E R T T I P S

Unicode characters
The letters, numbers,
punctuation, and symbols that
can be displayed on a computer
are known as characters. There
are characters for most of the
world’s languages and special
characters for simple pictures,
including emoji. Characters come
in sets. For example, the ASCII
(American Standard Code for
Information Interchange)
character set is used for the
English language. For the hearts
in this project you’ll use the
Unicode character set, which
contains lots of different symbols,
including the ones below.

Insert letter in
secret word

Game over

End

You win

Lives left?

Lose a life

Randomly select
secret word

Guess a letter
or word

Is letter in
secret word?

Is it a letter?
Does the

word match the
secret word?

Set lives to 9

Start

N

N

N

N

Y

Y

Y

Y

How it works
First you’ll create two lists: one
to store the secret words and
one to store the clue, which
is made up of question marks.
Then, using the random
module, you’ll make a random
selection from the list of secret
words. Next you’ll build a loop
to check the player’s guesses,
and also create a function to
update the clue as the word
is slowly revealed.

◁ Nine Lives flowchart
The flowchart looks complicated, but
the code for this game is relatively
short. The main body of the program
is a loop that checks the guessed letters
to see if they are part of the secret word,
and if the player has any lives left.

I’ve already got
nine lives!

US_060-061_Nine_Lives_1.indd 61 16/01/17 9:43 am

62 F I R S T S T E P S

Create a new file
Open IDLE and create a new file.
Save it as “nine_lives.py”.

Import the module
This project uses Python’s random module,
so start by typing the line of code shown
here to import it.

Make a variable
Below the import line, create a variable called
lives to keep track of the number of lives
(guesses) the player has left.

Make a list
The program will only know the words
that you give it. You’ll need to put these words
in a list, then store the list in a variable called
words. Add this line beneath your lives
variable.

Choose a secret word
At the start of each game, the program will
randomly pick the word that the player has
to guess and store it in a variable called
secret_word. Add a line to create this
new variable.

import random

lives = 9

lives = 9

words = ['pizza', 'fairy', 'teeth', 'shirt',

 'otter', 'plane']

import random

words = ['pizza', 'fairy', 'teeth', 'shirt',

 'otter', 'plane']

secret_word = random.choice(words)

Setting up
You’ll build Nine Lives in two stages. First you’ll
import the module you need for the program
and create several variables. Then you’ll write
the main code for the program.

1 2

3

4

5

Save

Save As

File

This variable uses the
random module’s
choice() function.

The player starts
with nine lives.

Each item in the list is a string
made up of five characters.

Pick any card
at random.

US_062-063_Nine_lives_2.indd 62 02/03/17 4:55 pm

63N I N E L I V E S

secret_word = random.choice(words)

clue = list('?????')

clue = list('?????')

heart_symbol = u'\u2764'

heart_symbol = u'\u2764'

guessed_word_correctly = False

Index error: list assignment index

out of range

['?', '?', '?', '?', '?']

Lives left:

Guess a letter or the whole word: c

['c', '?', '?', '?', '?']

Lives left:

Guess a letter or the whole word: a

['c', 'a', '?', '?', '?']

Lives left:

Guess a letter or the whole word: r

['c', 'a', 'r', '?', '?']

Lives left:

Guess a letter or the whole word:

The last two question marks don’t represent
any letters, so they never disappear.

The five question marks are stored
as a list in the variable clue.

This is a Boolean (True or False) value.

Store the clue
Now create another list to hold the clue. Unknown
letters are stored as question marks. These will be
replaced when the player guesses a letter correctly. At
the start of the game, the whole list is question marks.
You could write it as clue = list['?', '?', '?',
'?', '?'], typing one question mark for each letter in
the secret word, but the code below is a faster way to
write it. Add this line after the secret_word variable.

Show the lives left
This project uses the Unicode heart character to
display how many lives are left. To make your program
easier to read and write, add the next line of code to
store the character in a variable.

Remember the result
Now make a variable to store whether or not the player
has guessed the word correctly. The variable is set as
False to begin with because the player doesn’t know
the word when the game starts. Type this line below the
code for the heart symbol.

6

7

8

E X P E R T T I P S

Word length
Be careful to only add words that are five
letters long. The list that stores the clue
only has room for five characters. If you
add words of more than five letters,
you’ll see an error message when the
program tries to enter any letters past
the fifth one in the clue.

If you try to add words that are less than
five letters long, the program will work, but
the player will still see five question marks.
They’ll think that the answer has to be five
letters long. For example, if you used “car”,
the program would look like this.

The player could never win, because the
last two question marks would remain
no matter what letter they guessed!

I’ve stored all
the clues.

US_062-063_Nine_lives_2.indd 63 02/03/17 4:55 pm

F I R S T S T E P S64

The main code
The main part of the code is a loop that gets
a letter from the player and checks if it’s in
the secret word. If it is, the code uses a
function to update the clue. You’ll make
that function, then create the main loop.

9 Is the letter in the secret word?
If the guessed letter is in the secret word,
you must update the clue. To do this, you’ll
use a function called update_clue().
The function has three parameters: the
letter being guessed, the secret word,
and the clue. Add this code after the
guessed_word_correctly variable.

Guess a letter or word
Your program should keep
asking the user to guess a
letter or the whole word until
they either get the correct
answer or run out of lives. This
is what the main loop does.
Add this code below the
update_clue() function.

guessed_word_correctly = False

def update_clue(guessed_letter, secret_word, clue):

 index = 0

 while index < len(secret_word):

 if guessed_letter == secret_word[index]:

 clue[index] = guessed_letter

 index = index + 1

 index = index + 1

while lives > 0:

 print(clue)

 print('Lives left: ' + heart_symbol * lives)

 guess = input('Guess a letter or the whole word: ')

 if guess == secret_word:

 guessed_word_correctly = True

 break

 if guess in secret_word:

 update_clue(guess, secret_word, clue)

 else:

 print('Incorrect. You lose a life')

 lives = lives - 1

▷ How it works
The function contains a while loop
that works through the secret word
one letter at a time, checking whether
each letter matches the guessed
letter. The index variable keeps count
of the current letter as the program
scans through the word.

10 The loop keeps
running while
there are lives left.

This shows the clue and how
many lives the player has left.

This gets the guessed
letter or word from
the player.

When the word is
guessed correctly, this
line breaks the loop.

If the guessed letter is in the
secret word, the clue is updated.

If the guess is incorrect
(else), the number of lives

is reduced by 1.

If a letter matches, the program
inserts it into the clue, using index

to find the right position in the list of
question marks.

Add 1 to the
index value.

len() returns how
many letters are in a
word—in this case five.

US_064-065_Nine_Lives_3.indd 64 16/01/17 9:43 am

N I N E L I V E S 65

Just type a letter
to start playing!

Did you win?
When the game ends, you need to figure out if the
player has won. If the guessed_word_correctly
variable is True, you know the loop ended before
the player ran out of lives—so they’ve won the
game. Otherwise (else), they’ve lost. Add this
code to the end of your program.

Test your code
Try the game to make sure it runs OK. If there’s a
problem, carefully check your code for bugs. When
it’s working, invite your friends to take the Nine
Lives challenge!

 lives = lives – 1

if guessed_word_correctly:

 print('You won! The secret word was ' + secret_word)

else:

 print('You lost! The secret word was ' + secret_word)

11

12

E X P E R T T I P S

Repeating a string
The code print('Lives left: ' + heart_
symbol * lives) uses a neat trick to display
a heart for each remaining life. You can tell
Python to repeat a string a specific number
of times by multiplying it by a number. For
example, print(heart_symbol * 10) would
display ten hearts. Try this code out in the shell.

>>> heart_symbol = u'\u2764'

>>> print(heart_symbol * 10)

['?', '?', '?', '?', '?']

Lives left:

Guess a letter or the whole word:

This is shorthand for
“if guessed_word_
correctly = True”

Yay, I won!

I’d like to take it
for a test drive.

Don’t forget to save
your work.

US_064-065_Nine_Lives_3.indd 65 02/03/17 4:55 pm

F I R S T S T E P S66

Hacks and tweaks
There are lots of ways you can remix and adapt
this game. You can add new words, change the
word length, or make it easier or harder.

▽ Add more words
Try adding more words to the program’s word list. You
can add as many as you want, but remember to only
use words that are five letters long.

◁ Use longer words
If you think using only five-letter
words makes the game too easy,
switch to words that are a bit
longer—but remember to
keep them all the same length.
To make the game fiendishly
difficult, search a dictionary for
the longest and most unusual
words you can find!

▽ Change the number of lives
You can make it easier or harder for the
player by giving them more or fewer lives.
To do this, simply change the lives
variable that you created in Step 3.

words = ['pizza', 'fairy', 'teeth', 'shirt', 'otter', 'plane', 'brush', 'horse', 'light']

difficulty = input('Choose difficulty (type 1, 2 or 3):\n 1 Easy\n 2 Normal\n 3 Hard\n')

difficulty = int(difficulty)

while lives > 0:

Add difficulty levels
To make the game more interesting, let the player
choose the difficulty level at the start of the game.
The easier setting gives the player more lives.

Get the level
Put this code at the start of your main program, just
above the while loop. It asks the player to choose a level.

1

s

f

h

a

i

i y

r
e
e
t

t

r
u
s

b

More lives?
Yes please!

I wish I’d chosen
an easier route!

Mississippi

h

difficulty is currently a string.
This line changes it to an integer.

US_066_067_Nine_Lives_04.indd 66 16/01/17 9:44 am

N I N E L I V E S 67

clue = []

difficulty = input('Choose difficulty (type 1, 2 or 3):\n 1 Easy\n 2 Normal\n 3 Hard\n')

difficulty = int(difficulty)

if difficulty == 1:

 lives = 12

elif difficulty == 2:

 lives = 9

else:

 lives = 6

Choose difficulty (type 1, 2, or 3):

 1 Easy

 2 Normal

 3 Hard

Words of varying length
What if you want to play a game with
varying word lengths? If you don’t
know the length of the secret word
before the program is run, you won’t
know how long to make the list to
hold the clue. There’s a clever fix you
can use to solve this problem.

Test the code
Run the program to check if this change
works. You should see this message
appear in the shell window.

Set the levels
Now use if, elif, and else statements to set
the number of lives for each level. Try using 12
lives for easy, 9 for normal, and 6 for hard. If
you’re not happy with how easy or hard the
levels are, you can change the number of lives
after you’ve tested them out. Add this code after
the lines that asks the player to choose a level.

Use an empty list
When you create the list that holds the clue,
don’t fill it with question marks—just leave the
list empty. Make this change to the clue list.

2

3

1

I’ll try a harder
workout today!

HIPPOPOTAMUSHIPPO

There’s nothing inside
the brackets.

US_066_067_Nine_Lives_04.indd 67 16/01/17 9:44 am

68 F I R S T S T E P S

Make another variable
First create a variable to keep count of how many
letters are unknown. Add this code above the
update_clue function.

Edit function
Next change the update_clue() function as
shown below. Each time the player guesses a
letter correctly, the program will now take away
the number of times that letter appears in the
secret word from unknown_letters.

Make the ending smarter
At the moment, the game doesn’t end until you type out
the word in full. Let’s make the code smarter so the game
ends when you guess the last letter.

1

2

clue = []

index = 0

while index < len(secret_word):

 clue.append('?')

 index = index + 1

def update_clue(guessed_letter, secret_word, clue, unknown_letters):

 index = 0

 while index < len(secret_word):

 if guessed_letter == secret_word[index]:

 clue[index] = guessed_letter

 unknown_letters = unknown_letters – 1

 index = index + 1

 return unknown_letters

unknown_letters = len(secret_word)

Add a new loop
To make the clue the correct length once
the secret word has been selected, use this
simple loop. It counts how many letters are
in the word and adds a question mark for
each letter.

2

The append() function simply
adds an item to the end of the list.

This line makes the function return the
number of unknown letters.

At first all the letters
are unknown.

Add this new parameter
to the update_clue
function.

The code subtracts 1 from
unknown_letters each
time a guessed letter
appears in the word.

s s _ s __

Look, I guessed the
correct letter!

US_068_069_Nine_Lives_05.indd 68 16/01/17 9:44 am

69N I N E L I V E S

Calling the function
You’ll also need to change the
update_clue() function to pass
the unknown_letters variable
and store the new value.

Winning the game
When unknown_letters reaches 0, the user
has guessed the word correctly. Add this code
at the end of the main loop. Now the game will
automatically announce you as the winner
when you’ve guessed all the letters.

3

4

 if guess in secret_word:

 unknown_letters = update_clue(guess, secret_word, clue, unknown_letters)

 else:

 print('Incorrect. You lose a life')

 lives = lives – 1

 lives = lives - 1

 if unknown_letters == 0:

 guessed_word_correctly = True

 break

◁ How it works
Why do you have to update unknown_letters
in the update_clue () function? Why can’t you just
subtract 1 when you know that the guessed letter is
in the secret word? This would work if each letter only
appeared once in the secret word. But if the letter
appears multiple times, it would make your count
wrong. By updating the variable in the function, the
code will subtract 1 from unknown_letters every
time the letter appears in the secret word. This is
because the function checks every letter in the
secret word to see if it matches the guessed letter.

This passes the
unknown_letters variable.

This line assigns the new value to
the unknown_letters variable.

The break statement exits the loop when
the player guesses the correct word.

Woohoo! I guessed
the last letter!

I guess the word
is “assist”.

Hello, can you
please connect me

to the function?

s s _ s t_

US_068_069_Nine_Lives_05.indd 69 16/01/17 9:44 am

US_070-071_Chapter_3_opener.indd 70 16/01/17 9:44 am

Turtle
graphics

US_070-071_Chapter_3_opener.indd 71 16/01/17 9:44 am

T U R T L E G R A P H I C S72

What happens
When you run the program, Python’s turtle
sets off, scuttling around the screen as it draws
a friendly robot. Watch as it assembles the
robot piece by piece, using different colors.

Robot Builder
Creating graphics in Python is easy. Python’s turtle
module lets you move a robot “turtle” around the
screen, drawing pictures with a pen as it goes. In
this project, you’ll program the turtle to build more
robots—or at least pictures of robots!

Python Turtle Graphics

Customize
your robot
by altering
the size of the
rectangles that
make up its
body parts.

Can you give me
a hand?

You can change
the robot’s color
scheme to
whatever
you fancy.

US_072-073_Robot_Builder_1.indd 72 02/03/17 4:55 pm

R O B O T B U I L D E R 73

How it works
You’ll start by writing a function that draws
rectangles. Then you’ll put the rectangles
together to build the robot. You can change
the size and color of the rectangles by
altering the parameters you pass to the
function. So you can have long, thin blocks for
the legs, square ones for the eyes, and so on.

▽ Drawing with the turtle
The turtle module allows you to control a pen-carrying
robot turtle. By giving the turtle instructions on how it
should move around the screen, you can draw different
pictures and designs. You can also tell the turtle when to
put the pen down and start drawing, or when to pull it
up so it can move to a different part of the screen without
leaving an untidy trail.

▽ Don’t call me turtle!
Be careful never to name any of your turtle
programs “turtle.py”. If you do that, Python will get
really confused and give you lots of error messages.

▽ Robot Builder flowchart
The flowchart shows how the code for this project
fits together. First the program sets the background
color and how fast the turtle moves. Then it draws
the robot one part at a time, starting from its feet
and moving up to its head.

t.forward(100)

t.left(90)

t.forward(50)

Set the background
color and the turtle’s speed

End

Start

Draw the feet

Draw the legs

Draw the body

Draw the neck

Draw the arms

Draw the head

Draw the eyes

Draw the mouth

I’m not a turtle! Don’t
call me that!

The turtle moves forward 100
pixels, turns left 90 degrees,

then moves forward 50 pixels.

US_072-073_Robot_Builder_1.indd 73 02/03/17 4:55 pm

T U R T L E G R A P H I C S74

Drawing rectangles
Let’s begin by importing the turtle
module and using it to create a function
that draws rectangles.

Create a new file
Open IDLE and create
a new file. Save it as
“robot_builder.py”.

Import the Turtle module
Type this line at the top of your program.
The command import turtle as t lets
you use functions from the turtle module
without having to type “turtle” in full each
time. It’s like calling someone whose name
is Benjamin “Ben” for short.

Create a rectangle function
Now make the function to draw the blocks
that you’re going to use to build your robot.
The function has three parameters: the length
of the horizontal side; the length of the
vertical side; and color. You’ll use a loop
that draws one horizontal side and one
vertical side each time it runs, and you’ll
make it run twice. Put this rectangle function
under the code you added in Step 2.

1

2

3

import turtle as t

E X P E R T T I P S

Turtle mode
You’ll be using the turtle in its standard mode.
This means the turtle starts off facing the right
side of the screen. If you set the heading (another
word for direction) to 0, it will face right. Setting
the heading to 90 makes it point to the top of the
screen, 180 points it to the left, and 270 makes it
point to the bottom of the screen.

def rectangle(horizontal, vertical, color):

 t.pendown()

 t.pensize(1)

 t.color(color)

 t.begin_fill()

 for counter in range(1, 3):

 t.forward(horizontal)

 t.right(90)

 t.forward(vertical)

 t.right(90)

 t.end_fill()

 t.penup()

t.shape('turtle')

t.setheading(0)

t.forward(80)

Put the turtle’s pen
down to start drawing.

This block draws
the rectangle.

Pull the turtle’s pen back
up to stop drawing.

The turtle normally looks
like an arrowhead. This line

changes it to a turtle shape.

The turtle draws
the sides in the
order shown here.

1

2

3

4

This gives the Turtle module
the nickname “t”.

Using range(1, 3)
makes the loop
run twice.

Like all programming languages,
Python uses the US spelling “color”.

90

0180

270

Save

Save As...

Save Copy As...

Close

US_074-075_Robot_Builder_2.indd 74 02/03/17 4:55 pm

R O B O T B U I L D E R 75

Building the robot
Now you’re ready to start building the robot. You’re
going to make it piece by piece, starting with the
feet and working your way up. The whole robot
will be made using rectangles of different sizes
and colors, each drawn from a different starting point
in the Turtle window.

Set the background
Next get the turtle ready to start drawing, and set the
background color of the window. You need the turtle
to start with its pen up so that it doesn’t draw lines until
you want it to. It will only begin to draw when it reaches
the robot’s feet (Step 5). Type the following code under the
code you added in Step 3.

Draw the feet
You need to move the turtle to where you want to start
drawing the first foot, and then use your rectangle function
to draw it. You’ll need to do the same for the second foot.
Type these lines under the code you added in Step 4, then
run the program to see your robot’s feet appear.

4

5

E X P E R T T I P S

E X P E R T T I P S

Turtle speed
You can control how fast the turtle
draws by using the t.speed()
command to set its speed to one
of these values: “slowest”, “slow”,
“normal”, “fast”, and “fastest”.

Comments
You’ll notice that there are several
lines in this program that start with
a # symbol. The words following the
are a comment, added to make
the code easier for users to read and
understand. Python knows that it
should ignore them.

t.penup()

t.speed('slow')

t.bgcolor('Dodger blue')

feet

t.goto(–100, –150)

rectangle(50, 20, 'blue')

t.goto(–30, –150)

rectangle(50, 20, 'blue')

Pull the turtle’s pen up.

Make the background of
the window “Dodger blue”.

This comment indicates which
part of the robot you’re drawing.

Move the turtle to position
x = –100, y = –150.

Use the rectangle function
to draw a blue rectangle
50 wide and 20 high.

I’m going to build
such a cool robot!

Set the turtle’s
speed to slow.

US_074-075_Robot_Builder_2.indd 75 12/01/17 2:47 pm

T U R T L E G R A P H I C S76

body

t.goto(-90, 100)

rectangle(100, 150, 'red')

E X P E R T T I P S

Turtle coordinates
Python will adjust the Turtle window to
fit your screen, but let’s use an example
that’s 400 pixels by 400 pixels. Python uses
coordinates to identify all the places in
the window where the turtle could be. This
means that every place on the window can
be found by using two numbers. The first
number, the x coordinate, shows how far
to the left or right of the center the turtle
is. The second number, the y coordinate,
shows how far up or down from the center
it is. Coordinates are written in parentheses,
with the x coordinate first, like this: (x, y).

Draw the legs
The next bit of the program makes
the turtle move to where it will
start drawing the legs. Type these
lines under the code you added in
Step 5. Now run the code again.

6 # legs

t.goto(–25, –50)

rectangle(15, 100, 'grey')

t.goto(–55, –50)

rectangle(–15, 100, 'grey')

The turtle moves to
position x = –25, y = –50.

Draw the left leg.

Draw a red
rectangle 100 across
and 150 down.

Draw the right leg.

Draw the body
Type this code under the code you
added in Step 6. Run the program
and you should see the body appear.

7

x=0

(0,0)
y=0

(200, 200)

(200, –200)(–200, –200)

y
g

et
ti

n
g

b

ig
g

er

x getting
smaller

x getting
bigger

y
g

et
ti

n
g

sm

al
le

r

(–200, 200)

US_076-077_Robot_Builder_3.indd 76 06/02/17 4:01 pm

R O B O T B U I L D E R 77

Draw the neck
Time to give your robot a
neck. Type these neck-drawing
commands below the code
you added in Step 8.

Draw the head
Oops—you’ve drawn a headless
robot! To give your poor robot a
head, type these commands below
the code you added in Step 9.

9 # neck

t.goto(–50, 120)

rectangle(15, 20, 'grey')

head

t.goto(–85, 170)

rectangle(80, 50, 'red')

10

Draw the arms
Each arm is drawn in two parts:
first the upper arm, from the
robot’s shoulder to its elbow; then
the lower arm, from the elbow
to the wrist. Type this below the
code you added in Step 7, then
run it to see the arms appear.

8 # arms

t.goto(–150, 70)

rectangle(60, 15, 'grey')

t.goto(–150, 110)

rectangle(15, 40, 'grey')

t.goto(10, 70)

rectangle(60, 15, 'grey')

t.goto(55, 110)

rectangle(15, 40, 'grey')

Upper right arm

Lower right arm

Upper left arm

Lower left arm

At last, we’ve built
the perfect robot!

Err... not quite.

Don’t forget to save
your work.

US_076-077_Robot_Builder_3.indd 77 16/01/17 5:40 pm

T U R T L E G R A P H I C S78

Draw the mouth
Now give the robot a mouth. Type
these commands under the code you
added in Step 11.

12

Hide the turtle
Finally, hide the turtle so it doesn’t look odd
sitting on the robot’s face. Type this line after
the code you added in Step 12. Run the
program to see the whole robot being built.

13 t.hideturtle()

This makes the
turtle invisible.

mouth

t.goto(-65, 135)

rectangle(40, 5, 'black')

I love to watch these
robots being built!

I need a
vacation!

Draw the eyes
Let’s add some eyes so that the robot can see
where it’s going. To do this, you’ll draw a large
white rectangle with two smaller squares
inside it (for pupils). You don’t have to write a
new function to draw squares, since a square
is a rectangle with all its sides the same length.
Insert these commands under the code you
added in Step 10.

eyes

t.goto(–60, 160)

rectangle(30, 10, 'white')

t.goto(–55, 155)

rectangle(5, 5, 'black')

t.goto(–40, 155)

rectangle(5, 5, 'black')

11 Draw the
white part
of the eyes.

Draw the
right pupil.

Draw the
left pupil.

I’ve got eyes, but
I still keep walking

 into things!!

US_078-079_Robot_Builder_4.indd 78 12/01/17 2:40 pm

R O B O T B U I L D E R 79

Hacks and tweaks
Now your project is up and running, here
are some ideas for modifying the code so
you can customize the robots you build.

▽ Change the colors
The robot you’ve created is fairly colorful,
but there’s definitely room for improvement.
You could change the code to build a robot
that matches the colors of your room or
your favourite football team’s shirt, or create
one that’s totally multicolored! On the right
are some colors the turtle recognizes.

▷ Change the face
You can change the expression on the robot’s
face by rearranging its features. To give it wonky
eyes and mouth, use the code on the right.

eyes

t.goto(-60, 160)

rectangle(30, 10, 'white')

t.goto(-60, 160)

rectangle(5, 5, 'black')

t.goto(-45, 155)

rectangle(5, 5, 'black')

mouth

t.goto(-65, 135)

t.right(5)

rectangle(40, 5, 'black')

Goldenrod

Yellow

BlueLawn Green

Thistle

Seashell

Hot Pink

Purple Light Blue

This line moves the
left pupil down.

Funny eyes

This line moves the
robot’s right pupil, so
it looks like the robot
is rolling its eyes.

The turtle turns right
slightly, which makes
the mouth slope.

Lopsided
mouth

Peach Puff

Misty Rose

Deep Pink

Lemon Chiffon

Aquamarine

Peru

Forest Green

Maroon

Gold

Navy

US_078-079_Robot_Builder_4.indd 79 12/01/17 2:40 pm

T U R T L E G R A P H I C S80

▷ A helping hand
Add this code to give your robot U-shaped
gripping hands. You can reshape the hands
to look like hooks, pincers, or anything else
you like. Let your imagination run wild and
create your own version!

hands

t.goto(-155, 130)

rectangle(25, 25, 'green')

t.goto(-147, 130)

rectangle(10, 15, t.bgcolor())

t.goto(50, 130)

rectangle(25, 25, 'green')

t.goto(58, 130)

rectangle(10, 15, t.bgcolor())

Draw a green
square for the main
part of the hand.

Draw a small
rectangle in the
background
color to give
the grip shape.

Create an arm function
First add this new function, which
draws an arm shape and gives it color.

1All-in-one arms
Drawing the arms in several
parts makes it awkward to
change their position or to
add extra arms. In this hack,
you’ll write a function that
draws an arm all in one go.

This line colors
in the shape
formed by the
following moves.

Set the color.

The turtle follows
these commands
to draw the arm.

Reset the turtle
so it’s facing
right again.

Stop coloring
in the shape.

 t.end_fill()

 t.penup()

def arm(color):

 t.pendown()

 t.begin_fill()

 t.color(color)

 t.forward(60)

 t.right(90)

 t.forward(50)

 t.right(90)

 t.forward(10)

 t.right(90)

 t.forward(40)

 t.left(90)

 t.forward(50)

 t.right(90)

 t.forward(10)

 t.end_fill()

 t.penup()

 t.setheading(0)

US_080-081_Robot_Builder_5.indd 80 12/01/17 2:41 pm

R O B O T B U I L D E R 81

E X P E R T T I P S

Trial and error
When you’re designing a robot or adding new
features to an existing robot, it may take a bit
of trial and error to get things just how you want
them. If you add the lines print(t.window_
width()) and print(t.window_height())
after the line t.speed('slowest'), Python
will display the height and width of your Turtle
window in the shell. Then mark out a grid of
that size on graph paper to help you work
out the coordinates of each body part.

Add the arms
Next replace the code you originally had between
the comment line # arms and the comment line
neck with the code shown here. It uses the arm
function to draw three arms.

2

▽ Moving arms
Now that you can draw a whole arm in one go, you
can change its position so the robot looks like it’s
scratching its head or maybe dancing a Highland
Fling! To do this, use the setheading() function
to change the direction the turtle is facing when it
starts to draw the arm.

arms

t.goto(-90, 80)

t.setheading(135)

arm('hot pink')

t.goto(10, 80)

t.setheading(315)

arm('hot pink')

Set the turtle to point
to the top-left corner
of the window.

Use the arm function to
draw an arm on the left.

Set the turtle to point
to the bottom-right
corner of the window.

Use the arm function
to draw an arm on
the right.

Use the arm function
to draw a light blue arm.

Set the turtle to point to
the robot’s left (the right
edge of the window).

arms

t.goto(-90, 85)

t.setheading(180)

arm('light blue')

t.goto(-90, 20)

t.setheading(180)

arm('purple')

t.goto(10, 85)

t.setheading(0)

arm('goldenrod')

Set the turtle to point to
the robot’s right (the left
edge of the window).

Can I have
the next dance?

US_080-081_Robot_Builder_5.indd 81 12/01/17 2:41 pm

T U R T L E G R A P H I C S82

Kaleido-spiral
In the same way that simple lines of
code can form a good program, simple
shapes can form a complex picture.
By combining shapes and colors
through code, Kaleido-spiral will help
you create a masterpiece of digital art
that’s worthy of an art gallery!

Python’s turtle draws circles on the screen,
one after another. Each time a circle is drawn,
the turtle changes the position, angle, color,
and size of the next circle it draws. A pattern
gradually emerges.

What happens

Python Turtle Graphics

△ Shifting spiral
As the circles layer on top of each other,
their shifting positions form a spiral
snaking out from the center.

Each circle is a different size
and color than the last.

The code hides the
turtle, so it can’t be
seen while it draws

the circles.

US_082-083_Kaleido-spiral_1.indd 82 12/01/17 2:41 pm

K A L E I D O - S P I R A L 83

◁ Adaptable program
The longer you leave Kaleido-
spiral running, the more
complicated the on-screen
pattern becomes. By altering
the parameters of the function
that draws the circles, you can
create patterns that are even
more mind-boggling.

They are
 all masterpieces!

The turtle starts
drawing in the
center of the screen.

US_082-083_Kaleido-spiral_1.indd 83 12/01/17 2:41 pm

T U R T L E G R A P H I C S84

How it works
In this project, you’ll use the turtle module and
a clever looping technique to layer circles on top
of each other in a spiral pattern. Every time a
circle is drawn, the program slightly increases the
parameters of the circle-drawing code. Each new
circle is different from the last one drawn, making
the pattern more interesting.

▽ Kaleido-spiral flowchart
The program sets some values that stay the same
throughout, such as the turtle’s speed, and then starts
looping. The loop chooses a new pen color, draws a
circle, turns and moves the turtle, and then repeats
itself. It stops when you quit the program.

Set the speed,
background color, and
pen size for the turtle

Choose the next pen color

Draw a circle

Rotate the turtle

Move the turtle forward

Start

Repeat

Get drawing!
The first thing you’ll draw on the screen is
a simple circle. Next you’ll repeat this circle,
but with a slight change. Finally, you’ll tweak
the code to make the pattern more colorful
and interesting.

Create a new file
Open IDLE and create a new file.
Save it as “kaleido-spiral.py”.

1

E X P E R T T I P S

Cycling
To make the patterns colorful, this project
uses a function called cycle() from the
itertools module. The cycle() function
allows you to cycle through a list of different
colors over and over again. This makes it easy
to use a different pen color for each circle.

import turtle

Import turtle
First you need to import the turtle
module. This will be the main module
you use. Type this line at the top of
the program.

2

Loads the entire
turtle module

US_084-085_Kaleido-Spiral_2.indd 84 02/03/17 4:55 pm

K A L E I D O - S P I R A L 85

Set up the turtle
The code shown here calls functions in
the turtle module to set the background
color, as well as the turtle’s speed and size.

3

The thickness of
the turtle’s trail

The turtle’s
speed

import turtle

turtle.bgcolor('black')

turtle.speed('fast')

turtle.pensize(4)
Background color

Choose the pen color, draw a circle
Next set the color of the turtle’s trail and test
the code by drawing a circle. Add these two lines
to the end of your code and run the program.

4

This tells the turtle
to draw a circle.

Pen color

import turtle

turtle.bgcolor('black')

turtle.speed('fast')

turtle.pensize(4)

turtle.pencolor('red')

turtle.circle(30)

Draw more circles
You should now see a single circle, but we need
lots more. Here comes the clever bit. Put the
commands to draw a red circle inside a function,
but add a line so that the function calls itself. This
trick, known as recursion, makes the function
repeat. Remember, functions need to be defined
before they’re used, so you’ll need to move the
function above the line where it’s called.

5
This line uses
the size
parameter.

import turtle

def draw_circle(size):

 turtle.pencolor('red')

 turtle.circle(size)

 draw_circle(size)

turtle.bgcolor('black')

turtle.speed('fast')

turtle.pensize(4)

draw_circle(30)

The function calls
itself, which makes
it repeat endlessly.

This line calls the
function for the first time.

Hello, is that
the function?

US_084-085_Kaleido-Spiral_2.indd 85 12/01/17 2:41 pm

T U R T L E G R A P H I C S86

E X P E R T T I P S

Recursion
When a function calls itself, this is known as recursion.
It’s another way of making a loop in your program. In
most uses of recursion, the parameters of the function
change each time the function is called. In Kaleido-spiral,
for example, the size, angle, and position of the circle
change whenever the function calls itself.

He’s calling
himself again!

Wow!

WOW!

Test your code
Run the program. You would see the turtle
drawing the same circle over and over
again. Don’t worry—you’ll fix that in the
next step.

6

Change the color, increase the size
To create more exciting patterns, make these changes to the
code to increase the size of the circle and change its color. This
code uses the cycle() function, which takes a list of values as
its parameter and returns a special type of list that you can cycle
through endlessly using the next() function. Run the code again.

import turtle

from itertools import cycle

colors = cycle(['red', 'orange', 'yellow', 'green', 'blue', 'purple'])

def draw_circle(size):

 turtle.pencolor(next(colors))

 turtle.circle(size)

 draw_circle(size + 5)

turtle.bgcolor('black')

turtle.speed('fast')

turtle.pensize(4)

draw_circle(30)

This line creates
a cycle of the
colors in the list.

Add 5 to the
previous circle size.

Use the next color in
the cycle.

7

Import the cycle() function.

US_086-087_Kaleido-Spiral_3.indd 86 12/01/17 2:41 pm

K A L E I D O - S P I R A L 87

Hacks and tweaks
Once everything is working smoothly, you
can play around with the code and make
the patterns even more fantastic.

◁ Chunky pen
Try increasing the pen size and see
what it does to your pattern. You
originally set it to 4 with the code
below. What would 40 look like?

turtle.pensize(40)

The circles become chunkier
when you increase the pen size.

Improve the pattern
Now that you’ve changed the color and size of the circle, you
can try a few more things to improve the pattern. Let's give it
a zany twist by changing the angle and position at which
each circle is drawn. Make the changes highlighted in the
code below, then run the program and see what happens.

8

def draw_circle(size, angle, shift):

 turtle.pencolor(next(colors))

 turtle.circle(size)

 turtle.right(angle)

 turtle.forward(shift)

 draw_circle(size + 5, angle + 1, shift + 1)

turtle.bgcolor('black')

turtle.speed('fast')

turtle.pensize(4)

draw_circle(30, 0, 1)

Add these new parameters.

The turtle turns clockwise.

The turtle moves forward.

Don’t forget to
save your work.

The angle and shift increase
with every circle drawn.

Set the starting values
of the new parameters.

US_086-087_Kaleido-Spiral_3.indd 87 02/03/17 4:55 pm

T U R T L E G R A P H I C S88

▽ Find new patterns
The appearance of the pattern is determined by how much
you add to the function’s parameters each time it’s called. Try
adding more or less to the size, shift, and angle than you do at
the moment, to find out how these changes affect the pattern.

◁ Crazy colors
What if you change the background
color on each loop, as well as
the pen color? It might give
you some wild results! To get the
background color to change each
time, move the line that sets it into
the draw_circle() function. You’ll
also need to use the color cycle to
select a new color on each loop.

def draw_circle(size, angle, shift):

 turtle.bgcolor(next(colors))

 turtle.pencolor(next(colors))

 turtle.circle(size)

 turtle.right(angle)

 turtle.forward(shift)

 draw_circle(size + 5, angle + 1, shift + 1)

turtle.speed('fast')

turtle.pensize(4)

draw_circle(30, 0, 1)

Crazy!Crazy!

The background
color is now set
inside the loop.

Size +10, angle +10, shift +1 Size +5, angle –20, shift –10

US_088-089_Kaleido-Spiral_4.indd 88 06/02/17 4:02 pm

K A L E I D O - S P I R A L 89

▽ Shapeshifting
How would the pattern look if
the program could draw other
shapes as well as circles? Adding
a square every other time might
create an interesting pattern.
Here’s some code to help you
out. Be careful—the name of
the function has changed!

import turtle

from itertools import cycle

colors = cycle(['red', 'orange', 'yellow', 'green', 'blue', 'purple'])

def draw_shape(size, angle, shift, shape):

 turtle.pencolor(next(colors))

 next_shape = ''

 if shape == 'circle':

 turtle.circle(size)

 next_shape = 'square'

 elif shape == 'square':

 for i in range(4):

 turtle.forward(size * 2)

 turtle.left(90)

 next_shape = 'circle'

 turtle.right(angle)

 turtle.forward(shift)

 draw_shape(size + 5, angle + 1, shift + 1, next_shape)

turtle.bgcolor('black')

turtle.speed('fast')

turtle.pensize(4)

draw_shape(30, 0, 1, 'circle')

I’ll soon shift
these shapes!

The turtle rotates.

The loop runs 4
times, once for each
side of the square.

The turtle
moves forward.

The first shape
is a circle.

This makes the turtle
alternate between
circles and squares.

Add a new
parameter, shape.

You can change the code
to add different shapes.

US_088-089_Kaleido-Spiral_4.indd 89 12/01/17 2:41 pm

T U R T L E G A P H I C S90

Starry Night
Fill your screen with beautiful stars! This
project uses Python’s turtle module
to draw star shapes. Random numbers
scatter the stars over the screen and
vary their color, size, and shape.

What happens
First a nighttime sky is drawn, then a
single star appears in the sky. As the
program continues, the sky begins to
fill with more and more stars in a wide
range of different styles. The longer you
leave the program running, the more
fantastic and colorful the sky becomes.

E X P E R T T I P S

Making colors
Pictures and graphics on a computer screen
are made up of tiny dots called pixels, which
can give out red, green, and blue light.
By mixing these colors together you can
make any color imaginable. In this project,
the color of each star is stored as three
numbers. The numbers represent the
amounts of red, green, and blue light that
are combined to give the final color.

Red and
green make

yellow

Blue and
green

make cyan

Red and
blue make
magenta

Mixing
all three
makes
white

Red

Green
Blue

A new Turtle
Graphics window
opens when you
run the program.

The turtle
draws the stars
one by one.

Python Turtle Graphics

US_090-091_Starry_night_1.indd 90 02/03/17 4:55 pm

S T A R R Y N I G H T 91

The turtle (the
yellow arrowhead)
is still drawing this

star. When the star is
complete, Python

will fill it with color.

You can choose
whatever background

color you want, but the
stars will probably look

best on a strong, dark
color like this blue.

I’m seeing stars!

!

You can use the code to
change each star’s size
and number of points.

A new color is selected
for each star using three
random numbers.

Every star is drawn in
a random location.

◁ Screenful of stars
The starry night project will
draw stars one by one, but
because it uses an infinite
while loop it will draw
stars forever! You can
change the size range
of the stars by adjusting
the limits on the random
numbers in the code.

US_090-091_Starry_night_1.indd 91 12/01/17 2:35 pm

T U R T L E G A P H I C S92

import turtle as t

Loads the turtle

Draw the sky

Choose a random
number of points

for the star

START

Choose a random
color

Choose a random
position in the sky

Draw the star

▽ Starry Night flowchart
The flowchart is quite simple, with no
questions to be asked or decisions to
be made. Once the turtle has drawn
the first star, the program loops back
and repeats the star-drawing steps
nonstop until you quit.

◁ Counting stars
On a clear night there are
around 4,500 stars visible in
the sky. To get your program
to draw that many stars, you’d
need to leave it running for
over 3 hours!

201, 202, 203...
Oh, I think I
missed one!

Have you tried
using a loop?

How it works
The code for this project draws star shapes at random
locations in a Turtle Graphics window. You’ll write Python
code to create a function that can draw a single star.
Then you’ll make a loop that repeats it over and over,
drawing lots of different stars all over the screen.

Draw a star
Before you create your function, you need to find out how
to draw a star in turtle. When you’ve mastered that,
you’ll be able to build the rest of the code for the project.

Create a new file
Open IDLE. Go to the File menu,
then select New File. Save the file
as “starry_night.py”.

1

Import turtle
Type this line into the editor
window that appears. It loads
the turtle module, ready for
you to start drawing your star.

2

US_092-093_Starry_night_2.indd 92 02/03/17 4:55 pm

S T A R R Y N I G H T 93

Python Turtle Graphics

import turtle as t

size = 300

points = 5

angle = 144

for i in range(points):

 t.forward(size)

 t.right(angle)

import turtle as t

size = 300

points = 5

angle = 180 - (180 / points)

for i in range(points):

 t.forward(size)

 t.right(angle)

The star is drawn
one line at a time.

The turtle arrow moves
in the window, drawing

lines as it goes.

This is the angle formed
by each star point,
shown in degrees.

These are the instructions for
the size and shape of the star.

This for loop makes the turtle
repeat the same movement for
each point of the star.

The angle depends
on the number of
points the star has.

Write some instructions
Now add this code beneath the
command to import turtle. It
creates variables that set the size
and shape of the star. It also tells
the turtle how to move over the
window to draw the star.

Draw a test star
From the IDLE menu, select
Run and then Run Module to
test the project. The Turtle
Graphics window will appear
(it might be behind another
window) and you’ll see the
turtle arrow begin to draw
your star.

3

Add an angle calculator
It would be good to be able to draw
stars with different numbers of
points. Make this change to the
code. It will calculate the angle of
the turns that the turtle needs to
make to draw a star with however
many points you choose.

4

5

Don’t forget to save
your work

US_092-093_Starry_night_2.indd 93 02/03/17 4:55 pm

T U R T L E G A P H I C S94

7 points 11 points

Draw different stars
Try changing the number after the
equals sign in the variable points
and you’ll see that you can draw
different stars. Note that the code
only works for stars with odd
numbers of points. Even numbers
will mess things up.

This sets the star’s
color to yellow.

This fills the star
with color.

Run the project
The turtle should draw a yellow
star. See if you can change the
star’s color by editing the code.

That’s bright!

Color it!
You’ve drawn a nice, neat star, but
it looks rather dull at the moment.
Let’s add some color to make it
more attractive. Change the code
as shown on the right to paint
your star yellow.

import turtle as t

size = 300

points = 5

angle = 180 - (180 / points)

t.color('yellow')

t.begin_fill()

 for i in range(points):

 t.forward(size)

 t.right(angle)

t.end_fill()

6

7

8

E X P E R T T I P S

Holey stars
On some computers your star might
look slightly different or even have a
hole in the middle. The appearance
of Python’s Turtle Graphics can vary
depending on the type of computer
you use, but this doesn’t mean that
your code is wrong.

5 points

Don’t forget to save
your work.

US_094-095_Starry_night_3.indd 94 16/01/17 5:40 pm

S T A R R Y N I G H T 95

I think I just
spotted the Crab

Nebula!

Create the star function
Edit the code as shown here. It
replaces nearly all of your existing
code with a new version. The large
block wraps up all the star-drawing
instructions and keeps them neatly
together as a function. You can now
use this function to draw a star in
your main code with a single line of
Python, draw_star().

Starry sky
The next steps will wrap up your star as a
Python function. You’ll then be able to use that
function to draw a sky that’s teeming with stars.

import turtle as t

def draw_star(points, size, col, x, y):

 t.penup()

 t.goto(x, y)

 t.pendown()

 angle = 180 - (180 / points)

 t.color(col)

 t.begin_fill()

 for i in range(points):

 t.forward(size)

 t.right(angle)

 t.end_fill()

Main code

t.Screen().bgcolor('dark blue')

draw_star(5, 50, 'yellow', 0, 0)

The x and y coordinates
set the position of the
star on the screen.

This sets the
background color
to dark blue.

This “comment” line starting with a
hash symbol (#) isn’t part of the code
run by Python. It’s like a label to help

you understand the program.

This line calls (runs) the function.

The turtle draws a yellow,
five-pointed star, size 50,
in the center of the window.

The draw_star() function uses
five parameters to define the shape,

size, color, and position of the star.

Run the project
The turtle should draw a single
yellow star on a blue background.

9

10

Python Turtle Graphics

R E M E M B E R

Comments
Programmers often put comments in their code to remind
them what different parts of a program do or to explain a
tricky part of a project. A comment must start with a #.
Python ignores anything you type on the same line after
the # and doesn’t treat it as part of the code. Writing
comments in your own projects (such as the line # Main
code shown above) can be really helpful when you go
back to look at a program after leaving it for a while.

US_094-095_Starry_night_3.indd 95 12/01/17 2:39 pm

T U R T L E G A P H I C S96

Add random numbers
Now mix things up by adding some
random numbers to your code. Type
this line under the line that imports
turtle. It brings in the randint()
and random() functions from
Python’s random module.

Run the project again
The window should slowly fill up as
the turtle draws star after star in a
range of colors, shapes, and sizes.

Create a loop
Make this change to the #Main
code section. It adds a while loop
that continually randomizes the
parameters used to set the stars’
size, shape, color, and position.

import turtle as t

from random import randint, random

def draw_star(points, size, col, x, y):

Main code

t.Screen().bgcolor('dark blue')

while True:

 ranPts = randint(2, 5) * 2 + 1

 ranSize = randint(10, 50)

 ranCol = (random(), random(), random())

 ranX = randint(-350, 300)

 ranY = randint(-250, 250)

 draw_star(ranPts, ranSize, ranCol, ranX, ranY)

This line also changes. When it calls the
draw_star() function, it will now use

the random variables in the while loop.

The turtle draws
stars randomly.

Wow!

The ranPts line sets the limit for the
number of points on the star to be an

odd number between 5 and 11.

11

12

Main code

t.hideturtle()

Python Turtle Graphics13

R E M E M B E R

Invisible turtle
If you’d rather not see the turtle,
remember there’s a command
you can use to make it invisible.
Add this line to your program and
your stars will appear magically,
drawn by an unseen turtle!

US_096-097_Starry_night_4.indd 96 02/03/17 4:56 pm

S T A R R Y N I G H T 97

△ Change your stars
To change how varied your stars look, alter the
numbers in the brackets of the ranPts and
ranSize variables in the while loop.

▷ Click for the stars
Instead of letting the turtle draw
stars randomly, try using the
turtle.onScreenClick()
function to draw a star wherever
you click with the mouse.

▽ Speed up the turtle
You can change how fast the turtle draws the
stars by creating a speed() function. Just add
t.speed(0) at the start of the main code to give
the turtle more zip. You can see all the turtle
module’s functions in Python’s “Help” section.

▷ Draw some planets
Investigate the turtle.circle()
function and see if you can use it to
make some planet-drawing code.
Here’s some code to get you started.

▽ Design a constellation
A constellation is a pattern of stars in
the night sky. Try creating a list of (x, y)
positions for stars in a constellation of
your own design. Then use a for loop
to draw the stars at those locations.

It’s all in the
mouse control!

Has anyone
seen a planet
around here?

I’m quick on the
draw!

Hacks and tweaks
You can now create stars on demand. Why not
try using the draw_star()code in your own
projects. Here are just a few ideas.

Try to add some rings
around your planets.

def draw_planet(col, x, y):

 t.penup()

 t.goto(x, y)

 t.pendown()

 t.color(col)

 t.begin_fill()

 t.circle(50)

 t.end_fill()

We’re lost! You’ll
have to get out

and ask the way...

US_096-097_Starry_night_4.indd 97 02/03/17 4:56 pm

98 T U R T L E G R A P H I C S

What happens
The program will ask you to choose the length
and thickness of the line that the turtle paints.
The turtle then scurries around the screen
until you stop the program, painting colored
lines as it goes. The type of pattern it makes
will change, depending on the length and
thickness of the lines.

Python Turtle Graphics

Mutant Rainbow
You can program Python’s turtle to
draw all sorts of patterns and designs.
But watch out! Looks like the turtle
in this project has gone a bit wild—
you wouldn’t see rainbows like this
in the sky!

E X P E R T T I P S

Which color next?
In Mutant Rainbow, you’ll use the choice()
function from Python’s random module to pick
a color when you tell the turtle to draw a line.
This means that you can’t really predict which
color the turtle will use each time.

t.pencolor(random.choice(pen_colors))

The turtle chooses from the six colors
you put in the list pen_colors.

The turtle has a “pen” that
paints lines as the turtle
moves over the window.

US_098-099_Mutant_Rainbow.indd 98 02/03/17 4:56 pm

99M U T A N T R A I N B O W

◁ A display of colors
Because this program uses
an infinite while loop, the
turtle keeps drawing until
you close its window. You
can not only change the
color, width, and length
of the lines, but also the
shape, color, and speed of
the turtle itself.

The turtle can paint
in green, red, orange,
yellow, blue, and purple.

You can make the turtle
paint long, medium,
or short lines using the
line_length() function.

The turtle can make
right-hand turns between
0 and 180 degrees.

It’s a rainbow of
possibilities!

US_098-099_Mutant_Rainbow.indd 99 12/01/17 2:41 pm

100 T U R T L E G R A P H I C S

How it works
Every pattern in this project is different because
the program tells the turtle to face a random new
direction before painting each line. The color for each
line is also chosen at random from a list of possible
colors you’ve coded. So you can never predict exactly
what the turtle will do!

Long, thick

Medium, thin

Short, superthick

▽ Mutant Rainbow flowchart
The program uses an infinite loop that
continues to paint colored lines for as
long as the program is running. Only
when you close the window will the
turtle stop its crazy wanderings.

Forever

Is the turtle too
near the edge of

its window?

Start

Choose how long
the lines are

Choose how wide
the lines are

Set the color of
the turtle and the size

of its pen

Choose a random
pen color

Turn to face
a random

new direction

Reverse away
from the edge

Draw a line
going forward

Y

N

A magic turtle?
I have got to get me

one of these!

US_100-101_Mutant_Rainbow.indd 100 02/03/17 4:56 pm

101M U T A N T R A I N B O W

Getting started
Start by setting up and saving a new file,
importing the modules that the program
will need, and making a couple of useful
functions to get user input.

◁ Runaway turtle!
Given complete freedom to roam, the
turtle tends to wander out of the window.
As you put the program together, you’ll
write some code to check on the turtle’s
position and stop it from straying too far.
Otherwise, this will turn into a vanishing
turtle project!

This command passes
line_length back to the

code that called this function.

Create new files
Open IDLE and create a new file.
Save it as “rainbow.py”.

Add the modules
Type these two lines at the top of your file to
import the Turtle module and the random module.
Remember to use import turtle as t, so that
you don’t have to type the word “turtle” every
time you want to use a function from the Turtle
module. You can just call it t.

Assign line length
Next make a function that
will let the user decide
whether the turtle paints
long, medium, or short
lines. You won’t use it until
Step 4, but this will get the
program ready for when
you need it. Type this bit
of code beneath the code
in Step 1.

import random

import turtle as t

Start

import turtle as t

def get_line_length():

 choice = input('Enter line length (long, medium, short): ')

 if choice == 'long':

 line_length = 250

 elif choice == 'medium':

 line_length = 200

 else:

 line_length = 100

 return line_length

3

1

2

This asks the user to choose
how long the line is.

For a short line, set
line_length to 100.

Freeze! Stop
right there!

US_100-101_Mutant_Rainbow.indd 101 12/01/17 2:41 pm

T U R T L E G R A P H I C S102

Use the functions
Now that you’ve built the two
functions, you can use them to get the
user’s choices for line length and
width. Type these lines at the end of
your code, then save your work.

Open a window
Type the lines shown here under the
code you added in Step 5. This code
defines the background color of the
window, the shape, color, and speed
of the turtle, and the width of the pen
the turtle will use to draw lines.

5

7

 return line_width

line_length = get_line_length()

line_width = get_line_width()

line_width = get_line_width()

t.shape('turtle')

t.fillcolor('green')

t.bgcolor('black')

t.speed('fastest')

t.pensize(line_width)

Summon the turtle!
It’s time to write the code that will
create a graphics window and bring
in the turtle to do the drawing.

The turtle’s standard shape is
an arrowhead. This changes
it to a turtle shape.

This sets the background
to black.

This sets the
turtle’s speed.

This sets the pen’s width
to the user’s choice.

This makes the
turtle green.

 return line_length

def get_line_width():

 choice = input('Enter line width (superthick, thick, thin): ')

 if choice == 'superthick':

 line_width = 40

 elif choice == 'thick':

 line_width = 25

 else:

 line_width = 10

 return line_width

Define thickness
In this step, you’ll create
a function that will let the
user choose whether the
turtle paints superthick,
thick, or thin lines. Like
the get_line_length()
function, you won’t use it
until Step 5. Type the code
shown here, under the
code you added in Step 3.

4

User input

Test the program
Run the code to see the new functions
in action in the shell. They’ll ask you to
select the length and width of the lines.

6 Enter line length (long, medium, short): long

Enter line width (superthick, thick, thin): thin

This asks the user
to choose how
thick the line is.

This command passes line_width
back to the code that used this function.

If short lines are chosen, this
sets line_width to 10.

US_102-103_Mutant_Rainbow.indd 102 06/02/17 4:02 pm

M U T A N T R A I N B O W 103

Run the project
If you run the code once more, a window will
appear after you’ve entered the line sizes in
the shell window. You will now see the turtle.
Take a good look at it, because it won’t be
sitting still for too long!

Keep inside the limits!
To stop the turtle from straying, let’s set a
boundary 100 steps in from the edges of the
window. Create this function to check whether
or not the turtle is inside the boundary. Type
the code shown here under the code in Step
4 and above the code in Step 5.

8

9

 return line_width

def inside_window():

 left_limit = (-t.window_width() / 2) + 100

 right_limit = (t.window_width() / 2) - 100

 top_limit = (t.window_height() / 2) - 100

 bottom_limit = (-t.window_height() / 2) + 100

 (x, y) = t.pos()

 inside = left_limit < x < right_limit and bottom_limit < y < top_limit

 return inside

line_length = get_line_length()

Python Turtle Graphics

This is 100 steps to the
right of the left edge.

The turtle starts
in the middle of
the window.

100 steps from
the right edge

100 steps
from the top

100 steps
from the
bottom

This sets inside to True
if the turtle is inside the
limits and False if it isn’t.

This command passes inside back
to the code that used this function.

With this line, the program gets the
turtle’s current x and y coordinates.

The blue square is shown
here to tell you where the
limits are set – it won’t be

visible on your screen.

Python Turtle Graphics

Top limit

Bottom limit

Left limit Right limit

▷ How it works
The code checks if the turtle’s x
coordinate is between the right and
left limits, and if its y coordinate is
between the top and bottom limits.

Don’t forget to save
your work.

US_102-103_Mutant_Rainbow.indd 103 02/03/17 4:56 pm

T U R T L E G R A P H I C S104

Move that turtle!
Now you’re ready to write the function that gets your
turtle moving. The last bit of the code will be a while
loop that sets the turtle off drawing mutant rainbows!

Mutant line
Add this code below the code you typed in Step 9, and above the
code you typed in Step 5. This function makes the turtle turn and
move forward in a new direction, drawing a single line of random
color as it goes. Your main program will use it over and over again to
draw mutant rainbows. If the turtle strays beyond the limits you set
in Step 9, this function will bring it back.

10

Go, Turtle, Go!
Finally, add the code that will
actually start your turtle drawing.
Type these two lines right at the
bottom of your code, under the
commands you added in Step 7.
Then save and run the code to
see your first mutant rainbow!

▷ How it works
The code calls the inside_window()
function to see if the turtle is within the
window limits. If it is, the turtle turns
right by a random amount between
0 degrees (doesn’t turn at all) and 180
degrees (faces the opposite direction),
then moves off again. If it has gone too
far from the limit, it moves backward.

t.speed('fastest')

t.pensize(line_width)

while True:

 move_turtle(line_length)

11
The turtle draws
one line.

This line starts an infinite
loop to make the turtle

draw nonstop.

Move along
now, please!

This checks if the
turtle is inside
the set limits.

If the turtle is
outside the limits, it

moves backward.

The pen chooses a
color at random.

This chooses a
random angle
between 0 and
180 degrees.

The turtle moves
forwards in line_
length steps.

The turtle turns right
by the random angle.

Use a backslash character
if you need to split a long

line of code over two lines.
The different colors the pen

can use are stored in a list.

 return inside

def move_turtle(line_length):

 pen_colors = ['red', 'orange', 'yellow', 'green', \

 'blue', 'purple']

 t.pencolor(random.choice(pen_colors))

 if inside_window():

 angle = random.randint(0, 180)

 t.right(angle)

 t.forward(line_length)

 else:

 t.backward(line_length)

line_length = get_line_length()

US_104-105_Mutant_Rainbow.indd 104 02/03/17 4:56 pm

M U T A N T R A I N B O W 105

Hacks and tweaks
Are your rainbows mutant enough? No?
Here are some ideas you could try to make
them even more bizarre!

 pen_colors = ['red', 'orange', 'yellow', 'green', 'blue', 'purple']

 t.pencolor(random.choice(pen_colors))

t.pencolor(0, 0, 255)

t.pencolor('blue')

 t.pensize(random.randint(1,40))

 t.colormode(255)

 red = random.randint(0, 255)

 blue = random.randint(0,255)

 green = random.randint(0, 255)

 t.pencolor(red, green, blue)

This number shows the
amount of red in the color
(between 0 and 255).

Replace these
two lines with...

...these five lines.

The amount
of green

The amount of blue

E X P E R T T I P S

RGB colors
In turtle, the color “blue” is (0, 0, 255) in RGB
values, because it’s made up of the maximum
amount of blue, with no red or green. If you
want to use RGB values for the turtle’s pen color,
you need to let Python know by using the
command t.colormode(255), or it will
expect a string and give you an error.

▽ Color surprise!
In Python, colors can also be described by using RGB values—
this stands for red, green, blue. Choosing values at random
for the amounts of red, green, and blue in a color means the
color itself will be completely random. Try replacing the code in
the move_turtle() function with some new code that uses
RGB values instead of color names. Now run the code to see
what colors appear!

▽ Mix up the lines
Don’t just stick to one width for the line—draw even
more scrambled rainbows with this hack! The lines will
change at random from really thin to superthick and all
widths in between. Add this code to the move_
turtle() function after you set t.pencolor.

US_104-105_Mutant_Rainbow.indd 105 02/03/17 4:56 pm

106 T U R T L E G R A P H I C S

Type this to get the user’s
choice of turn angle.

This makes the turtle three
times bigger than usual.

Type this to stamp a turtle
picture on the screen.

def move_turtle(line_length):

 pen_colors = ['red', 'orange', 'yellow', 'green', 'blue', 'purple']

 t.pencolor(random.choice(pen_colors))

 t.fillcolor(random.choice(pen_colors))

 t.shapesize(3,3,1)

 t.stamp()

 if inside_window():

Make a function
Create a function that lets the user
choose the size of a turn. Add this above
the get_line_length() function you
added in Step 3 of the main project.

Big or small turns?
You can add a prompt that allows the user to
decide the angle of the turns the turtle makes.
They can be wide, square, or narrow. Follow
these steps to see how this changes the patterns.

1

import turtle as t

def get_turn_size():

 turn_size = input('Enter turn size (wide, square, narrow): ')

 return turn_size

def get_line_length():

▽ Stamp the turtle!
“Rivet” the lines of your rainbows together by using the
turtle module’s stamp() function to add a turtle picture
to the beginning of each line. (You could also write a
function to draw a line entirely made up of stamped turtles
and use it instead of t.forward and t.backward.) Add
these new lines of code to the move_turtle() function,
after the pen commands, to start riveting.

The turtle stamps look like rivets
holding the lines together.

This sets the color of the
turtle to a random color.

US_106-107_Mutant_Rainbow.indd 106 02/03/17 4:56 pm

107M U T A N T R A I N B O W

 line_length = get_line length()

 line_width = get_line_width()

 turn_size = get_turn_size()

while True:

 move_turtle(line_length, turn_size)

User input
Next add a line to the main part of the
program to use the get_turn_size()
function to get the player’s choice of
turn size.

Main program
Finally, change the line where you
use the move_turtle() function
to include turn_size.

Square turns are between
80 and 90 degrees.

Narrow turns are between
20 and 40 degrees.

Different moves
Replace the move_turtle()
function with the new
version shown here. It adds
turn_size to the values you
pass to the function when
you use it. It also replaces
the line angle = random.
randint(0 , 180) with
code that chooses different
degrees to turn depending
on the value of turn_size.

def move_turtle(line_length, turn_size):

 pen_colors = ['red', 'orange', 'yellow', 'green', \

'blue', 'purple']

 t.pencolor(random.choice(pen_colors))

 if inside_window():

 if turn_size == 'wide':

 angle = random.randint(120, 150)

 elif turn_size == 'square':

 angle = random.randint(80, 90)

 else:

 angle = random.randint(20, 40)

 t.right(angle)

 t.forward(line_length)

 else:

 t.backward(line_length)

Short, thick, narrow Medium, superthick, square Long, thin, wide

4

3

2

Wide turns are
between 120
and 150 degrees

US_106-107_Mutant_Rainbow.indd 107 02/03/17 4:56 pm

US_108-109_Chapter_4_opener.indd 108 16/01/17 9:44 am

Playful
apps

US_108-109_Chapter_4_opener.indd 109 16/01/17 9:44 am

P L A Y F U L A P P S110

What happens
When you run the program it shows a list of future
events and tells you how many days there are until
each one. Run it again the next day and you’ll see
that it has subtracted one day from each of the
“days until” figures. Fill it with the dates of your
forthcoming adventures and you’ll never miss an
important day—or a homework deadline—again!

Countdown Calendar
When you’re looking forward to an exciting event, it helps
to know how much longer you have to wait. In this project,
you’ll use Python’s Tkinter module to build a handy
program that counts down to the big day.

A small window
pops up when you
run the program,
with each event
on a separate line.

tk

My Countdown Calendar

It is 20 days until Halloween
It is 51 days until Spanish Test
It is 132 days until School Trip
It is 92 days until My Birthday

Give your calendar
a personalized title.

Hooray! It’s 0 days
until my birthday!

US_110-111_Calendar_countdown_1.indd 110 16/01/17 9:43 am

C O U N T D O W N C A L E N D A R 111

How it works
The program learns about the important events
by reading information from a text file—this is
called “file input”. The text file contains the name
and date of each event. The code calculates the
number of days from today until each event using
Python’s datetime module. It displays the results
in a window created by Python’s Tkinter module.

▷ Using Tkinter
The Tkinter module is a set of tools that
Python programmers use for displaying
graphics and getting input from users.
Instead of showing output in the shell,
Tkinter can display results in a separate
window that you’re able to design and
style yourself.

Get today’s date

Calculate the number of
days until the event

Display the result

Start

Get the lists of
important events from

the text file

Get an event

End

Calculated all
events?

N

Y

▽ Countdown Calendar flowchart
In this project, the list of important events is
created separately from the code as a text file.
The program begins by reading in all the events
from this file. Once all the days have been
calculated and displayed, the program ends.

L I N G O

Graphical user interface
Tkinter is handy for creating what coders call a
GUI (pronounced “gooey”). A GUI (graphical user
interface) is the visible part of a program that a
person interacts with, such as the system of icons
and menus you use on a smartphone. Tkinter
creates popup windows that you can add buttons,
sliders, and menus to.

A smartphone GUI
uses icons to show
how strong the WiFi
signal is and how
much power the
battery has.

US_110-111_Calendar_countdown_1.indd 111 16/01/17 9:43 am

P L A Y F U L A P P S112

from tkinter import Tk, Canvas

from datetime import date, datetime

Halloween,31/10/17

Spanish Test,01/12/17

School Trip,20/02/18

My Birthday,11/01/18

Making and reading the text file
All the information for your Countdown Calendar
must be stored in a text file. You can create it
using IDLE.

1

2

4

3

Create a new file
Open a new IDLE file, then type in a few
upcoming events that are important to you.
Put each event on a separate line and type
a comma between the event and its date.
Make sure there is no space between the
comma and the event date.

Save it as a text file
Next save the file as a text file. Click the
File menu, choose Save As, and call the file
“events.txt”. Now you’re ready to start coding
the Python program.

Set up the modules
This project needs two modules: Tkinter
and datetime. Tkinter will be used to
build a simple GUI, while datetime will
make it easy to do calculations using dates.
Import them by typing these two lines at
the top of your new program.

Open a new Python file
You now need to create a new file for the code.
Save it as “countdown_calendar.py” and make
sure it’s in the same folder as your “events.txt” file.

events.txt

Import the Tkinter and
datetime modules.

Type the date as
day/month/year.

The name of the
event comes first.

Save

Save As...

Save Copy As...

Close

So many events, so
little time.

US_112-113_Calendar_countdown_2.indd 112 16/01/17 9:43 am

C O U N T D O W N C A L E N D A R 113

from datetime import date, datetime

def get_events():

 list_events = []

root = Tk()

5

7

Create the canvas
Now set up the window that will display your important events
and the number of days until each one. Put this code beneath
the lines you added in Step 4. It creates a window containing a
“canvas”—a blank rectangle you can add text and graphics to.

Read the text file
Next create a function that will read and store
all the events from the text file. At the top of your
code, after importing the module, create a new
function called get_events. Inside the function
is an empty list that will store the events when
the file has been read.

 tk

root = Tk()

c = Canvas(root, width=800, height=800, bg='black')

c.pack()

c.create_text(100, 50, anchor='w', fill='orange', \

font='Arial 28 bold underline', text='My Countdown Calendar')

L I N G O

Canvas
In Tkinter, the canvas is an
area, usually a rectangle, where
you can place different shapes,
graphics, text, or images that
the user can look at or interact
with. Think of it like an artist’s
canvas—except you’re using
code to create things rather
than a paintbrush!

Create a canvas called
c that is 800 pixels wide
by 800 pixels high.

You can change the colour by
altering the c.create_text()

line in the code.

This line adds text onto the c canvas. The text
starts at x = 100, y = 50. The starting coordinate
is at the left (west) of the text.

This command packs
the canvas into the
Tkinter window.

Create a
Tkinter window.

6 Run the code
Now try running the code. You’ll see a window
appear with the title of the program. If it doesn’t
work, remember to read any error messages
and go through your code carefully to spot
possible mistakes.

My Countdown Calendar

I’ll soon track down
those errors!

Create an empty
list called
list_events.

US_112-113_Calendar_countdown_2.indd 113 02/03/17 4:56 pm

P L A Y F U L A P P S114

Open the text file
This next bit of code will open the file
called events.txt so the program can
read it. Type in this line underneath
your code from Step 7.

Start a loop
Now add a for loop to bring information from the
text file into your program. The loop will be run for
every line in the events.txt file.

Remove the invisible character
When you typed information into the text file
in Step 1, you pressed the enter/return key at
the end of each line. This added an invisible
“newline” character at the end of every line.
Although you can’t see this character, Python
can. Add this line of code, which tells Python
to ignore these invisible characters when it
reads the text file.

Store the event details
At this point, the variable called line holds the
information about each event as a string, such
as Halloween,31/10/2017. Use the split()
command to chop this string into two parts. The
parts before and after the comma will become
separate items that you can store in a list called
current_event. Add this line after your code
in Step 10.

def get_events():

 list_events = []

 with open('events.txt') as file:

def get_events():

 list_events = []

 with open('events.txt') as file:

 for line in file:

 with open('events.txt') as file:

 for line in file:

 line = line.rstrip('\n')

>>> from datetime import *

>>> print(date(2007, 12, 4).weekday())

1

 for line in file:

 line = line.rstrip('\n')

 current_event = line.split(',')

8

10 11

9

Run the loop for each
line in the text file.

This line opens
the text file.

The newline character
is represented as
('\n') in Python.

Split each event into two
parts at the comma.

This number represents the day of the
week, where Monday is 0 and Sunday
is 6. So December 4, 2007, was a Tuesday.

Type your birthday in this
format: year, month, day.

Remove the
newline character

from each line.

E X P E R T T I P S

Datetime module
Python’s datetime module is
very useful if you want to do
calculations involving dates and
time. For example, do you know
what day of the week you were
born on? Try typing this into the
Python shell to find out.

US_114-115_Calendar_countdown_3.indd 114 02/03/17 4:56 pm

C O U N T D O W N C A L E N D A R 115

Using datetime
The event Halloween is stored in current_event as a list containing
two items: “Halloween” and “31/10/2017”. Use the datetime module to
convert the second item in the list (in position 1) from a string into a
form that Python can understand as a date. Add these lines of code at
the bottom of the function.

Add the event to the list
Now the current_event list holds two things: the name of the event
(as a string) and the date of the event. Add current_event to the list
of events. Here’s the whole code for the get_events() function.

 current_event = line.split(',')

 event_date = datetime.strptime(current_event[1], '%d/%m/%y').date()

 current_event[1] = event_date

def get_events():

 list_events = []

 with open('events.txt') as file:

 for line in file:

 line = line.rstrip('\n')

 current_event = line.split(',')

 event_date = datetime.strptime(current_event[1], '%d/%m/%y').date()

 current_event[1] = event_date

 list_events.append(current_event)

 return list_events

13

12

Turns the second item in the
list from a string into a date.

Set the second item in the list
to be the date of the event.

After all the lines have been read, the function hands
over the complete list of events to the program.

After this line is run, the program loops
back to read the next line from the file.

R E M E M B E R

List positions
When Python numbers the items in a
list, it starts from 0. So the first item in
your current_event list, “Halloween”,
is in position 0, while the second item,
“31/10/2017”, is in position 1. That’s why
the code turns current_event[1]
into a date.

Sorry! You are not
on the list.

US_114-115_Calendar_countdown_3.indd 115 16/01/17 9:43 am

P L A Y F U L A P P S116

Setting the countdown
In the next stage of building Countdown Calendar
you’ll create a function to count the number of
days between today and your important events.
You’ll also write the code to display the events
on the Tkinter canvas. The function is

given two dates.

The dates are subtracted
to give the number of
days between them.

This time the string is
split at each blank space.

This variable stores
the result as a string.

The number of days between the
dates is held at position 0 in the list.

def days_between_dates(date1, date2):

 time_between = str(date1—date2)

def days_between_dates(date1, date2):

 time_between = str(date1—date2)

 number_of_days = time_between.split(' ')

def days_between_dates(date1, date2):

 time_between = str(date1—date2)

 number_of_days = time_between.split(' ')

 return number_of_days[0]

Count the days
Create a function to count the
number of days between two dates.
The datetime module makes this
easy, because it can add dates
together or subtract one from
another. Type the code shown here
below your get_events()
function. It will store the number of
days as a string in the variable
time_between.

Split the string
If Halloween is 27 days away, the string stored in time_between
would look like this: '27 days, 0:00:00' (the zeros refer to
hours, minutes, and seconds). Only the number at the beginning
of the string is important, so you can use the split() command
again to get to the part you need. Type the code highlighted
below after the code in Step 14. It turns the string into a list of
three items: '27', 'days', '0:00:00'. The list is stored in
number_of_days.

Return the number of days
To finish off this function, you just need to
return the value stored in position 0 of the
list. In the case of Halloween, that’s 27. Add
this line of code to the end of the function.

14

15

16

20 days to
Christmas!

Oops! I’ve snipped
the string!

US_116-117_Calendar_countdown_4.indd 116 16/01/17 9:43 am

C O U N T D O W N C A L E N D A R 117

Use a backslash character
if you need to split a long
line of code over two lines.

This character
makes the code
go over two lines.

c.create_text(100, 50, anchor='w', fill='orange', \

font='Arial 28 bold underline', text='My Countdown Calendar')

events = get_events()

today = date.today()

for event in events:

 event_name = event[0]

 days_until = days_between_dates(event[1], today)

 display = 'It is %s days until %s' % (days_until, event_name)

 c.create_text(100, 100, anchor='w', fill='lightblue', \

 font='Arial 28 bold', text=display)

Get the events
Now that you’ve written all the functions, you can use them to
write the main part of the program. Put these two lines at the
bottom of your file. The first line calls (runs) the get_events()
function and stores the list of calendar events in a variable
called events. The second line uses the datetime module
to get today’s date and stores it in a variable called today.

Display the results
Next calculate the number of days until each event and
display the results on the screen. You need to do this for
every event in the list, so use a for loop. For each event
in the list, call the days_between_dates() function
and store the result in a variable called days_until.
Then use the Tkinter create_text() function to
display the result on the screen. Add this code right after
the code from Step 17.

Test the program
Now try running the code. It
looks like all the text lines are
written on top of each other.
Can you work out what’s gone
wrong? How could you solve it?

17

18

19

Gets the name
of the event.

The code runs for each event
stored in the list of events.

Uses the days_
between_dates()
function to calculate
the number of days
between the event
and today’s date.

Displays the text
on the screen at
position (100, 100).

Creates a string to hold
what we want to show
on the screen.

My Countdown Calendar

It is 98 days until Spanish TestIt is 98 days until Spanish

Whoa! I’ve come
first in class!

Don’t forget to save
your work.

US_116-117_Calendar_countdown_4.indd 117 02/03/17 4:56 pm

P L A Y F U L A P P S118

▷ Repaint the canvas
You can edit the background
color of your canvas and really
jazz up the look of the program’s
display. Change the c = Canvas
line of the code.

Spread it out
The problem is that all the text is displayed
at the same location (100, 100). If we
create a variable called vertical_space
and increase its value every time the
program goes through the for loop, it will
increase the value of the y coordinate and
space out the text further down the
screen. That’ll solve it!

Start the countdown!
That’s it—you’ve written all the code
you need for Countdown Calendar.
Now run your program and try it out.

20

21

vertical_space = 100

for event in events:

 event_name = event[0]

 days_until = days_between_dates(event[1], today)

 display = 'It is %s days until %s' % (days_until, event_name)

 c.create_text(100, vertical_space, anchor='w', fill='lightblue', \

 font='Arial 28 bold', text=display)

 vertical_space = vertical_space + 30

c = Canvas(root, width=800, height=800, bg='green')

Hacks and tweaks
Try these hacks and tweaks to make Countdown
Calendar even more useful. Some of them are
harder than others, so there are a few useful tips
to help you out.

You can change the background
color to any color of your choice.

My Countdown Calendar

It is 26 days until Halloween
It is 57 days until Spanish Test
It is 138 days until School Trip
It is 98 days until My Birthday

US_118-119_Calendar_Countdown_5.indd 118 16/01/17 9:43 am

C O U N T D O W N C A L E N D A R 119

▽ Set reminders
It might be useful to highlight events that
are happening really soon. Hack your code
so that any events happening in the next
week are shown in red.

▷ Sort it!
You can tweak your code so that the
events get sorted into the order they’ll be
happening. Add this line of code before
the for loop. It uses the sort() function
to organize the events in ascending order,
from the smallest number of days
remaining to the largest.

for event in events:

 event_name = event[0]

 days_until = days_between_dates(event[1], today)

 display = 'It is %s days until %s' % (days_until, event_name)

 if (int(days_until) <= 7):

 text_col = 'red'

 else:

 text_col = 'lightblue'

 c.create_text(100, vertical_space, anchor='w', fill=text_col, \

 font='Arial 28 bold', text=display)

vertical_space = 100

events.sort(key=lambda x: x[1])

for event in events:

▽ Restyle the text
Give your user interface a fresh new
look by changing the size, color, and
style of the title text.

c.create_text(100, 50, anchor='w', fill='pink', font='Courier 36 bold underline', \

 text='Sanjay\'s Diary Dates')

Pick your
favorite color.

Try out a different
font, such as Courier.

The int()function changes a string into a number.
For example, it turns the string '5' into the number 5.

Display the text using
the correct color.

The symbol <= means “is
less than or equal to”.

Sort the list in order of
days to go and not by
the name of the events.

Change the title
too if you like.

Guys, you’re on
in 10 minutes!

US_118-119_Calendar_Countdown_5.indd 119 16/01/17 9:43 am

P L A Y F U L A P P S120

What happens
An input box asks you to enter the name of a country.
When you type in your answer, the program tells you
what the capital city is. If the program doesn’t know,
it asks you to teach it the correct answer. The more
people use the program, the smarter it gets!

Ask the Expert
Can you name all the capital cities in the world? Or
the players in your favourite sports team? Everyone’s
an expert on something. In this project, you’ll code
a program that can not only answer your questions,
but also learn new things and become an expert.

Answer

Teach meCountry

Country

OK

OKOK

OK

Cancel

Cancel

The capital city of Italy is Rome!

I don’t know! What is the capital city of Denmark?Type the name of a country:

Type the name of a country:

Denmark

Italy

You can ask me
anything in the world.

Enter name
of a country

The program will ask you if
it doesn’t know the answer.

US_120-121_Ask_the_expert_1.indd 120 02/03/17 4:56 pm

A S K T H E E X P E R T 121

How it works
The program gets the information about capital cities
from a text file. You’ll use the Tkinter module to
create the popup boxes that let the program and user
communicate. When a new capital city is entered
by a user, the information is added into the text file.

▷ Communication
The program uses two new
Tkinter widgets. The first,
simpledialog(), creates a
popup box that asks the user
to input the name of a country.
The second, messagebox(),
displays the capital city.

△ Dictionaries
You’ll store the names of countries and their capitals
in a dictionary. Dictionaries work a bit like lists, but
each item in a dictionary has two parts, called a key
and a value. It’s usually quicker to look things up in a
dictionary than it is to find something in a long list.

L I N G O

Expert systems
An expert system is a computer program that
is a specialist on a particular topic. Just like a
human expert, it knows the answers to many
questions, and it can also make decisions and
give advice. It can do this because a programmer
has coded it with all the data it needs and rules
about how to use the data.

▽ Ask the Expert flowchart
When the program starts, it
reads the data from a text file.
It then uses an infinite loop to
keep asking questions, and
only stops when the user quits
the program.

△ Auto wizards
Motor companies create expert systems that are full
of information about how their cars function. If your
car breaks down, a mechanic can use these systems
to solve the problem. It’s like having a million expert
mechanics look at the problem rather than just one!

Know its
capital city?

Start

Import text file
with capital cities

Ask for the name
of a country

Ask for the
correct answer

Display the
capital city

Y

N

Remember
that answer

US_120-121_Ask_the_expert_1.indd 121 16/01/17 9:43 am

P L A Y F U L A P P S122

India/New Delhi

China/Beijing

France/Paris

Argentina/Buenos Aires

Egypt/Cairo

First steps
Follow these steps to build your own expert system
using Python. You’ll need to write a text file of country
capitals, open a Tkinter window, and create a
dictionary to store all the knowledge.

1

2 3Save the text file
Save the file as “capital_data.txt”. The
program will get its specialist knowledge
from this file.

Create the Python file
To write the program, create a new file and save
it as “ask_expert.py”. Make sure you save it in the
same folder as your text file.

Untitled.txt

The forward slash (/)
character is used to split
the country and the city.

Type “txt” at the end of the
filename, instead of “py”.

Country

Are you the expert?

Capital city

Save

Save As:

Tags:

Where:

capital_data.txt

SaveCancel

Prepare the text file
First make a text file to hold a list of capital
cities of the world. Create a new file in IDLE
and type in the following facts.

US_122-123_Ask_the_Expert_2.indd 122 16/01/17 9:43 am

A S K T H E E X P E R T 123

from tkinter import Tk, simpledialog, messagebox

the_world = {}

5

7

4

Start Tkinter
Next add the following code to display the title of
the project in the shell. Tkinter automatically
creates an empty window. You don’t need it for
this project, so hide it with a clever line of code.

Set up a dictionary
Now type this line of code after the code
you wrote for Step 5. The new code sets
up the dictionary that will store the names
of the countries and their capital cities.

Import Tkinter tools
To make this program you’ll need some
widgets from the Tkinter module. Type
this line at the top of your program.

print(‘Ask the Expert - Capital Cities of the World’)

root = Tk()

root.withdraw()

This creates an empty
dictionary called the_world.

Load these two widgets
from the Tkinter module.

Use curly brackets.

6 Test the code
Try running your code. You
should see the name of the
project displayed in the shell.

I'll store all the
information in here.

Testing! Testing!

Create an empty
Tkinter window.

Hide the Tkinter
window.

US_122-123_Ask_the_Expert_2.indd 123 06/02/17 4:02 pm

P L A Y F U L A P P S124

File input
You need a function to read in all the information stored
in your text file. It will be similar to the one you used in
Countdown Calendar to read in data from your events file.
Add this code after the Tkinter import line.

8

from tkinter import Tk, simpledialog, messagebox

def read_from_file():

 with open('capital_data.txt') as file:

favorite_foods = {'Simon': 'pizza', 'Jill': 'pancakes', 'Roger': 'custard'}

print(favorite_foods) favorite_foods['Julie'] = 'cookies'

favorite_foods['Jill'] = 'tacos' print(favorite_foods['Roger'])

E X P E R T T I P S

Using a dictionary
A dictionary is another way you can store information in
Python. It is similar to a list, but each item has two parts:
a key and a value. You can test it out by typing this into
the shell window.

This line opens
the text file.

▽ 1. To show the contents of a dictionary, you
have to print it. Try printing favorite_foods.

▽ 2. Now add a new item to the dictionary:
Julie and her favorite food. She likes cookies.

▽ 3. Jill has changed her mind—her
favorite food is now tacos. You can update
this information in the dictionary.

▽ 4. Finally, you can look up Roger’s
favorite food in the dictionary by simply
using his name as the key.

It’s function time!
The next stage of the project involves
creating the functions that you’ll need
to use in your program.

This is
the key.

Each item in the dictionary
is separated by a comma.

Dictionaries use
curly brackets.

Type this in the shell
and hit enter/return.

This is
the value.

Value

Use the key to
look up the value.

Key

A colon is used
immediately after the key.

It's not that
kind of function.

Updated value

US_124-125_Ask_the_expert_3.indd 124 02/03/17 4:57 pm

A S K T H E E X P E R T 125

Line by line
Now use a for loop to go through the file line by line. Just
as in Countdown Calendar, you must remove the invisible
newline character. Then you need to store the values of
country and city in two variables. Using the split command,
the code will return the two values. You can store these
values in two variables using one line of code.

Add data to the dictionary
At this stage, the variables country and city hold the
information you need to add into the dictionary. For the first line
in your text file, country would hold “India” and city would hold
“New Delhi”. This next line of code adds them into the dictionary.

File output
When the user types in a capital city
the program doesn’t know about,
you want the program to insert this
new information into the text file.
This is called file output. It works
in a similar way to file input, but
instead of reading the file, you write
into it. Type this new function after
the code you typed in Step 10.

9

def read_from_file():

 with open('capital_data.txt') as file:

 for line in file:

 line = line.rstrip('\n')

 country, city = line.split('/')

def read_from_file():

 with open('capital_data.txt') as file:

 for line in file:

 line = line.rstrip('\n')

 country, city = line.split('/')

 the_world[country] = city

def write_to_file(country_name, city_name):

 with open('capital_data.txt', 'a') as file:

10

11

This stores the
word after “/” in
the variable city.

The “/” character
splits the line.

This is the value.

This stores the word
before “/” in the

variable country.

This is the key.

This removes the
newline character.

This function will add new
country and capital city
names to the text file.

The a means “append”, or
add, new information to
the end of the file.

US_124-125_Ask_the_expert_3.indd 125 16/01/17 9:43 am

P L A Y F U L A P P S126

Write to the file
Now add a line of code to write the new information
into the file. First the code will add a newline character,
which tells the program to start a new line in the text
file. Then it writes the name of the country followed by
a forward slash (/) and the name of the capital city, such
as Egypt/Cairo. Python automatically closes the text file
once the information has been written into it.

Read the text file
The first thing you want the program to do is
to read the information from the text file. Add
this line after the code you wrote in Step 7.

Start the infinite loop
Next add the code below to create an infinite loop.
Inside the loop is a function from the Tkinter
module: simpledialog.askstring(). This
function creates a box on the screen that displays
information and gives a space for the user to type
an answer. Test the code again. A box will appear
asking you for the name of a country. It may be
hidden behind the other windows.

12

13

14

def write_to_file(country_name, city_name):

 with open('capital_data.txt', 'a') as file:

 file.write('\n' + country_name + '/' + city_name)

read_from_file()

while True:

 query_country = simpledialog.askstring('Country', 'Type the name of a country:')

read_from_file()

Code the main program
You’ve written all the functions you need, so
it’s time to start coding the main program. Run the read_from_file

function.

This is the box created
by simpledialog.

The answer the user types
is stored in this variable.

This is the title
of the box.

This appears in the box
to tell the user what to do.

Country

OK Cancel

Type the name of a country:

Your files are safe
with me!

US_126-127_Ask_the_Expert_4.indd 126 02/03/17 4:57 pm

A S K T H E E X P E R T 127

Know the answer?
Now add an i f statement to see if the
program knows the answer. This will check
whether the country and its capital city
are stored in the dictionary.

Display the correct answer
If the country is in the_world, you want the
program to look up the correct answer and display
it on the screen. To do this, use the messagebox.
showinfo() function from the Tkinter module.
This displays the message in a box with an OK
button. Type this inside the if statement.

Test it out
If your code has a bug, now would be a good
time to catch it. When it asks you to name a
country, type “France”. Does it give you the
correct answer? If it doesn’t, look back over
your code carefully and see if you can find
out where it’s gone wrong. What would
happen if you typed in a country that wasn’t
in the text file? Try it out to see how the
program responds.

15

16

17

while True:

 query_country = simpledialog.askstring('Country', 'Type the name of a country:')

 if query_country in the_world:

 if query_country in the_world:

 result = the_world[query_country]

 messagebox.showinfo('Answer',

 'The capital city of ' + query_country + ' is ' + result + '!')

Will return True if the country input
by the user is stored in the_world.

Using query_country as
the key, this line looks up the
answer from the dictionary.

This is the title
of the box.

This message
will be displayed
inside the box.

This variable stores
the answer (the value
from the dictionary).

Don’t forget to save
your work.

It’s a good time
for a bug hunt!

I know all
the answers!

US_126-127_Ask_the_Expert_4.indd 127 02/03/17 4:57 pm

P L A Y F U L A P P S128

Teach it
Finally, add a few more lines after the if
statement. If the country isn’t in the dictionary,
the program asks the user to enter the name of
its capital city. This capital city is added to the
dictionary, so that the program remembers it
for next time. Then the write_to_file()
function adds the city to the text file.

Run it
That’s it. You’ve created a
digital expert! Now run the
code and start quizzing it!

18

19

 if query_country in the_world:

 result = the_world[query_country]

 messagebox.showinfo('Answer',

 'The capital city of ' + query_country + ' is ' + result + '!')

 else:

 new_city = simpledialog.askstring('Teach me',

 'I don\'t know!' +

 'What is the capital city of' + query_country + '?')

 the_world[query_country] = new_city

 write_to_file(query_country, new_city)

root.mainloop()

Ask the user to type in the capital
city and store it in new_city.

This adds new_city to the dictionary,
using query_country as the key.

Write the new capital city into
the text file, so that it gets added
to the program’s knowledge.

Hacks and tweaks
Take your program to the next level
and make it even smarter by trying
out these suggestions.

▷ Around the world
Turn your program into a geographical genius by
creating a text file that contains every country in
the world and its capital city. Remember to put
each entry on a new line in this format: country
name/capital city.

Teach me the
capital of Italy.

I’m ready for my
round-the-world tour!

US_128-129_Ask_the_Expert_5.indd 128 16/01/17 9:43 am

A S K T H E E X P E R T 129

def write_to_file(country_name, city_name):

 with open('new_data.txt', 'a') as file:

 file.write('\n' + country_name + '/' + city_name)

 query_country = simpledialog.askstring('Country', 'Type the name of a country:')

 query_country = query_country.capitalize()

This function turns the first letter
in a string into a capital letter.

Team name

This stores the new
answers in a different
text file, called new_data.

▽ Capitalize
If the user forgets to use a capital letter to name
the country, the program won’t find the capital
city. How can you solve this problem using code?
Here’s one way to do it.

◁ Different data
At the moment, the program only knows about capital
cities of the world. You can change that by editing the
text file so that it stores facts about a subject on which
you’re an expert. For example, you could teach it the
names of famous sports teams and their coaches.

▷ Fact check
Your program currently adds new
answers straight into the text file, but
it can’t check if the answers are correct.
Tweak the code so that new answers are
saved in a separate text file. Then you
can check them later before adding
them to the main text file. Here’s how
you can change the code.

Castle United/Bobby Welsh

Dragon Rangers/Alex Andrews

Purple Giants/Sam Sloan

sports_teams.txt

They’re right
you know!

Coach’s
name

US_128-129_Ask_the_Expert_5.indd 129 16/01/17 9:43 am

P L A Y F U L A P P S130

Message encrypter

Let’s put this message
in to scramble it.

I can’t understand
a word of this...

▷ Share the code
If you share your Python
code with a friend, you’ll
be able to pass secret
messages to each other.

Secret Messages
Swap messages with your friends using
the art of cryptography—changing the
text of a message so that people who
don’t know your secret methods can’t
understand it!

What happens
The program will ask you if you want to
create a secret message or reveal what a
secret message says. It will then ask you
to type in the message. If you choose to
make a secret message, your message
will be turned into what looks like total
gibberish. But if you choose to reveal a
message, nonsense will be turned into
text you can read!

L I N G O

Cryptography
The word cryptography comes from the
ancient Greek words for “hidden” and
“writing.” People have been using this
technique to send secret messages for
nearly 4,000 years. Here are some special
terms used in cryptography—

Cipher: a set of instructions for altering
a message to hide its meaning.
Encrypt: to hide the secret message.
Decrypt: to reveal the secret message.
Ciphertext: the message after it has
been encrypted.
Plaintext: the message before it has
been encrypted.

Message in Message out

US_130-131_Secret_Messages_1.indd 130 12/01/17 2:42 pm

S E C R E T M E S S A G E S 131

It makes perfect sense now.
What a brilliant machine!

I’ll put this message through
the decrypter to unscramble it!

Message decrypter

I’ve mixed up all
my letters.

How it works
The program rearranges the order of letters in the message
so that it can’t be understood. It does this by working out
which letters are in even or odd positions. Then it swaps the
position of each pair of letters in the message, starting with
the first two, then the next two, and so on. The program also
makes encrypted messages readable again by switching the
letters back to where they started.

e s r c t

s e c r e t

s e c r e te

e s r c t e

Message in Message out

In Python (which counts in a weird way, starting from 0),
the first letter in the word is in an even position.

△ Encryption
When you run the code on your message,
the program swaps each pair of letters,
scrambling the meaning.

△ Decryption
When you or a friend decrypt the message,
the program swaps the letters back to their
original positions.

US_130-131_Secret_Messages_1.indd 131 12/01/17 2:42 pm

P L A Y F U L A P P S132

◁ Secret Messages flowchart
The program uses an infinite loop that
asks the user whether they want to
encrypt or decrypt. The user’s choice
determines which path the program
then takes. Dialogue boxes get text from
the user, while info boxes display the
encrypted and decrypted messages to
them. The program ends if the user types
anything except “encrypt” or “decrypt”.

▷ Mystery x
The program needs the message to have an even
number of characters. It checks the message and
counts the characters. If there’s an odd number
of characters, it adds an x to the end to make
it even. You and your fellow secret agents will
know to ignore the x, so you won’t be fooled!

Get the secret
message to encrypt

Encrypt the
message

Display the
encrypted message

User chooses what
to do

Encrypt, decrypt,
or anything else?

Get the secret
message to decrypt

Decrypt the
message

Display the
decrypted message

Start

End

Plaintext of the secret message is:

OK

come to my party saturday afternoonx

Roger that!

ocemt oymb
rihtad yaptrxy

User types anything
except “encrypt”
or “decrypt”

Encrypt Decrypt

US_132-133_Secret_Messages_2.indd 132 12/01/17 2:42 pm

S E C R E T M E S S A G E S 133

Create a new file
Open IDLE and create a new file.
Save it as “secret_messages.py”.

Encrypt or decrypt?
Now create a function, get_task(), to open a
dialogue box that asks the user whether they want
to encrypt or decrypt a message. Add the function
under the code you added in Step 2.

Get the message
Create a new function, get_message() , to open
a dialogue box asking the user to type in the
message they want to encrypt or decrypt. Add
this function under the code you added in Step 3.

Add the modules
You need to import some widgets from Python’s
Tkinter module. This will let you use some of its GUI
features, such as messagebox to display information
to the user, and simpledialog to ask them questions.
Type this line at the top of your file.

Making the GUI
You’re going to write your code in two sections. First you’ll
set up some functions to get input from the user; then you’ll
write the code that does the encryption and decryption.
Now let’s get started—you never know when you might
need to send a secret message to someone!

1

3

4

2

from tkinter import messagebox, simpledialog, Tk

def get_task():

 task = simpledialog.askstring('Task', 'Do you want to encrypt or decrypt?')

 return task

def get_message():

 message = simpledialog.askstring('Message', 'Enter the secret message: ')

 return message

Open...

Open Module...

New File

This line asks the user to type in
“encrypt” or “decrypt”, then saves
their response in the variable task.

This line asks the user to type
the message, then saves it
in the variable message.

Pass the value in message back to
the code that used this function.

Pass the value in task
back to the code that
used this function.

This word will appear
as a title in the
dialogue box.

Top
Secret

US_132-133_Secret_Messages_2.indd 133 12/01/17 2:42 pm

P L A Y F U L A P P S134

Start the loop
Now that you’ve created your interface
functions, add this infinite while loop to call
(run) them in the correct order. Insert this code
under the command you typed in Step 5.

Test the code
Try running the code. It will first show an input
box asking if you want to encrypt or decrypt.
Then another input box will appear so that
you can type in the secret message. Lastly,
it will show the encrypted or decrypted
message in an info box. If there’s a problem,
check your code carefully.

6

7

while True:

 task = get_task()

 if task == 'encrypt':

 message = get_message()

 messagebox.showinfo('Message to encrypt is:', message)

 elif task == 'decrypt':

 message = get_message()

 messagebox.showinfo('Message to decrypt is:', message)

 else:

 break

root.mainloop()

Start Tkinter
This command starts Tkinter and creates
a Tkinter window. Type it below the
function you made in Step 4.

5 root = Tk()

If you find the Tkinter window
distracting, add the root.withdraw
line you used in Ask the Expert.

Find out what the
user wants to do.

Get the secret message
for encryption.

Gets the secret message
for decryption

Show the message
in an info box.

Show the message
in an info box.

Stop looping if the user doesn’t
type “encrypt” or “decrypt”.

Keep Tkinter working.

Message to encrypt is:

Task

Message

OK

OK

OK

Cancel

Cancel

chocolate is under the sofa

Do you want to encrypt or decrypt?

Enter the secret message

encrypt

chocolate is under the sofa

Check that the message is
correct before clicking OK.

Type the secret
message.

Avoid using capitals so it’s tougher
to guess the encrypted message.

Type in what
you want to do.

If you can’t see the input box, look
behind the code and shell windows.

US_134-135_Secret_messages_3.indd 134 12/01/17 2:42 pm

S E C R E T M E S S A G E S 135

Is it even?
You need to create a function to tell the program
whether or not there’s an even number of characters
in your message. The function will use the modulo
operator (%) to check if it can divide the number by
2 without leaving a remainder. If it can (True), then
the number’s even. Add this function under the code
you typed in Step 2.

Get the even letters
In this step, you’ll make a function that takes a
message and produces a list containing all the
even-numbered letters. The function uses a for loop
with a range that goes from 0 to len(message),
so that it checks all the letters in the string. Add
this function under the code in Step 8.

Scramble the message!
Now that you’ve got your interface working, it’s
time to write the code that will encrypt and then
decrypt your secret message.

8

9

def is_even(number):

 return number % 2 == 0

def get_even_letters(message):

 even_letters = []

 for counter in range(0, len(message)):

 if is_even(counter):

 even_letters.append(message[counter])

 return even_letters

E X P E R T T I P S

Modulo operator (%)
If you put the modulo operator (%)
between two numbers, Python tells
you the remainder when you divide the
first number by the second. So 4 % 2 is
0, but 5 % 2 is 1, because there’s 1 left
over if you divide 5 by 2. Type these
examples in the shell if you want to
try them out.This will be True if

the number is even.Pass the True or False
value back to the code.

Make a list variable to
store the even letters.

If this is a letter in an even
position, Python adds it to
the end of the list of letters.

Loop through every
letter in the message.

Pass the list of letters back to
the code that called this function.

0 2 4

1 2

s

3

c

4

e

50
e c r e ts

Don’t forget to save
your work.

Scrambled messages?
I thought you said
scrambled eggs!

US_134-135_Secret_messages_3.indd 135 06/02/17 4:02 pm

P L A Y F U L A P P S136

def swap_letters(message):

 letter_list = []

 if not is_even(len(message)):

 message = message + 'x'

 even_letters = get_even_letters(message)

 odd_letters = get_odd_letters(message)

 for counter in range(0, int(len(message)/2)):

 letter_list.append(odd_letters[counter])

 letter_list.append(even_letters[counter])

 new_message = ''.join(letter_list)

 return new_message

Get the odd letters
Next you need to create a similar function to
produce a list of all the odd-numbered letters
in your message. Put this function under the
code in Step 9.

Swap the letters round
Now that you’ve got even letters in one list and odd
in another, you can use them to encrypt your message.
The next function will take letters alternately from
these lists and put them into a new list. But rather
than assembling them in the original order, starting
with an even letter, it’ll start the message with an odd
one. Type this function under the code in Step 10.

def get_odd_letters(message):

 odd_letters = []

 for counter in range(0, len(message)):

 if not is_even(counter):

 odd_letters.append(message[counter])

 return odd_letters

10

11

s

s

e

e

c

c

r

r

e

e

t

t

0

1 3 5

1 2 3 4
s e c r e t

e r t

5

▷ How it works
The swap_letters() function puts all the
odd and even numbers into a new list, adding
them alternately. It starts the list with the
second letter in the word, which Python
counts as an odd number.

Add an extra x to any
message with an odd
number of letters.

Loop through the lists of
odd and even letters.

Add the next odd letter
to the final message.

Add the next even letter
to the final message.

The join() function turns
the list of letters into a string.

R E M E M B E R

Lists and length
Python counts from 0 in lists
and strings, and uses the function
len() to find the length of a
string. For example, if you type
len('secret'), Python will tell
you that the string 'secret' is
six characters long. But because
the first letter is in position 0, the
last letter is in position 5, not 6.

US_136-137_Secret_messages_4.indd 136 12/01/17 2:42 pm

S E C R E T M E S S A G E S 137

while True:

 task = get_task()

 if task == 'encrypt':

 message = get_message()

 encrypted = swap_letters(message)

 messagebox.showinfo('Ciphertext of the secret message is:', encrypted)

 elif task == 'decrypt':

 message = get_message()

 decrypted = swap_letters(message)

 messagebox.showinfo('Plaintext of the secret message is:', decrypted)

 else:

 break

root.mainloop()

Update the loop
The swap_letters() function has a really useful
feature: if you run it on an encrypted message,
it will decrypt it. So you can use this function to
encrypt or decrypt messages depending on what
the user wants to do. Make the following changes
to the while loop you created in Step 6.

12

Use swap_letters()
to encrypt the message.

Display the
encrypted message.

Uses swap_letters()
to decrypt the message.

Display the
decrypted message.

>>> mystring = 'secret'

>>> mystring[3.0]

Traceback (most recent call last):

 File "<pyshell#1>", line 1, in <module>

 mystring[3.0]

TypeError: string indices must be integers

E X P E R T T I P S

Integer positions
You use the value len(message)/2 in
your loop range because the even and
odd letter lists are both half the length
of the original message. You made sure
the length of your message will always
be even by getting the program to
add an x when necessary, so it can be
divided by 2. However, the result will
be a float value (with a decimal point,
such as 3.0 or 4.0) rather than an
integer (a whole number, such as 3 or
4). Python gives an error if you try to
use a float for the position of an item
in a list, so use the int() function to
convert it to an integer.

This is the error message
Python will give you if you use
a float, such as 3.0, instead of
an integer, such as 3.

US_136-137_Secret_messages_4.indd 137 12/01/17 2:42 pm

P L A Y F U L A P P S138

Run encryption
Test your program. Choose “encrypt” in the task
window. When the message window pops up,
enter the sort of message a spy might want to
keep secret. Try: “meet me at the swings in the
park at noon”!

Run decryption
If you select the encrypted text and copy it,
you can choose the “decrypt” option next time
round the loop. In the message window, paste
the encrypted message and click OK. You’ll
then see the original message again.

Decrypt this!
Your cipher program should
now be working. To make sure,
try decrypting the text shown
here. You can now share your
Python code with a friend and
start sending secret messages!

13 14

15

Hacks and tweaks
Here are some ideas to make your secret
messages even more difficult to read if
they’re intercepted by an enemy agent—
such as a nosy brother or sister!

▷ Remove the spaces
One way to make your cipher more
secure is to remove the spaces and
any punctuation characters, such as
periods and commas. To do this,
type your message without spaces
and punctuation. Just make sure
the friend you’re swapping messages
with knows that this is the plan.

Let’s remove the
spaces and punctuation.

The program tells you when
the message is in ciphertext.

ewlld no eoy uahevd ceyrtpdet ih sesrctem seaseg

oy uac nsu eelom nujci erom li ksai vnsibieli kn

Plaintext of the secret message is:

OK

meet me at the swings in the park at
noonx

Ciphertext of the secret message is:

OK

emtem etat ehs iwgn snit ehp ra ktan
ooxn

Your fellow agent will
know that the extra x
needs to be ignored.

h e l l o w o r l
!

d

,

US_138-139_Secret_Messages_5.indd 138 02/03/17 4:57 pm

S E C R E T M E S S A G E S 139

Reverse after swapping
To make it harder still for people to break your encryption,
reverse the message after encrypting it with swap_letters().
To do this, you’ll need to create two different functions—one to
encrypt and one to decrypt.

Encrypt function
The encrypt() function swaps
the letters and then reverses the
string. Type these lines under
the swap_letters() function.

Decrypt function
Add this decrypt() function
beneath the encrypt()
function. It starts by reversing
the encrypted message, and then
uses swap_letters() to put
the letters back in the right order.

Use the new functions
Now you need to update the infinite loop
section of your program to use these functions
instead of the swap_letters() function.

def encrypt(message):

 swapped_message = swap_letters(message)

 encrypted_message = ''.join(reversed(swapped_message))

 return encrypted_message

def decrypt(message):

 unreversed_message = ''.join(reversed(message))

 decrypted_message = swap_letters(unreversed_message)

 return decrypted_message

while True:

 task = get_task()

 if task == 'encrypt':

 message = get_message()

 encrypted = encrypt(message)

 messagebox.showinfo('Ciphertext of the secret message is:', encrypted)

 elif task == 'decrypt':

 message = get_message()

 decrypted = decrypt(message)

 messagebox.showinfo('Plaintext of the secret message is:', decrypted)

 else:

 break

This line puts the letters
back in the right order.

Reverses the message
once its letters have

been swapped.

The new encrypt() function
replaces swap_letters().

The new decrypt() function
replaces swap_letters().

Undo the reverse action of the encrypt
function by reversing the message again.

Don’t forget to
save your work.

1

2

3

US_138-139_Secret_Messages_5.indd 139 12/01/17 2:42 pm

P L A Y F U L A P P S 140

Add “fake” letters
Another way to encrypt messages is to insert
random letters between each pair of letters. So
the word “secret” might become “stegciraelta” or
“shevcarieste”. Just as in the “Reverse after swapping”
hack, you’ll need two different functions—one to
encrypt and one to decrypt.

s

s r

e

t a

c

e e

r

g l

e

c t

t

i a

Add another module
Import the choice() function from the
random module. This will let you choose
the fake letters from a list of letters. Type
this line near the top of your file, under the
command to import the Tkinter functions.

Encrypt
To encrypt the message, you need to set up a list
of fake letters to insert between the real ones. The
code shown below will loop through the message,
adding one real letter and one fake letter to the
encrypted_list each time round.

from tkinter import messagebox, simpledialog, Tk

from random import choice

def encrypt(message):

 encrypted_list = []

 fake_letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'i', 'r', 's', 't', 'u', 'v']

 for counter in range(0, len(message)):

 encrypted_list.append(message[counter])

 encrypted_list.append(choice(fake_letters))

 new_message = ''.join(encrypted_list)

 return new_message

Add fake letters
between real letters.

Add a letter from the
message to encrypted_list.

All the green letters
are fake ones.

Add a fake letter to
the encrypted_list.

Join the letters in encrypted_list
into a string.

Is this a
fake letter?

shevcarieste!

1

2

US_140-141_Secret_Messages_6.indd 140 02/03/17 4:57 pm

S E C R E T M E S S A G E S 141

Decrypt
Decrypting the message is very easy. In the
encrypted version of your message, all the letters
in even positions are letters from the original
message. So you can use the get_even_letters()
function to get them.

Use the new functions
Now you need to update the infinite loop section
of your program to use the new encrypt() and
decrypt() functions, instead of swap_letters().
To do this, make these changes to your code.

def decrypt(message):

 even_letters = get_even_letters(message)

 new_message = ''.join(even_letters)

 return new_message

while True:

 task = get_task()

 if task == 'encrypt':

 message = get_message()

 encrypted = encrypt(message)

 messagebox.showinfo('Ciphertext of the secret message is:', encrypted)

 elif task == 'decrypt':

 message = get_message()

 decrypted = decrypt(message)

 messagebox.showinfo('Plaintext of the secret message is:', decrypted)

 else:

 break

root.mainloop()

▷ Multiencryption
To make things even more complex, you can
modify your code so that it combines all the
different hacks and tweaks from this section.
For example, it could add fake letters, swap
the letters, and then reverse them!

Get the original
message’s letters.

Join the letters in even_letters
into a string.

The new encrypt() function
replaces swap_letters().

The new decrypt() function
replaces swap_letters().

Decrypting letters
is easy.

I must update
my infinite loop!

My secret codes
are safer now!

3

4

US_140-141_Secret_Messages_6.indd 141 12/01/17 2:42 pm

P L A Y F U L A P P S142

Screen Pet
Have you ever wished you had a pet to keep you company
while doing your homework on your computer? In this
project, you’ll create a pet that “lives” in a corner of your
computer screen. It will keep you busy, because you’ll
need to look after your pet to keep it happy.

What happens
When you start the program, Screen Pet will sit there,
with a little smile on its face, blinking at you. Your cute,
sky-blue companion will change its expression from
normal (below) to happy, cheeky, or sad, depending on
how you interact with it on the screen. But don’t worry,
it’s friendly—it won’t bite if it gets bored!

Screen Pet appears in
a Tkinter window.

△ Sad face
If you ignore it, Screen Pet
will become sad. Stroking
it will cheer it up again.

△ Cheeky face
If you double-click on it to
“tickle” it, the cheeky pet
sticks out its tongue.

△ Happy face
If you “stroke it” with the
mouse-pointer, Screen Pet
beams and blushes.

tk

US_142-143_Screen_Pet_1.indd 142 12/01/17 2:36 pm

S C R E E N P E T 143

How it works
Running Tkinter’s root.mainloop()
function sets up a while loop that keeps checking
for input from the user. The loop keeps going until
you close the main Tkinter window. This is also
how you were able to make a GUI (graphical user
interface) that reacted to a user clicking on a
button or entering text in Ask the Expert.

▽ Screen Pet flowchart
The flowchart shows the sequence of actions
and decisions, and how user inputs affect them.
The program runs in an endless loop. It uses an
ever-changing happiness variable to keep track
of the pet’s mood.

Blink eyes

Draw pet with
neutral face

Y

N

N

N

N

N

Y

Y

Make sad face

Update happiness

Make happy face

Update happiness

Make cheeky face

Being stroked?

Happy?

Time to blink?

Being tickled?

Start

L I N G O

Event-driven program
Screen Pet is an event-driven program, which
means that the things it does and the order it
does them in depend on input from the user.
The program looks for inputs, such as key-
presses and mouse-clicks, then calls a different
function to handle each one. Word-processing
programs, video games, and drawing programs
are all examples of event-driven programs.

▷ Mainloop animation
You can also animate images in
a Tkinter window using the
root.mainloop() function.
By telling it to run functions that
change the image at set times,
you can make Screen Pet
appear to move by itself.

Get a move on!

US_142-143_Screen_Pet_1.indd 143 16/01/17 5:41 pm

P L A Y F U L A P P S144

from tkinter import HIDDEN, NORMAL, Tk, Canvas

root = Tk()

c = Canvas(root, width=400, height=400)

c.configure(bg='dark blue', highlightthickness=0)

c.pack()

root.mainloop()

The background colour
will be dark blue.

The canvas will be 400 pixels
wide and 400 pixels high.

Any commands that start
with c. relate to the canvas.

This line starts Tkinter and opens a window.

This line starts the
function that looks
out for input events,
such as mouse-clicks.

This line imports the parts of the Tkinter
module that you’ll need in this project.

Draw your Screen Pet
Let’s get started. First you need to
create the window where your Screen
Pet will live. Then you’ll write some
code to draw the pet on the screen.

from tkinter import HIDDEN, NORMAL, Tk, Canvas

root = Tk()

Create a new file
Open IDLE. Go to the File menu and
select New File, then save the file as
“screen_pet.py”.

1

Add the Tkinter module
You need to import parts of Python’s
Tkinter module at the start of your
program. Type this code to bring in
Tkinter and open a window where
your Screen Pet will live.

Make a new canvas
In the window, make a dark blue
canvas called “c”, on which you’ll draw
your pet. Add this code after the line
that opens the Tkinter window.
These four lines of new code are the
start of the main part of your program.

3

Keep still while
I paint you!

2

Run it
Now try running the program. What
do you notice? The code should just
show a plain, dark-blue window.
It looks a bit dull and empty at the
moment—what you need is a pet!

4

This command arranges things
within the Tkinter window.

Don’t forget to save
your work.

tk

US_144-145_Screen_Pet_2.indd 144 16/01/17 5:41 pm

S C R E E N P E T 145

c.configure(bg='dark blue', highlightthickness=0)

c.body_color = 'SkyBlue1'

body = c.create_oval(35, 20, 365, 350, outline=c.body_color, fill=c.body_color)

ear_left = c.create_polygon(75, 80, 75, 10, 165, 70, outline=c.body_color, fill=c.body_color)

ear_right = c.create_polygon(255, 45, 325, 10, 320, 70, outline=c.body_color, \

 fill=c.body_color)

foot_left = c.create_oval(65, 320, 145, 360, outline=c.body_color, fill= c.body_color)

foot_right = c.create_oval(250, 320, 330, 360, outline=c.body_color, fill= c.body_color)

eye_left = c.create_oval(130, 110, 160, 170, outline='black', fill='white')

pupil_left = c.create_oval(140, 145, 150, 155, outline='black', fill='black')

eye_right = c.create_oval(230, 110, 260, 170, outline='black', fill='white')

pupil_right = c.create_oval(240, 145, 250, 155, outline='black', fill='black')

mouth_normal = c.create_line(170, 250, 200, 272, 230, 250, smooth=1, width=2, state=NORMAL)

c.pack()
These pairs of coordinates define the start,

mid-point, and end of the mouth.
The mouth is a smooth
line, 2 pixels wide.

Get drawing
To draw your pet, add these instructions above the last two lines of
code. There’s a separate command for each body part. The numbers,
called coordinates, tell Tkinter what to draw and where to draw it.

5

Run it again
Run the program again and
you should see Screen Pet
sitting in the middle of the
Tkinter window.

6

E X P E R T T I P S

Tkinter coordinates
The drawing instructions
use x and y coordinates. In
Tkinter, the x coordinates
start at 0 on the left and
increase as you move
across the window, until
they reach 400 on the far
right. The y coordinates
also start at 0 on the left.
They get bigger as you
move down, until they
reach 400 at the bottom.

Storing the body color in the
variable c.body_color means
you don’t have to keep typing in
'SkyBlue1'.

In the code,
 “left” and “right”

refer to the left
and right of the
window as you

look at it.

tk

Coordinates are written as pairs,
with the x coordinate first.

(400, 0)

(400, 400)(0, 400)

y
g

et
ti

n
g

 b
ig

g
er

x getting bigger

(0, 0)

US_144-145_Screen_Pet_2.indd 145 06/02/17 4:02 pm

P L A Y F U L A P P S146

tk

Open and close the eyes
Create this function, toggle_eyes(), at the top of your file,
under the first line of code. It makes the eyes look closed by
hiding the pupils and filling the eyes with the same color as the
body. It also switches the eyes between being open and closed.

To blink, the eyes fill
with sky blue and the
pupils disappear

from tkinter import HIDDEN, NORMAL, Tk, Canvas

def toggle_eyes():

 current_color = c.itemcget(eye_left, 'fill')

 new_color = c.body_color if current_color == 'white' else 'white'

 current_state = c.itemcget(pupil_left, 'state')

 new_state = NORMAL if current_state == HIDDEN else HIDDEN

 c.itemconfigure(pupil_left, state=new_state)

 c.itemconfigure(pupil_right, state=new_state)

 c.itemconfigure(eye_left, fill=new_color)

 c.itemconfigure(eye_right, fill=new_color)

First the code checks the
eyes’ current color: white is

open, blue is closed.

This line sets the eyes’
new_color to the

opposite value.

This line sets the
pupils’ new_
state to the
opposite value.

These lines change the
visibility of the pupils.

Now the code
checks if the current
state of the pupils is
NORMAL (visible) or
HIDDEN (not visible).

These lines change the
eyes’ fill color.

7

Blinking pet
Your Screen Pet looks cute, but it’s not doing anything!
Let’s write some code to get it blinking. You’ll need to
create two functions: one to open and shut the eyes, the
other to tell them how long to stay open and shut for.

Just you toggle that
light back off!

Toggle light on!

L I N G O

Toggling
Switching between two states is known as “toggling.”
So you “toggle” the lights in your house when you
switch them on and off. The blinking code switches, or
toggles, between Screen Pet’s eyes being open and
closed. If the eyes are closed when you run it, they’ll
change to being open. If they’re open, they’ll change
to being closed.

US_146-147_Screen_Pet_3.indd 146 12/01/17 2:36 pm

S C R E E N P E T 147

 c.itemconfigure(eye_right, fill=new_color)

def blink():

 toggle_eyes()

 root.after(250, toggle_eyes)

 root.after(3000, blink)

root = Tk()

tk

Realistic blinking
The eyes need to close only briefly
and stay open for a while between
blinks. Add this function, blink(),
under the code you typed in Step 7.
It blinks the eyes for a quarter of a
second (250 milliseconds), then
finishes with a command that tells
mainloop() to call it again after
3 seconds (3,000 milliseconds).

Wait 3,000 milliseconds,
then blink again.

8

Changing moods
Screen Pet looks quite happy just now, with its little
smile, but let’s cheer it up even more. We’ll give it a
bigger, beaming smile and bright, rosy cheeks.

Animate!
Put this line in the main part of your program, just
above the last line. Now run the program. Your pet
will come to life after 1 second (1,000 milliseconds)
and sit there blinking until you close the window.

root.after(1000, blink)

root.mainloop()

9

Make a happy face
Add this code to the part of the program that
draws Screen Pet, after the line that creates the
“normal” mouth. As well as a happy mouth and
pink cheeks, it also draws a sad mouth. They
will all remain hidden for now.

mouth_normal = c.create_line(170, 250,200, 272, 230, 250, smooth=1, width=2, state=NORMAL)

mouth_happy = c.create_line(170, 250, 200, 282, 230, 250, smooth=1, width=2, state=HIDDEN)

mouth_sad = c.create_line(170, 250, 200, 232, 230, 250, smooth=1, width=2, state=HIDDEN)

cheek_left = c.create_oval(70, 180, 120, 230, outline='pink', fill='pink', state=HIDDEN)

cheek_right = c.create_oval(280, 180, 330, 230, outline='pink', fill='pink', state=HIDDEN)

c.pack()

10

Create a happy mouth. Create a sad mouth.

Wait 250
milliseconds, then
open the eyes.

These lines create pink, blushing cheeks.

Wait 1,000 milliseconds,
then start blinking.

Close the
eyes.

US_146-147_Screen_Pet_3.indd 147 12/01/17 2:36 pm

P L A Y F U L A P P S148

Happy moves
When the program starts, Screen Pet blinks without you doing
anything. But to get it to look happy when it’s being stroked,
you need to tell it what event to look out for. Tkinter calls
the mouse-pointer moving over its window a <Motion>
event. You need to link this to the handler function by using
Tkinter’s bind()command. Add this line to the main part of
your program. Then run the code and stroke the pet to try it out.

c.pack()

c.bind('<Motion>', show_happy)

root.after(1000, blink)

root.mainloop()

Show the happy face
Next, create a function called
show_happy() to reveal the
happy expression when you
move the mouse-pointer
over Screen Pet as if you
were stroking it. Type this
code beneath the blink()
function you added in Step 8.

11

root.after(3000, blink)

def show_happy(event):

 if (20 <= event.x <= 350) and (20 <= event.y <= 350):

 c.itemconfigure(cheek_left, state=NORMAL)

 c.itemconfigure(cheek_right, state=NORMAL)

 c.itemconfigure(mouth_happy, state=NORMAL)

 c.itemconfigure(mouth_normal, state=HIDDEN)

 c.itemconfigure(mouth_sad, state=HIDDEN)

 return

The if line checks to see if the
mouse-pointer is over the pet.

Show the pink
cheeks.

This command
links the moving
mouse-pointer to
the happy face.

Hide the
normal mouth.

Show the
happy mouth.

I hate
mopping up!

Focus
Tkinter won’t be able to see you
moving the mouse-pointer over
the window to stroke Screen Pet
unless the window is “in focus.” You
can get it in focus by clicking once
anywhere in the window.

The window
is in focus!

E X P E R T T I P S

L I N G O

Event handler
The function show_happy() is an event
handler. This means it’s only called when
a particular event happens, so that it can
deal with it. In your code, stroking your
pet calls show_happy(). In real life, you
might call a “mop the floor” function to
handle a “spill drink” event!

event.x and event.y are the
coordinates of the mouse-pointer.

Hide the sad mouth.

12

US_148-149_Screen_Pet_4.indd 148 06/02/17 4:02 pm

S C R E E N P E T 149

tk

Hide the happy face
You only want Screen Pet to look really happy when you’re
actually stroking it. Add a new function, hide_happy(),
below the code for show_happy(). This new code will set
Screen Pet’s expression back to normal.

def hide_happy(event):

 c.itemconfigure(cheek_left, state=HIDDEN)

 c.itemconfigure(cheek_right, state=HIDDEN)

 c.itemconfigure(mouth_happy, state=HIDDEN)

 c.itemconfigure(mouth_normal, state=NORMAL)

 c.itemconfigure(mouth_sad, state=HIDDEN)

 return

c.bind('<Motion>', show_happy)

c.bind('<Leave>', hide_happy)

root.after(1000, blink)

Hide the pink cheeks.

Hide the happy mouth.

Hide the sad mouth.

Show the normal mouth.

13

Call the function
Type this line to call hide_happy()
when the mouse-pointer leaves the
window. It links Tkinter’s <Leave>
event to hide_happy(). Now test
your code.

14

mouth_sad = c.create_line(170, 250, 200, 232, 230, 250, smooth=1, width=2, state=HIDDEN)

tongue_main = c.create_rectangle(170, 250, 230, 290, outline='red', fill='red', state=HIDDEN)

tongue_tip = c.create_oval(170, 285, 230, 300, outline='red', fill='red', state=HIDDEN)

cheek_left = c.create_oval(70, 180, 120, 230, outline='pink', fill='pink', state=HIDDEN)

What cheek!
So far, your pet has been very well behaved. Let’s give
it a cheeky personality! You can add some code that
will make Screen Pet stick its tongue out and cross its
eyes when you tickle it by double-clicking on it.

Draw the tongue
Add these lines to the code that draws Screen Pet, under
the line that creates the sad mouth. The program will draw
the tongue in two parts, a rectangle and an oval.

15

Don’t forget to save
your work.

US_148-149_Screen_Pet_4.indd 149 16/01/17 5:42 pm

P L A Y F U L A P P S150

16 Set up flags
Add two flag variables to the code to
keep track of whether Screen Pet’s eyes
are crossed or its tongue is out. Type
them just above the line that tells Screen
Pet to start blinking, which you added to
the main part of the code in Step 9.

c.eyes_crossed = False

c.tongue_out = False

root.after(1000, blink)

Toggle the tongue
This function toggles Screen Pet’s tongue
between being out and in. Put the code
shown below above the show_happy()
function that you created in Step 11.

17

def toggle_tongue():

 if not c.tongue_out:

 c.itemconfigure(tongue_tip, state=NORMAL)

 c.itemconfigure(tongue_main, state=NORMAL)

 c.tongue_out = True

 else:

 c.itemconfigure(tongue_tip, state=HIDDEN)

 c.itemconfigure(tongue_main, state=HIDDEN)

 c.tongue_out = False

def show_happy(event):

The code checks to to see if
the tongue is out already.

The tongue is already out (else).

This line sets a flag variable
saying the tongue isn’t out.

If the tongue isn’t out,
these lines make it visible.

This line sets a flag variable
saying the tongue is now out.

These lines hide the tongue again.

Using flag variables
Flag variables help you keep track of something
in your program that can be in one of two states.
When you change the state, you update the flag.
The “Engaged / Vacant” sign on a toilet door is a
flag—you set it to “Engaged” when you lock the
door and back to “Vacant” when you unlock it.

E X P E R T T I P S

I’m toggling
my tongue!

Can’t you see
it’s occupied?

What are
you doing?

These are the flag variables for
the pupils and the tongue.

US_150-151_Screen_Pet_5.indd 150 12/01/17 2:36 pm

S C R E E N P E T 151

 root.after(3000, blink)

def toggle_pupils():

 if not c.eyes_crossed:

 c.move(pupil_left, 10, -5)

 c.move(pupil_right, -10, -5)

 c.eyes_crossed = True

 else:

 c.move(pupil_left, -10, 5)

 c.move(pupil_right, 10, 5)

 c.eyes_crossed = False

def cheeky(event):

 toggle_tongue()

 toggle_pupils()

 hide_happy(event)

 root.after(1000, toggle_tongue)

 root.after(1000, toggle_pupils)

 return

c.bind('<Motion>', show_happy)

c.bind('<Leave>', hide_happy)

c.bind('<Double-1>', cheeky)

19

18The code checks to see if the
eyes are crossed already.

Stick the tongue out.

If the pupils aren’t
crossed, this line
moves them in.

Cross the pupils.

The eyes are already crossed (else).

Put the tongue
back in after 1,000
milliseconds.

This line sets a flag variable
saying the eyes are crossed.

Hide the happy face.

This line sets a flag saying
the eyes aren’t crossed.

These lines move
the pupils back
to normal.

Uncross the pupils after
1,000 milliseconds.

<Double-1> is Tkinter’s
name for a double-click in the
window with the mouse.

Toggle the pupils
For the cross-eyed look, the
pupils need to point inwards.
This toggle_pupils()
function will switch Screen Pet’s
pupils between pointing inwards
and looking normal. Type it
below the blink() function
you added in Step 8.

Coordinate the cheekiness
Now create a function to get Screen Pet to stick its tongue out
and cross its eyes at the same time. Type this code under the
toggle_tongue() function you added in Step 17. Use the
root.after() function to make Screen Pet go back to normal
after 1 second (1,000 milliseconds), like you did in blink().

Link double-clicks to cheekiness
To trigger Screen Pet’s cheeky expression, link any double-click event
to the cheeky() function. Put this new line just below the line you
added in Step 14 to hide Screen Pet’s happy face. Run the code and
double-click to see the cheekiness!

20

Don’t forget to save
your work.

US_150-151_Screen_Pet_5.indd 151 16/01/17 5:41 pm

P L A Y F U L A P P S152

tk

Screen Pet starts with a
happiness level of 10.

Create a new command
Type this line below the command you added in Step 9 that starts
Screen Pet blinking. It tells mainloop() to call the function sad(),
which you’ll add in Step 23, after 5 seconds (5,000 milliseconds).

Write a sad function
Add this function, sad(), beneath hide_happy(). It checks to see
if c.happy_level is 0 yet. If it is, it changes Screen Pet’s expression
to a sad one. If it’s not, it subtracts 1 from c.happy_level. Like
blink(), it reminds mainloop() to call it again after 5 seconds.

root.after(1000, blink)

root.after(5000, sad)

root.mainloop()

def sad():

 if c.happy_level == 0:

 c.itemconfigure(mouth_happy, state=HIDDEN)

 c.itemconfigure(mouth_normal, state=HIDDEN)

 c.itemconfigure(mouth_sad, state=NORMAL)

 else:

 c.happy_level -= 1

 root.after(5000, sad)

This line checks to see if the value
of c.happy_level is 0.

If c.happy_level equals 0,
the code hides the happy and
normal expressions.

The value of c.happy_level
is greater than 0 (else).

This line sets Screen Pet’s
expression to sad.

Subtract 1 from the value
of c.happy_level.

Call sad() again after
5,000 milliseconds.

22

23

Set up a happiness level
Put this line of code just above the flag variables you added to the
main part of the program in Step 16. It creates a happiness level for
Screen Pet and sets the level at 10 when you run the program and
draw the pet.

c.happy_level = 10

c.eyes_crossed = False

Sad pet
Finally, make Screen Pet notice if you don’t pay any
attention to it. After nearly a minute without being
stroked, your poor, neglected pet will show its sad face!

21

Look at that poor, sad,
neglected pet!

US_152-153_Screen_Pet_6.indd 152 02/03/17 4:57 pm

S C R E E N P E T 153

Cheer up, Screen Pet!
Is there any way to stop Screen Pet from getting sad? Or cheer it up when
it’s miserable? Luckily there is—you just click into its window and stroke it.
Add this line of code to the show_happy() function you wrote in Step 11.
Now the function will reset the value of the variable c.happy_level
back to 10 and make Screen Pet show its happy face again. Run the code
to see your pet get sad, then cheer it up by stroking it.

 c.itemconfigure(mouth_normal, state = HIDDEN)

 c.itemconfigure(mouth_sad, state = HIDDEN)

 c.happy_level = 10

 return

This line puts the happiness
level back up to 10.

Increase this number.

Hacks and tweaks
Is Screen Pet your ideal pet now? If not, you
can change the way it behaves or add some
extra features! Here are a few ideas for
personalizing your Screen Pet.

c.happy_level = 10

c.eyes_crossed = False

Be friendly, not cheeky
Maybe you’d rather not have a cheeky pet? Get Screen
Pet to give you a friendly wink instead of making a
rude face when you double-click on it.

Add this function
underneath the
blink() function.
It’s similar to the
blink() code,
but it will only
toggle one eye.

def toggle_left_eye():

 current_color = c.itemcget(eye_left, 'fill')

 new_color = c.body_color if current_color == 'white' else 'white'

 current_state = c.itemcget(pupil_left, 'state')

 new_state = NORMAL if current_state == HIDDEN else HIDDEN

 c.itemconfigure(pupil_left, state=new_state)

 c.itemconfigure(eye_left, fill=new_color)

24

Extra happiness
It might be distracting if you have to
keep stroking and tickling Screen Pet
while you’re doing your homework.
To make it sad less often, set the
value of c.happy_level to a higher
number at the start.

E X P E R T T I P S

Don’t forget to save
your work.

1

US_152-153_Screen_Pet_6.indd 153 12/01/17 2:36 pm

P L A Y F U L A P P S154

Rainbow pets
It’s easy to make Screen Pet a different color by
changing the value of c.body_color. If you can’t
decide what color to choose, you can add a function
that keeps changing Screen Pet’s color nonstop!

First add a line to import Python’s random
module. Put it under the line that loads
the project’s Tkinter features.

Now type a new function, change_color(), just above the
main part of the code. It picks a new value for c.body_color
from the list pet_colors. Then it redraws Screen Pet’s body
using the new color. Because it uses random.choice, you can
never be sure what color the pet will be next!

def change_color():

 pet_colors = ['SkyBlue1', 'tomato', 'yellow', 'purple', 'green', 'orange']

 c.body_color = random.choice(pet_colors)]

 c.itemconfigure(body, outline=c.body_color, fill=c.body_color)

 c.itemconfigure(ear_left, outline=c.body_color, fill=c.body_color)

 c.itemconfigure(ear_right, outline=c.body_color, fill=c.body_color)

 c.itemconfigure(foot_left, outline=c.body_color, fill=c.body_color)

 c.itemconfigure(foot_right, outline=c.body_color, fill=c.body_color)

 root.after(5000, change_color)

List of possible
colors for
Screen Pet

Change cheeky
to wink here.

This line chooses
another color
from the list at
random.

These lines set
Screen Pet’s
body, feet, and
ears to the
new color.

The program calls change_color() again
after 5,000 milliseconds (5 seconds).

def wink(event):

 toggle_left_eye()

 root.after(250, toggle_left_eye)

c.bind('<Double-1>', wink)

The next function closes and
opens the left eye once to make
Screen Pet wink. Type it below
toggle_left_eye().

Remember to change the command that
binds the double-click event (<Double-1>)
to wink() instead of cheeky() in the main
part of the program.

2 3

2

1 from tkinter import HIDDEN, NORMAL, Tk, Canvas

import random

US_154-155_Screen_Pet_7.indd 154 06/02/17 4:02 pm

S C R E E N P E T 155

You might want to alter the values in
the code so that Screen Pet changes
color less rapidly. You could also change
the colors in the list to ones you like
better, or add extra colors.

Perhaps try adding a “Feed me!” button to
Screen Pet’s window and a feed() function
that’s called when you click the button.

Then try writing some code so that your pet’s
body shrinks back to its original size again if
it doesn’t get enough food.

You could even make Screen Pet grow if you
click “Feed me!” a certain number of times.
This line of code makes its body bigger.

E X P E R T T I P S

A bigger window
If you add buttons or other extra features
to Screen Pet’s window, it might get a bit
crowded and uncomfortable for your pet.
If so, you can enlarge the Tkinter window.
To do this, change the values for width and
height in the command that creates the
canvas at the start of the main program.

▷ Clean that up!
The problem with feeding Screen
Pet is that it will need to poo as well!
Write some code that makes it poo
a while after you feed it. Then add a
“Clean up” button. Clicking “Clean
up” should call a handler function
that removes the poo.

body = c.create_oval(15, 20, 395, 350, outline=c.body_color, fill=c.body_color)

root.after(5000, change_color)
Finally, add this just above the last line
in the main part of the program to get
mainloop() to call change_color()
5 seconds (5,000 milliseconds) after the
program starts.

Feed me!
Pets need food, as well as stroking and
tickling. Can you figure out ways to feed
your pet and keep it healthy? A growing

Screen Pet needs
plenty of healthy
food to eat!

Your pet will begin changing color
5 seconds after the program starts.

This code reshapes the oval that
makes up Screen Pet’s body.

3

4

1

2

3

US_154-155_Screen_Pet_7.indd 155 02/03/17 4:57 pm

US_156-157_Chapter_5_opener.indd 156 16/01/17 9:44 am

Games in
Python

US_156-157_Chapter_5_opener.indd 157 16/01/17 9:44 am

G A M E S I N P Y T H O N158

Caterpillar
If all this coding has worked up your appetite,
you’re not alone—the star of this project is a
hungry caterpillar. Using Python’s turtle module,
you’ll find out how to animate game characters
and control them on screen with the keyboard.

The leaf disappears when
eaten, and a new leaf then
appears elsewhere.

To start the game, the
player has to click
on the screen first and
then press the space bar.

◁ Increasing difficulty
The more leaves the
caterpillar eats, the harder
the game becomes. As the
caterpillar gets longer and
faster, your reactions have
to speed up too; otherwise,
your caterpillar will zoom
off the screen.

What happens
You use the four arrow keys to steer a caterpillar around
the screen and make it “eat” leaves. Each leaf gives you a
point, but it also makes the caterpillar bigger and faster,
making the game harder. Keep the caterpillar inside the
game window, or the game’s over!

Maybe it’s time you turned
over a new leaf!

20

Your score is displayed
in the top-right corner
of the game window.

Python Turtle Graphics

US_158-159_Caterpillar_1.indd 158 02/03/17 4:57 pm

C A T E R P I L L A R 159

How it works
This project uses two main turtles: one to draw the
caterpillar and one to draw the leaves. The code places
each new leaf at a random location. When the program
detects that a leaf has been eaten, the variables storing
the score, the speed of the caterpillar, and its length are
increased. A function figures out if the caterpillar has moved
outside the window, which would signal the end of the game.

Create and set
properties for

caterpillar turtle
and leaf turtle

Set starting values
for variables, such

as caterpillar
speed, caterpillar

size, and score

Move the leaf,
increase the speed

and size of the
caterpillar, and

add to the score

Move the
caterpillar forward

Display
“GAME OVER!”

Start

Has the caterpillar
reached the leaf?

Has the caterpillar
moved outside the

screen?

End

◁ Caterpillar flowchart
To make the caterpillar move across the screen
you’ll use an infinite loop. Each time the loop goes
round, the caterpillar moves forward slightly. When
the loop repeats quickly, these small movements
create the illusion that your caterpillar is crawling.

NN

Y

Y

Getting started
Open IDLE and create a new file.
Save it as “caterpillar.py”.

1

First steps
For such a fun game, the code is
surprisingly straightforward. You’ll
start by setting up the turtles, before
moving on to the main game loop
and finally the keyboard controls.

import random

import turtle as t

t.bgcolor('yellow')

2 Import the modules
Add these two import statements
to tell Python that you need the
turtle and random modules.
The third line sets the background
color for the game window.

This adds a yellow
background.

US_158-159_Caterpillar_1.indd 159 02/03/17 4:57 pm

G A M E S I N P Y T H O N160

game_started = False

text_turtle = t.Turtle()

text_turtle.write('Press SPACE to start', align='center',\

 font=('Arial', 16, 'bold'))

text_turtle.hideturtle()

score_turtle = t.Turtle()

score_turtle.hideturtle()

score_turtle.speed(0)

caterpillar = t.Turtle()

caterpillar.shape('square')

caterpillar.color('red')

caterpillar.speed(0)

caterpillar.penup()

caterpillar.hideturtle()

3 Create a caterpillar turtle
Now create the turtle that will
become your caterpillar. Add
the code shown here. It creates
the turtle and sets its color,
shape, and speed. The function
caterpillar.penup() disables
the turtle’s pen, allowing you
to move the turtle around
the screen without drawing
a line along the way.

Create a new turtle
for the caterpillar.

This command
hides the turtle.

We don’t want the
turtle to move before
the game starts.

leaf = t.Turtle()

leaf_shape = ((0, 0), (14, 2), (18, 6), (20, 20), \

 (6, 18), (2, 14))

t.register_shape('leaf', leaf_shape)

leaf.shape('leaf')

leaf.color('green')

leaf.penup()

leaf.hideturtle()

leaf.speed(0)

4 Create a leaf turtle
Below the code for Step 3, type
these lines to set up the second
turtle, which will draw the
leaves. The code uses a list of six
coordinate pairs to draw a leaf
shape. Once you tell the turtle
about this shape, it can reuse the
details to draw more leaves. A
call to hideturtle here makes
this turtle invisible on the screen.

This turtle will
draw the leaves.

This line tells the turtle
about the leaf shape.

Use a backslash character
if you need to split a long

line of code over two lines.

You’ll need to know later
if the game has started.

The coordinates
for leaf shape

This line draws some
text on the screen.

5 Add some text
Now set up two more turtles to add
text to the game. One will display
a message before the action starts,
telling players to press the space
bar to begin. The other will write
the score in the corner of the
window. Add these lines after
the leaf turtle code.

The turtle needs to stay where it
is, so that it can update the score.

Add a turtle to
write the score.

This hides the turtle
but not the text.

US_160-161_Caterpillar_2.indd 160 16/01/17 9:44 am

C A T E R P I L L A R 161

Main loop
Your turtles are now set up and
ready to go. Let’s write the code
that makes the game come to life.

def outside_window():

 pass

def game_over():

 pass

def display_score(current_score):

 pass

def place_leaf():

 pass

6 Placeholder functions
You can put off defining a function until later by
using the pass keyword. Under the code for the
turtles, add the following placeholders for functions
that you’ll fill with code in later steps.

E X P E R T T I P S

Pass
In Python, if you’re not yet sure
what code you want inside a
function, you can just type in the
pass keyword and then come
back to it later. It’s a bit like
passing on a question in a quiz.

def start_game():

 global game_started

 if game_started:

 return

 game_started = True

 score = 0

 text_turtle.clear()

 caterpillar_speed = 2

 caterpillar_length = 3

 caterpillar.shapesize(1, caterpillar_length, 1)

 caterpillar.showturtle()

 display_score(score)

 place_leaf()

7 Game starter
After the four placeholder functions
comes the start_game()
function, which sets up some
variables and prepares the screen
before the main animation loop
begins. You’ll add the code for the
main loop, which forms the rest of
this function, in the next step.

Clear the text
from the screen.

The turtle
stretches into a

caterpillar shape.

This line places the first
leaf on the screen.

To get a basic
version of the
program running
sooner, you can
use placeholders
for functions
that you’ll finish
coding later.

If the game has already
started, the return
command makes the
function quit so it doesn’t
run a second time.

US_160-161_Caterpillar_2.indd 161 16/01/17 9:44 am

G A M E S I N P Y T H O N162

t.onkey(start_game, 'space')

t.listen()

t.mainloop()

8

9

Get moving
The main loop moves the caterpillar forward slightly,
before performing two checks. It first checks if the
caterpillar has reached the leaf. If the leaf has been
eaten, the score increases, a new leaf gets drawn, and
the caterpillar gets longer and faster. The loop then
checks if the caterpillar has left the window—if so, the
game’s over. Add the main loop below the code you
typed in Step 7.

Test your code
Run the program. If your code is correct,
you should see the caterpillar moving
after you press the space bar. Eventually,
it should crawl off the screen. If the
program doesn’t work, check your code
carefully for bugs.

10

Bind and listen
Now put these lines below the function
you’ve just created. The onkey() function
binds the space bar to start_game(),
so you can delay the start until the player
presses space. The listen() function
allows the program to receive signals from
the keyboard.

When you press
the space bar, the
game begins.

My caterpillar crawled
off the screen and
into the garden!

The very hungry what?
No, I’ve never
heard of him!

 place_leaf()

 while True:

 caterpillar.forward(caterpillar_speed)

 if caterpillar.distance(leaf) < 20:

 place_leaf()

 caterpillar_length = caterpillar_length + 1

 caterpillar.shapesize(1, caterpillar_length, 1)

 caterpillar_speed = caterpillar_speed + 1

 score = score + 10

 display_score(score)

 if outside_window():

 game_over()

 break

The caterpillar eats
the leaf when it’s less
than 20 pixels away.

The current leaf has
been eaten, so add
a new leaf.

This will make
the caterpillar
grow longer.

US_162-163_Caterpillar_3.indd 162 16/01/17 9:44 am

C A T E R P I L L A R 163

Filling in the blanks
It’s time to replace pass in the placeholder
functions with actual code. After adding
the code for each function, run the game
to see what difference it makes.

Stay inside
Fill the outside_window() function with this
code. First it calculates the position of each wall.
Then it asks the caterpillar for its current position.
By comparing the caterpillar’s coordinates with the
coordinates of the walls, it can tell whether the
caterpillar has left the window. Run the program to
check the function works—the caterpillar should
stop when it reaches the edge.

11

def outside_window():

 left_wall = -t.window_width() / 2

 right_wall = t.window_width() / 2

 top_wall = t.window_height() / 2

 bottom_wall = -t.window_height() / 2

 (x, y) = caterpillar.pos()

 outside = \

 x< left_wall or \

 x> right_wall or \

 y< bottom_wall or \

 y> top_wall

 return outside

def game_over():

 caterpillar.color('yellow')

 leaf.color('yellow')

 t.penup()

 t.hideturtle()

 t.write('GAME OVER!', align='center', font=('Arial', 30, 'normal'))

GAME OVER!
When the caterpillar has left the screen, display
a message to tell the player the game has
ended. Fill in the game_over() function with
this code. When called, the function will hide
the caterpillar and leaf, and write “GAME OVER!”
on the screen.

12

◁ How it works
The center of the window has the coordinates
(0, 0). Since the window is 400 wide, the right
wall is half the width from the center, which
is 200. The code gets the left wall’s position by
subtracting half the width from 0. In other words,
0–200, which is –200. It finds the position of the
top and bottom walls by a similar method.

This function
returns two
values (a “tuple”).

If any of the four conditions
above is True, then
outside is True.

The text should be centered.

x=0

y=0

(200, 200)

(200, –200)(–200, –200)

y
g

et
ti

n
g

b

ig
g

er

x getting
smaller

x getting
bigger

y
g

et
ti

n
g

sm

al
le

r

(–200, 200)

GAME OVER!

US_162-163_Caterpillar_3.indd 163 02/03/17 4:57 pm

G A M E S I N P Y T H O N164

def display_score(current_score):

 score_turtle.clear()

 score_turtle.penup()

 x = (t.window_width() / 2) – 50

 y = (t.window_height() / 2) – 50

 score_turtle.setpos(x, y)

 score_turtle.write(str(current_score), align='right', \

 font=('Arial', 40, 'bold'))

def place_leaf():

 leaf.ht()

 leaf.setx(random.randint(-200, 200))

 leaf.sety(random.randint(-200, 200))

 leaf.st()

50 pixels from
the right

50 pixels from
the top

Chooses random
coordinates to
move the leaf.

st is short for
showturtle.

Show the score
The function display_score()
instructs the score turtle to rewrite
the score, putting the latest total
on the screen. This function is
called whenever the caterpillar
reaches a leaf.

A new leaf
When a leaf is reached, the
function place_leaf() is called
to move the leaf to a new, random
location. It chooses two random
numbers between –200 and 200.
These numbers become the x and
y coordinates for the next leaf.

13

14

 game_over()

 break

def move_up():

 if caterpillar.heading() == 0 or caterpillar.heading() == 180:

 caterpillar.setheading(90)

def move_down():

 if caterpillar.heading() == 0 or caterpillar.heading() == 180:

 caterpillar.setheading(270)

def move_left():

 if caterpillar.heading() == 90 or caterpillar.heading() == 270:

 caterpillar.setheading(180)

def move_right():

 if caterpillar.heading() == 90 or caterpillar.heading() == 270:

 caterpillar.setheading(0)

A heading of 270 sends the
caterpillar down the screen.

Turning the caterpillar
Next, to connect the
keyboard keys to the
caterpillar, add four new
direction functions after
the start_game()
function. To make this
game a little trickier,
the caterpillar can only
make 90-degree turns.
As a result, each function
first checks to see which
way the caterpillar is
moving before altering its
course. If the caterpillar’s
going the wrong way,
the function uses
setheading() to make
it face the right direction.

15

ht is short for
hideturtle.

Check if the caterpillar
is heading left or right.

US_164-165_Caterpillar_4.indd 164 16/01/17 9:44 am

C A T E R P I L L A R 165

Listening for presses
Finally, use onkey() to link the
direction functions to the keyboard
keys. Add these lines after the
onkey() call you made in Step 9.
With the steering code in place, the
game’s complete. Have fun playing
and finding out your highest score!

16 t.onkey(start_game, 'space')

t.onkey(move_up, 'Up')

t.onkey(move_right, 'Right')

t.onkey(move_down, 'Down')

t.onkey(move_left, 'Left')

t.listen()

Hacks and tweaks
Now that your caterpillar game is working,
it won’t be too difficult to modify it or even
introduce a helper or rival caterpillar!

Make it a two-player game
By creating a second caterpillar turtle with separate
keyboard controls, you and a friend can work together
to make the caterpillar eat even more leaves!

Create a new caterpillar
First you’ll need to add a new caterpillar. Type these
lines near the top of your program, below the code
that creates the first caterpillar.

1 caterpillar2 = t.Turtle()

caterpillar2.color('blue')

caterpillar2.shape('square')

caterpillar2.penup()

caterpillar2.speed(0)

caterpillar2.hideturtle()

Call the move_up
function when the
“up” key is pressed.

def game_over():

 caterpillar.color('yellow')

 caterpillar2.color('yellow')

 leaf.color('yellow')

def outside_window(caterpillar):

2 Add a parameter
To reuse the outside_window() function
for both caterpillars, add a parameter to it.
Now you can tell it which caterpillar you
want it to check on.

3 Hide caterpillar2
When the game_over() function is called,
it hides the first caterpillar. Let’s add a line
to hide the second caterpillar as well.

I’m going to create a giant
caterpillar crossed with an

enormous turtle...

US_164-165_Caterpillar_4.indd 165 16/01/17 9:44 am

G A M E S I N P Y T H O N166

4 Change the main function
You’ll need to add code for caterpillar2 to the main
start_game() function. First set its starting shape
and make it face the opposite direction from the first
caterpillar. Then add it to the while loop to make it move,
and add a check to the if statement so it can eat the
leaves. You’ll also need to add a line to make it grow.
Finally, edit the call to the outside_window() function
in your second if statement to see if the game is over.

 score = 0

 text_turtle.clear()

 caterpillar_speed = 2

 caterpillar_length = 3

 caterpillar.shapesize(1, caterpillar_length, 1)

 caterpillar.showturtle()

 caterpillar2.shapesize(1, caterpillar_length, 1)

 caterpillar2.setheading(180)

 caterpillar2.showturtle()

 display_score(score)

 place_leaf()

 while True:

 caterpillar.forward(caterpillar_speed)

 caterpillar2.forward(caterpillar_speed)

 if caterpillar.distance(leaf) < 20 or leaf.distance(caterpillar2) < 20:

 place_leaf()

 caterpillar_length = caterpillar_length + 1

 caterpillar.shapesize(1, caterpillar_length, 1)

 caterpillar2.shapesize(1, caterpillar_length, 1)

 caterpillar_speed = caterpillar_speed + 1

 score = score + 10

 display_score(score)

 if outside_window(caterpillar) or outside_window(caterpillar2):

 game_over()

This sets caterpillar2’s
starting shape.

Caterpillar2 starts
heading left.

Each time the program loops,
caterpillar2 moves forward.

This checks if
caterpillar2 has
eaten the leaf.

Caterpillar2
gets longer.

Has caterpillar2
left the screen?

I came in through
the outside

window!

How did you
get in here?

US_166-167_Caterpillar_5.indd 166 16/01/17 9:44 am

C A T E R P I L L A R 167

def caterpillar2_move_up():

 if caterpillar2.heading() == 0 or caterpillar2.heading() == 180:

 caterpillar2.setheading(90)

def caterpillar2_move_down():

 if caterpillar2.heading() == 0 or caterpillar2.heading() == 180:

 caterpillar2.setheading(270)

def caterpillar2_move_left():

 if caterpillar2.heading() == 90 or caterpillar2.heading() == 270:

 caterpillar2.setheading(180)

def caterpillar2_move_right():

 if caterpillar2.heading() == 90 or caterpillar2.heading() == 270:

 caterpillar2.setheading(0)

t.onkey(caterpillar2_move_up, 'w')

t.onkey(caterpillar2_move_right, 'd')

t.onkey(caterpillar2_move_down, 's')

t.onkey(caterpillar2_move_left, 'a')

5 Extra controls
Now assign the keys
that the second player
will use to control the
new caterpillar. The
code here uses “w”
for up, “a” for left, “s” for
down, and “d” for right,
but feel free to try out
different choices. You’ll
need four new functions
and four uses of onkey
to tie the new keys to
the new functions.

△ Make it competitive
See if you can figure out how to adapt the two-player
game to record each player’s score and then declare
the winner at the end. Here’s a tip: you’ll need a new
variable to keep track of the second player’s score.
When a caterpillar eats a leaf, you’ll need to add a point
only to that caterpillar’s score. Finally, when the game
is over, you can compare the scores to see who’s won.

▽ Make it harder or easier
If you alter the values inside the loop that
increase the length (+1) and speed (+2) of the
caterpillar, you can change the difficulty of
the game. Higher numbers will make the game
harder, while lower numbers will make it easier.

What I’m doing
is way trickier!

That’s an old photo
of me winning

the competition!

US_166-167_Caterpillar_5.indd 167 16/01/17 9:44 am

G A M E S I N P Y T H O N168

What happens
Different shapes appear on the screen at random in either black,
red, green, or blue. If a color appears twice in succession, hit the
snap key. Player 1 presses the “q” key to snap and player 2 the “p”
key. Each correct snap scores a point. Snap at the wrong time and
you lose a point. The player with the highest score is the winner.

▽ Starting the game
This game works in a Tkinter
window. When you start the
program, the Tkinter window
might be hidden behind IDLE
windows on your desktop.
Move them out of the way so
you can see the game. Be quick
though: the snap shapes start
appearing 3 seconds after you
run the program.

Snap
Challenge your friends to a game of digital snap.
This fast-paced, two-player game requires a sharp
eye and lightning-fast reactions. It works just like the
card game but uses colored shapes that appear on the
screen rather than cards that are dealt.

Snap

Snap

Snap

Snap

Although these shapes
match, their colors are
different, so it’s not a snap.

This is a snap because
the colors are the same,
even though the shapes
are different.

Snap!

US_168-169_Snap_1.indd 168 16/01/17 3:28 pm

S N A P 169

▷ Snap flowchart
The program runs for as long as
there are still shapes left to be
revealed. It reacts to the key
presses of the players when they
think they see a snap. When there
are no more shapes left, the winner
is declared and the game ends.

N

How it works
This project uses Tkinter to create the shapes. Tkinter’s
mainloop() function schedules a function that you’ll create
to show the next shape. The random module’s shuffle()
function makes sure the shapes always appear in a different
order. The “q” and “p” keys are bound (linked) to a snap()
function, so that each time one of these keys is pressed, it
updates the relevant player’s score.

E X P E R T T I P S

Sleep
Computers work a lot faster
than you can. Sometimes this
causes problems. If you tell a
computer to show a shape to
the user and then hide it
again, without a break, the
computer does it so quickly
that the person won’t see the
shape. To fix this, Snap uses
the time module’s sleep()
function, which pauses the
program for a set number of
seconds: time.sleep(1),
for example, puts the program
to sleep for 1 second before
it runs the next line of code.

Shapes left?

q pressed?

p pressed?

Snap?

Snap?

Start

Shuffle shapes

Show shape

End

Display winner

Y

Y

Y Y

Y

N

N

N

N

N

Add 1 point
to player
1’s score

Add 1 point
to player
2’s score

Take 1 point from
player 1’s score

Take 1 point from
player 2’s score

US_168-169_Snap_1.indd 169 16/01/17 3:28 pm

G A M E S I N P Y T H O N170

Create a new file
Open IDLE. Create a new
file and save it as “snap.py”.

Add modules
First import the random and time modules,
and parts of Tkinter. Time lets you create a
delay so that the player is able to read a
“SNAP!” or “WRONG!” message before the next
shape is shown. HIDDEN lets you hide each
shape until you want to show it with
NORMAL—otherwise all the shapes will
appear on the screen at the start of the game.

Set up the GUI
Now type the code shown here to create a
Tkinter window (also called a root widget)
with the title “Snap”. Run the code to check it.
The window may be hidden behind the other
windows on the desktop.

Create the canvas
Type this line to create the canvas—the blank
space on which the shapes will appear.

Make a store for the shapes
You need to make a list so that you can store
all the shapes somewhere. Add this line at the
bottom of your file.

import random

import time

from tkinter import Tk, Canvas, HIDDEN, NORMAL

root.title('Snap')

c = Canvas(root, width=400, height=400)

from tkinter import Tk, Canvas, HIDDEN, NORMAL

root = Tk()

root.title('Snap')

c = Canvas(root, width=400, height=400)

shapes = []

Getting started
First you need to import the relevant modules and
create a graphical user interface (GUI). Then you need
to create a canvas to draw the shapes on.

Making the shapes
The next stage is to create the colored shapes using
functions from Tkinter’s Canvas widget. You’ll draw
circles, squares, and rectangles, each in four different colors.

1

3

2

4

5

You’ll shuffle the shapes
using the random module.

Use Tkinter to
create the GUI.

Let’s go!

US_170-171_Snap_2.indd 170 16/01/17 3:28 pm

S N A P 171

Create the circles
To draw a circle, use the Canvas widget’s
create_oval() function. Type the following
code below the shapes list. It creates four circles
of the same size—one each in black, red, green,
and blue—and adds them to the shapes list.

Show the circles
Try running the program. Do you see any
shapes? Remember that you set their states
to HIDDEN. Change one shape’s state to
NORMAL and run the code again. You should
now be able to see that shape on the screen.
Be careful not to set more than one shape to
NORMAL. If you do, they’ll all show at once,
drawn one on top of the other.

shapes = []

circle = c.create_oval(35, 20, 365, 350, outline='black', fill='black', state=HIDDEN)

shapes.append(circle)

circle = c.create_oval(35, 20, 365, 350, outline='red', fill='red', state=HIDDEN)

shapes.append(circle)

circle = c.create_oval(35, 20, 365, 350, outline='green', fill='green', state=HIDDEN)

shapes.append(circle)

circle = c.create_oval(35, 20, 365, 350, outline='blue', fill='blue', state=HIDDEN)

shapes.append(circle)

c.pack()

6

7

The circle’s color is determined
by outline and fill.

Set the state to HIDDEN so that
the shape doesn’t appear on the
screen when the program starts.

It has to wait its turn.

These are the (x0, y0)
coordinates (see box).

These are the (x1, y1)
coordinates (see box).

The first pair of numbers
(x0, y0) shows the position
of the box’s top-left corner.

(x1, y1) shows
the position of the
bottom-right corner.

This line puts the shapes onto the
canvas. Without it, none of the shapes
would be displayed.

(x0, y0)

(x1, y1)

I tried blowing bubbles,
but I’ve blown circles!

Don’t forget to save
your work.

E X P E R T T I P S

Create ovals
The create.oval() function draws an oval as if it’s
inside an invisible box. The four numbers within the
brackets decide the position of the circles on the screen.
They are the coordinates of two opposing corners of
the box. The greater the difference between the two
pairs of numbers, the bigger the circle.

US_170-171_Snap_2.indd 171 16/01/17 3:28 pm

G A M E S I N P Y T H O N172

Add some rectangles
Now create four different-colored rectangles using Canvas’s
create_rectangle() function. Insert this block of code
between the circle-drawing code and c.pack(). To avoid
typing it all out, just type the first two lines, then copy and
paste them three times and change the colors.

Add some squares
Next draw the squares. You can use the same function
that you used to create the rectangles, but this time
you’ll turn the rectangles into squares by making all
their sides the same length. Add this block of code
between the rectangle code and c.pack().

shapes.append(circle)

rectangle = c.create_rectangle(35, 100, 365, 270, outline='black', fill='black', state=HIDDEN)

shapes.append(rectangle)

rectangle = c.create_rectangle(35, 100, 365, 270, outline='red', fill='red', state=HIDDEN)

shapes.append(rectangle)

rectangle = c.create_rectangle(35, 100, 365, 270, outline='green', fill='green', state=HIDDEN)

shapes.append(rectangle)

rectangle = c.create_rectangle(35, 100, 365, 270, outline='blue', fill='blue', state=HIDDEN)

shapes.append(rectangle)

c.pack()

shapes.append(rectangle)

square = c.create_rectangle(35, 20, 365, 350, outline='black', fill='black', state=HIDDEN)

shapes.append(square)

square = c.create_rectangle(35, 20, 365, 350, outline='red', fill='red', state=HIDDEN)

shapes.append(square)

square = c.create_rectangle(35, 20, 365, 350, outline='green', fill='green', state=HIDDEN)

shapes.append(square)

square = c.create_rectangle(35, 20, 365, 350, outline='blue', fill='blue', state=HIDDEN)

shapes.append(square)

c.pack()

8

9

Don’t forget to save
your work.

US_172-173_Snap_3.indd 172 16/01/17 3:28 pm

S N A P 173

Shuffle the shapes
To ensure that the shapes don’t appear in the
same order each time, you need to shuffle
them – just like you would do with a pack of
cards. The shuffle() function in random can
do this for you. Insert this line after c.pack().

Set up variables
You’ll need variables to keep track of various
things while the program is running, including
the current shape, the previous and current
color, and the two players’ scores.

Add a delay
Now add a line to create a 3-second delay before
the first shape appears. This gives the player time to
find the Tkinter window in case it’s hidden behind
other windows on the desktop. You’ll create the
next_shape() function later, in Steps 16 and 17.

random.shuffle(shapes)

random.shuffle(shapes)

shape = None

previous_color = ''

current_color = ''

player1_score = 0

player2_score = 0

player2_score = 0

root.after(3000, next_shape)

Getting ready
In the next part of the build, you’ll set up several
variables and write a few bits of code that get
the game ready for playing. However, it won’t
work until we add the functions in the last stage.

10

11

12

The color variables
hold an empty string.

The shape variable
has no value yet.

Neither player has any
points at the start, so the

value of both is set to 0.

E X P E R T T I P S

Nothing really matters
Coders often need to set up variables with a
starting value of zero, such as the scores in this
game. But how do you do this if a variable holds
a string rather than a number? The answer is to
use a pair of quote marks with nothing between
them. Some variables, however, don’t have an
obvious default value such as 0 or an empty
string. In that case, you can use the word “None”,
as we do below.

The program waits for 3,000
milliseconds, or 3 seconds
before showing the next shape.

Are you ready
for the game?

US_172-173_Snap_3.indd 173 16/01/17 5:47 pm

G A M E S I N P Y T H O N174

Start the main loop
Add this line right at the end of your file. Once we
add the next_shape() and snap() functions, the
main loop will update the GUI with the next shape
and listen for key presses.

Create the function
The next_shape() function shows the colored
shapes one after another, like cards being dealt.
Start defining the function by typing the code
below. It labels some of your variables as global
(see box, left) and updates previous_color.

c.bind('q', snap)

c.bind('p', snap)

c.focus_set()

c.focus_set()

root.mainloop()

def next_shape():

 global shape

 global previous_color

 global current_color

 previous_color = current_color

Coding the functions
The last stage is to create two functions: one to
show the next shape, and another to handle
snaps. Type them at the top of your program,
just below the import statements.

15

16

Send key presses to the GUI
The focus_set() function tells the key presses to
go to the canvas. The GUI wouldn’t react to “q” and
“p” being pressed without this function being called.
Type this line below the bind() function calls.

14

E X P E R T T I P S

Local and global variables
Variables can either be local or global. A
local variable exists only inside a particular
function, which means the rest of the
program can’t use it. A variable created in
the main program, outside of a function, is
called global and can be used in any part
of the code. However, if you want to use a
function to assign a new value to a global
variable, you need to add the keyword
global before the variable’s name when
you type it in the function. This is what
we do in Step 16.

React to snaps
Next add these two lines to your code. The
bind() function tells the GUI to listen for the “q”
or “p” key being pressed, and to call the snap()
function each time it happens. You’ll create the
snap() function later.

root.after(3000, next_shape)

c.bind('q', snap)

c.bind('p', snap)

13

Using the global keyword ensures
that changes to the variables are
seen throughout the program.

This line sets
previous_color
to current_color
before the code
gets the next shape.

GlobalLocal

US_174-175_Snap_4.indd 174 06/02/17 4:02 pm

S N A P 175

Complete the function
Now type out of the rest of the function. To show a new shape,
we need to change its state from HIDDEN to NORMAL. The code
below does this by using Canvas’s itemconfigure() function.
It uses another Canvas function, itemcget(), to update the
current_color variable, which will be used to check for a snap.

 previous_color = current_color

 c.delete(shape)

 if len(shapes) > 0:

 shape = shapes.pop()

 c.itemconfigure(shape, state=NORMAL)

 current_color = c.itemcget(shape, 'fill')

 root.after(1000, next_shape)

 else:

 c.unbind('q')

 c.unbind('p')

 if player1_score > player2_score:

 c.create_text(200, 200, text='Winner: Player 1')

 elif player2_score > player1_score:

 c.create_text(200, 200, text='Winner: Player 2')

 else:

 c.create_text(200, 200, text='Draw')

 c.pack()

17

c.itemconfigure(shape, state=NORMAL)

The new
value

E X P E R T T I P S

Configuring Canvas items
You can alter things that appear on the canvas by
using Canvas’s itemconfigure() function. In
this game, for instance, you use itemconfigure()
to change shapes from hidden to visible, but you
could also use it to change their color or other
characteristics. To use itemconfigure(), put the
name of the item you want to change in brackets,
followed by a comma and then the characteristic
and its new value.

Delete the current shape, so that the
next shape doesn’t show on top of it
and so that it won’t be shown again.

Wait 1 second before
showing the next shape.

These lines stop the program
responding to snaps after
the game is over.

This code shows the
winner on the screen or
declares the game a tie.

Get the next shape if
there are any shapes left.

The name of the
Canvas item you

want to change.

The characteristic
being changed

Make the new shape visible.

Assign current_color to
the color of the new shape.

US_174-175_Snap_4.indd 175 02/03/17 4:57 pm

G A M E S I N P Y T H O N176

Is it a snap?
To complete the game, create your last
function: snap(). This function will check
which player has hit their key and whether
the snap is valid (correct). It will then update
the scores and show a message. Add this
code beneath the next_shape() function.

def snap(event):

 global shape

 global player1_score

 global player2_score

 valid = False

 c.delete(shape)

 if previous_color == current_color:

 valid = True

 if valid:

 if event.char == 'q':

 player1_score = player1_score + 1

 else:

 player2_score = player2_score + 1

 shape = c.create_text(200, 200, text='SNAP! You score 1 point!')

 else:

 if event.char == 'q':

 player1_score = player1_score – 1

 else:

 player2_score = player2_score – 1

 shape = c.create_text(200, 200, text='WRONG! You lose 1 point!')

 c.pack()

 root.update_idletasks()

 time.sleep(1)

18

19

Label these variables as global so the
function can change them.

Check if it’s a valid snap
(if the color of the previous
shape matches the color
of the current shape).

If the snap is valid, check
which player snapped
and add 1 to their score.

This line shows a message when
a player makes a valid snap.

Otherwise (else), take
away one point from the
player that snapped.

This line shows a message when
a player snaps at the wrong time.

Test your code
Now run the program to check it works. Remember
you need to click on the Tkinter window before
it will respond to the “q” and “p” keys.

Wait 1 second while players
read the message.

This line forces the program to update the
GUI with the snap message immediately.

Don’t forget to save
your work.

US_176-177_Snap_5.indd 176 16/01/17 3:28 pm

S N A P 177

Hacks and tweaks
Tkinter can show lots of different colors and
shapes besides circles, squares, and rectangles,
so there’s plenty of scope to customize your game.
Here are some ideas to try out—including making
the game cheat-proof!

△ Add more colors
You may have noticed that Snap
is quite a short game. To make it
longer, add extra squares, rectangles,
and circles using different colors.

△ Colored outlines
The program looks at the fill
parameter, not the outline, when
it’s judging whether a valid snap has
been made. You can give different-
colored outlines to shapes and they
will still make a snap so long
as their fill colors match.

Make new shapes
You can change the parameters of create_oval() to
produce an oval rather than a circle. Tkinter can also draw
arcs, lines, and polygons. Try out the examples shown here, and
play around with the parameters. Remember to keep the state
as HIDDEN to hide the shape until it’s time to show it.

▽ Speed up the game
You can make the game a bit harder by reducing the time
delay between each shape as the game progresses. Hint:
try storing the time in a variable, starting at 1000 and
subtracting 25 from it each time a shape is shown. These
numbers are just suggestions—experiment with them
to see what you think works best.

Draw arcs
Use the create_arc() function to draw arcs.
A solid arc is drawn unless you give your arc a style.
To use Tkinter’s different arc styles, import CHORD
and ARC by changing the third line of your program,
as shown below. Then add some chords and arcs to
your list of shapes, as shown overleaf.

1

Type this to import
the arc styles.

I’ll try, but I’m feeling
a bit sluggish!

Speed up!

Wow! I wonder who
drew that arc?

from tkinter import Tk, Canvas, HIDDEN, NORMAL, CHORD, ARC

US_176-177_Snap_5.indd 177 16/01/17 3:28 pm

G A M E S I N P Y T H O N178

arc = c.create_arc(-235, 120, 365, 370, outline='black', \

 fill='black', state=HIDDEN)

arc = c.create_arc(-235, 120, 365, 370, outline='red', \

 fill='red', state=HIDDEN, style=CHORD)

arc = c.create_arc(-235, 120, 365, 370, outline='green', \

 fill='green', state=HIDDEN, style=ARC)

Draw lines
Now try adding some lines to your list of shapes
using the create_line() function.

Draw polygons
Next try making some polygons for your shape
collection, using create_polygon(). You’ll need
to give coordinates for each corner of your polygons.

line = c.create_line(35, 200, 365, 200, fill='blue', state=HIDDEN)

line = c.create_line(35, 20, 365, 350, fill='black', state=HIDDEN)

polygon = c.create_polygon(35, 200, 365, 200, 200, 35, \

 outline=’blue’, fill=’blue’, state=HIDDEN)

2

3

Go global
First you need to say that previous_color is a
global variable in the snap() function, because
you need to change its value. Add this line under
the other global variables.

1

 global previous_color

Stop players cheating
Right now, if a snap is valid and both players
hit their snap keys at the same time, they
each get a point. In fact, they will still be
able to score points up until the next
shape is shown, since the previous and
current will still be the same. Try this hack
to stop the players from cheating.

This arc is drawn
in full, as it hasn’t
been given a style.

The style CHORD
shows a slice
across the arc.

The style ARC
shows just the
outer curve.

The three pairs of numbers in the
code give the coordinates of

the triangle’s corners.

US_178-179_Snap_6.indd 178 02/03/17 4:57 pm

S N A P 179

Block a multiple snap
Next add the following line to the snap() function to set
the value of previous_color to the empty string ('')
after a correct snap. Now if a player presses their key
again before the next shape is shown, they will lose a
point. This is because '' will never be equal to the
current color, except before the first shape is shown.

Prevent early snaps
Since previous_color and current_color are
equal at the beginning of the game, players can still
cheat by pressing their key before the first shape
appears. To solve this, set the two variables to different
strings at the start. Change their values to “a” and “b”.

Change the messages
If both players press their keys at almost the same
time, it might be confusing as to who has scored or
lost a point. To fix this, you can change the messages
that are displayed when players attempt a snap.

2

3

4

previous_color = 'a'

current_color = 'b'

 shape = c.create_text(200, 200, text='SNAP! You scored 1 point!'

 previous_color = ''

Don’t forget to save
your work.

There's nothing I don't
know about

multiple snaps!

Starting with different
strings means that a
snap can’t be made
until the shapes
appear on the screen.

if valid:

 if event.char == 'q':

 player1_score = player1_score + 1

 shape = c.create_text(200, 200, text='SNAP! Player 1 scores 1 point!')

 else:

 player2_score = player2_score + 1

 shape = c.create_text(200, 200, text='SNAP! Player 2 scores 1 point!')

 previous_color = ''

else:

 if event.char == 'q':

 player1_score = player1_score - 1

 shape = c.create_text(200, 200, text='WRONG! Player 1 loses 1 point!')

 else:

 player2_score = player2_score - 1

 shape = c.create_text(200, 200, text='WRONG! Player 2 loses 1 point!')

US_178-179_Snap_6.indd 179 02/03/17 4:57 pm

G A M E S I N P Y T H O N180

Matchmaker

Matchmaker
How good is your memory? Test it in this
fun game where you have to find pairs of
matching symbols. See how quickly you can
find all 12 matching pairs!

◁ GUI window
The grid window
is a graphical user
interface (GUI)
created by Python’s
Tkinter module.

What happens
When you run the program, it opens a window showing
a grid of buttons. Click on them in pairs to reveal the hidden
symbols. If two symbols are the same, you’ve found a match
and the symbols remain visible on the screen. Otherwise, the
two buttons are reset. Try to remember the location of each
hidden symbol to quickly find all the pairs. The grid shows 24

buttons arranged
into four rows of six.

Click on a button
to reveal a symbol.

There are only two
of each symbol.

Matching symbols are
left showing on the grid.

If you make a wrong match,
 the symbols are hidden again.

I can’t remember!Do you have
a good memory?

US_180-181_Matchmaker_1.indd 180 16/01/17 3:27 pm

M A T C H M A K E R 181

How it works
This project uses the Tkinter module to display the
button grid. Tkinter’s mainloop() function listens
for button presses and handles them with a special kind
of function, called a lambda function, that reveals
a symbol. If an unmatched symbol has already been
revealed, the program checks to see if the second one
matches. The project stores the buttons in a dictionary
and the symbols in a list.

Shuffle symbols

Start

Create buttons and
assign symbols to them

Leave symbols
on screen

Hide symbols

Button pressed?

First button in
matching attempt?

Symbols match?

▽ Matchmaker flowchart
After shuffling the symbols and creating
the grid, the program spends its time
listening for button presses. It ends when
all the matching pairs have been found.

N

N

Y

YY

E X P E R T T I P S

Lambda functions
Like def, the keyword lambda is used
to define functions. Lambda functions
are all written on one line and can be
used anywhere you need a function.
For example, the function lambda x:
x*2 doubles a number. You can assign
it to a variable, such as double =
lambda x: x*2. Then you call it using
double(x), where x is a number.
So double(2) would return 4.
Lambda functions are very useful in
GUI programming, where several
buttons may need to call the same
function using different parameters.
Without the lambda functions in
Matchmaker, you would have to create
a different function for each button—
that’s 24 functions!

I’ve found a
matching pear!

N

US_180-181_Matchmaker_1.indd 181 16/01/17 3:27 pm

G A M E S I N P Y T H O N182

Create a new file
Open IDLE. Create a new file
and save it as “matchmaker.py”.

Add modules
Now type this code at the top of
your file to import the modules
you need for this project. You’ll use
random to shuffle the symbols,
time to pause the program, and
Tkinter to create the GUI.

Set up the GUI
Under the import commands, add
this code, which will set up the GUI.
The root.resizable() function
prevents the player from resizing
the window. This is important, since
changing the size of the window
will mess up the button layout that
you’ll create later on.

Test your code
Now run the code. You should
see an empty Tkinter window
with the heading “Matchmaker”.
If you can’t see it, it’s probably
hidden behind other windows.

import random

import time

from tkinter import Tk, Button, DISABLED

root = Tk()

root.title('Matchmaker')

root.resizable(width=False, height=False)

Getting started
In the first part of the project, you'll
set up the graphical user interface
(GUI) and add the pairs of symbols
that will be hidden by the buttons.

1

2

3

4

Save

Save As

File

Matchmaker

Don’t forget to save
your work.

Button creates the buttons
in the Tkinter window.

DISABLED stops a button
from responding after its
symbol has been matched.

These lines create a
Tkinter window
and give it a title.

I suppose I’d better
get started!

This line keeps
the window at
its original size.

US_182-183_Matchmaker_2.indd 182 02/03/17 4:58 pm

M A T C H M A K E R 183

random.shuffle(symbols)

Make some variables
Under the code for Step 3, add the
variables that the program needs, and
create a dictionary to store the buttons in.
For each attempt at a match, you need to
remember whether it’s the first or second
symbol in the match. You also need to keep
track of the first button press so you can
compare it with the second button press.

5 root.resizable(width=False, height=False)

buttons = {}

first = True

previousX = 0

previousY = 0

Add the symbols
Next type the code below to add the
symbols the game will use. As in the Nine
Lives project, the program uses Unicode
characters. There are 12 pairs, making 24
in total. Add this code under the variables
added in Step 5.

Shuffle the symbols
You don’t want the symbols to appear in
the same place every time. After several
games, the player would remember their
positions and would be able to match
them all at their first try, every time.
To prevent this, you need to shuffle the
symbols before each game starts. Add
this line after the list of symbols.

previousY = 0

button_symbols = {}

symbols = [u'\u2702', u'\u2702', u'\u2705', u'\u2705', u'\u2708', u'\u2708',

 u'\u2709', u'\u2709', u'\u270A', u'\u270A', u'\u270B', u'\u270B',

 u'\u270C', u'\u270C', u'\u270F', u'\u270F', u'\u2712', u'\u2712',

 u'\u2714', u'\u2714', u'\u2716', u'\u2716', u'\u2728', u'\u2728']

6

7

U+2716 U+2728U+2712 U+2714

U+2705 U+2709U+2702

U+270A U+270FU+270B U+270C

This is the dictionary.

The symbol for each button
is stored in this dictionary.

The shuffle() function
from the random module
mixes up the shapes.

This list stores the 12 pairs of symbols
that will be used in the game.

This variable is used to check if the
symbol is the first in the match.

These two variables keep track
of the last button pressed.

Shuffle mode is my
favorite!

U+2708

US_182-183_Matchmaker_2.indd 183 16/01/17 3:27 pm

G A M E S I N P Y T H O N184

Bring on the buttons!
In the next stage you’ll make the buttons and
add them to the GUI. Then you’ll create a function
called show_symbol () to control what happens
when a player clicks on the buttons.

Build the grid
The grid will consist of 24 buttons arranged into four
rows of six. To lay out the grid, you’ll use nested loops.
The outer x loop will work from left to right across the
six columns, while the inner y loop will work from top
to bottom down each column. Once the loops have
run, each button will have been given a pair of x and y
coordinates that set its position on the grid. Put this
block of code after the shuffle command.

8

random.shuffle(symbols)

for x in range(6):

 for y in range(4):

 button = Button(command=lambda x=x, y=y: show_symbol(x, y), \

 width=3, height=3)

 button.grid(column=x, row=y)

 buttons[x, y] = button

 button_symbols[x, y] = symbols.pop()

E X P E R T T I P S

Button
Tkinter has a built-in widget
called Button,which we use to
create the GUI buttons. You can pass
different parameters to it. The ones
we need are command, width, and
height. The command parameter
tells the program what to do when
a button is pressed. This is a function
call. In our program, it calls a
lambda function. The width and
height parameters are used to set
the size of the button.

△ How it works
Each time the loop runs, the lambda
function saves the current button’s x
and y values (the row and column it’s
in). When the button’s pressed, it calls
the show_symbol()function (which
you’ll create later) with these values,
so the function which button has been
pressed and which symbol to reveal.

These are
nested loops.

This line creates each button
and sets its size and action
when pressed.

Use a backslash character
if you need to split a long
line of code over two lines.

The button’s symbol
is set by this line.

The button is
placed on the GUI.

This line saves each button
in the buttons dictionary.

And now for the
big reveal...

US_184-185_Matchmaker_3.indd 184 02/03/17 4:58 pm

M A T C H M A K E R 185

Test your code
Run the program again. Your
Tkinter window should now
be filled with 24 buttons arranged
in a grid. If it doesn’t look similar to
the picture shown here, check your
code carefully for any errors.

10

Start the main loop
Now start Tkinter’s mainloop.
Once this loop starts, the GUI
will get displayed and it will start
listening for button presses. Type
this line after the code you added
in Step 8.

9 button_symbols[x, y] = symbols.pop()

root.mainloop()

R E M E M B E R

Nested loops
You may remember reading
about nested loops on page
35. You can put as many
loops inside one another
as you want. In this project,
the outer loop runs six times.
Each time the outer loop
runs, the inner loop runs four
times. So in total, the inner
loop runs 6 x 4 = 24 times.

Matchmaker

Oh, look.
A nested loop!

previousX = 0

previousY = 0

US_184-185_Matchmaker_3.indd 185 06/02/17 4:02 pm

G A M E S I N P Y T H O N186

Show the symbol
Finally, you need to create the function that handles the button presses. This
function will always display a symbol, but how it operates depends on whether
it’s the first or second turn in the matching attempt. If it’s the first turn, the
function just needs to remember which button was pressed. If it’s the second
turn, it needs to check if the symbols match. Symbols that don’t match are
hidden. Matching symbols are left showing and their buttons are disabled.

11

from tkinter import Tk, Button, DISABLED

def show_symbol(x, y):

 global first

 global previousX, previousY

 buttons[x, y]['text'] = button_symbols[x, y]

 buttons[x, y].update_idletasks()

 if first:

 previousX = x

 previousY = y

 first = False

 elif previousX != x or previousY != y:

 if buttons[previousX, previousY]['text'] != buttons[x, y]['text']:

 time.sleep(0.5)

 buttons[previousX, previousY]['text'] = ''

 buttons[x, y]['text'] = ''

 else:

 buttons[previousX, previousY]['command'] = DISABLED

 buttons[x, y]['command'] = DISABLED

 first = True

The x and y values tell the
function which button has
been pressed.

These lines tell the
program that the
variables are global.

If it’s the first turn, the
code remembers the
button press by storing
the x and y coordinates.

These lines show
the symbol.

Second turn. This line includes a
check to stop the player cheating
by pressing every button twice!

If the symbols
don’t match...

If the symbols
match...

This line gets the function
ready for the first button
press of the next attempt.

Disable the pair of matching
buttons so the player can’t
press them again.

Wait 0.5 seconds to give the
player time to see the symbols,
then hide them. We take matching

very seriously!
△ How it works
The function shows a button’s symbol by changing its text label to the Unicode
character we randomly assigned to it. We use update_idletasks() to tell
Tkinter to show this symbol right now. If it’s the first turn, we just store the
button’s coordinates in variables. If it’s the second turn, we need to check that the
player isn’t trying to cheat by hitting the same button twice. If they aren’t, we check
if the symbols match. If the symbols don’t match, we hide them by setting the text
to empty strings; if they do match, we leave them showing but disable the buttons.

US_186-187_Matchmaker_4.indd 186 02/03/17 4:58 pm

M A T C H M A K E R 187

Add a new module
You need to import Tkinter’s messagebox
widget to display the number of moves at
the end of the game. In the import line, add
the word messagebox after DISABLED.

Make new variables
You’ll have to make two extra variables for this
hack. One variable will keep track of the number
of moves the player makes, while the other will
remember how many pairs they’ve found. Give
them both a starting value of 0. Put these lines
below the variable previousY.

Declare them global
The moves and pairs variables are global
variables, and they’ll need to be changed
by the show_symbol() function. Let
show_symbol() know this by putting
these two lines near the top of the function.

1

2 3

from tkinter import Tk, Button, DISABLED, messagebox

previousY = 0

moves = 0

pairs = 0

def show_symbol(x, y):

 global first

 global previousX, previousY

 global moves

 global pairs

Hacks and tweaks
You could adapt this game in many ways. You can show
the number of moves taken to finish the game, so the
player can try and beat their own score or challenge
their friends. You could also add more symbols to make
the game harder.

Show the number of moves
At the moment, the player has no way of knowing
how well they’ve done or if they’ve done any better
than their friends. How can we make the game more
competitive? Let’s add a variable to count how many
turns a player takes to finish the game. Then players
can compete to see who gets the lowest score.

The player hasn’t
made any moves yet,
or found any pairs,
so the values are 0.

Let’s make the game
more competitive!

US_186-187_Matchmaker_4.indd 187 16/01/17 3:27 pm

G A M E S I N P Y T H O N188

Count the moves
A move is two button presses (one matching
attempt). So you only need to add 1 to the
moves variable when the show_symbol ()
function is called for the first or the second
button press—not for both. Let’s do it for the
first button press. Change the show_symbol ()
function to look like this.

Display a message
Now add the following code near the bottom
of the show_symbol () function. It will track the
matched pairs and show a message box at the end
of the game telling the player how many moves
they took. When the player clicks the box’s OK
button, the code calls the close_window()
function, which we’ll add next.

Close the window
Finally, you need to create a close_window()
function, to make the program exit the game
when the player clicks the OK button on the
“Number of moves” message box. Add this
code under the line that imports the modules.

4

5

6

if first:

 previousX = x

 previousY = y

 first = False

 moves = moves + 1

 buttons[x, y]['command'] = DISABLED

 pairs = pairs + 1

 if pairs == len(buttons)/2:

 messagebox.showinfo('Matching', 'Number of moves: ' +

 str(moves), command=close_window)

△ How it works
There are 12 pairs of symbols, so you
could simply have typed pairs == 12 in
the hack. However, your code is smarter
than this. It calculates the number of pairs
by using pairs == len(buttons)/2.
This allows you to add more buttons to
the game without having to update this
bit of code. def close_window(self):

 root.destroy()

This command
closes the window.

Add 1 to the number
of pairs found.

This line displays a
box showing the
number of moves.

If all the pairs have been found,
run the code under this line.

Matching

OK

Number of moves: 20

US_188-189_Matchmaker_5.indd 188 16/01/17 3:27 pm

M A T C H M A K E R 189

Extra symbols
First you need to add more pairs to
the symbols list. Include this new line
in the code.

Extra buttons
Now add an extra row of buttons.
To do this, you just need to change
the y range in the nested loops
from 4 to 5, as shown on the right.

Even bigger?
You now have a total of 30 buttons. If
you want to add more, make sure that
the number of extra buttons you add
is a multiple of 6 so that you always
add complete rows. If you’re feeling
adventurous, you could experiment
with different button layouts by
changing the nested loops.

1

2

3

symbols = [u'\u2702', u'\u2702', u'\u2705', u'\u2705', u'\u2708', u'\u2708',

 u'\u2709', u'\u2709', u'\u270A', u'\u270A', u'\u270B', u'\u270B',

 u'\u270C', u'\u270C', u'\u270F', u'\u270F', u'\u2712', u'\u2712',

 u'\u2714', u'\u2714', u'\u2716', u'\u2716', u'\u2728', u'\u2728',

 u'\u2733', u'\u2733', u'\u2734', u'\u2734', u'\u2744', u'\u2744']

for x in range(6):

 for y in range(5):

Add the three pairs of new
symbols to the end of the list.

Add more buttons
Let’s really challenge the player’s
memory by adding more buttons
and symbols to the game.

U+274E

U+2733

U+27B0

U+2734

✚
U+2795

U+2744

U+2797

U+2754

U+27A1

U+2753U+274C

U+2755 U+2757 U+2764

❙

U+2796

I think it could do with a
few more buttons!

This line will now create five
rows of buttons instead of four.

U+2747

US_188-189_Matchmaker_5.indd 189 02/03/17 4:58 pm

G A M E S I N P Y T H O N190

You score 10 points for
catching each egg.

Move the catcher back and
forth by pressing the left

and right arrow keys.

tk

What happens
Move the catcher along the bottom of the
screen to catch each egg before it touches the
ground. When you scoop up an egg you score
points, but if you drop an egg you lose a life.
Beware: the more eggs you catch, the more
frequently new eggs appear at the top of the
screen and the faster they fall. Lose all three
lives and the game ends.

Egg Catcher
This game will test your concentration
and the speed of your reflexes. Don’t
crack under pressure—just catch as
many eggs as you can to get a high
score. Challenge your friends to see
who is the champion egg catcher!

E X P E R T T I P S

Timing
The timing of the action on the screen is
important. At first, a new egg is only added
every 4 seconds; otherwise, there would be too
many eggs. Initially, the eggs move down a little
every half second. If the interval was smaller, the
game would be too hard. The program checks
for a catch once every tenth of a second—any
slower, and it might miss it. As the player scores
more points, the speed and number of the eggs
increases to make the game more challenging.

Score: 0

US_190-191_Egg_Catcher_1.indd 190 16/01/17 9:44 am

E G G C A T C H E R 191

New eggs appear at
the top of the screen,
in random positions.

This counter shows you how
many lives you have left.

If an egg touches the
bottom of the screen,
you lose a life.

You can add static shapes,
such as grass, to the screen to
create background scenery.

tk

Lives: 2

◁ Arcade-style game
This last project brings all your
coding skills together to create
an impressive arcade-style
game. The code is quite
complex, so check your code
carefully for bugs at each stage
and don’t be discouraged if
you make a few mistakes along
the way. Once you’ve cracked
Egg Catcher, you’ll be all set to
start making your own games.

The program uses Tkinter to draw
and move shapes, and the random
module to place them on the screen.

Let’s catch
some eggs!

US_190-191_Egg_Catcher_1.indd 191 16/01/17 9:44 am

G A M E S I N P Y T H O N192

How it works
Once the background is created, the eggs gradually
move down the screen, which creates the illusion that
they are falling. Using loops, the code continually checks
the coordinates of the eggs to see if any have hit the
bottom or been caught in the catcher. When an egg is
caught or dropped, it is deleted and the program
adjusts the score or the number of remaining lives.

△ Egg Catcher flowchart
There are three different loops
in this game: one to create
new eggs, another to check
if the catcher has caught an
egg, and a third to move
the eggs and check for eggs
touching the bottom. Each
of the three loops repeats at
a different speed.

Create a new egg
at the top of the

screen, with a
random horizontal

position

Wait 4 seconds

Move all the eggs on
the screen down a bit

Have any of the
eggs hit

the bottom?

Has the player
run out of lives?

Remove the egg
and subtract a life

Remove the egg and
add 10 to the score

Increase the eggs’
speed and frequency

Wait a tenth of a
second

Wait half
a second

Display the “Game
Over!” message

Start

End

Has the catcher
caught an egg?

N

N

N

Y

Y

Y

US_192-193_Egg_catcher_2.indd 192 16/01/17 9:44 am

E G G C A T C H E R 193

1

3

4

2 from itertools import cycle

from random import randrange

from tkinter import Canvas, Tk, messagebox, font

from tkinter import Canvas, Tk, messagebox, font

canvas_width = 800

canvas_height = 400

root = Tk()

c = Canvas(root, width=canvas_width, height=canvas_height, \

background='deep sky blue')

c.create_rectangle(–5, canvas_height – 100, canvas_width + 5, \

canvas_height + 5, fill= 'sea green', width=0)

c.create_oval(–80, –80, 120, 120, fill='orange', width=0)

c.pack()

The code only imports the parts
of the modules that you need.

Use a backslash
character if you

need to split a
long line of code

over two lines.

The canvas will be
sky blue and measure
800 x 400 pixels. This creates

a window.

The pack() function tells the
program to draw the main

window and all of its contents. This line creates the sun.

Setting up
First you’ll import the parts of Python that
you need for this project. Then you’ll set
things up that so that you’re ready to write
the main functions for the game.

Create a file
Open IDLE and create a new file.
Save it as “egg_catcher.py”.

Set up the canvas
Add this code beneath the
import statements. It creates
variables for the height and
width of the canvas, then
uses them to create the
canvas itself. To add a bit
of scenery to your game,
it draws a rectangle to
represent some grass and
an oval to represent the sun.

See your canvas
Run the code to see how
the canvas looks. You
should see a scene with
green grass, a blue sky,
and a bright sun. If you
feel confident, try to make
your own scenery with
shapes of different colors
or sizes. You can always go
back to the code above if
you run into problems.

Import the modules
Egg Catcher uses three modules:
itertools to cycle through some
colors; random to make the eggs appear
in random places; and Tkinter to
animate the game by creating shapes
on the screen. Type these lines at the
top of your file.

tk

This creates the grass.

US_192-193_Egg_catcher_2.indd 193 02/03/17 4:58 pm

G A M E S I N P Y T H O N194

Set up the eggs
Now make some variables to store the colors, width, and
height of the eggs. You’ll also need variables for the score, the
speed of the falling eggs, and the interval between new eggs
appearing on the screen. The amount they are changed by is
determined by the difficulty_factor—a lower value for
this variable actually makes the game harder.

5

c.pack()

color_cycle = cycle(['light blue', 'light green', 'light pink', 'light yellow', 'light cyan'])

egg_width = 45

egg_height = 55

egg_score = 10

egg_speed = 500

egg_interval = 4000

difficulty_factor = 0.95

Set up the catcher
Next add the variables for the catcher. As well as variables for its
color and size, there are four variables that store the catcher’s
starting position. The values for these are calculated using the sizes
of the canvas and the catcher. Once these have been calculated,
they are used to create the arc that the game uses for the catcher.

6

difficulty_factor = 0.95

catcher_color = 'blue'

catcher_width = 100

catcher_height = 100

catcher_start_x = canvas_width / 2 – catcher_width / 2

catcher_start_y = canvas_height – catcher_height – 20

catcher_start_x2 = catcher_start_x + catcher_width

catcher_start_y2 = catcher_start_y + catcher_height

catcher = c.create_arc(catcher_start_x, catcher_start_y, \

 catcher_start_x2, catcher_start_y2, start=200, extent=140, \

 style='arc', outline=catcher_color, width=3)

The cycle() function
allows you to use
each color in turn.

You score 10 points
for catching an egg.

A new egg appears every 4,000
milliseconds (4 seconds).

This is how much the speed and interval
change after each catch (closer to 1 is easier).

This is the height of the circle
that is used to draw the arc.

Draw the
catcher.

These lines make the catcher start
near the bottom of the canvas, in
the center of the window.

Don’t forget to save
your work.

Start drawing
at 200 degrees
on the circle.

Draw for 140
degrees.

US_194-195_Egg_Catcher_3.indd 194 16/01/17 9:44 am

E G G C A T C H E R 195

◁ How it works
You use an arc to represent the catcher. An arc is one part of a whole
circle. Tkinter draws circles inside an invisible box. The first two
catcher_start coordinates (x and y) plot where one corner of
the box should be. The second two coordinates (x2 and y2) plot the
position of the box’s opposite corner. The create_arc() function
has two parameters, both given in degrees (°), that say where in the
circle to draw the arc: start says where to start drawing, while
extent is how many degrees to draw before stopping.

Score and lives counters
Add this code under the lines that set up the catcher. It sets
the starting score to 0 and creates the text that shows the
score on the screen. It also sets the remaining lives to three
and displays this number. To check if the code is working,
add root.mainloop() right at the end and then run
the code. Once you’ve checked, remove this line—you’ll
add it again later when it’s needed.

7

catcher = c.create_arc(catcher_start_x, catcher_start_y, \

 catcher_start_x2, catcher_start_y2, start=200, extent=140,

 style=’arc’, outline=catcher_color, width=3)

game_font = font.nametofont('TkFixedFont')

game_font.config(size=18)

score = 0

score_text = c.create_text(10, 10, anchor='nw', font=game_font, fill='darkblue', \

 text='Score: ' + str(score))

lives_remaining = 3

lives_text = c.create_text(canvas_width – 10, 10, anchor='ne', font=game_font, \

 fill='darkblue', text='Lives ' + str(lives_remaining))

This line selects a cool
computer-style font.

You can make the text larger or
smaller by changing this number.

The player gets three lives.

Those pesky birds!

Score: 0 Lives: 3

tk

180°

200°

0°

270°

90°
(x, y)

(x2, y2)

340°
+ 140°

extent

start

A whole circle is 360°. The
code starts drawing the
arc just over half way
around the circle, at 200°.

US_194-195_Egg_Catcher_3.indd 195 16/01/17 9:44 am

G A M E S I N P Y T H O N196

Move the eggs
After creating the eggs, add the next function, move_eggs(), to set
them in motion. It loops through the list of all the eggs on screen. For
each egg, the y coordinate is increased, which moves the egg down
the screen. Once the egg is moved, the program checks whether it
has hit the bottom of the screen. If it has, the egg has been dropped
and the egg_dropped() function is called. Finally, a timer is set to
call the move_eggs() function again after a short pause.

9

 root.after(egg_interval, create_egg)

def move_eggs():

 for egg in eggs:

 (egg_x, egg_y, egg_x2, egg_y2) = c.coords(egg)

 c.move(egg, 0, 10)

 if egg_y2 > canvas_height:

 egg_dropped(egg)

 root.after(egg_speed, move_eggs)

Loop through
all the eggs.

Create the eggs
Add this code. A list keeps track of all the eggs
on the screen. The create_egg() function
decides the coordinates of each new egg (the x
coordinate is always randomly selected). Then it
creates the egg as an oval and adds it to the list
of eggs. Finally, it sets a timer to call the
function again after a pause.

8

lives_text = c.create_text(canvas_width - 10, 10, anchor='ne', font=game_font, fill='darkblue', \

 text='Lives: ' + str(lives_remaining))

eggs = []

def create_egg():

 x = randrange(10, 740)

 y = 40

 new_egg = c.create_oval(x, y, x + egg_width, y + egg_height, fill=next(color_cycle), width=0)

 eggs.append(new_egg)

 root.after(egg_interval, create_egg)

Falling, scoring, dropping
You’ve completed all the setup tasks,
so it’s time to write the code that runs
the game. You’ll need functions to
create the eggs and make them fall,
and some more functions to handle
egg catches and egg drops.

Help! It’s raining eggs!

This is a list to keep
track of the eggs.

Pick a random position along the top
of the canvas for the new egg.

The shape is added
to the list of eggs.

Call this function again after the number of
milliseconds stored in egg_interval.

This line of code
creates the oval.

This line gets each egg’s
coordinates.

Is the egg at the bottom of the screen?

The egg drops down the screen
10 pixels at a time.

If so, call the function that deals
with dropped eggs.

Call this function again after the number
of milliseconds stored in egg_speed.

US_196-197_Egg_catcher_4.indd 196 16/01/17 9:44 am

E G G C A T C H E R 197

Check for a catch
Now add the check_catch() function. An egg is caught if it’s inside
the arc of the catcher. To find out if you’ve made a catch, the for loop
gets the coordinates of each egg and compares them with the catcher’s
coordinates. If there’s a match, the egg is caught. Then it’s deleted from
the list, removed from the screen, and the score is increased.

12

 c.itemconfigure(lives_text, text='Lives: ' + str(lives_remaining))

def check_catch():

 (catcher_x, catcher_y, catcher_x2, catcher_y2) = c.coords(catcher)

 for egg in eggs:

 (egg_x, egg_y, egg_x2, egg_y2) = c.coords(egg)

 if catcher_x < egg_x and egg_x2 < catcher_x2 and catcher_y2 – egg_y2 < 40:

 eggs.remove(egg)

 c.delete(egg)

 increase_score(egg_score)

 root.after(100, check_catch)

Oops—egg drop!
Next add the egg_dropped()
function after move_eggs().
When an egg is dropped, it is
removed from the list of eggs
and then deleted from the
canvas. A life is deducted using
the lose_a_life() function,
which you’ll create in Step 11.
If losing a life means there are
no lives left, the “Game Over!”
message is shown.

Lose a life
Losing a life simply involves
subtracting a life from the
lives_remaining variable and
then displaying the new value on
the screen. Add these lines after the
eggs_dropped() function.

10

11

 root.after(egg_speed, move_eggs)

def egg_dropped(egg):

 eggs.remove(egg)

 c.delete(egg)

 lose_a_life()

 if lives_remaining == 0:

 messagebox.showinfo('Game Over!', 'Final Score: ' \

 + str(score))

 root.destroy()

 root.destroy()

def lose_a_life():

 global lives_remaining

 lives_remaining -= 1

 c.itemconfigure(lives_text, text='Lives: ' \

 + str(lives_remaining))

The egg is removed
from the eggs list.

The egg disappears
from the canvas.

This line calls the
lose_a_life() function.

This line updates
the text that shows
the remaining lives.

This variable needs
to be global, as the
function will modify it.

The player loses a life.

Get the coordinates
of the catcher.

Increase the score
by 10 points.

Get the coordinates
of the eggs.

Is the egg inside the
catcher horizontally
and vertically?Call this function again after

100 milliseconds (one-tenth
of a second).

If no lives are left, tell the
player that the game is over.

The game ends.

US_196-197_Egg_catcher_4.indd 197 16/01/17 9:44 am

G A M E S I N P Y T H O N198

Set up the controls
The move_left() and move_right()
functions use the coordinates of the
catcher to make sure it isn’t about to
leave the screen. If there’s still space
to move to, the catcher shifts horizontally
by 20 pixels. These two functions are
linked to the left and right arrow keys
on the keyboard using the bind()
function. The focus_set() function
allows the program to detect the key
presses. Add the new functions beneath
the increase_score() function.

 c.itemconfigure(score_text, text='Score: \

 ' + str(score))

def move_left(event):

 (x1, y1, x2, y2) = c.coords(catcher)

 if x1 > 0:

 c.move(catcher, -20, 0)

def move_right(event):

 (x1, y1, x2, y2) = c.coords(catcher)

 if x2 < canvas_width:

 c.move(catcher, 20, 0)

c.bind('<Left>', move_left)

c.bind('<Right>', move_right)

c.focus_set()

Catch those eggs!
Now that you’ve got all the shapes and functions needed
for the game, all that’s left to add are the controls for the
egg catcher and the commands that start the game.

14

Increase the score
First the score is increased by the value of the points parameter.
Next the new speed and interval of the eggs are calculated by
multiplying their values by the difficulty factor. Finally, the text on
the screen is updated with the new score. Add this new function
beneath check_catch().

13

 root.after(100, check_catch)

def increase_score(points):

 global score, egg_speed, egg_interval

 score += points

 egg_speed = int(egg_speed * difficulty_factor)

 egg_interval = int(egg_interval * difficulty_factor)

 c.itemconfigure(score_text, text='Score: ' + str(score))

This line updates
the text that shows
the score.

Add to the
player’s score.

Has the catcher
reached the
left-hand wall?

If not,
move the
catcher right.

Has the catcher reached
the right-hand wall?

These lines call the
functions when the

keys are pressed.

I’ve caught enough
eggs for a nice meal!

If not,
move the
catcher left.

US_198-199_Egg_catcher_5.indd 198 16/01/17 9:44 am

E G G C A T C H E R 199

Start the game
The three looping functions are started
using timers. This ensures they aren’t
run before the main loop starts. Finally,
the mainloop () function starts the
Tkinter loop that manages all
your loops and timers. All finished –
enjoy the game, and don’t let those
eggs smash!

import time

from pygame import mixer

mixer.init()

beep = mixer.Sound("beep.wav")

beep.play()

time.sleep(5)

c.focus_set()

root.after(1000, create_egg)

root.after(1000, move_eggs)

root.after(1000, check_catch)

root.mainloop()

15

◁ Set the scene
Tkinter allows custom images to be used as
backgrounds for a canvas. If your file is a GIF, you can
use tkinter.PhotoImage to load the file. If your
image is a different format, you might want to look into
Pillow—a helpful image-handling module.

▷ Make some noise
To really bring the game to life, add background music
or sound effects for catching an egg or losing a life. The
module to use for adding sounds is pygame.mixer.
Remember, pygame is not a standard Python module,
so you’ll need to install it first. You’ll also need to have a
copy of the sound file you want to play, which you should
place in the same folder as your code file. Once that’s in
place, playing a sound only takes a few lines of code.

Hacks and tweaks
To make the game look even better,
you can try adding some cool scenery
of your own. Fun sounds and music are
another great way to make the game
more exciting.

The three game loops
begin after a slight pause
of 1,000 milliseconds
(1 second).

This line starts the
main Tkinter loop.

Get the mixer ready
to play sounds.

Tell the mixer which
sound to play.

Play the sound. Keep the program running
long enough to hear it.

E X P E R T T I P S

Installing modules
Some of the most useful Python modules—
such as Pygame—aren’t included as part of
the standard Python library. If you would like
to use any of these other modules, you’ll need
to install them first. The best place to look for
instructions on how to install a module is the
module’s website. There are instructions and
tips at https://docs.python.org/3/installing/.

tk

tk tk

US_198-199_Egg_catcher_5.indd 199 16/01/17 9:44 am

US_200-201_Chapter_6_opener.indd 200 16/01/17 3:59 pm

Reference

US_200-201_Chapter_6_opener.indd 201 16/01/17 3:59 pm

R E F E R E N C E202

Animal Quiz (page 36)
def check_guess(guess, answer):
 global score
 still_guessing = True
 attempt = 0
 while still_guessing and attempt < 3:
 if guess.lower() == answer.lower():
 print('Correct Answer')
 score = score + 1
 still_guessing = False
 else:
 if attempt < 2:
 guess = input('Sorry wrong answer. Try again ')
 attempt = attempt + 1

 if attempt == 3:
 print('The correct answer is ' + answer)

score = 0
print('Guess the Animal')
guess1 = input('Which bear lives at the North Pole? ')
check_guess(guess1, 'polar bear')
guess2 = input('Which is the fastest land animal? ')
check_guess(guess2, 'cheetah')
guess3 = input('Which is the largest animal? ')
check_guess(guess3, 'blue whale')

print('Your score is ' + str(score))

Password Picker (page 52)
import random
import string

adjectives = ['sleepy', 'slow', 'smelly',
 'wet', 'fat', 'red',
 'orange', 'yellow', 'green',
 'blue', 'purple', 'fluffy',

Project reference
Here you’ll find the complete Python code for every
project in this book, except for the hacks and tweaks.
If your projects don’t run properly, carefully check
your scripts against the code shown here.

US_202-219_Code_listing.indd 202 16/01/17 3:28 pm

P R O J E C T R E F E R E N C E 203

 'white', 'proud', 'brave']
nouns = ['apple', 'dinosaur', 'ball',
 'toaster', 'goat', 'dragon',
 'hammer', 'duck', 'panda']

print('Welcome to Password Picker!')

while True:
 adjective = random.choice(adjectives)
 noun = random.choice(nouns)
 number = random.randrange(0, 100)
 special_char = random.choice(string.punctuation)

 password = adjective + noun + str(number) + special_char
 print('Your new password is: %s' % password)

 response = input('Would you like another password? Type y or n: ')
 if response == 'n':
 break

Nine Lives (page 60)
import random

lives = 9
words = ['pizza', 'fairy', 'teeth', 'shirt', 'otter', 'plane']
secret_word = random.choice(words)
clue = list('?????')
heart_symbol = u'\u2764'
guessed_word_correctly = False

def update_clue(guessed_letter, secret_word, clue):
 index = 0
 while index < len(secret_word):
 if guessed_letter == secret_word[index]:
 clue[index] = guessed_letter
 index = index + 1

while lives > 0:
 print(clue)
 print('Lives left: ' + heart_symbol * lives)
 guess = input('Guess a letter or the whole word: ')

 if guess == secret_word:
 guessed_word_correctly = True
 break

 if guess in secret_word:
 update_clue(guess, secret_word, clue)
 else:

US_202-219_Code_listing.indd 203 16/01/17 3:28 pm

R E F E R E N C E204

 print('Incorrect. You lose a life')
 lives = lives – 1

if guessed_word_correctly:
 print('You won! The secret word was ' \
+ secret_word)
else:
 print('You lost! The secret word was ' \
+ secret_word)

Robot Builder (page 72)
import turtle as t

def rectangle(horizontal, vertical, color):
 t.pendown()
 t.pensize(1)
 t.color(color)
 t.begin_fill()
 for counter in range(1, 3):
 t.forward(horizontal)
 t.right(90)
 t.forward(vertical)
 t.right(90)
 t.end_fill()
 t.penup()

t.penup()
t.speed('slow')
t.bgcolor('Dodger blue')

feet
t.goto(–100, –150)
rectangle(50, 20, 'blue')
t.goto(–30, –150)
rectangle(50, 20, 'blue')

legs
t.goto(–25, –50)
rectangle(15, 100, 'grey')
t.goto(–55, –50)
rectangle(–15, 100, 'grey')

body
t.goto(–90, 100)
rectangle(100, 150, 'red')

arms
t.goto(–150, 70)
rectangle(60, 15, 'grey')

t.goto(–150, 110)
rectangle(15, 40, 'grey')

t.goto(10, 70)
rectangle(60, 15, 'grey')
t.goto(55, 110)
rectangle(15, 40, 'grey')

neck
t.goto(–50, 120)
rectangle(15, 20, 'grey')

head
t.goto(–85, 170)
rectangle(80, 50, 'red')

eyes
t.goto(–60, 160)
rectangle(30, 10, 'white')
t.goto(–55, 155)
rectangle(5, 5, 'black')
t.goto(–40, 155)
rectangle(5, 5, 'black')

mouth
t.goto(–65, 135)
rectangle(40, 5, 'black')

t.hideturtle()

Kaleido-spiral (page 82)
import turtle
from itertools import cycle

colors = cycle(['red', 'orange', 'yellow', \
 'green', 'blue', 'purple'])

def draw_circle(size, angle, shift):
 turtle.pencolor(next(colors))
 turtle.circle(size)
 turtle.right(angle)
 turtle.forward(shift)
 draw_circle(size + 5, angle + 1, shift +
1)

turtle.bgcolor('black')
turtle.speed('fast')
turtle.pensize(4)
draw_circle(30, 0, 1)

US_202-219_Code_listing.indd 204 16/01/17 3:28 pm

P R O J E C T R E F E R E N C E 205

Starry Night (page 90)
import turtle as t
from random import randint, random

def draw_star(points, size, col, x, y):
 t.penup()
 t.goto(x, y)
 t.pendown
 angle = 180 – (180 / points)
 t.color(col)
 t.begin_fill()
 for i in range(points):
 t.forward(size)
 t.right(angle)
 t.end_fill()

Main code
t.Screen().bgcolor('dark blue')

while True:
 ranPts = randint(2, 5) * 2 + 1
 ranSize = randint(10, 50)
 ranCol = (random(), random(), random())
 ranX = randint(–350, 300)
 ranY = randint(–250, 250)

 draw_star(ranPts, ranSize, ranCol, ranX, ranY)

Mutant Rainbow (page 98)
import random
import turtle as t

def get_line_length():
 choice = input('Enter line length (long, medium, short): ')
 if choice == 'long':
 line_length = 250
 elif choice == 'medium':
 line_length = 200
 else:
 line_length = 100
 return line_length

def get_line_width():
 choice = input('Enter line width (superthick, thick, thin): ')
 if choice == 'superthick':
 line_width = 40
 elif choice == 'thick':
 line_width = 25

US_202-219_Code_listing.indd 205 16/01/17 3:28 pm

R E F E R E N C E206

 else:
 line_width = 10
 return line_width

def inside_window():
 left_limit = (–t.window_width() / 2) + 100
 right_limit = (t.window_width() / 2) – 100
 top_limit = (t.window_height() / 2) – 100
 bottom_limit = (–t.window_height() / 2) + 100
 (x, y) = t.pos()
 inside = left_limit < x < right_limit and bottom_limit < y < top_limit
 return inside

def move_turtle(line_length):
 pen_colors = ['red', 'orange', 'yellow', 'green', 'blue', 'purple']
 t.pencolor(random.choice(pen_colors))
 if inside_window():
 angle = random.randint(0, 180)
 t.right(angle)
 t.forward(line_length)
 else:
 t.backward(line_length)

line_length = get_line_length()
line_width = get_line_width()

t.shape('turtle')
t.fillcolor('green')
t.bgcolor('black')
t.speed('fastest')
t.pensize(line_width)

while True:
 move_turtle(line_length)

Countdown Calendar (page 110)
from tkinter import Tk, Canvas
from datetime import date, datetime

def get_events():
 list_events = []
 with open('events.txt') as file:
 for line in file:
 line = line.rstrip('\n')
 current_event = line.split(',')
 event_date = datetime.strptime(current_event[1], '%d/%m/%y').date()
 current_event[1] = event_date
 list_events.append(current_event)
 return list_events

US_202-219_Code_listing.indd 206 16/01/17 3:28 pm

P R O J E C T R E F E R E N C E 207

def days_between_dates(date1, date2):
 time_between = str(date1 – date2)
 number_of_days = time_between.split(' ')
 return number_of_days[0]

root = Tk()
c = Canvas(root, width=800, height=800, bg='black')
c.pack()
c.create_text(100, 50, anchor='w', fill='orange', font='Arial 28 bold underline', \
 text='My Countdown Calendar')

events = get_events()
today = date.today()

vertical_space = 100

for event in events:
 event_name = event[0]
 days_until = days_between_dates(event[1], today)
 display = 'It is %s days until %s' % (days_until, event_name)
 c.create_text(100, vertical_space, anchor='w', fill='lightblue', \
 font='Arial 28 bold', text=display)

 vertical_space = vertical_space + 30

Ask the Expert (page 120)
from tkinter import Tk, simpledialog, messagebox

def read_from_file():
 with open('capital_data.txt') as file:
 for line in file:
 line = line.rstrip('\n')
 country, city = line.split('/')
 the_world[country] = city

def write_to_file(country_name, city_name):
 with open('capital_data.txt', 'a') as file:
 file.write('\n' + country_name + '/' + city_name)

print('Ask the Expert – Capital Cities of the World')
root = Tk()
root.withdraw()
the_world = {}

read_from_file()

while True:
 query_country = simpledialog.askstring('Country', 'Type the name of a country:')

 if query_country in the_world:

US_202-219_Code_listing.indd 207 16/01/17 3:28 pm

R E F E R E N C E208

 result = the_world[query_country]
 messagebox.showinfo('Answer',
 'The capital city of ' + query_country + ' is ' + result + '!')
 else:
 new_city = simpledialog.askstring('Teach me',
 'I don\'t know! ' +
 'What is the capital city of ' + query_country + '?')
 the_world[query_country] = new_city
 write_to_file(query_country, new_city)

root.mainloop()

Secret Messages (page 130)
from tkinter import messagebox, simpledialog, Tk

def is_even(number):
 return number % 2 == 0

def get_even_letters(message):
 even_letters = []
 for counter in range(0, len(message)):
 if is_even(counter):
 even_letters.append(message[counter])
 return even_letters

def get_odd_letters(message):
 odd_letters = []
 for counter in range(0, len(message)):
 if not is_even(counter):
 odd_letters.append(message[counter])
 return odd_letters

def swap_letters(message):
 letter_list = []
 if not is_even(len(message)):
 message = message + 'x'
 even_letters = get_even_letters(message)
 odd_letters = get_odd_letters(message)
 for counter in range(0, int(len(message)/2)):
 letter_list.append(odd_letters[counter])
 letter_list.append(even_letters[counter])
 new_message = ''.join(letter_list)
 return new_message

def get_task():
 task = simpledialog.askstring('Task', 'Do you want to encrypt or decrypt?')
 return task

US_202-219_Code_listing.indd 208 16/01/17 3:28 pm

P R O J E C T R E F E R E N C E 209

def get_message():
 message = simpledialog.askstring('Message', 'Enter the secret message: ')
 return message

root = Tk()

while True:
 task = get_task()
 if task == 'encrypt':
 message = get_message()
 encrypted = swap_letters(message)
 messagebox.showinfo('Ciphertext of the secret message is:', encrypted)
 elif task == 'decrypt':
 message = get_message()
 decrypted = swap_letters(message)
 messagebox.showinfo('Plaintext of the secret message is:', decrypted)
 else:
 break
root.mainloop()

Screen Pet (page 142)
from tkinter import HIDDEN, NORMAL, Tk, Canvas

def toggle_eyes():
 current_color = c.itemcget(eye_left, 'fill')
 new_color = c.body_color if current_color == 'white' else 'white'
 current_state = c.itemcget(pupil_left, 'state')
 new_state = NORMAL if current_state == HIDDEN else HIDDEN
 c.itemconfigure(pupil_left, state=new_state)
 c.itemconfigure(pupil_right, state=new_state)
 c.itemconfigure(eye_left, fill=new_color)
 c.itemconfigure(eye_right, fill=new_color)

def blink():
 toggle_eyes()
 root.after(250, toggle_eyes)
 root.after(3000, blink)

def toggle_pupils():
 if not c.eyes_crossed:
 c.move(pupil_left, 10, –5)
 c.move(pupil_right, –10, –5)
 c.eyes_crossed = True
 else:
 c.move(pupil_left, –10, 5)
 c.move(pupil_right, 10, 5)
 c.eyes_crossed = False

US_202-219_Code_listing.indd 209 16/01/17 3:28 pm

R E F E R E N C E210

def toggle_tongue():
 if not c.tongue_out:
 c.itemconfigure(tongue_tip, state=NORMAL)
 c.itemconfigure(tongue_main, state=NORMAL)
 c.tongue_out = True
 else:
 c.itemconfigure(tongue_tip, state=HIDDEN)
 c.itemconfigure(tongue_main, state=HIDDEN)
 c.tongue_out = False

def cheeky(event):
 toggle_tongue()
 toggle_pupils()
 hide_happy(event)
 root.after(1000, toggle_tongue)
 root.after(1000, toggle_pupils)
 return

def show_happy(event):
 if (20 <= event.x and event.x <= 350) and (20 <= event.y and event.y <= 350):
 c.itemconfigure(cheek_left, state=NORMAL)
 c.itemconfigure(cheek_right, state=NORMAL)
 c.itemconfigure(mouth_happy, state=NORMAL)
 c.itemconfigure(mouth_normal, state=HIDDEN)
 c.itemconfigure(mouth_sad, state=HIDDEN)
 c.happy_level = 10
 return

def hide_happy(event):
 c.itemconfigure(cheek_left, state=HIDDEN)
 c.itemconfigure(cheek_right, state=HIDDEN)
 c.itemconfigure(mouth_happy, state=HIDDEN)
 c.itemconfigure(mouth_normal, state=NORMAL)
 c.itemconfigure(mouth_sad, state=HIDDEN)
 return

def sad():
 if c.happy_level == 0:
 c.itemconfigure(mouth_happy, state=HIDDEN)
 c.itemconfigure(mouth_normal, state=HIDDEN)
 c.itemconfigure(mouth_sad, state=NORMAL)
 else:
 c.happy_level –= 1
 root.after(5000, sad)

root = Tk()
c = Canvas(root, width=400, height=400)
c.configure(bg='dark blue', highlightthickness=0)
c.body_color = 'SkyBlue1'

US_202-219_Code_listing.indd 210 16/01/17 3:28 pm

P R O J E C T R E F E R E N C E 211

body = c.create_oval(35, 20, 365, 350, outline=c.body_color, fill=c.body_color)
ear_left = c.create_polygon(75, 80, 75, 10, 165, 70, outline=c.body_color, fill=c.body_color)
ear_right = c.create_polygon(255, 45, 325, 10, 320, 70, outline=c.body_color, fill=c.body_color)
foot_left = c.create_oval(65, 320, 145, 360, outline=c.body_color, fill=c.body_color)
foot_right = c.create_oval(250, 320, 330, 360, outline=c.body_color, fill=c.body_color)

eye_left = c.create_oval(130, 110, 160, 170, outline='black', fill='white')
pupil_left = c.create_oval(140, 145, 150, 155, outline='black', fill='black')
eye_right = c.create_oval(230, 110, 260, 170, outline='black', fill='white')
pupil_right = c.create_oval(240, 145, 250, 155, outline='black', fill='black')

mouth_normal = c.create_line(170, 250, 200, 272, 230, 250, smooth=1, width=2, state=NORMAL)
mouth_happy = c.create_line(170, 250, 200, 282, 230, 250, smooth=1, width=2, state=HIDDEN)
mouth_sad = c.create_line(170, 250, 200, 232, 230, 250, smooth=1, width=2, state=HIDDEN)
tongue_main = c.create_rectangle(170, 250, 230, 290, outline='red', fill='red', state=HIDDEN)
tongue_tip = c.create_oval(170, 285, 230, 300, outline='red', fill='red', state=HIDDEN)

cheek_left = c.create_oval(70, 180, 120, 230, outline='pink', fill='pink', state=HIDDEN)
cheek_right = c.create_oval(280, 180, 330, 230, outline='pink', fill='pink', state=HIDDEN)

c.pack()

c.bind('<Motion>', show_happy)
c.bind('<Leave>', hide_happy)
c.bind('<Double–1>', cheeky)

c.happy_level = 10
c.eyes_crossed = False
c.tongue_out = False

root.after(1000, blink)
root.after(5000, sad)
root.mainloop()

Caterpillar (page 158)
import random
import turtle as t

t.bgcolor('yellow')

caterpillar = t.Turtle()
caterpillar.shape('square')
caterpillar.color('red')
caterpillar.speed(0)
caterpillar.penup()
caterpillar.hideturtle()

leaf = t.Turtle()

US_202-219_Code_listing.indd 211 16/01/17 3:28 pm

R E F E R E N C E212

leaf_shape = ((0, 0), (14, 2), (18, 6), (20, 20), (6, 18), (2, 14))
t.register_shape('leaf', leaf_shape)
leaf.shape('leaf')
leaf.color('green')
leaf.penup()
leaf.hideturtle()
leaf.speed(0)

game_started = False
text_turtle = t.Turtle()
text_turtle.write('Press SPACE to start', align='center', font=('Arial', 16, 'bold'))
text_turtle.hideturtle()

score_turtle = t.Turtle()
score_turtle.hideturtle()
score_turtle.speed(0)

def outside_window():
 left_wall = –t.window_width() / 2
 right_wall = t.window_width() / 2
 top_wall = t.window_height() / 2
 bottom_wall = –t.window_height() / 2
 (x, y) = caterpillar.pos()
 outside = \
 x< left_wall or \
 x> right_wall or \
 y< bottom_wall or \
 y> top_wall
 return outside

def game_over():
 caterpillar.color('yellow')
 leaf.color('yellow')
 t.penup()
 t.hideturtle()
 t.write('GAME OVER!', align='center', font=('Arial', 30, 'normal'))

def display_score(current_score):
 score_turtle.clear()
 score_turtle.penup()
 x = (t.window_width() / 2) – 50
 y = (t.window_height() / 2) – 50
 score_turtle.setpos(x, y)
 score_turtle.write(str(current_score), align='right', font=('Arial', 40, 'bold'))

def place_leaf():
 leaf.ht()
 leaf.setx(random.randint(–200, 200))

US_202-219_Code_listing.indd 212 16/01/17 3:28 pm

P R O J E C T R E F E R E N C E 213

 leaf.sety(random.randint(–200, 200))
 leaf.st()

def start_game():
 global game_started
 if game_started:
 return
 game_started = True

 score = 0
 text_turtle.clear()

 caterpillar_speed = 2
 caterpillar_length = 3
 caterpillar.shapesize(1, caterpillar_length, 1)
 caterpillar.showturtle()
 display_score(score)
 place_leaf()

 while True:
 caterpillar.forward(caterpillar_speed)
 if caterpillar.distance(leaf) < 20:
 place_leaf()
 caterpillar_length = caterpillar_length + 1
 caterpillar.shapesize(1, caterpillar_length, 1)
 caterpillar_speed = caterpillar_speed + 1
 score = score + 10
 display_score(score)
 if outside_window():
 game_over()
 break

def move_up():
 if caterpillar.heading() == 0 or caterpillar.heading() == 180:
 caterpillar.setheading(90)

def move_down():
 if caterpillar.heading() == 0 or caterpillar.heading() == 180:
 caterpillar.setheading(270)

def move_left():
 if caterpillar.heading() == 90 or caterpillar.heading() == 270:
 caterpillar.setheading(180)

def move_right():
 if caterpillar.heading() == 90 or caterpillar.heading() == 270:
 caterpillar.setheading(0)
t.onkey(start_game, 'space')
t.onkey(move_up, 'Up')
t.onkey(move_right, 'Right')

US_202-219_Code_listing.indd 213 16/01/17 3:28 pm

R E F E R E N C E214

t.onkey(move_down, 'Down')
t.onkey(move_left, 'Left')
t.listen()
t.mainloop()

Snap (page 168)
import random
import time
from tkinter import Tk, Canvas, HIDDEN, NORMAL

def next_shape():
 global shape
 global previous_color
 global current_color

 previous_color = current_color

 c.delete(shape)
 if len(shapes) > 0:
 shape = shapes.pop()
 c.itemconfigure(shape, state=NORMAL)
 current_color = c.itemcget(shape, 'fill')
 root.after(1000, next_shape)
 else:
 c.unbind('q')
 c.unbind('p')
 if player1_score > player2_score:
 c.create_text(200, 200, text='Winner: Player 1')
 elif player2_score > player1_score:
 c.create_text(200, 200, text='Winner: Player 2')
 else:
 c.create_text(200, 200, text='Draw')
 c.pack()

def snap(event):
 global shape
 global player1_score
 global player2_score
 valid = False

 c.delete(shape)
 if previous_color == current_color:
 valid = True

 if valid:
 if event.char == 'q':
 player1_score = player1_score + 1
 else:

US_202-219_Code_listing.indd 214 16/01/17 3:28 pm

P R O J E C T R E F E R E N C E 215

 player2_score = player2_score + 1
 shape = c.create_text(200, 200, text='SNAP! You score 1 point!')
 else:
 if event.char == 'q':
 player1_score = player1_score – 1
 else:
 player2_score = player2_score – 1
 shape = c.create_text(200, 200, text='WRONG! You lose 1 point!')
 c.pack()
 root.update_idletasks()
 time.sleep(1)

root = Tk()
root.title('Snap')
c = Canvas(root, width=400, height=400)

shapes = []

circle = c.create_oval(35, 20, 365, 350, outline='black', fill='black', state=HIDDEN)
shapes.append(circle)
circle = c.create_oval(35, 20, 365, 350, outline='red', fill='red', state=HIDDEN)
shapes.append(circle)
circle = c.create_oval(35, 20, 365, 350, outline='green', fill='green', state=HIDDEN)
shapes.append(circle)
circle = c.create_oval(35, 20, 365, 350, outline='blue', fill='blue', state=HIDDEN)
shapes.append(circle)

rectangle = c.create_rectangle(35, 100, 365, 270, outline='black', fill='black', state=HIDDEN)
shapes.append(rectangle)
rectangle = c.create_rectangle(35, 100, 365, 270, outline='red', fill='red', state=HIDDEN)
shapes.append(rectangle)
rectangle = c.create_rectangle(35, 100, 365, 270, outline='green', fill='green', state=HIDDEN)
shapes.append(rectangle)
rectangle = c.create_rectangle(35, 100, 365, 270, outline='blue', fill='blue', state=HIDDEN)
shapes.append(rectangle)

square = c.create_rectangle(35, 20, 365, 350, outline='black', fill='black', state=HIDDEN)
shapes.append(square)
square = c.create_rectangle(35, 20, 365, 350, outline='red', fill='red', state=HIDDEN)
shapes.append(square)
square = c.create_rectangle(35, 20, 365, 350, outline='green', fill='green', state=HIDDEN)
shapes.append(square)
square = c.create_rectangle(35, 20, 365, 350, outline='blue', fill='blue', state=HIDDEN)
shapes.append(square)
c.pack()

random.shuffle(shapes)

shape = None

US_202-219_Code_listing.indd 215 16/01/17 3:28 pm

R E F E R E N C E216

previous_color = ''
current_color = ''
player1_score = 0
player2_score = 0

root.after(3000, next_shape)
c.bind('q', snap)
c.bind('p', snap)
c.focus_set()

root.mainloop()

Matchmaker (page 180)
import random
import time
from tkinter import Tk, Button, DISABLED

def show_symbol(x, y):
 global first
 global previousX, previousY
 buttons[x, y]['text'] = button_symbols[x, y]
 buttons[x, y].update_idletasks()

 if first:
 previousX = x
 previousY = y
 first = False
 elif previousX != x or previousY != y:
 if buttons[previousX, previousY]['text'] != buttons[x, y]['text']:
 time.sleep(0.5)
 buttons[previousX, previousY]['text'] = ''
 buttons[x, y]['text'] = ''
 else:
 buttons[previousX, previousY]['command'] = DISABLED
 buttons[x, y]['command'] = DISABLED
 first = True

root = Tk()
root.title('Matchmaker')
root.resizable(width=False, height=False)
buttons = {}
first = True
previousX = 0
previousY = 0
button_symbols = {}
symbols = [u'\u2702', u'\u2702', u'\u2705', u'\u2705', u'\u2708', u'\u2708',
 u'\u2709', u'\u2709', u'\u270A', u'\u270A', u'\u270B', u'\u270B',

US_202-219_Code_listing.indd 216 16/01/17 3:28 pm

P R O J E C T R E F E R E N C E 217

 u'\u270C', u'\u270C', u'\u270F', u'\u270F', u'\u2712', u'\u2712',
 u'\u2714', u'\u2714', u'\u2716', u'\u2716', u'\u2728', u'\u2728']
random.shuffle(symbols)

for x in range(6):
 for y in range(4):
 button = Button(command=lambda x=x, y=y: show_symbol(x, y), width=3, height=3)
 button.grid(column=x, row=y)
 buttons[x, y] = button
 button_symbols[x, y] = symbols.pop()

root.mainloop()

Egg Catcher (page 190)
from itertools import cycle
from random import randrange
from tkinter import Canvas, Tk, messagebox, font

canvas_width = 800
canvas_height = 400

root = Tk()
c = Canvas(root, width=canvas_width, height=canvas_height, background='deep sky blue')
c.create_rectangle(–5, canvas_height – 100, canvas_width + 5, canvas_height + 5, \
 fill='sea green', width=0)
c.create_oval(–80, –80, 120, 120, fill='orange', width=0)
c.pack()

color_cycle = cycle(['light blue', 'light green', 'light pink', 'light yellow', 'light cyan'])
egg_width = 45
egg_height = 55
egg_score = 10
egg_speed = 500
egg_interval = 4000
difficulty_factor = 0.95

catcher_color = 'blue'
catcher_width = 100
catcher_height = 100
catcher_start_x = canvas_width / 2 – catcher_width / 2
catcher_start_y = canvas_height – catcher_height – 20
catcher_start_x2 = catcher_start_x + catcher_width
catcher_start_y2 = catcher_start_y + catcher_height

catcher = c.create_arc(catcher_start_x, catcher_start_y, \
 catcher_start_x2, catcher_start_y2, start=200, extent=140, \
 style='arc', outline=catcher_color, width=3)

US_202-219_Code_listing.indd 217 16/01/17 3:28 pm

R E F E R E N C E218

game_font = font.nametofont('TkFixedFont')
game_font.config(size=18)

score = 0
score_text = c.create_text(10, 10, anchor='nw', font=game_font, fill='darkblue', \
 text='Score: ' + str(score))

lives_remaining = 3
lives_text = c.create_text(canvas_width – 10, 10, anchor='ne', font=game_font, fill='darkblue', \
 text='Lives: ' + str(lives_remaining))

eggs = []

def create_egg():
 x = randrange(10, 740)
 y = 40
 new_egg = c.create_oval(x, y, x + egg_width, y + egg_height, fill=next(color_cycle), width=0)
 eggs.append(new_egg)
 root.after(egg_interval, create_egg)

def move_eggs():
 for egg in eggs:
 (egg_x, egg_y, egg_x2, egg_y2) = c.coords(egg)
 c.move(egg, 0, 10)
 if egg_y2 > canvas_height:
 egg_dropped(egg)
 root.after(egg_speed, move_eggs)

def egg_dropped(egg):
 eggs.remove(egg)
 c.delete(egg)
 lose_a_life()
 if lives_remaining == 0:
 messagebox.showinfo('Game Over!', 'Final Score: ' + str(score))
 root.destroy()

def lose_a_life():
 global lives_remaining
 lives_remaining –= 1
 c.itemconfigure(lives_text, text='Lives: ' + str(lives_remaining))

def check_catch():
 (catcher_x, catcher_y, catcher_x2, catcher_y2) = c.coords(catcher)
 for egg in eggs:
 (egg_x, egg_y, egg_x2, egg_y2) = c.coords(egg)
 if catcher_x < egg_x and egg_x2 < catcher_x2 and catcher_y2 – egg_y2 < 40:
 eggs.remove(egg)
 c.delete(egg)
 increase_score(egg_score)

US_202-219_Code_listing.indd 218 16/01/17 3:28 pm

P R O J E C T R E F E R E N C E 219

 root.after(100, check_catch)

def increase_score(points):
 global score, egg_speed, egg_interval
 score += points
 egg_speed = int(egg_speed * difficulty_factor)
 egg_interval = int(egg_interval * difficulty_factor)
 c.itemconfigure(score_text, text='Score: ' + str(score))

def move_left(event):
 (x1, y1, x2, y2) = c.coords(catcher)
 if x1 > 0:
 c.move(catcher, –20, 0)

def move_right(event):
 (x1, y1, x2, y2) = c.coords(catcher)
 if x2 < canvas_width:
 c.move(catcher, 20, 0)

c.bind('<Left>', move_left)
c.bind('<Right>', move_right)
c.focus_set()

root.after(1000, create_egg)
root.after(1000, move_eggs)
root.after(1000, check_catch)
root.mainloop()

US_202-219_Code_listing.indd 219 16/01/17 3:28 pm

R E F E R E N C E220

Glossary
ASCII
“American Standard
Code for Information
Interchange”—a
code used for storing
text characters as
binary code.

Boolean expression
A statement that
is either True or
False, leading to two
possible outcomes.

branch
A point in a program
where two different
options are available
to choose from.

bug
An error in a program’s
code that makes
it behave in an
unexpected way.

call
To use a function
in a program.

comment
A text note added by
a programmer to a
program that makes
the code easier to
understand and is
ignored by the program
when it runs.

condition
A “True or False”
statement used to make
a decision in a program.
See also Boolean
expression.

constant
A fixed value that can’t
be changed.

coordinates
A pair of numbers that
pinpoint an exact
location. Usually
written as (x, y).

data
Information, such as
text, symbols, and
numerical values.

dictionary
A collection of data
items stored in pairs,
such as countries and
their capital cities.

debug
To look for and correct
errors in a program.

encryption
A way of encoding
data so that only
certain people can
access or read it.

event
Something a computer
program can react to,
such as a key being
pressed or the mouse
being clicked.

file
A collection of data
stored with a name.

flag variable
A variable that can have
two states, such as True
and False.

float
A number with a
decimal point in it.

flowchart
A diagram that shows
a program as a sequence
of steps and decisions.

function
Code that carries
out a specific task,
working like a program
within a program.
Also called a procedure,
subprogram, or
subroutine.

global variable
A variable that works
throughout every
part of a program.
See also local variable.

graphics
Visual elements on
a screen that are not
text, such as pictures,
icons, and symbols.

GUI
The GUI, or graphical
user interface, is the
name for the buttons
and windows that make
up the part of the
program you can see
and interact with.

hack
An ingenious change
to code that makes
it do something new
or simplifies it. (Also,
accessing a computer
without permission.)

hacker
A person who breaks
into a computer system.
“White hat” hackers
work for computer
security companies
and look for problems
in order to fix them.
“Black hat” hackers
break into computer
systems to cause
harm or to make
profit from them.

indent
When a block of code
is placed further to the
right than the previous
block. An indent is
usually four spaces.
Every line in a particular
block of code must
be indented by the
same amount.

index number
A number given to an
item in a list. In Python,
the index number of
the first item will be
0, the second item 1,
and so on.

input
Data that is entered
into a computer.
Keyboards, mice, and
microphones can be
used to input data.

integer
A whole number. An
integer does not contain
a decimal point and is
not written as a fraction.

US_220-221_Glossary.indd 220 02/03/17 4:58 pm

G L O S S A R Y 221

interface
The means by which
the user interacts with
software or hardware.
See GUI.

library
A collection of functions
that can be reused in
other projects.

list
A collection of
items stored in
numbered order.

local variable
A variable that works
only within a limited
part of a program, such
as a function. See also
global variable.

loop
A part of a program that
repeats itself, removing
the need to type out the
same piece of code
multiple times.

module
A package of already
written code that can be
imported into a Python
program, making lots of
useful functions available.

nested loop
A loop inside
another loop.

operating system (OS)
The program that
controls everything
on a computer, such
as Windows, macOS,
or Linux.

operator
A symbol that performs
a specific function: for
example, “+” (addition)
or “–” (subtraction).

output
Data that is produced
by a computer program
and viewed by the user.

parameter
A value given to a
function. The value of
a parameter is assigned
by the line of code that
calls the function.

pixels
Tiny dots that make
up a digital image.

program
A set of instructions that
a computer follows in
order to complete a task.

programming
language
A language that is
used to give instructions
to a computer.

Python
A popular programming
language created by
Guido van Rossum. It
is a great language for
beginners to learn.

random
A function in a
computer program that
allows unpredictable
outcomes. Useful when
creating games.

recursion
Creating a loop by
telling a function to
call itself.

return value
The variable or data
that is passed back
after a function has
been called (run).

run
The command to make
a program start.

software
Programs that run on a
computer and control
how it works.

statement
The smallest
complete instruction
a programming
language can be
broken down into.

string
A series of characters.
Strings can contain
numbers, letters,
or symbols, such
as a colon.

syntax
The rules that determine
how code must be
written in order for
it to work properly.

toggle
To switch between two
different settings.

tuple
A list of items
separated by commas
and surrounded by
brackets. Tuples are
similar to lists, except
you can’t change
them after they’ve
been created.

turtle graphics
A Python module that
lets you draw shapes by
moving a robotic turtle
across the screen.

Unicode
A universal code used by
computers to represent
thousands of symbols
and text characters.

variable
A place to store data
that can change in a
program, such as the
player’s score. A variable
has a name and a value.

widget
A part of a Tkinter GUI
(graphical user interface)
that performs a specific
function, such as a
button or menu.

US_220-221_Glossary.indd 221 16/01/17 5:41 pm

R E F E R E N C E222

Index
capitalization 129
capitalize function 129
case, ignoring 37, 40
Caterpillar 158–67
 first steps 159–60
 flowchart 159
 hacks and tweaks 165–67
 how it works 159
 main loop 161–62
 two-player game

 165–67
 what happens 158
characters
 ASCII 61
 Unicode 61
choice function 54, 59, 62

98, 140
cipher 130
ciphertext 130
circles, drawing 82–85, 171
code, indenting 35
coders, skills 13
coding, what it is 12–19
colors 79
 making 90
 RGB 105
comments 75, 95
comparisons 28–29
 multiple 29
conditions 30
constants 55
coordinates 76, 94, 145
Countdown Calendar

110–19
 flowchart 111
 hacks and tweaks 118–19
 how it works 111
 what happens 110
crackers 52
create_egg function 196
create_oval function

171, 177
create_rectangle function

172
cryptography 130
cycle function 84, 86, 194

D
datetime module 58, 111,

114
decryption 130, 131
delay, adding 170, 173

dictionaries 121
 adding data to 125
 setting up 123
 using 124
difficulty variations
 Animal Quiz 42–43
 Caterpillar 158, 167
 Egg Catcher 194, 198
 Nine Lives 66–67

E
editor window 19
Egg Catcher 190–99
 falling, scoring, dropping
 196–98
 flowchart 192
 hacks and tweaks

 199
 how it works 192
 what happens 190–91
empty string 173
encryption 130, 131
 multi-encryption 141
equals signs 28
error messages 48
errors, types of 49–51
escape character 33
event-driven programs

143
event handlers 148
expert systems 121

F
fact checks 129
file input 111
file output 125
flag variables 150
floats 25
flowcharts 22
 Animal Quiz 37
 Ask the Expert 121
 Caterpillar 159
 Countdown Calendar

 111
 Egg Catcher 192
 Kaleido-spiral 84
 Matchmaker 181
 Mutant Rainbow 100
 Nine Lives 61
 Password Picker 53

 Robot Builder 73
 Screen Pet 143
 Secret Messages 132
 Snap 169
 Starry Night 92
focus 148
for loops 32–33
functions 26, 44–47
 built-in 44
 calling 37, 44, 45
 calling themselves

 85, 86
 making 46–47
 naming 47
 placing in file 46

G
games 158–99
 see also Caterpillar; Egg

Catcher; Matchmaker;
Snap

global variables 174
graphical user interface

see GUI
GUI 111
 Matchmaker 182, 184
 Secret Messages

 133–34
 Snap 170

H
hacks and tweaks
 Animal Quiz 42–43
 Ask the Expert 128–29
 Caterpillar 165–67
 Countdown Calendar

 118–19
 Egg Catcher 199
 Kaleido-spiral 87–89
 Matchmaker 187–89
 Mutant Rainbow 105–07
 Nine Lives 66–69
 Password Picker 57
 Robot Builder 79–81
 Screen Pet 153–55
 Secret Messages 138–41
 Snap 177–79
 Starry Night 97
hash (#) symbol 75
hideturtle 78, 96, 160

Page numbers in bold refer
to main entries.

A
angles, calculating 93
Animal Quiz 36–43
 flowchart 37
 hacks and tweaks 42–43
 how it works 37
 putting it together 38–41
 what happens 36
append function 68
arcade-style games 191
 see also Egg Catcher
arcs, drawing 177–78
ASCII characters 61
Ask the Expert 120–29
 first steps 122–24
 flowchart 121
 hacks and tweaks 128–29
 how it works 121
 what happens 120

B
background, setting colour

75, 88
Boolean expressions 29
Boolean values 28
brackets
 coordinates 76
 curly 123, 124
 green text 19
 matching 51
 parameters 39, 44–46
 square 27
 variables 24
branching 30–31
bugs 13
 bug-busting checklist 51
 finding 48
 fixing 23, 48–51
 see also hacks and tweaks
Button widget 184

C
canvas 113, 144
 enlarging 155
 repainting 118
Canvas widget 170

US_222-224_Index_Acks.indd 222 16/01/17 3:28 pm

I N D E X 223

I
IDLE 16
 colors in code 19
 editor window 19
 messages in editor

 48
 shell window 18
 using 18–19
import statements 59
indentation errors 49
input function 44, 56
integer positions 137
integers 25, 55
interpreter 15
int function 118, 137
itemconfigure function

175

J
join function 136

K
Kaleido-spiral 82–89
 drawing 84–87
 flowchart 84
 hacks and tweaks

 87–89
 how it works 84
 what happens 82–83

L
lambda functions 181,

184
len function 26, 136
line, breaking 42
lines
 drawing 178
 painting 98–107
listen function 162
lists 27, 136
 positions in 115
local variables 174
logic errors 51
loop condition 33
loops 32–35
 for 32–33
 infinite 34
 loops inside 35, 185

 nested 35, 185
 stopping 34
 while 33–34
loop variable 32
lower function 40

M
Mac computers 17
mainloop function 169,

181, 199
Matchmaker 180–89
 flowchart 181
 GUI 182, 184
 hacks and tweaks

 187–89
 how it works 181
 what happens 180
max function 45
messagebox widget 126,

187
min function 45
modules 58–59
 built-in 58
 installing 199
 using 59
modulo operator (%)

135
mouse
 Screen Pet 142, 144,

 148–49, 151
 Starry Night 97
music, playing 199
Mutant Rainbow 98–107
 flowchart 100
 hacks and tweaks

 105–07
 how it works 100–01
 what happens 98–99

N
name errors 50
nested loops 35, 185
newline character,

removing 114, 125
Nine Lives 60–69
 flowchart 61
 hacks and tweaks

 66–69
 how it works 61
 what happens 60

noise, making 199
None 173
numbers, using 25

O
onkey function 162, 165,

167
open function 59
outside window function

162, 163, 165–66
ovals, drawing 171, 177

P
painting
 Countdown Calendar

 108
 Mutant Rainbow

 98–102
 Starry Night 94
 Screen Pet 144
parameters 44
pass keyword 161, 163
Password Picker 52–57
 flowchart 53
 hacks and tweaks 57
passwords 52–56
 crackers 52
 making longer 57
 multiple 57
 tips 52
patterns, finding new

88
pen
 colour 85
 size 87
pixels 90
plaintext 130
polygons, drawing 178
print function 44
programming languages

12
 see also Python; Scratch
programs, shortcut to run

23
.py files 23
pygame module 199
Python 12
 in action 15
 first program 22–23
 installing 16–17

 Python 3 16
 website 16
 why use 14

Q
questions, comparing

28
quizzes
 animal see Animal Quiz
 hacks and tweaks 42–43
 multiple-choice 42
 true or false 43
quote marks
 empty 173
 green text 19
 matching 49, 51
 strings 26, 173

R
randint function 96
random function 96
random module 53, 54, 58
random numbers 54
randrange function 55
range 32
rectangles, drawing 74–75,

172
recursion 85, 86
replace function 45
reverse function 45
RGB colors 105
Robot Builder 72–81
 flowchart 73
 hacks and tweaks

 79–81
 how it works 73
 what happens 72
root.mainloop function

143
root widget 113, 123, 134,

144, 170, 182, 193
“Run” menu 23, 38

S
scenery, setting 199
score, displaying 161, 164,

166
score variable 38
Scratch 12

US_222-224_Index_Acks.indd 223 16/01/17 3:28 pm

R E F E R E N C E224

Acknowledgments
Dorling Kindersley would like to thank Caroline Hunt for proofreading;
Jonathan Burd for the index; Tina Jindal and Sonia Yooshing for editorial
assistance; Deeksha Saikia, Priyanjali Narain, and Arpita Dasgupta for
code testing.

Python is copyright © 2001–2017 Python Software Foundation;
All Rights Reserved.

Screen Pet 142–55
 flowchart 143
 hacks and tweaks

 153–55
 how it works 143
 what happens 142
Secret Messages 130–41
 flowchart 132
 GUI 133–34
 hacks and tweaks

 138–41
 how it works 131–32
 what happens 131
setheading function 81,

164
shell window 18
 messages in 48
shuffle function 169, 173,

183
simpledialog widget 126
sleep function 169
Snap 168–79
 coding 174–76
 flowchart 169
 GUI 170
 hacks and tweaks 177–79
 how it works 169
 what happens 168
socket module 58
sort function 119
sounds, playing 199
speed function 97
spirals, drawing 82–89
squares, drawing 78, 172
stamp function 106
Standard Library 14, 58

Starry Night 90–97
 drawing stars 92–94
 flowchart 92
 hacks and tweaks 97
 how it works 92
 what happens 90–91
start_game function 161,

162, 164, 166
statistics module 58
str function 40, 55
string module 53
strings 26, 55
 empty 173
 length 26, 136
 repeating 65
 splitting 116
symbols, adding in game

183
syntax errors 48, 49

T
text, restyling 119
text files 111, 112–14
time function 59
time module 169
timing 190
Tkinter module 58, 111–13,

121
 coordinates 145
 Egg Catcher 191, 193, 195,

 199
 Matchmaker 181–82,

 184–87
 Snap 168–70, 173, 176–77

toggling 146, 150–51
tongue, drawing 149
trial and error 81
True/False statements

28–30
 Animal Quiz 42–43
 Nine Lives 63
Turtle Graphics 72–107
 see also Kaleido-spiral;

Mutant Rainbow; Robot
Builder; Starry Night

“turtle” name 73
turtles
 Caterpillar 158–67
 coordinates 76
 drawing with 73
 invisible 78, 96
 Kaleido-spiral 82–89
 keeping inside limits

 101, 103
 Mutant Rainbow

 98–107
 Robot Builder 72–81
 runaway 101
 speed 75
 standard mode 74
 Starry Night 90–97
tweaks see hacks and

tweaks
type errors 50

U
Unicode characters 61
upper function 45

V
values, returning 47
variables 24–27
 creating 24
 flag 150
 global 174
 local 174
 loop 32
 naming 24
 score 38

W
webbrowser module

58
while loops 33–34
widgets 111
Windows operating

system 16
word length 63
 varying 67–68

US_222-224_Index_Acks.indd 224 02/03/17 4:58 pm

	6 Contents
	8 FOREWORD
	1 STARTING WITH PYTHON
	12 What is coding?
	14 Meet Python
	16 Installing Python
	18 Using IDLE
	2 FIRST STEPS
	22 Your first program
	24 Variables
	28 Making decisions
	32 Loopy loops
	36 Animal Quiz
	44 Functions
	48 Fixing bugs
	52 Password Picker
	58 Modules
	60 Nine Lives
	3 TURTLE GRAPHICS
	72 Robot Builder
	82 Kaleido-spiral
	90 Starry Night
	98 Mutant Rainbow
	4 PLAYFUL APPS
	110 Countdown Calendar
	120 Ask the Expert
	130 Secret Messages
	142 Screen Pet
	5 GAMES IN PYTHON
	158 Caterpillar
	168 Snap
	180 Matchmaker
	190 Egg Catcher
	6 REFERENCE
	202 Project reference
	220 Glossary
	222 Index
	224 Acknowledgments

