
Beginning
Ruby

From Novice to Professional
—
Third Edition
—
Peter Cooper

 Beginning Ruby
 From Novice to Professional

 Third Edition

Peter Cooper

Beginning Ruby: From Novice to Professional, Third Edition

Peter Cooper
Louth, Lincs
United Kingdom

ISBN-13 (pbk): 978-1-4842-1279-0 ISBN-13 (electronic): 978-1-4842-1278-3
DOI 10.1007/978-1-4842-1278-3

Library of Congress Control Number: 2016945758

Copyright © 2016 by Peter Cooper

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted
from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied
specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright
Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to
prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Ronald Petty
Editorial Board: Steve Anglin, Pramila Balan, Aaron Black, Louise Corrigan, Jonathan Gennick, Robert

Hutchinson, Celestin Suresh John, James Markham, Natalie Pao, Susan McDermott, Matthew Moodie,
Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com ,
or visit www.springeronline.com . Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales–eBook Licensing web page at www.apress.com/bulk-sales .

Any source code or other supplementary materials referenced by the author in this text are available to readers at
 www.apress.com/9781484212790 . For detailed information about how to locate your book’s source code, go to
 www.apress.com/source-code/ . Readers can also access source code at SpringerLink in the Supplementary
Material section for each chapter.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484212790
www.apress.com/source-code/

 For Laura, Penny and Imogen

v

Contents at a Glance

Foreword ..xxiii

About the Author ...xxvii

About the Technical Reviewer ..xxix

Acknowledgments ..xxxi

Introduction ..xxxiii

 ■Part 1: Foundations and Scaffolding .. 1

 ■Chapter 1: Let’s Get It Started: Installing Ruby ... 3

 ■ Chapter 2: Programming == Joy: A Whistle-Stop Tour of Ruby and Object
Orientation ... 11

 ■Chapter 3: Ruby’s Building Blocks: Data, Expressions, and Flow Control 29

 ■Chapter 4: Developing Your First Ruby Application ... 73

 ■Chapter 5: The Ruby Ecosystem .. 93

 ■Part 2: The Core of Ruby ... 105

 ■Chapter 6: Classes, Objects, and Modules ... 107

 ■Chapter 7: Projects and Libraries .. 149

 ■Chapter 8: Documentation, Error Handling, Debugging, and Testing 163

 ■Chapter 9: Files and Databases ... 187

 ■Chapter 10: Distributing Ruby Code and Libraries .. 225

 ■Chapter 11: Advanced Ruby Features.. 243

 ■Chapter 12: Tying It Together: Developing a Larger Ruby Application 269

 ■ CONTENTS AT A GLANCE

vi

 ■Part 3: Ruby Online ... 303

 ■Chapter 13: Two Web Application Approaches: Rails and Sinatra 305

 ■Chapter 14: Ruby and the Internet .. 343

 ■Chapter 15: Networking and Sockets .. 363

 ■Chapter 16: Useful Ruby Libraries ... 379

 ■Appendix A: Ruby Primer and Review for Developers 417

 ■Appendix B: Useful Resources ... 443

Index ... 449

vii

Contents

Foreword ..xxiii

About the Author ...xxvii

About the Technical Reviewer ..xxix

Acknowledgments ..xxxi

Introduction ..xxxiii

 ■Part 1: Foundations and Scaffolding .. 1

 ■Chapter 1: Let’s Get It Started: Installing Ruby ... 3

Installing Ruby .. 4

Windows ... 4

 Mac OS X / macOS ... 6

Linux ... 7

Other Platforms .. 9

Summary .. 10

 ■ Chapter 2: Programming == Joy: A Whistle-Stop Tour of Ruby and Object
Orientation ... 11

Baby Steps ... 11

irb: Interactive Ruby .. 12

Ruby Is “English for Computers” .. 12

Why Ruby Makes a Great Programming Language .. 13

Trails for the Mind ... 14

Turning Ideas into Ruby Code ... 15

How Ruby Understands Concepts with Objects and Classes ... 15

The Making of a Person .. 16

 ■ CONTENTS

viii

Basic Variables ... 17

From People to Pets ... 18

Everything Is an Object .. 21

Kernel Methods .. 22

Passing Data to Methods .. 23

Using the Methods of the String Class ... 24

Using Ruby in a Non–Object-Oriented Style ... 25

Summary .. 26

 ■Chapter 3: Ruby’s Building Blocks: Data, Expressions, and Flow Control 29

Numbers and Expressions .. 29

Basic Expressions ... 29

Variables ... 30

Comparison Operators and Expressions ... 31

Looping Through Numbers with Blocks and Iterators .. 33

Floating Point Numbers .. 35

Constants .. 36

Text and Strings ... 36

String Literals ... 36

String Expressions .. 37

Interpolation ... 39

String Methods ... 40

Regular Expressions and String Manipulation .. 41

Arrays and Lists .. 47

Basic Arrays .. 47

Splitting Strings into Arrays .. 49

Array Iteration ... 50

Other Array Methods ... 51

Hashes.. 53

Basic Hash Methods ... 53

Hashes Within Hashes .. 55

 ■ CONTENTS

ix

Flow Control ... 56

if and unless ... 56

?, the Ternary Operator ... 57

elsif and case ... 58

while and until .. 60

Code Blocks .. 61

Other Useful Building Blocks .. 62

Dates and Times ... 62

Large Numbers ... 65

Ranges .. 66

Symbols .. 68

Converting Objects to Other Classes .. 69

Summary .. 70

 ■Chapter 4: Developing Your First Ruby Application ... 73

Working with Source Code Files... 73

Creating a Test File ... 73

A Simple Source Code File ... 75

Running Your Source Code ... 75

Our Application: A Text Analyzer ... 77

Required Basic Features ... 77

Building the Basic Application .. 78

Obtaining Some Dummy Text .. 78

Loading Text Files and Counting Lines ... 79

Counting Characters ... 80

Counting Words .. 81

Counting Sentences and Paragraphs ... 82

Calculating Averages .. 83

The Source Code So Far ... 84

 ■ CONTENTS

x

Adding Extra Features .. 85

Percentage of “Useful” Words .. 85

Summarizing by Finding “Interesting” Sentences .. 87

Analyzing Files Other Than text.txt ... 89

The Completed Program ... 90

Summary .. 92

 ■Chapter 5: The Ruby Ecosystem .. 93

Ruby’s History .. 93

The Land of the Rising Sun ... 93

Ruby’s Infl uences ... 94

Go West ... 95

Alternative Ruby Implementations .. 96

Ruby on Rails .. 97

Why Rails Came into Existence .. 97

How the Web (2.0) Was Won ... 98

The Open Source Culture ... 98

What Is Open Source? .. 99

Where and How to Get Help ... 99

Mailing Lists ... 99

Internet Relay Chat (IRC) ... 100

Documentation ... 101

Forums.. 101

Joining the Community .. 102

Give Help to Others ... 102

Contribute Code .. 102

News Sites and Sources ... 103

Summary .. 103

 ■ CONTENTS

xi

 ■Part 2: The Core of Ruby ... 105

 ■Chapter 6: Classes, Objects, and Modules ... 107

Why Use Object Orientation? .. 107

Object-Orientation Basics... 110

Local, Global, Object, and Class Variables .. 110

Class Methods versus Instance Methods ... 114

Inheritance .. 116

Overriding Existing Methods ... 118

Refl ection and Discovering an Object’s Methods ... 120

Encapsulation ... 121

Polymorphism ... 125

Nested Classes ... 127

The Scope of Constants .. 128

Modules, Namespaces, and Mix-Ins ... 129

Namespaces ... 129

Mix-Ins .. 131

Building a Dungeon Text Adventure with Objects ... 138

Dungeon Concepts.. 138

Creating the Initial Classes ... 138

Structs: Quick and Easy Data Classes .. 139

Creating Rooms .. 142

Making the Dungeon Work ... 142

Summary .. 146

 ■Chapter 7: Projects and Libraries .. 149

Projects and Using Code from Other Files .. 149

Basic File Inclusion ... 149

Inclusions from Other Directories ... 151

Logic and Including Code ... 152

Nested Inclusions ... 153

 ■ CONTENTS

xii

Libraries ... 153

The Standard Libraries ... 154

RubyGems ... 156

Bundler ... 159

Summary .. 160

 ■Chapter 8: Documentation, Error Handling, Debugging, and Testing 163

Documentation ... 163

Generating Documentation with RDoc .. 163

RDoc Techniques .. 165

Producing Documentation for an Entire Project ... 165

Modifi ers and Options... 167

Debugging and Errors .. 168

Exceptions and Error Handling ... 168

Catch and Throw ... 172

The Ruby Debugger .. 172

Testing .. 175

The Philosophy of Test-Driven Development .. 175

Unit Testing ... 177

More Minitest Assertions .. 179

Benchmarking and Profi ling ... 180

Simple Benchmarking .. 181

Profi ling .. 182

Summary .. 184

 ■Chapter 9: Files and Databases ... 187

Input and Output ... 187

Keyboard Input ... 187

File I/O .. 188

 ■ CONTENTS

xiii

Basic Databases ... 204

Text File Databases ... 204

Storing Objects and Data Structures .. 207

Relational Databases and SQL ... 210

Relational Database Concepts .. 210

MySQL, PostgreSQL, and SQLite ... 211

Installing SQLite .. 212

A Crash Course in Basic Database Operations and SQL ... 212

Using SQLite with Ruby .. 217

Connecting to Other Database Systems ... 220

ActiveRecord: A Sneak Peek ... 222

Summary .. 223

 ■Chapter 10: Distributing Ruby Code and Libraries .. 225

Distributing Basic Ruby Programs .. 225

The Shebang Line ... 226

Associated File Types in Windows .. 227

Detecting Ruby’s Runtime Environment ... 228

Easy OS Detection with RUBY_PLATFORM ... 228

Environment Variables .. 228

Accessing Command-Line Arguments .. 230

Distributing Ruby Libraries as Gems .. 231

Creating a Gem ... 231

Distributing a Gem .. 235

RubyGems.org .. 235

Deploying Ruby Applications as Remote Services ... 236

CGI Scripts .. 236

Generic HTTP Servers ... 238

Summary .. 241

 ■ CONTENTS

xiv

 ■Chapter 11: Advanced Ruby Features.. 243

Dynamic Code Execution .. 243

Bindings .. 244

Other Forms of eval .. 245

Creating Your Own Version of attr_accessor .. 246

Running Other Programs from Ruby .. 248

Getting Results from Other Programs ... 248

Transferring Execution to Another Program .. 248

Running Two Programs at the Same Time .. 248

Interacting with Another Program .. 249

Safely Handling Data and Dangerous Methods .. 250

Tainted Data and Objects .. 250

Safe Levels ... 252

Working with Microsoft Windows ... 253

Using the Windows API ... 253

Controlling Windows Programs .. 256

Threads .. 257

Basic Ruby Threads in Action ... 257

Advanced Thread Operations .. 258

Fibers ... 259

A Fiber in Action ... 260

Passing Data to a Fiber ... 260

Why Fibers? .. 261

RubyInline ... 262

Why Use C as an Inline Language? ... 262

Creating a Basic Method or Function ... 262

Benchmarking C versus Ruby .. 264

Unicode, Character Encodings, and UTF-8 Support .. 265

Ruby 1.9 and Beyond’s Character Encoding Support ... 265

Summary .. 266

 ■ CONTENTS

xv

 ■Chapter 12: Tying It Together: Developing a Larger Ruby Application 269

Let’s Build a Bot ... 269

What Is a Bot? .. 269

Why a Bot?.. 270

How?... 270

Creating a Simple Text Processing Library ... 271

Building the WordPlay Library .. 271

Testing the Library .. 276

WordPlay’s Source Code ... 279

Building the Bot’s Core ... 281

The Program’s Lifecycle and Parts ... 281

Bot Data .. 282

Constructing the Bot Class and Data Loader .. 285

The response_to Method .. 287

Playing with the Bot.. 291

Main Bot Code Listing .. 295

bot.rb .. 295

basic_client.rb .. 297

Extending the Bot ... 298

Using Text Files as a Source of Conversation ... 298

Connecting the Bot to the Web ... 299

Bot-to-Bot Conversations ... 301

Summary .. 302

 ■Part 3: Ruby Online ... 303

 ■Chapter 13: Two Web Application Approaches: Rails and Sinatra 305

Background .. 305

The Limitations and Benefi ts of Our Approach ... 305

Pros and Cons of the Frameworks Covered.. 306

 ■ CONTENTS

xvi

Rails: Ruby’s Killer App ... 306

What Is Rails and Why Use It? .. 306

Installing Rails .. 309

Building a Basic Rails Application .. 310

Controllers and Views ... 322

Models and Relationships... 327

Sessions and Filters ... 329

Other Features .. 330

Where to Go Next: References, Books, and Example Apps ... 332

Sinatra: Lightweight, Simple Web Applications .. 333

The Extreme Simplicity of Sinatra .. 333

General URL Routing and Parameter Matching .. 334

Views, Templates, and Static Files .. 335

Request Flow Control ... 339

Summary .. 341

 ■Chapter 14: Ruby and the Internet .. 343

HTTP and the Web .. 343

Downloading Web Pages .. 343

Processing Web Content ... 351

E-Mail ... 354

Receiving Mail with POP3 ... 354

Sending Mail with SMTP ... 356

Sending Mail with ActionMailer .. 357

File Transfers with FTP ... 358

Connection and Basic FTP Actions ... 358

Downloading Files .. 360

Uploading Files ... 360

Summary .. 362

 ■ CONTENTS

xvii

 ■Chapter 15: Networking and Sockets .. 363

Networking Concepts ... 363

TCP and UDP ... 363

IP Addresses and DNS .. 364

Basic Network Operations .. 364

Checking Machine and Service Availability .. 364

Performing DNS Queries ... 365

Connecting to a TCP Server Directly ... 367

Servers and Clients .. 368

UDP Client and Server .. 368

Building a Simple TCP Server ... 370

Multi-Client TCP Servers ... 372

GServer ... 372

A GServer-Based Chat Server ... 374

Web/HTTP Servers .. 377

Summary .. 378

 ■Chapter 16: Useful Ruby Libraries ... 379

abbrev .. 379

Installation .. 380

Examples .. 380

Further Information .. 381

base64 .. 381

Installation .. 381

Examples .. 381

Further Information .. 383

Benchmark ... 383

Installation .. 383

Examples .. 384

Further Information .. 384

 ■ CONTENTS

xviii

cgi .. 384

Installation .. 385

Examples .. 385

Further Information .. 389

chronic ... 389

Installation .. 389

Examples .. 389

Further Information .. 390

Digest ... 390

Installation .. 391

Examples .. 391

Further Information .. 393

English .. 393

Installation .. 393

Examples .. 393

Further Information .. 394

ERB ... 395

Installation .. 395

Examples .. 395

Further Information .. 397

json ... 397

Installation .. 397

Examples .. 398

Further Information .. 398

logger ... 399

Installation .. 399

Examples .. 399

Further Information .. 401

 ■ CONTENTS

xix

Nokogiri .. 401

Installation .. 401

Examples .. 401

Further Information .. 402

pp ... 402

Installation .. 402

Examples .. 402

Further Information .. 404

RedCarpet ... 404

Installation .. 404

Examples .. 404

Further Information .. 405

StringScanner .. 405

Installation .. 405

Examples .. 406

Further Information .. 408

tempfi le .. 408

Installation .. 408

Examples .. 408

Further Information .. 410

uri ... 410

Installation .. 410

Examples .. 411

Further Information .. 414

zlib .. 414

Installation .. 414

Examples .. 414

Further Information .. 415

 ■ CONTENTS

xx

 ■Appendix A: Ruby Primer and Review for Developers 417

The Basics .. 417

Defi nition and Concepts.. 417

The Ruby Interpreter and Running Ruby Code .. 419

Interactive Ruby .. 420

Expressions and Flow Control .. 420

Basic Expressions ... 420

Class Mismatches ... 421

Comparison Expressions .. 422

Flow .. 423

Object Orientation .. 426

Objects .. 427

Classes and Methods.. 427

Refl ection ... 429

Reopening Classes ... 431

Method Visibility ... 431

Data .. 432

Strings .. 433

Regular Expressions ... 433

Numbers ... 434

Arrays ... 436

Hashes (Associative Arrays) ... 437

Complex Structures .. 438

Input/Output ... 438

Files .. 438

Databases ... 439

Web Access .. 439

Libraries ... 440

File Organization ... 440

Packaging ... 441

 ■ CONTENTS

xxi

 ■Appendix B: Useful Resources ... 443

Tutorials and Guides ... 443

General Ruby Tutorials .. 443

Ruby on Rails .. 444

Other ... 444

References ... 444

Ruby .. 444

Ruby on Rails .. 445

Ruby-Related Content .. 445

Aggregators and News ... 445

Podcasts ... 446

Forums.. 446

Mailing Lists ... 446

Real-Time Chat ... 447

Index ... 449

xxiii

 Foreword

 ■ FOREWORD

xxiv

 ■ FOREWORD

xxv

 why the lucky stiff

xxvii

 About the Author

 Peter Cooper is an experienced Ruby developer and trainer and editor of
Ruby Weekly (http://www.rubyweekly.com/) and JavaScript Weekly
(http://javascriptweekly.com/) .

 Since 2004, Peter has developed many commercial web sites using
Ruby on Rails, the Ruby-based web framework.

 In addition to development work, Peter has written professionally
about various development techniques and tools since 1998.

 He lives in Lincolnshire, England, with his wife, Laura and children,
Penny and Imogen.

http://www.rubyweekly.com/
http://javascriptweekly.com/

xxix

 About the Technical Reviewer

 Ronald Petty , M.B.A., M.S. , is founder of Minimum Distance LLC,
a management consulting firm based in San Francisco. He spends his time
helping technology-based startups do the right thing. He is also an
instructor at UC Berkeley Extension.

xxxi

 Acknowledgments

 It is often said that writing is a lonely task, but it’s not until you write a book that you realize the process has
to be anything but lonely. Without the help and reassurance of the large team of people backing this book,
and backing me personally, this book could not have been written.

 My first thanks go to Keir Thomas, who approached me with the idea of writing a Ruby book back in
2005. He gave me great freedom over the scope and specification of the book, and was the most essential
piece of the puzzle in getting the book approved and everything sorted out in the early stages.

 Beth Christmas and Mark Powers of Apress deserve special thanks for their project management
and reassurance during the writing of this book across the three editions of this book so far. Without their
schedules and assurance that everything was on track, I would have been a nervous wreck.

 Jonathan Gennick, Tim Fletcher, Peter Marklund, Alan Bradburne, Ronald Petty, and Peter Szinek
deserve much praise for their seemingly unending reading and rereading of this book’s chapters throughout
the various stages of development. I’d also like to praise Susannah Davidson Pfalzer for her diligent
approach to copy editing the first edition of this book by fixing my pronouns, removing my overuse of words
like however and therefore , and generally making it possible to read the book without going insane. As the
first edition of this book was my first book for Apress, I depended on Susannah’s deep knowledge of Apress
customs a great deal. For the second edition of the book, I thank Damon Larson for performing the same
role admirably, and for this third edition, thanks to Kezia Endsley.

 Naturally, thanks go to all of the other people I directly worked with on the book, whether they’re from
Apress or independent. In no particular order: Michelle Lowman, Laura Esterman, Candace English, Nancy
Bell, Jason Gilmore, Lori Bring, Nancy Sixsmith, and “why the lucky stiff.”

 Separately from the book itself, I have to give thanks to many in the Ruby community for working
alongside me, producing tools I’ve used, or just making the Ruby language more appealing in general. In no
particular order: “why the lucky stiff” (for an unforgettable foreword), Yukihiro “Matz” Matsumoto, Zach
Inglis, Satish Talim, Amy Hoy, Evan Weaver, Geoffrey Grosenbach, Obie Fernandez, Gregg Pollack, Jason
Seifer, Damien Tanner, Chris Roos, Martin Sadler, Pat Eyler, Ian Ozsvald, Caius Durling, Jeremy Jarvis, Nic
Williams, Shane Vitarana, Josh Catone, Ryan Tomayko, Karel Minarik, Jonathan Conway, Alex MacCaw,
Benjamin Curtis, David Heinemeier Hansson, and the late James Golick and Jim Weirich. I am anxious I’ve
missed some names, especially with the exploding population of the Ruby community between the three
editions of this book, so if you’re missing from this list, I humbly apologize.

 Those in my personal life have also supported me a great deal by putting up with my weird work hours
and annoying habits, and by asking questions about the book, feeding me, or just being there to talk to. In
this regard I’d like to thank—again in no particular order—Laura Cooper, Clive Cooper, Ann Cooper, David
Sculley, Michael Wong, Dave Hunt, Chris Ueland, Ben Neumann, Rob Willie, Kristian Roebuck, Graham
Craggs, Lorraine Craggs, and Robert Smith. Laura Cooper deserves a special mention for having had to put
up with me nearly 24 hours a day during the writing of this book; she is awesome.

 Last, it’s necessary to thank you , the reader, for choosing to buy this book, for if no one bought it, these
acknowledgments and the efforts of many people during the writing would have been wasted. Thank you!
If at all possible, both I and all of the fine folks at Apress would be delighted if you’d be able to post a small
review of this book on Amazon.com, Amazon.co.uk, or whichever online bookstore is popular in your part of
the world. Reading the reviews makes our day!

xxxiii

 Introd uction

 I wanted to minimize my frustration during programming, so I want to minimize my effort
in programming. That was my primary goal in designing Ruby. I want to have fun in
programming myself.

 —Yukihiro Matsumoto (Matz), creator of Ruby

 Ruby is a “best of breed” language that has been assembled from the best and most powerful
programming features found in its predecessors.

 —Jim White

 Ruby makes me smile.

 —Amy Hoy (slash7.com)

 Ruby is a fun toy. It’s also a serious programming language. Ruby is the jolly uncle who puts in solid 12-hour
days at the construction site during the week but keeps the kids entertained come rain or shine. To hundreds
of thousands of programmers, Ruby has become a good friend and a trusted servant, and has revealed a new
way of thinking about programming and software development. It’s fun and it works .

 Like the guitar, it’s claimed that Ruby is an easy language to learn and a hard one to master. I agree, with
some provisions. If you don’t know any programming languages already, Ruby will be surprisingly easy to
learn. If you already know some languages such as PHP, Perl, BASIC, C, or Pascal, some of the concepts in
Ruby will already be familiar to you, but the different perspective Ruby takes could throw you at first. Like
the differences between spoken languages, Ruby differs from most other programming languages not only
by syntax, but by culture, grammar, and customs. In fact, Ruby has more in common with more esoteric
languages like LISP and Smalltalk than with better-known languages such as PHP and C++.

 While Ruby’s roots might be different from other languages, it’s heavily used and respected in many
industries. Companies that use or support Ruby in one way or another include such prestigious names as
Sun Microsystems, Intel, Microsoft, Apple, and Amazon.com. The Ruby on Rails web framework is a system
for developing web applications that uses Ruby as its base language, and it powers hundreds of large web
sites. Ruby is also used as a generic language from the command prompt, much like Perl. Grammarians,
biochemists, database administrators, and thousands of other professionals and hobbyists use Ruby to make
their work easier. Ruby is a truly international language with almost unlimited application.

 This book is designed to cater both to people new to programming and to those with programming
experience in other languages. Ruby’s culture is different enough from other languages that most of this book
will be of use to both groups. Any large sections that can be skipped by already proficient programmers are
noted in the text. In any case, I’d suggest that all programmers at least speed-read the sections that might seem
obvious to them, as there are some surprising ways in which Ruby is different from what you’ve done before.

 ■ INTRODUCTION

xxxiv

 When reading this book, be prepared for a little informality, some quirky examples, and a heavy dose of
pragmatism. Ruby is an extremely pragmatic language, less concerned with formalities and more concerned
with ease of development and valid results. From time to time, I’ll show you how you can do things the
“wrong” way in Ruby, merely for illustrative purposes, but mostly you’ll be working with code that does
things “the Ruby way.” When I started to learn Ruby, I learned primarily by example, and with a language
as original and idiomatic as Ruby, it’s the easiest way to pick up good habits for the future. However, there’s
always more than one way to do it, so if you think some code in this book could be rewritten in a different
way that fits in more with your way of thinking, try it out!

 As you start this book, be prepared to think in new ways and to feel motivated to start coding for both
fun and profit. Ruby has helped a lot of jaded developers become productive once again, and whether you’re
a beginner to programming or one of those jaded programmers, it’s almost inevitable that you’ll see how
Ruby can be both fun and productive for you.

 Last, if you’re coming from other modern scripting languages such as Perl, PHP, or Python, you might
want to jump to Appendix A before reading Chapter 1 . It covers the key differences between Ruby and other
scripting languages, which might help you move through the initial chapters of this book more easily.

 Good luck, and I hope you enjoy this book. I’ll see you in Chapter 1 .

http://dx.doi.org/10.1007/978-1-4842-1278-3_1
http://dx.doi.org/10.1007/978-1-4842-1278-3_1

 PART 1

 Foundations and Scaffolding

 This part of the book is where you build the foundations of your Ruby knowledge. By the end of this
part, you’ll be able to develop a complete, though basic, Ruby program. you’ll learn how to get Ruby
working, what object orientation is, how to develop some basic programs, and about the data types
and control structures Ruby uses and can operate on. Finally, I’ll walk you through creating a small
program from start to finish.

3© Peter Cooper 2016
P. Cooper, Beginning Ruby, DOI 10.1007/978-1-4842-1278-3_1

 CHAPTER 1

 Let’s Get It Started: Installing Ruby

 Ruby is a popular programming language, but not many computers have it perfectly installed by default.
This chapter takes you through the steps necessary to get Ruby working on your computer.

 As an open source language, Ruby has been adapted to run on many different computer platforms and
architectures. This means that if you develop a Ruby program on one machine, it’s likely you’ll be able to run
it without any changes on a different machine. You can use Ruby, in one form or another, on all the following
operating systems and platforms:

• Microsoft Windows XP, Vista, 7, 8, and 10

• Mac OS X

• Linux (most distributions)

• BSDs (including FreeBSD and OpenBSD)

• Any platform for which a full Java Virtual Machine exists (using JRuby)

 ■ Caution Some specifics of Ruby vary between platforms, but most of the code in this book (particularly
in the earlier chapters) runs on all varieties. When we begin to look at more complex code, such as external
libraries and interfacing between Ruby and other systems, you should be prepared to make changes in your
code or accept that you won’t have access to every feature. However, if you’re using Windows, Linux, or OS X,
almost everything will work as described in this book without changes.

 Before you can start playing with Ruby, you need to get your computer to understand the Ruby language
by installing an implementation of Ruby on your system, which I’ll cover first. In some cases, Ruby may
already be present on your computer, and we will cover these situations also since you may not need to do
anything to get started.

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-1-4842-1278-3_1)
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-1278-3_1

CHAPTER 1 ■ LET’S GET IT STARTED: INSTALLING RUBY

4

 Installing Ruby
 Typically, when you install Ruby onto your computer, you’ll get the Ruby interpreter , the program that
understands other programs written in the Ruby language, along with a collection of extensions and libraries
to make your Ruby more fully featured.

 To satisfy the majority of readers without referring to external documentation, I’m providing full
instructions for using Ruby on Windows, Mac OS X, and Linux, along with links to Ruby implementations
for other platforms. In each case, I provide instructions to check that the installation is successful before
sending you on to the programming fun in Chapter 2 .

 ■ Note Ruby comes in multiple versions, such as 1.9.3 and 2.2.2. The code in this book is primarily aimed
at versions 2.0.0 and above, but nearly all of it will work in 1.9.3, too. There are major differences between the
1.8.*, 1.9.*, 2.0.* and 2.2.* versions that can become important when you reach more advanced topics, but at
this stage you can choose whichever is easiest to install on your platform. Or, if Ruby is already installed on your
machine, simply use that as-is.

 Windows
 Ruby was initially designed for use under UNIX and UNIX-related operating systems such as Linux,
but Windows users have access to an excellent Windows-specific installer that installs Ruby, a horde of
extensions, a source code editor, and various documentation. Ruby on Windows is as reliable and useful as it
is on other operating systems, and Windows is a reasonable environment for developing Ruby programs.

 To get up and running as quickly as possible, follow these steps:

 1. Open a web browser and go to http://rubyinstaller.org/ .

 2. Click the big Download button, then choose the latest version to download.
Version 2.2.3 is fine, but if 2.4.x or 3.x are available, choose those. You will have
the option to download a 64-bit (x86) version. At this stage, I would recommend
staying with the normal, plain (32-bit) version, as not all Ruby libraries are
compatible with the 64-bit version yet. There are further details about this on the
sidebar of the download page, if you’re interested.

 3. Run the downloaded file to launch the installer. The file is approximately 16MB
in size, so it may take a while to download.

 4. If Windows gives you a Security Error box, click the Run button to give your
approval.

 5. A typical installation program appears with some instructions. On the initial
screen, click to accept the license and then click Next.

 6. Work your way through the installation screens. Unless you have a specific
reason not to, let the installation program install Ruby in its default location of
 C:\ruby (or possibly C:\Ruby22) and its default program group. Check the box
for “Add Ruby Executables to Your Path” if possible, as well as the “Associate .rb
and .rbw Files with this Ruby Installation” option.

 7. Installation is complete when the installation program gives you a Finish button
to exit it.

http://dx.doi.org/10.1007/978-1-4842-1278-3_2
http://rubyinstaller.org/

CHAPTER 1 ■ LET’S GET IT STARTED: INSTALLING RUBY

5

 If Ruby installed correctly, congratulations! Go to the Start menu and then the Programs or All Programs
menu. There should be a program group starting with “Ruby” that contains icons for Interactive Ruby (also
called “irb”), an uninstaller, and other bits and pieces. To test that your Ruby installation works correctly for
Chapter 2 , you need to load Interactive Ruby. You should find this in your Start menu, under the Ruby group,
called Start Command Prompt with Ruby or similar. If the program loads successfully, you’ll see a screen
that looks somewhat like Figure 1-1 .

 Figure 1-1. The Interactive Ruby (irb) prompt running on Windows 7

 Figure 1-2. The Microsoft Windows command prompt ready to run Ruby

 If irb started properly, Ruby is installed correctly. Congratulations! Lastly, you need to be familiar with
running Ruby and its associated utilities from the command prompt, so go back to the Ruby program group
menu in the Start menu and run the option that lets you run Ruby from the command prompt. The result
should look somewhat like Figure 1-2 .

 Throughout this book, commands that can be used at the command prompt will be given. This is because
using a command prompt such as this is a standard technique in operating systems such as Linux and OS X.
For example, in Chapter 7 , we’ll look at installing extra features (libraries) for Ruby, and the command prompt
will be used for this. Therefore, it’s necessary for you to know how to access it and run programs.

 If you type irb at this prompt and press Enter, you should see something like the following:

 irb(main):001:0>

 If you see the preceding line, everything is set up correctly, and you can type exit and press Enter to be
returned to the command prompt.

 Now you can move on to Chapter 2 and start to play with the Ruby language itself.

http://dx.doi.org/10.1007/978-1-4842-1278-3_2
http://dx.doi.org/10.1007/978-1-4842-1278-3_7
http://dx.doi.org/10.1007/978-1-4842-1278-3_2

CHAPTER 1 ■ LET’S GET IT STARTED: INSTALLING RUBY

6

 Mac OS X / macOS
 Unlike Windows, most modern Apple machines running OS X come with a version of Ruby already installed.
OS X Yosemite (10.10) comes with Ruby 2.0.0 out of the box, which is fine for the purposes of learning Ruby.

 Testing for a Preinstalled Version of Ruby
 If you’re using OS X, you can check whether Ruby is installed by using the Terminal application. Go to
Finder, then the Go menu, and then the Applications folder. Once in Applications, go to the Utilities folder,
where you’ll find an application called Terminal. Double-click its icon to start it. If Terminal starts correctly,
you’ll see a screen similar to that in Figure 1-3 .

 Figure 1-3. Terminal in OS X Mavericks with a working version of Ruby installed and tested

 ■ Tip You can also start Terminal by using Spotlight. Press Cmd+Space and type “terminal” and press Enter.

 Once you’re in Terminal, you’re at what’s called the command prompt or shell . You’re talking directly
with your computer, in a technical sense, when you type. The computer will execute the commands that you
type immediately once you press Enter.

 To see if Ruby is installed, type the following at the command prompt from within Terminal (be sure to
press Enter afterward):

 ruby -v

 If it’s successful, you should see a result, as shown in Figure 1-3 , that says what version of Ruby you’re
running (which should be 1.9.3 or greater, but ideally 2.0.0 or later). If this works, try to run the Ruby
interactive interpreter called “irb” by typing the following at the command prompt:

 irb

 If you get a result similar to the one shown in Figure 1-3 , you’re ready to go and can move to Chapter 2 .
If you need to install a newer version of Ruby on OS X, continue to the next section.

http://dx.doi.org/10.1007/978-1-4842-1278-3_2

CHAPTER 1 ■ LET’S GET IT STARTED: INSTALLING RUBY

7

 Installing Ruby on OS X
 If you choose not to use the system-provided version of Ruby, there are two primary ways to install your own
version of Ruby on OS X, but both should only be used by advanced users. The first is to use a packaging system
such as Homebrew (http://brew.sh/)—if you do, you can install ruby with the brew install ruby command.

 The second option is to compile and install Ruby directly from its source code.

 Installing Ruby from Source on Mac OS X
 Installing Ruby directly from source code on OS X is similar to Linux, so continue on to the later Linux
section entitled “Installing Ruby from Source Code.” Note that as opposed to the pre-installed Ruby
distribution that includes many Ruby libraries (gems), including Rails, when you install Ruby by source,
all you get is Ruby. You need to install components such as Rails separately later.

 ■ Note To compile the Ruby sources on OS X, you need to install the Xcode developer tools that Apple makes
available for free at the Mac App Store.

 Linux
 As an open source programming language, Ruby is already installed with many Linux distributions. It’s not
universal, though, but you can check if Ruby is installed by following the instructions in the next section.
If this fails, there are further instructions to help you install it.

 Checking If Ruby Is Installed on Linux
 Try to run the Ruby interpreter from the command prompt (or terminal window), as follows:

 ruby –v

 If Ruby is installed, it will give an output such as the following:

 ruby 2.2.2p95 (2015-04-13 revision 50295) [i686-linux]

 This means that Ruby 2.2.2 is installed on the machine. This book requires 1.9.3 as a bare minimum
(with 2.0+ being preferred), so if the version is earlier than 1.9.3, you’ll need to continue onward in this
chapter and install a more recent version of Ruby. However, if Ruby appears to be installed and up to date,
try to run the irb interactive Ruby interpreter, as follows:

 irb

 ■ Tip On some systems, irb might have a slightly different name. For example, on Ubuntu it can be named
irb1.9 or irb2.0, and you’ll need to run it as such. The Ruby interpreter’s executable may also be named ruby1.9
(or ruby2.0). Make sure to try all of these possibilities before continuing. You might also try using your shell’s tab
completion feature by typing ruby and pressing Tab to see if there are any alternatives available.

http://brew.sh/

CHAPTER 1 ■ LET’S GET IT STARTED: INSTALLING RUBY

8

 Once you’ve run irb, you should get the following output:

 irb(main):001:0>

 If running irb results in a similar output, you can move on to Chapter 2 . (You might wish to type exit
and press Enter to get back to the command line!) Otherwise, read on to install a fresh version of Ruby.

 Installing Ruby with a Package Manager
 The installation procedure for Ruby on Linux varies between different Linux distributions. Some
distributions, such as Debian, Arch Linux, and Red Hat, provide “ package managers ” to make installation of
programs easy. Others require that you install directly from source or install a package manager beforehand.

 If you’re comfortable with using emerge , rpm , or apt-get , you can install Ruby quickly with the
following methods:

• Yum (on Red Hat, CentOS, and Fedora) : Install as follows: sudo yum install -y ruby

• Pacman (on Arch Linux) : Install as follows: sudo pacman -S ruby

• Debian and Ubuntu-based distributions : Use apt-get , as such: sudo apt-get
install ruby-full

 If one of these methods works for you, try to run Ruby and irb as shown in the preceding section, and
progress to Chapter 2 if you’re ready. Alternatively, you can search your distribution’s package repository for
Ruby, as the name of the Ruby package in your distribution might be nonstandard or changing over time.
However, if all else fails, you can install Ruby directly from its source code in the next section.

 Installing Ruby from Source Code
 Installing Ruby from its source code is a great option if you don’t mind getting your hands dirty. The process
is similar on all forms of UNIX (not just Linux—this will work on OS X too). Here are the basic steps:

 1. Make sure that your Linux distribution can build applications from source by
searching for the “make” and “gcc” tools (on OS X, Xcode allows you to install
these). From the terminal, you can use which gcc and which make to see if the
development tools are installed. If not, you need to install these development
tools (on Ubuntu, try apt-get install build-essential , on Red Hat or
CentOS, try sudo yum groupinstall "Development Tools").

 2. Open a web browser and go to http://www.ruby-lang.org/ .

 3. Click the Downloads link at the top of the page.

 4. On the download page, scroll down to Compiling Ruby – Source Code and
download the archive file containing the latest version. At the time of writing, this
is Ruby 2.3.1. This downloads a tar.gz file containing the source code for the
latest stable version of Ruby.

 5. Uncompress the tar.gz file. If you’re at a command prompt or terminal window,
go to the same directory as the ruby-2.x.x.tar.gz file and run tar xzvf
ruby-2.x.x.tar.gz (where ruby-2.x.x.tar.gz is the name of the file you just
downloaded).

http://dx.doi.org/10.1007/978-1-4842-1278-3_2
http://dx.doi.org/10.1007/978-1-4842-1278-3_2
http://www.ruby-lang.org/

CHAPTER 1 ■ LET’S GET IT STARTED: INSTALLING RUBY

9

 6. Go into the Ruby folder that was created during decompression. If you’re not
using a command prompt at this stage, open a terminal window and go to the
directory.

 7. Run ./configure to generate the makefile and config.h files. If you receive
numerous errors, particularly about no C compiler being available, you have not
installed the development tools properly on your operating system and should
search for further help online on how to achieve this.

 8. Run make to compile Ruby from source. This might take a while.

 9. Run make install to install Ruby to its correct location on the system. You need
to do this as a superuser (such as root), so you might need to run it as sudo make
install and type in your password if you are not logged in as a superuser already.

 10. If there are errors by this stage, read the README file that accompanies the
source code files for pointers. Otherwise, try to see what version of Ruby is now
installed with ruby -v .

 If the expected version of Ruby appears at this point, you’re ready to move to Chapter 2 and begin
programming. If you get an error complaining that Ruby can’t be found, or the wrong version of Ruby is
installed, the place where Ruby was installed might not be in your path (the place your operating
system looks for files to run). To fix this, scroll up and find out exactly where Ruby was installed (often in
/usr/local/bin or /usr/bin) and add the relevant directory to your path. The process to do this varies by
distribution and shell type, so refer to your Linux documentation on changing your path.

 Once you can check which version of Ruby is running and it’s 2.0 or over (although 1.9.3 will be usable,
with complications), and you can run irb and get a Ruby interpreter prompt, your Ruby installation is
complete (for now!) and you can move on to Chapter 2 .

 Other Platforms
 If you’re not using Windows, OS X, or Linux, it is possible you may be able to use a variant or port of Ruby.
Up until version 2.0, the official Ruby interpreter supported a variety of other platforms (including BeOS ,
 MS-DOS , and even the Atari ST), but it is now primarily focused on mainstream operating systems, so in this
edition we will not be providing any pointers, as they are now out of date.

 In many cases, the versions of Ruby for some operating systems might be out of date or unsupported.
If this is the case, and you’re confident about being able to compile your own version of Ruby directly from
the Ruby source code, the source code is available to download from http://www.ruby-lang.org/ .

 To test that Ruby is installed sufficiently to continue with this book, you want to check which version of
Ruby is installed by asking Ruby for its version, as follows:

 ruby -v

 You also need access to Ruby’s interactive prompt, irb. You access this simply by running irb (if it’s in
your path) as follows:

 irb

 If Ruby and irb do not work without complaint, you need to seek assistance for your specific platform.
Appendix B provides a list of useful resources. If irb does load, you can type exit and press enter to close it again.

http://dx.doi.org/10.1007/978-1-4842-1278-3_2
http://dx.doi.org/10.1007/978-1-4842-1278-3_2
http://www.ruby-lang.org/

CHAPTER 1 ■ LET’S GET IT STARTED: INSTALLING RUBY

10

 Summary
 In this chapter, we’ve focused on making sure Ruby is properly installed and that you can run the irb tool,
which you’ll be using over the next several chapters.

 Although Ruby is an easy language to learn and develop with, it’s easy to become overwhelmed with
the administration of Ruby itself, its installation, and its upgrades. As Ruby is a language constantly in
development, it’s possible that points covered in this chapter will go out of date and other ways to install
Ruby will come along.

 An important part of being a proficient Ruby developer is being able to use the resources the
Ruby community makes available, and being able to find the latest sources of help over time. The Ruby
community, including your humble author, can provide help in most cases, and a variety of resources to try
are covered in Chapter 5 and Appendix B.

http://dx.doi.org/10.1007/978-1-4842-1278-3_5

11© Peter Cooper 2016
P. Cooper, Beginning Ruby, DOI 10.1007/978-1-4842-1278-3_2

 CHAPTER 2

 Programming == Joy:
A Whistle-Stop Tour of Ruby and
Object Orientation

 Depending on who you ask, programming is both a science and an art. Telling computers what to do with
computer programs requires being able to think analytically, like a scientist, and conceptually, like an
artist. Being an artist is essential for coming up with big ideas and being flexible enough to take unique
approaches. Being a scientist is essential to understanding how and why certain methodologies need to
be taken into account, and to approach testing and debugging from a logical perspective, rather than an
emotional one.

 Luckily, you don’t need to be an artist or a scientist already. As with training the body, programming
exercises and thinking about how to solve problems train the mind to make you a better programmer.
Anyone can learn to program. The biggest impediments are a lack of motivation and commitment or an
unnecessary level of complexity early on. Ruby is one of the easiest programming languages to learn,
so that leaves motivation and commitment. You’ve probably bought this book with a view to creating a
certain program, web app, or to solve a certain task, hence your motivation, leaving only commitment.
To help cover the commitment angle, we’re going to try to keep things smooth and uncomplicated.

 By the time you reach the end of this chapter, I hope you can get a taste of the fun that lies ahead with
the knowledge of a powerful yet deceptively simple programming language, and you will begin to feel
excited about building your own things!

 ■ Note This chapter does not follow an instructional format as subsequent chapters do. Instead I’ll be
moving quickly from concept to concept to give you a feel for Ruby as a language before we circle around to the
details later.

 Baby Steps
 In Chapter 1 , you focused on installing Ruby so that your computer can understand the language. At the end
of the chapter, you loaded a program called irb.

http://dx.doi.org/10.1007/978-1-4842-1278-3_1

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

12

 irb: Interactive Ruby
 irb stands for “Interactive Ruby .” “Interactive” means that as soon as you type something and press Enter,
your computer will immediately attempt to process it. Sometimes this sort of environment is called an
 immediate or interactive environment.

 ■ Note If you cannot remember how to load irb, refer to the section of Chapter 1 dedicated to your
computer’s operating system.

 Start irb and make sure a prompt appears, like so:

 irb(main):001:0>

 This prompt is not as complex as it looks. All it means is that you’re in the irb program, you’re typing
your first line (001) , and you’re at a depth of 0 . You don’t need to place any importance on the depth
element at this time.

 Type this after the preceding prompt and press Enter:

 1 + 1

 The result should come back quickly: 2 . The entire process looks like this:

 irb(main):001:0> 1 + 1
 => 2
 irb(main):002:0>

 Ruby is now ready to accept another command or expression from you.
 As a new Ruby programmer, you’ll spend a lot of time in irb testing concepts and building up insights

into Ruby. It provides the perfect environment for tweaking and testing the language.
 irb’s interactive environment gives you the benefit of immediate feedback—an essential tool when

learning. Rather than writing a program in a text editor, saving it, getting the computer to run it, and then
looking through the errors to see where you went wrong, you can just type in small snippets of code, press
Enter, and immediately see what happens.

 If you want to experiment further, try other arithmetic such as 100 * 5, 57 + 99, 10 – 50, or 100 / 10 (if the
last one seems alien to you, in Ruby, the forward slash character, / , is the operator for division).

 Ruby Is “English for Computers”
 At the lowest level, computer processors are made out of transistors that respond to and act on electronic signals,
but thinking about performing operations at this level is time consuming and complicated, so we tend to use
higher-level “languages” to communicate our intentions, much as we do with natural languages like English.

 Computers can understand languages, though in a rather different fashion than how most people do.
Being logical devices that cannot understand subtlety or ambiguity, languages such as English and French
aren’t appealing to computers. Computers require languages with logical structures and a well-defined
 syntax so that there’s a logical clarity in what you’re telling the computer to do.

 Clarity is required because almost everything you relay to the computer while programming is an
 instruction (or command) . Instructions are the basic building blocks of all programs, and for the computer to
perform (or execute) them properly, the programmer’s intentions must be clear and precise. Many hundreds
of these instructions are tied together into programs that perform certain tasks, which means there’s little
room for error.

http://dx.doi.org/10.1007/978-1-4842-1278-3_1

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

13

 You also need to consider that other programmers might need to maintain computer programs you’ve
written. This won’t be the case if you’re just programming for fun, but it’s important that your programs are
easy to understand, so you can understand them when you come back to them later on.

 Why Ruby Makes a Great Programming Language
 Although English would make a bad programming language, due to its ambiguity and complexity, Ruby
can feel surprisingly English- like at times. Ruby is just one of hundreds of programming languages, but it’s
special because it feels a lot like a natural language to many programmers, while having the clarity required
by computers. Consider this example code:

 10.times do print "Hello, world!" end

 Read through this code aloud (it helps, really!). It doesn’t flow quite as well as English, but the
meaning should be immediately clear. It asks the computer to “10 times” “print” “Hello, world!” to the screen.
It works. If you’ve got irb running, type in the preceding code and press Enter to see the results:

 Hello, world!Hello, world!Hello, world!Hello, world!Hello, world!Hello, world!Hello,
world!Hello, world!Hello, world!Hello, world! => 10

 If you read the code aloud, the resulting output (“Hello, world!” printed ten times) should not be a surprise.
The => 10 on the end might seem more confusing, however, but we’ll be covering the meaning of that later.

 ■ Note Experienced programmers might wonder why there’s no semicolon at the end of the previous code
example. Unlike many other languages, such as Perl, PHP, C, and C++, a semicolon is not needed at the end of
lines in Ruby (although it won’t hurt if you do use one). This can take a little while to get used to at first, but for
new programmers it makes Ruby even easier to learn.

 Here’s a much more complex example that might occur in a real-world web app:

 user = User.find_by_email('me@privacy.net')
 user.country = 'Belgium'

 ■ Note Don’t copy and paste this code. It won’t work outside the context of a particular application.

 This code is nowhere near as obvious as the “Hello, world!” example, but you should still be able to take
a good guess at what it does. First, it tells the computer you want to work with a concept called User . Next, it
tries to find a user with a specified e-mail address. Last, it changes the user’s country data to Belgium . Don’t
worry about how the data is stored for users at this point; that comes later.

 This is a reasonably advanced and abstract example, but demonstrates a single concept from a
potentially complex application where you can deal with different concepts such as “users.” By the end of
this chapter, you’ll see how you can create your own real-life concepts in Ruby and operate on them in a
similar way to this example. Your code can be almost as easy to read as English too.

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

14

 Trails for the Mind
 Learning can be a fun activity in its own right, but merely reading about something won’t make you an
expert at it. I’ve read a few cookbooks, but this doesn’t seem to improve my cooking when I attempt it
from time to time. The missing ingredient is experimentation and testing , as without these your efforts are
academic, at best.

 With this in mind, it’s essential to get into the mood of experimenting and testing from day one of using
Ruby. Throughout the book, I’ll ask you to try out different blocks of code and to play with them to see if
you get the results you want. You’ll occasionally surprise yourself and sometimes chase your code into dead
ends; this is all part of the fun. Whatever happens, all good programmers learn from experimentation, and
you can only master a language and programming concepts by experimenting as you go along.

 This book will lead you through a forest of code and concepts, but without testing and proving the
code is correct to yourself, you can quickly become lost. Use irb and the other tools I’ll cover frequently, and
experiment with the code as much as possible so that the knowledge will stick.

 Type in the following code at your irb prompt and press Enter:

 print "test"

 The result is, simply:

 test => nil

 Logically, print "test" results in test being printed to the screen. However, the => nil suffix is the
result of your code as an expression (more about these in Chapter 3). This appears because all lines of code
in Ruby are made up of expressions that return values. However, print displays data to the screen rather
than return any value as an expression, so you get nil . More about this in Chapter 3 . It is perfectly okay to be
semi-confused about this at this stage.

 Let’s try something else:

 print "2+3 is equal to " + 2 + 3

 This command seems logical on the surface. If 2 + 3 is equal to 5 and you’re adding that to the end of
 "2+3 is equal to " , you should get "2+3 is equal to 5" , right? Unfortunately, you get this error instead:

 TypeError: no implicit conversion of Fixnum into String
 from (irb):45:in `+'
 from (irb):45
 from :0

 Ruby complains when you make an error, and here it’s complaining that you can’t convert a number
into a string (where a “string” is a collection of text, such as this very sentence). Numbers and strings can’t
be mixed in this way. Deciphering the reason isn’t important yet, but experiments such as this along the
way will help you learn and remember more about Ruby than reading this book alone. When an error like
this occurs, you can use the error message as a clue to the solution, whether you find it in this book, on the
Internet, or by asking another developer.

 As a quick side activity, copy and paste the “no implicit conversion of Fixnum into String”
error into Google and see what comes up. If you are like most programmers, you will do this a lot over
your programming career. Not every article you find will be useful, but sometimes you can get out of tricky
situations by seeing what other people suggest online.

http://dx.doi.org/10.1007/978-1-4842-1278-3_3
http://dx.doi.org/10.1007/978-1-4842-1278-3_3

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

15

 An interim solution to the preceding problem would be to do this:

 print "2+3 is equal to "
 print 2 + 3

 Or this:

 print "2+3 is equal to " + (2 + 3).to_s

 Try them both.
 Let’s try one more example. What about 10 divided by 3?

 irb(main):002:0> 10 / 3
 => 3

 Computers are supposed to be precise, but anyone with basic arithmetic skills will know that 10 divided
by 3 is 3.33 recurring, rather than 3!

 The reason for the curious result is that, by default, Ruby assumes a number such as 10 or 3 to be an
 integer —a whole number. Arithmetic with integers in Ruby gives integer results, so it’s necessary to provide
Ruby with a floating point number (a number with decimal places) to get a floating point answer such as
3.33. Here’s an example of how to do that:

 Irb(main):001:0> 10.0 / 3
 => 3.3333333333333

 Unobvious outcomes such as these make testing and experimentation not only a good learning tool, but
essential tactics when developing larger programs.

 That’s enough of the errors for now. Let’s make something useful!

 Turning Ideas into Ruby Code
 Part of the artistry of programming is in being able to turn your ideas into computer programs. Once you
become proficient with a programming language, you can turn your ideas directly into code. However,
before you can do this, you need to see how Ruby understands real-world concepts, and how you can relay
your ideas into a form that Ruby appreciates.

 How Ruby Understands Concepts with Objects and Classes
 Ruby is an object-oriented programming language. In the simplest sense, this means that your Ruby
programs can define and operate on concepts in a fashion that mimics how we might deal with concepts in
the real world. Your program can contain concepts such as “people,” “boxes,” “tickets,” “maps,” or any other
concept you want to work with. Object-oriented languages make it easy to implement these concepts in a
way that you can create objects based on them. As an object-oriented language, Ruby can then act on and
understand the relationships between these concepts in any way you can define.

 For example, you might want to create an application that can manage the booking of tickets for sports
events. The concepts involved include “events,” “people,” “tickets,” “venues,” and so forth. Ruby lets you put
these concepts directly into your programs, create object instances of them (instances of an “event” might
be the Super Bowl or the final of the 2018 World Cup), and perform operations on and define relationships
between them. With all these concepts in your program, you can quickly relate “events” to “venues” and
“tickets” to “people,” meaning that your code forms a logical system from the outset.

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

16

 If you haven’t programmed much before, the idea of taking real-life concepts and using them directly in
a computer program might seem like an obvious way to make software development easier. However, object
orientation is a reasonably new idea in software development (the concept was developed in the 1960s, but
it only became popular in mainstream programming in the 1990s). With non–object-oriented languages,
the programmer has to take a more manual approach for handling concepts and the relationships between
them and while this adds more control, it also introduces extra complexity.

 The Making of a Person
 Let’s jump directly into some source code demonstrating a simple concept, a person:

 class Person
 attr_accessor :name, :age, :gender
 end

 Ruby seemed a lot like English before, but it doesn’t seem much like English when defining concepts.
Let’s go through it step by step:

 class Person

 This line is where you start to define the concept of a “person.” When we define concepts in Ruby
(or in most other object-oriented languages, for that matter) we call them classes . A class is the definition of a
single type of object. Class names in Ruby always start with a capital letter, so your programs will end up with
classes with names like User , Person , Place , Topic , Message , and so forth.

 attr_accessor :name, :age, :gender

 The preceding line provides three attributes for the Person class. An individual person has a name, an
age, and a gender, and this line creates those attributes. attr stands for “attribute,” and accessor roughly
means “make these attributes accessible to be set and changed at will.” This means that when you’re
working with a Person object in your code, you can change that person’s name , age , and gender (or, more
accurately, the object’s name , age , and gender attributes).

 end

 The end line should be of obvious utility. It matches up with the class definition on the first line and tells
Ruby that you’re no longer defining the Person class.

 To recap, a class defines a concept (such as a Person), and an object is a single thing based on class
(such as a “Chris” or a “Mrs. Smith”).

 So let’s experiment with our Person class. Go to your irb prompt and type in the Person class found
earlier. Your efforts should look like this:

 irb(main):001:0> class Person
 irb(main):002:?> attr_accessor :name, :age, :gender
 irb(main):003:?> end
 => nil
 irb(main):004:0>

 You’ll notice that irb recognizes when you were “inside” a class definition because it automatically
indents your code.

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

17

 Once you’ve finished your class definition and Ruby has processed it, nil is returned, because defining
a class results in no return value, and nil is Ruby’s way of representing “nothing.” As there were no errors,
your Person class now exists within Ruby, so let’s do something with it:

 person_instance = Person.new
 => #<Person:0x007fbb0c625f88>

 What the first line does is create a “new” instance of the Person class, so you’re creating a “new person”
and assigning it to person_instance —a placeholder representing the new person, known as a variable .
The second line is Ruby’s response to creating a new person and isn’t important at this stage. The 0x358ea8
bit will be different from computer to computer, and only represents an internal reference that Ruby has
assigned to the new person. You don’t have to take it into account at all.

 Let’s immediately do something with person_instance :

 person_instance.name = "Christine"

 In this basic example, you refer to person_instance’s name attribute and give it a value of
 "Christine" . You’ve just given your person a name. The Person class has two other attributes: age and
 gender . Let’s set those:

 person_instance.age = 52
 person_instance.gender = "female"

 Simple. You’ve given person_instance a basic identity. What about printing the person’s name back to
the screen?

 puts person_instance.name

 Christine appears when you press Enter. Try the same with the age and the gender.

 ■ Note In previous examples, you’ve used print to put things on the screen. In the preceding example, you
used puts . The difference between print and puts is that puts automatically moves the output cursor to the
next line (that is, it adds a newline character to start a new line), whereas print continues printing text onto
the same line as the previous time. Generally, you’ll want to use puts , but I used print to make the earlier
examples more intuitive when reading them out loud.

 Basic Variables
 In the previous section, you created a person and assigned that person to a variable (computer terminology
for a “placeholder”) called person_instance .

 Variables are an important part of programming, and they’re easy to understand, especially if you have
the barest of knowledge of algebra. Consider this:

 x = 10

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

18

 This code assigns the value 10 to the variable x . Since x now equals 10 , you can do things like this:

 x * 2

 20

 ■ Note Some new programmers can be confused by the definition of = as an assignor of value, rather than
an indicator of equality . When we say x = 10 , we do not mean that x and 10 are equal, but that x should now
be considered to refer to the value 10.

 Variables in Ruby can refer to any value-related concept that Ruby understands, such as numbers, text, and
other data structures I’ll cover throughout this book. In the previous section, person_instance was a variable
that referred to an object instance of the Person class , much like x is a variable containing the number 10 . More
simply, consider person_instance as a name that refers to a particular, unique Person object.

 When you want to store something and use it over multiple lines within a program, you’ll use variables
as temporary storage places for the data you’re working with.

 From People to Pets
 Previously, you created a simple class (Person), created an object of that class, assigned it as the person_instance
variable, and gave it an identity (we called it Christine) that you queried. If these concepts seem simple to you,
well done—you understand the bare basics of object orientation! If not, reread the previous section and make
sure you follow along on your computer, but also read this section, as I’m going to go into a little more depth.

 You started out with a Person class, but now you need something a bit more complex, so let’s create
some “pets” to live inside Ruby. You’ll create some cats, dogs, and snakes. The first step is to define the
classes. You could do something like this:

 class Cat
 attr_accessor :name, :age, :gender, :color
 end

 class Dog
 attr_accessor :name, :age, :gender, :color
 end

 class Snake
 attr_accessor :name, :age, :gender, :color
 end

 It’s just like creating the Person class, but multiplied for the three different animals. You could continue
by creating animals with code such as lassie = Dog.new or sammy = Snake.new and setting the attributes
for the pets with code such as lassie.age = 12 or sammy.color = "Green" . Type in the preceding code and
give it a try if you like.

 However, creating the classes in this way would miss out on one of the more interesting features of
 object-oriented programming: inheritance .

 Inheritance allows different classes to relate to one another and group concepts by their similarities. In
this case, cats, dogs, and snakes are all pets. Inheritance allows you to create a “parent” Pet class, and then
let your Cat , Dog , and Snake classes inherit (“is-a”) the features that all pets have.

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

19

 Almost everything in real life exists in a similar structure to your classes. Cats can be pets, which are, in
turn, animals; which are, in turn, living things; which are, in turn, objects that exist in the universe. A hierarchy
of classes exists everywhere, and object-oriented languages let you define those relationships in code.

 ■ Note Chapter 6 features a helpful diagram showing the concept of inheritance between different forms of
life such as mammals, plants, and so forth.

 Structuring Your Pets Logically
 Now that we’ve come up with some ideas to improve our code, let’s retype it from scratch. To totally cleanse out
and reset what you’re working on, you can restart irb. irb doesn’t remember information between the different
times you use it. So restart irb (to exit irb, type exit and press Enter) and rewrite the class definitions like so:

 class Pet
 attr_accessor :name, :age, :gender, :color
 end

 class Cat < Pet
 end

 class Dog < Pet
 end

 class Snake < Pet
 end

 ■ Note In the code listings in this chapter, any code that’s within classes is indented, as with the attr_
accessor line in the preceding Pet class. This is only a matter of style, and it makes the code easier to read.
When you type it into irb it’s not necessary to replicate the effect, as it will do some indentation for you. You can
simply type what you see. Once you start using a text editor to write longer programs, you’ll want to indent your
code to make it easier to read, too, but it’s not important yet.

 First, you create the Pet class and define the name , age , gender , and color attributes available to Pet
objects. Next, you define the Cat , Dog , and Snake classes that inherit from the Pet class (the < operator, in
this case, denotes which class is inherited from). This means that cat, dog, and snake objects will all have the
 name , age , gender , and color attributes, but because the functionality of these attributes is inherited from
the Pet class, the functionality doesn’t have to be created specifically in each class. This makes the code
easier to maintain and update if you wanted to store more information about the pets, or if you wanted to
add another type of animal.

 What about attributes that aren’t relevant to every animal? What if you wanted to store the length of
snakes, but didn’t want to store the length of dogs or cats? Luckily, inheritance gives you lots of benefits with
no downside. You can still add class-specific code wherever you want. Reenter the Snake class like so:

 class Snake < Pet
 attr_accessor :length
 end

http://dx.doi.org/10.1007/978-1-4842-1278-3_6

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

20

 The Snake class now has a length attribute. However, this is added to the attributes Snake has inherited
from Pet , so Snake has name , age , gender , color , and length attributes, whereas Cat and Dog only have the
first four attributes. You can test this like so (some output lines have been removed for clarity):

 irb(main):001:0> snake = Snake.new
 irb(main):002:0> snake.name = "Sammy"
 irb(main):003:0> snake.length = 500
 irb(main):004:0> lassie = Dog.new
 irb(main):005:0> lassie.name = "Lassie"
 irb(main):006:0> lassie.age = 20
 irb(main):007:0> lassie.length = 10

 NoMethodError: undefined method 'length=' for #<Dog:0x32fddc @age=20,
 @name="Lassie">

 Here you created a dog and a snake. You gave the snake a length of 500 , before trying to give the dog
a length of 10 (the units aren’t important). Trying to give the dog a length results in an error of undefined
method 'length=' , because you only gave the Snake class the length attribute.

 Try playing with the other attributes and creating other pets. Try using attributes that don’t exist and see
what the error messages are.

 ■ Note You might be wondering why we’re using such artificial examples as cats, dogs, and snakes here.
They have been chosen to provide a simple to understand and easily mentally visualized model of how classes
work. In your eventual apps, you’ll work with things like different types of users, events, products, photos, and
so forth, and they will work in a somewhat similar way. Feel free to create your own classes using concepts
relevant to your planned programs and follow along using those instead, substituting the names of the classes
where appropriate.

 Controlling Your Pets
 So far, you’ve been creating classes and objects with various changeable attributes. Attributes are data
related to individual objects. A snake can have a length, a dog can have a name, and a cat can be of a certain
color. What about the instructions I spoke of earlier? How do you give your objects instructions to perform?
You define methods for each class.

 Methods are important in Ruby. They enable you to tell objects to perform actions . For example, you
might want to add a bark method to your Dog class, which, if called on a Dog object, prints Woof! to the
screen. You could write it like so:

 class Dog < Pet
 def bark
 puts "Woof!"
 end
 end

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

21

 After entering this code, any dogs you create can now bark. Let’s try it out:

 irb(main):0> a_dog = Dog.new
 irb(main):0> a_dog.bark

 Woof!

 Eureka! You’ll notice that the way you make the dog bark is simply by referring to the dog (a_dog , in this
case) and including a period (.) followed by the bark method’s name, whereby your dog “barks.” Let’s dissect
exactly what happened.

 First, you added a bark method to your Dog class. The way you did this was by defining the method.
To define a method, you use the word def followed by the name of the method you wish to define. This is
what the def bark line means. It means, “I’m defining the bark method within this class until I say end .”
The following line then simply puts the word “Woof!” on the screen, and the last line of the method ends the
definition of that method. The last end ends the class definition (this is why indentation is useful, so you can
see which end lines up with which definition). The Dog class then contains a new method called bark , as you
used earlier.

 Think about how you would create methods for the other Pet classes or for the Pet class itself. Are there
any methods that are generic to all pets? If so, they’d go in the Pet class. Are there methods specific to cats?
They’d go in the Cat class.

 Everything Is an Object
 In this chapter, we’ve looked at how Ruby can understand concepts in the form of classes and objects.
We created virtual cats and dogs, gave them names, and triggered their methods (the bark method, for
example). These basic concepts form the core of object-oriented programming, and you’ll use them
constantly throughout this book. Dogs and cats are merely an example of the flexibility object orientation
offers, but the concepts we’ve used so far could apply to most concepts, whether we’re giving a “ticket” a
command to change its price or a “user” a command to change his or her password. Begin to think of the
programs you want to develop in terms of their general concepts and how you can turn them into classes
you can manipulate with Ruby.

 Among even object-oriented programming languages, Ruby is reasonably unique in that almost
 everything in the language is an object, even the concepts relating to the language itself. Consider the
following line of code:

 puts 1 + 10

 If you typed this into irb and pressed Enter, you’d see the number 11 in response. You’ve asked Ruby
to print the result of 1 + 10 to the screen. It seems simple enough, but believe it or not, this simple line
uses two objects . 1 is an object, as is 10 . They’re objects of class Fixnum , and this built-in class has methods
already defined to perform operations on numbers, such as addition and subtraction.

 We’ve considered how concepts can be related to different classes. Our pets make a good example.
However, even defining the concepts that programmers use to write computer programs as classes and
objects makes sense. When you write a simple sum such as 2 + 2 , you expect the computer to add two
numbers together to make 4. In its object-oriented way, Ruby considers the two numbers (2 and 2) to
be number objects. 2 + 2 is then merely shorthand for asking the first number object to add the second
number object to itself. In fact, the + sign is actually an addition method ! (It’s true, 2.+(2) will work just fine!)

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

22

 You can prove that everything in Ruby is an object by asking the things of which class they’re a member.
In the pet example earlier, you could have made a_dog tell you what class it’s a member of with the following
code:

 puts a_dog.class

 Dog

 class isn’t a method you created yourself, such as the bark method, but one that Ruby supplies by
default to all objects. This means that you can ask any object which class it’s a member of by using its class
method. So a_dog.class equals Dog .

 What about if you ask a number what its class is? Try it out:

 puts 2.class

 Fixnum

 The number 2 is an object of the Fixnum class. This means that all Ruby has to do is implement the logic
and code for adding numbers together in the Fixnum class, much like you created the bark method for your
 Dog class, and then Ruby will know how to add any two numbers together! Better than that, though, is that
you can then add your own methods to the Fixnum class and process numbers in any way you see fit.

 Kernel Methods
 Kernel is a special class (actually, a module —but don’t worry about that until Chapter 6 !) whose methods
are made available in every class and scope throughout Ruby (if this sounds complicated, consider the
 Kernel methods to be those available in every situation without fail). You’ve used a key method provided by
 Kernel already.

 Consider the puts method. You’ve been using the puts method to print data to the screen, like so:

 puts "Hello, world!"

 However, unlike the methods on your own classes, puts isn’t prefixed by the name of a class or object
on which to complete the method. It would seem logical that the full command should be something like
 Screen.puts or Display.puts , as puts places text on the screen. However, in reality, puts is a method made
available from the Kernel module—a special type of class packed full of standard, commonly used methods,
making your code easier to read and write.

 ■ Note The Kernel module in Ruby has no relationship to kernels in operating systems or the Linux
kernel. As with a kernel and its operating system, the Kernel module is part of Ruby’s “core,” but there is no
connection beyond that. The word “kernel” is used merely in a traditional sense.

 When you type puts "Hello, world!" , Ruby can tell that there’s no class or object involved, so it looks
through its default, predefined classes and modules for a method called puts , finds it in the Kernel module,
and does its thing. When you see lines of code where there’s no obvious class or object involved, take time to
consider where the method call is going.

http://dx.doi.org/10.1007/978-1-4842-1278-3_6

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

23

 To guarantee that you’re using the Kernel puts method, you can refer to it explicitly, although this is
rarely done with puts :

 Kernel.puts "Hello, world!"

 Passing Data to Methods
 Asking a dog to bark or asking an object its class is simple with Ruby. You simply refer to a class or object and
follow it with a period (.) and the name of the method, such as a_dog.bark , 2.class , or Dog.new . However,
there are situations where you don’t want to issue a simple command, but you want to associate some data
with it, too.

 Let’s create a very simple class that represents a dog:

 class Dog
 def bark
 puts “Woof!”
 end
 end

 Now we can simply make a dog bark by calling the relevant method:

 my_dog = Dog.new
 my_dog.bark

 Woof!

 That’s simple, but what about if we have an action where some user input would be useful? We can
write methods to accept data when they are called. For example:

 class Dog
 def bark(i)
 i.times do
 puts “Woof!”
 end
 end
 end

 This time we can make the dog bark a certain number of times by passing a value to the bark method:

 my_dog = Dog.new
 my_dog.bark(3)

 Woof!
 Woof!
 Woof!

 When we specify the argument of 3 in my_dog.bark(3) , it is passed to the bark method and is placed
into the defined parameter i . We can then use i as a source value for running the puts command three
times (or, more accurately, i times) using a times block.

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

24

 There are a couple of other things to be aware of at this early stage. First, you can specify many different
parameters that can be accepted by a method. For example:

 class Dog
 def say(a, b, c)
 puts a
 puts b
 puts c
 end
 end

 Now we can pass three arguments:

 my_dog = Dog.new
 my_dog.say(“Dogs”, “can’t”, “talk!”)

 Dogs
 can't
 talk!

 You should also be aware that parentheses around the arguments on the end of the method call are
optional when there’s only a single argument and the method call is not joined to any others. For example,
you’ve previously seen code like this:

 puts "Hello"

 But you could just as easily write:

 puts("Hello")

 You will continue to see many examples of calling methods and passing arguments to them throughout
this book. Keep your eyes peeled for the various ways this occurs, with and without arguments, and with and
without parentheses.

 Using the Methods of the String Class
 You’ve played with dogs and numbers, but lines of text (strings) can be interesting to play with, too:

 puts "This is a test".length

 14

 You’ve asked the string "This is a test" , which is an object of the String class (confirm this with
 "This is a test".class), to print its length onto the screen using the length method. The length
method is available on all strings, so you can replace "This is a test" with any text you want and you’ll
get a valid answer.

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

25

 Asking a string for its length isn’t the only thing you can do. Consider this:

 puts "This is a test".upcase

 THIS IS A TEST

 The String class has many methods, which I’ll cover in the next chapter, but experiment with some of
the following: capitalize , downcase , chop , next , reverse , sum , and swapcase . Table 2-1 demonstrates some
of the methods available to strings.

 Table 2-1. The Results of Using Different Methods on the String “Test” or “test”

 Expression Output

 "Test" + "Test" TestTest

 "test".capitalize Test

 "Test".downcase test

 "Test".chop Tes

 "Test".next Tesu

 "Test".reverse tseT

 "Test".sum 416

 "Test".swapcase tEST

 "Test".upcase TEST

 "Test".upcase.reverse TSET

 "Test".upcase.reverse.next TSEU

 Some of the examples in Table 2-1 are obvious, such as changing the case of the text or reversing it, but the
last two examples are of particular interest. Rather than processing one method against the text, you process
two or three in succession. The reason you can do this is that methods will return the original object after
it’s been adjusted by the method, so you have a fresh String object upon which to process another method.
 "Test".upcase results in the string TEST being returned, upon which the reverse method is called, resulting in
 TSET , upon which the next method is called, which “increments” the last character, resulting in TSEU .

 In the next chapter, we’ll be looking at strings more deeply, but the concept of chaining methods
together to get quick results is an important one in Ruby. You can read the preceding examples aloud and
they make sense. Not many other programming languages can give you that level of instant familiarity!

 Using Ruby in a Non–Object-Oriented Style
 So far in this chapter, we’ve looked at several reasonably complex concepts. With some programming
languages, object orientation is almost an afterthought, and beginners’ books for these languages don’t
cover object orientation until readers understand the basics of the language (particularly with Perl and
PHP, other popular web development languages). However, this doesn’t work for Ruby because Ruby is a
 pure object-oriented language, and you can gain significant advantages over users of other languages by
understanding these concepts right away.

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

26

 Ruby has its roots in other languages, though. Ruby has been heavily influenced by languages such as
Perl and C, both usually considered procedural non–object- oriented languages (although Perl has some
object-oriented features). As such, even though almost everything in Ruby is an object, you can use Ruby in
a similar way as a non–object-oriented language if you like, even if it’s less than ideal. Essentially you’d be
“ignoring” Ruby’s object-oriented features, even though they’d still be in operation under the hood.

 A common demonstration program for a language such as Perl or C involves creating a subroutine
(essentially a sort of method that has no associated object or class) and calling it, much like you called the
 bark method on your Dog objects. Here’s a similar program, written in Ruby:

 def dog_barking
 puts "Woof!"
 end

 dog_barking

 This looks a lot different from your previous experiments. Rather than appearing to define a method
within a class, it looks as if you’re defining it on its own, totally independently. The method is a general one
and doesn’t appear to be tied to any particular class or object. In a language such as Perl or C, this method
would be called a procedure, function , or subfunction , as method is a word generally used to refer to an action
that can take place on an object. In Ruby, this method is still being defined on a class (the Object class), but
we can ignore that within this context.

 After the method is defined—it’s still called a method, even though other languages would consider it to
be a subroutine or function—it becomes available to use immediately without using a class or object name,
like how puts is available without referring directly to the Kernel module. You call the method simply by
using its name on its own, as on the last line of the preceding example. Typing the preceding code into irb
results in the dog_barking method being called, giving the following result:

 Woof!

 In Ruby, almost everything’s an object, and that includes the magical space where classless methods
end up! Understanding exactly where isn’t important at this stage, but it’s always useful to bear Ruby’s
object-oriented ways in mind even when you’re trying not to use object- oriented techniques!

 ■ Note If you want to experiment, you’ll find dog_barking at Object.dog_barking .

 Summary
 In this chapter, you learned about several important concepts not only for programming in Ruby, but for
programming in general. If these concepts seem logical to you already, you’re well on the way to being a
solid Ruby developer. Let’s recap the main concepts before moving on:

• Class : A class is a definition of a concept in an object-oriented language such as
Ruby. We created classes called Pet , Dog , Cat , Snake , and Person . Classes can inherit
features from other classes, but still have unique features of their own.

• Object : An object is a single instance of a class (or, as can be the case, an instance of
a class itself). An object of class Person is a single person. An object of class Dog is a
single dog. Think of objects as real-life objects. A class is the classification, whereas
an object is the actual object or “thing” itself.

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

27

• Object orientation : Object orientation is the approach of using classes and objects to
model real-world concepts in a programming language, such as Ruby.

• Variable : In Ruby, a variable is a placeholder for a single object, which may be a
number, string, list (of other objects), or instance of a class that you defined, such as,
in this chapter, a Pet .

• Method : A method represents a set of code (containing multiple commands and
statements) within a class and/or an object. For example, our Dog class objects had
a bark method that printed “Woof!” to the screen. Methods can also be directly
linked to classes, as with fred = Person.new , where new is a method that creates
a new object based on the Person class. Methods can also accept data—known as
arguments or parameters—included in parentheses after the method name, as with
 puts("Test") .

• Arguments/parameters : These are the data passed to methods in parentheses (or, as
in some cases, following the method name without parentheses, as in puts "Test").
Technically, you pass arguments to methods, and methods receive parameters, but
for pragmatic purposes, the terms are interchangeable.

• Kernel : Some methods don’t require a class or module name to be usable, such
as puts . These are usually built-in, common methods that don’t have an obvious
connection to any classes or modules. Many of these methods are included in Ruby’s
 Kernel module, a module that provides functions that work from anywhere within
Ruby code without being explicitly referred to (a global “grab bag” of useful methods,
if you will).

• Experimentation : One of the most fulfilling things about programming is that you
can turn your dreams into reality. The amount of skill you need varies with your
dreams, but generally if you want to develop a certain type of application or service,
you can give it a try. Most software comes from necessity or a dream, so keeping
your eyes and ears open for things you might want to develop is important. It’s even
more important when you first get practical knowledge of a new language, as you are
while reading this book. If an idea crosses your mind, break it down into the smallest
components that you can represent as Ruby classes and see if you can put together
the building blocks with the Ruby you’ve learned so far. Your programming skills can
only improve with practice.

 In the next few chapters, we’re going to look at the topics briefly passed over in this chapter in more detail.

29© Peter Cooper 2016
P. Cooper, Beginning Ruby, DOI 10.1007/978-1-4842-1278-3_3

 CHAPTER 3

 Ruby’s Building Blocks: Data,
Expressions, and Flow Control

 Computer programs spend nearly all their time manipulating data or waiting for data to arrive from
elsewhere. We type in words, phrases, and numbers; listen to music; and watch videos, while the computer
performs calculations, makes decisions, and relays information to us. To write computer programs, it’s
essential to understand the basics of data and its manipulation.

 This chapter looks at some of the basic forms of data that Ruby supports, along with how to work with
and manipulate them. The topics covered in this chapter will provide the majority of the foundation of
knowledge on which your future Ruby programs will be developed.

 Numbers and Expressions
 At the lowest level, computers are entirely number-based, with everything represented by streams of
numbers. A language such as Ruby tries to insulate you from the internal workings of the computer, and
numbers in Ruby are used for mostly the same things that you use numbers for in real life, such as counting,
logical comparisons, arithmetic, and so on. Let’s look at how you can use numbers in these ways in Ruby and
how to do something with them.

 Basic Expressions
 When programming, an expression is a combination of data (such as numbers or strings of text), operators
(such as + or -), and variables that, when understood by the computer, result in an answer of some form.
For example, these are all expressions:

 5
 1 + 2
 "a" + "b" + "c"
 100 - 5 * (2 - 1)
 x + y

 The top four expressions all work right away with irb (try them out now!) and get the answers you’d
expect from such basic operations (1 + 2 results in 3 , "a" + "b" + "c" results in abc , and so on). The final
expression would fail, but try it out anyway and consider the error returned and how you could resolve the
situation (Tip: set the x and y variables to something!).

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

30

 Brackets (parentheses) work the same way as with regular arithmetic. Anything inside brackets is
calculated first (or, more technically, given higher precedence).

 ■ Note You can work through all the topics in this chapter using irb, the interactive Ruby interpreter. If you
get stuck, simply leave irb by typing exit or pressing Ctrl+D at any time, and start irb again as demonstrated in
Chapter 1 . If this fails, press Ctrl+C, then the Enter key, and then type exit .

 Expressions are used regularly throughout all computer programs, and not just with numbers. However,
an understanding of how expressions and operations work with numbers immediately translates into a basic
knowledge of how they work with text, lists, and other items, too.

 Variables
 In Chapter 2 , we ran through a multitude of concepts, including variables . Variables are placeholders or
references to objects, including numbers, text, or any types of objects you’ve chosen to create. For example:

 x = 10
 puts x

 10

 Here you assign the numeric value of 10 to a variable called x . Be aware that you always need to initialize
variables (that is, assign a value to them) before using them, otherwise you will end up with an error.

 You can name variables however you like, with only a few limitations. Variable names must be a single
unit (no spaces!); must start with either a letter or an underscore; must contain only letters, numbers, or
underscores; and are case sensitive. Table 3-1 demonstrates variable names that are valid and invalid.

 Table 3-1. Valid and Invalid Variable Names

 Variable Name Valid or Invalid?

 x Valid

 y2 Valid

 _x Valid

 7x Invalid (starts with a digit)

 this_is_a_test Valid

 this is a test Invalid (not a single word)

 this'is@a'test! Invalid (contains invalid characters: ', @ , and !)

 this-is-a-test Invalid (looks like subtraction)

http://dx.doi.org/10.1007/978-1-4842-1278-3_1
http://dx.doi.org/10.1007/978-1-4842-1278-3_2

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

31

 Variables are important because they allow you to write and use programs that perform operations on
varying data. For example, consider a small program that has the sole job of subtracting two numbers:

 x = 100
 y = 10
 puts x - y

 90

 If the code was written simply as puts 100 - 10 , you’d get the same result, but it’s not as flexible. Using
variables, you can get the values for x and y from the user, a file, or some other source. The only logic is the
subtraction.

 As variables are placeholders for values and data, they can also be assigned the results of an expression
(such as x = 2 - 1) and be used in expressions themselves (such as x - y + 2). Here’s a more complex
example:

 x = 50
 y = x * 100
 x += y
 puts x

 5050

 Step through the example line by line. First you set x to equal 50 . You then set y to the value of x * 100
(50 * 100 or 5000). Next you add y to x before printing the result, 5050 , to the screen. It makes sense, but the
third line isn’t obvious at first. Adding y to x looks more logical if you say x = x + y rather than x += y . This
is another Ruby shortcut. Because the act of a variable performing an operation upon itself is so common
in programming, you can shorten x = x + y to x += y . The same works for other operations, too, such as
multiplication and division, with x *= y and x /= y being valid, too. A common way to increase a variable’s
value by 1 is x += 1 , which is shorthand for x = x + 1 .

 Comparison Operators and Expressions
 A program without logic is merely a calculator. Computers don’t just perform single operations on data.
They also use logic to determine different courses of action. A basic form of logic is to use comparison
operators within expressions to make decisions.

 Consider a system that demands the user be over a certain age:

 age = 10
 puts "You're too young to use this system" if age < 18

 If you try this code, you’ll see “You’re too young to use this system” because the code prints the text
to the screen only when the value of age is under 18 (note the “less than” symbol). Let’s make something
more complex:

 age = 24
 puts "You're a teenager" if age > 12 && age < 20

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

32

 This code results in no response because someone aged 24 is not a teenager. However, if age were
to be between 13 and 19 inclusive, the message would appear. This is a case where two small expressions
(age > 12 and age < 20) are joined together with && , meaning “and.” Reading expressions such as this aloud
is the best way to understand them: “Print the text if age is larger than 12 and age is smaller than 20 .”

 To get the opposite effect, you can use the word unless :

 age = 24
 puts "You're NOT a teenager" unless age > 12 && age < 20

 This time you’d get the message that you’re not a teenager with your age of 24. This is because unless
means the opposite of if . You display the message unless the age is in the teenage range.

 ■ Note Another cute technique offered by Ruby is the between ? method that returns true or false
if the object is between or equal to two supplied values. For example, when dealing with integers, at least,
age.between?(13, 19) is equivalent to age >= 13 && age <= 19 .

 You can also test for equality:

 age = 24
 puts "You're 24!" if age == 24

 Notice that the “equals” concept is represented in two different ways, due to the two different meanings.
On the first line you’re saying that age is to equal 24 , meaning you want age to refer to the number 24.
However, on the second line, you’re asking if age “is equal to” 24 . In the first case you’re demanding , and in
the second case you’re asking . This difference results in different operators. Therefore, the equality operator
is == and the assignment operator is just =. A list of comparison operators for numbers is shown in Table 3-2 .

 Table 3-2. A Full List of Number Comparison Operators in Ruby

 Comparison Meaning

 x > y Greater than

 x < y Less than

 x == y Equal to

 x >= y Greater than or equal to

 x <= y Less than or equal to

 x <=> y Comparison; returns 0 if x and y are equal, 1 if x is higher, and -1 if x is lower

 x != y Not equal to

 As you saw earlier, it’s possible to group multiple expressions into a single expression, as with the following:

 puts "You're a teenager" if age > 12 && age < 20

 && is used to enforce that both age > 12 and age < 20 are true . However, you can also check whether one
 or the other is true by using ||, as so:

 puts "You're either very young or very old" if age > 80 || age < 10

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

33

 ■ Note The | symbol used in || is the pipe symbol , not the letter l or the number 1.

 Grouping together multiple comparisons is also possible with a clever use of parentheses:

 gender = “male”
 age = 6
 puts "A very young or old man" if gender == "male" && (age < 18 || age > 85)

 This example checks if gender is equal to " male ” and if age is under 18 or over 85 . If we did not use the
parentheses, the line would be printed even if the gender were “female” and the age were over 85, because
the Ruby interpreter would consider the comparisons on an individual basis, rather than making the initial
 && depend on satisfaction of the age < 18 || age > 85 comparison.

 Looping Through Numbers with Blocks and Iterators
 Nearly all programs require certain operations to be repeated over and over again to accomplish a result.
It would be extremely inefficient (and inflexible!) to write a program to count through numbers like this:

 x = 1
 puts x
 x += 1
 puts x
 x += 1
 puts x
 ...
 ...

 What you want to do in these situations is implement a loop —a mechanism that makes the program use
the same code over and over. Here’s a basic way to implement a loop:

 5.times do puts "Test" end

 Test
 Test
 Test
 Test
 Test

 First, you take the number 5. Next, you call the times method, common to all numbers in Ruby. Rather
than pass data to this method, you pass it more code: the code between do and end . The times method then
uses the code five times in succession, producing the preceding five lines of output.

 Another way to write this is with curly brackets instead of do and end . Although do and end are
encouraged for multiple-line code blocks, curly brackets make the code easier to read on a single line.
Therefore, this code works in exactly the same way:

 5.times { puts "Test" }

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

34

 You’ll be using this style for single lines of code from here on, but will be using do and end for longer
blocks of code. This is a good habit to pick up, as it’s the style nearly all professional Ruby developers follow
(although there are always exceptions to the rule).

 In Ruby, one mechanism to create a loop is called an iterator . An iterator is something that progresses
through a list of items one by one. In this case, it loops, or iterates , through five steps, resulting in five lines of
 Test . Other iterators are available for numbers, such as the following:

 1.upto(5) { ...code to loop here... }
 10.downto(5) { ...code to loop here... }
 0.step(50, 5) { ...code to loop here... }

 The first example counts from 1 up to 5 . The second example counts from 10 down to 5 . The last
example counts up from 0 to 50 in steps of 5 , because you’re using the step method on the number 0 .

 What isn’t obvious is how to get hold of the number being iterated upon at each step of the way so
that you can do something with it in the looped code. What if you wanted to print out the current iteration
number? How could you develop a counting program with these iterators? Thankfully, all of the iterators just
explained automatically pass the state of the iteration to the looped code as a parameter, which you can then
retrieve into a variable and use, like so:

 1.upto(5) { |number| puts number }

 1
 2
 3
 4
 5

 The easiest way to understand this is that the code between { and } (or, potentially, do and end ,
remember?) is the code being looped upon. At the start of that code, the number from the “1 up to 5” count
is sent down a “chute” into a variable called number . You can visualize the chute with the bars surrounding
 number . This is how parameters are passed into blocks of code that don’t have specific names (unlike
methods on classes and objects, which have names). In the preceding line of code, you ask Ruby to count
from 1 to 5 . It starts with 1 , which is passed into the code block and displayed with puts . This is repeated for
the numbers 2 through 5 , resulting in the output shown.

 Note that Ruby (and irb) doesn’t care whether you spread your code over multiple lines or not
(usually—there are exceptions!). For example, this code works in exactly the same way as the previous
example:

 1.upto(5) do |number|
 puts number
 end

 The key point to realize here is that some methods will execute code blocks and pass along data that you
can then capture into variables. In the previous example, the upto method available on integers passes the
value of each iteration into the code block, and we “captured” it into the variable number .

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

35

 Floating Point Numbers
 In Chapter 2 , you ran a test where you divided 10 by 3 , like so:

 puts 10 / 3

 3

 The result is 3, although the actual answer should be 3.33 recurring. The reason for this is that, by
default, Ruby considers any numbers without a floating point (also known as a decimal point) to be an
integer—a whole number. When you say 10 / 3, you’re asking Ruby to divide two integers , and Ruby gives
you an integer as a result. Let’s refine the code slightly:

 puts 10.0 / 3.0

 3.33333333333

 Now you get the desired result. Ruby is now working with number objects of the Float class, and returns
a Float , giving you the level of precision you’d expect.

 There might be situations where you don’t have control over the incoming numbers, but you still want
to have them treated as floats. Consider a situation where a user enters two numbers to be divided, and the
numbers require a precise answer:

 x = 10
 y = 3
 puts x / y

 3

 Both input numbers are integers, so the result is an integer, as before. Luckily, integers have a special
method that converts them to floats on the fly. You’d simply rewrite the code like this:

 x = 10
 y = 3
 puts x.to_f / y.to_f

 3.333333333335

 In this situation, when you reach the division, both x and y are converted to their floating point number
equivalents using the Integer class’s to_f method. Similarly, floating point numbers can be converted back
in the other direction, to integers, using to_i :

 puts 5.7.to_i

 5

 We’ll look at this technique used in other ways in the section “Converting Objects to Other Classes,”
later in this chapter.

http://dx.doi.org/10.1007/978-1-4842-1278-3_2

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

36

 Constants
 Earlier you looked at separating data and logic with variables, concluding that there’s rarely a need for
data to be a direct part of a computer program. This is true in most cases, but consider some values that
never change—the value of pi, for example. These unchanging values are called constants , and can also be
represented in Ruby by a variable name beginning with a capital letter:

 Pi = 3.141592

 If you enter the preceding line into irb and then try to change the value of Pi , it will let you do it, but
you’ll get a warning:

 Pi = 3.141592
 Pi = 500

 (irb): warning: already initialized constant Pi

 Ruby gives you full control over the value of constants, but the warning gives out a clear message. In the
future, Ruby might enforce tighter control over constants, so respect this style of usage and try not to reassign
constants mid-program.

 The eagle-eyed reader might recall that in Chapter 2 you referred to classes by names such as Dog and
 Cat , beginning with capital letters. This is because once a class is defined, it’s a constant part of the program
and therefore acts as a constant, too.

 Text and Strings
 If numbers are the most basic type of data that a computer can process, text is our next rung up the data
ladder. Text is used everywhere, especially when communicating with users (directly, in e-mail, over the
Web, or otherwise). In this section, you’ll find out how to manipulate text to your heart’s content.

 String Literals
 We’ve used strings already, in some of our earlier code examples, like so:

 puts "Hello, world!"

 A string is a collection of textual characters (including digits, letters, whitespace, and symbols) of any
length. All strings in Ruby are objects of the String class, as you can discover by calling a string’s class
method and printing the result:

 puts "Hello, world!".class

 String

 When a string is embedded directly into code, using quotation marks as earlier, the construction is
called a string literal . This differs from a string whose data comes from a remote source, such as a user typing
in text, a file, or the Internet. Any text that’s pre-embedded within a program is a string literal.

http://dx.doi.org/10.1007/978-1-4842-1278-3_2

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

37

 Like numbers, strings can be included in operations, added to, and compared against. You can also
assign strings to variables:

 x = "Test"
 y = "String"
 puts "Success!" if x + y == "TestString"

 Success!

 There are several other ways of including a string literal within a program. For example, you might want
to include multiple lines of text. Using quotation marks is only viable for a single line, but if you want to span
multiple lines, try this:

 x = %q{This is a test
 of the multi
 line capabilities}

 In this example, the quotation marks have been replaced with %q{ and } . You don’t have to use curly
brackets, though. You can use < and > , (and) , or simply two other delimiters of your choice, such as
 ! and !. This code works in exactly the same way:

 x = %q!This is a test
 of the multi
 line capabilities!

 However, the important thing to remember is that if you use exclamation marks as your delimiter, then
any exclamation marks in the text you’re quoting will cause this technique to go awry. If delimiter characters
are present in your string, your string literal will end early and Ruby will consider your remaining text
erroneous. Choose your delimiters wisely!

 Another way to build up a long string literal is by using a here document , a concept found in many other
programming languages. It works in a similar way to the previous example, except that the delimiter can be
many characters long. Here’s an example:

 x = <<END_MY_STRING_PLEASE
 This is the string
 And a second line
 END_MY_STRING_PLEASE

 In this case, << marks the start of the string literal and is followed by a delimiter of your choice
(END_MY_STRING_PLEASE in this case). The string literal then starts from the next new line and finishes when
the delimiter is repeated again on a line on its own. Using this method means that you’re unlikely to run into
any problems with choosing a bad delimiter, as long as you’re creative! Do note that you can’t include spaces
in your delimiter; it has to be a single group of displayed characters.

 String Expressions
 Using the + symbol concatenates (joins together) the two strings " Test ” and "String" to produce "TestString" ,
meaning that the following comparison is true , which results in " Success! " being written to the screen:

 puts "Success!" if "Test" + "String" == "TestString"

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

38

 Likewise, you can multiply strings. For example, let’s say you want to replicate a string five times, like so:

 puts "abc" * 5

 abcabcabcabcabc

 You can also perform “greater than” and “less than” comparisons:

 puts "x" > "y"

 false

 puts "y" > "x"

 true

 ■ Note "x" > "y" and "y" > "x" are expressions that, by using a comparison operator, result in true or
 false outcomes.

 In this situation, Ruby compares the numbers that represent the characters in the string. As mentioned
previously, characters are stored as numbers inside your computer’s memory. Every letter and symbol has
a value, called an ASCII value . These values aren’t particularly important, but they do mean you can do
comparisons between letters, and even longer strings, in this way. If you’re interested to learn what value a
particular character has, find out like so:

 puts "x".ord

 120

 puts "A".ord

 65

 The String class’s ord method returns an integer matching the position of that character in the
ASCII table , an international standard for representing characters as values.

 You can achieve the inverse by using the String class’s chr method. For example:

 puts 120.chr

 x

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

39

 ■ Note Explaining more about the ASCII character set here is beyond the scope of this book, but there are many
resources on the Web if you wish to learn more. One excellent resource is http://en.wikipedia.org/ wiki/ASCII .

 Interpolation
 In previous examples, you’ve printed the results of your code to the screen with the puts method. However,
your results have had little explanation. If a random user came along and used your code, it wouldn’t be
obvious what’s going on, as they won’t be interested in reading your source code. Therefore, it’s essential to
provide user-friendly output from your programs. You’ll go back to using numbers for this example:

 x = 10
 y = 20
 puts "#{x} + #{y} = #{x + y}"

 10 + 20 = 30

 It’s kindergarten-level math, but the result highlights an interesting capability. You can embed
expressions (and even logic) directly into strings. This process is called interpolation .

 In this situation, interpolation refers to the process of inserting the result of an expression into a string
literal. The way to interpolate within a string is to place the expression within #{ and } symbols. An even
more basic example demonstrates:

 puts "100 * 5 = #{100 * 5}"

 100 * 5 = 500

 The #{100 * 5} section interpolates the result of 100 * 5 (500) into the string at that position,
resulting in the output shown. Examine this code:

 puts "#{x} + #{y} = #{x + y}"

 You first interpolate the value of x , then the value of y , and then the value of x added to y . You
surround each section with the relevant mathematical symbols, and hey presto, you get a complete
mathematical equation:

 10 + 20 = 30

 You can interpolate other strings, too:

 x = "cat"
 puts "The #{x} in the hat"

 The cat in the hat

http://en.wikipedia.org/

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

40

 Or if you want to get clever:

 puts "It's a #{"bad " * 5}world"

 It's a bad bad bad bad bad world

 In this instance, you interpolate a repetition of a string, "bad " , five times. It’s certainly a lot quicker
than typing it!

 Interpolation also works within strings used in assignments:

 my_string = "It's a #{"bad " * 5}world"
 puts my_string

 It's a bad bad bad bad bad world

 It’s worth noting that you could achieve the same results as the preceding by placing the expressions
outside the strings, without using interpolation. For example:

 x = 10
 y = 20
 puts x.to_s + " + " + y.to_s + " = " + (x + y).to_s
 puts "#{x} + #{y} = #{x + y}"

 The two puts lines result in the same output. The first uses string concatenation (+) to join several
different strings together. The numbers in x and y are converted to strings with their to_s method. However,
the second puts line uses interpolation, which doesn’t require the numbers to be converted to strings
explicitly.

 String Methods
 We’ve looked at using strings in expressions, but you can do a lot more with strings than add them together
or multiply them. As you experimented in Chapter 2 , you can use a number of different methods on a string.
Table 3-3 provides a recap of the string methods you looked at in Chapter 2 .

http://dx.doi.org/10.1007/978-1-4842-1278-3_2
http://dx.doi.org/10.1007/978-1-4842-1278-3_2

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

41

 In each example in Table 3-3 , you’re using a method that the string offers, whether it’s concatenation,
conversion to uppercase, reversal, or merely incrementing the last letter. You can chain methods together, as
in the final example of the table. First you create the "Test" string literal; then you convert it to uppercase,
returning TEST ; then you reverse that , returning TSET ; and then you increment the last letter of that ,
returning TSEU .

 Another method you used in Chapter 2 was length , like so:

 puts "This is a test".length

 14

 These methods are useful, but they don’t let you do anything particularly impressive with your strings.
Let’s move on to playing directly with the text itself.

 Regular Expressions and String Manipulation
 When working with strings at an advanced level, it becomes necessary to learn about regular expressions .
A regular expression is, essentially, a search query, and not to be confused with the expressions we’ve
discussed already in this chapter. If you type ruby into your favorite search engine, you’d expect information
about Ruby to appear. Likewise, if your regular expression is ruby and you run that query against, say, a long
string, you’d expect any matches to be returned. A regular expression, therefore, is a string that describes a
pattern for matching elements in other strings.

 ■ Note This section provides only a brief introduction to regular expressions. Regular expressions are a
major branch of computer science, and many books and web sites are dedicated to their use. Ruby supports
the majority of standard regular expression syntax, so non–Ruby-specific knowledge about regular expressions
obtained from elsewhere can still prove useful in Ruby.

 Table 3-3. The Results of Using Different Methods on the String “Test”

 Expression Output

 "Test" + "Test" TestTest

 "Test".capitalize Test

 "Test".downcase test

 "Test".chop Tes

 "Test".next Tesu

 "Test".reverse tseT

 "Test".sum 416

 "Test".swapcase tEST

 "Test".upcase TEST

 "Test".upcase.reverse TSET

 "Test".upcase.reverse.next TSEU

http://dx.doi.org/10.1007/978-1-4842-1278-3_2

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

42

 Substitutions
 One thing you’ll often want to do is substitute something within a string for something else. Take this
example:

 puts "foobar".sub('bar', 'foo')

 foofoo

 In this example, you use a method on the string called sub , which substitutes the first instance of the
first parameter 'bar' with the second parameter 'foo' , resulting in foofoo. sub only does one substitution
at a time, on the first instance of the text to match, whereas gsub does multiple substitutions at once, as this
example demonstrates:

 puts "this is a test".gsub('i', '')

 ths s a test

 Here you’ve substituted all occurrences of the letter 'i' with an empty string. What about more
complex patterns? Simply matching the letter 'i' is not a true example of a regular expression. For example,
let’s say you want to replace the first two characters of a string with 'Hello' :

 x = "This is a test"
 puts x.sub(/^../, 'Hello')

 Hellois is a test

 In this case, you make a single substitution with sub . The first parameter given to sub isn’t a string but
a regular expression—forward slashes are used to start and end a regular expression. Within the regular
expression is ^... The ^ is an anchor , meaning the regular expression will match from the beginning of
any lines within the string. The two periods each represent “any character.” In all, /^../ means “any two
characters immediately after the start of a line.” Therefore, Th of " This is a test " gets replaced with Hello .

 Likewise, if you want to change the last two letters, you can use a different anchor:

 x = "This is a test"
 puts x.sub(/..$/, 'Hello')

 This is a teHello

 This time the regular expression matches the two characters that are anchored to the end of any lines
within the string.

 ■ Note If you want to anchor to the absolute start or end of a string, you can use \A and \z , respectively,
whereas ̂ and $ anchor to the starts and ends of lines within a string.

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

43

 Iteration with a Regular Expression
 Previously, you used iterators to move through sets of numbers, counting from 1 to 10, for example. What
if you want to iterate through a string and have access to each section of it separately? scan is the iterator
method you require:

 "xyz".scan(/./) { |letter| puts letter }

 x
 y
 z

 scan lives up to its name. It scans through the string looking for anything that matches the regular
expression passed to it. In this case, you’ve supplied a regular expression that looks for a single character
at a time. That’s why you get x, y , and z separately in the output. Each letter is fed to the block, assigned to
 letter , and printed to the screen. Try this more elaborate example:

 "This is a test".scan(/../) { |x| puts x }

 Th
 is
 i
 s
 a
 te
 st

 This time you’re scanning for two characters at a time. Easy! Scanning for all characters results in some
weird output, though, with all the spaces mixed in. Let’s adjust our regular expression to match only letters
and digits, like so:

 "This is a test".scan(/\w\w/) { |x| puts x }

 Th
 is
 is
 te
 st

 Within regular expressions, there are special characters that are denoted with a backslash, and they
have special meanings. \w means “any alphanumeric character or an underscore.” There are many others, as
illustrated in Table 3-4 .

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

44

 Using the knowledge from Table 3-4 , you can easily extract numbers from a string:

 "The car costs $1000 and the cat costs $10".scan(/\d+/) do |x|
 puts x
 end

 1000
 10

 You’ve just gotten Ruby to extract meaning from some arbitrary English text! The scan method was used
as before, but you’ve given it a regular expression that uses \d to match any digit, and the + that follows \d
makes \d match as many digits in a row as possible. This means it matches both 1000 and 10 , rather than just
each individual digit at a time. To prove it, try this:

 "The car costs $1000 and the cat costs $10".scan(/\d/) do |x|
 puts x
 end

 1
 0
 0
 0
 1
 0

 Table 3-4. Basic Special Characters and Symbols Within Regular Expressions

 Character Meaning

 ̂ Anchor for the beginning of a line

 $ Anchor for the end of a line

 \A Anchor for the start of a string

 \z Anchor for the end of a string

 . Any character

 \w Any letter, digit, or underscore

 \W Anything that \w doesn’t match

 \d Any digit

 \D Anything that \d doesn’t match (non-digits)

 \s Whitespace (spaces, tabs, newlines, and so on)

 \S Non-whitespace (any visible character)

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

45

 So, + after a character in a regular expression means match one or more of that type of character. There
are other types of modifiers, and these are shown in Table 3-5 .

 Table 3-5. Regular Expression Character and Sub-Expression Modifiers

 Modifier Description

 * Match zero or more occurrences of the preceding character, and match as many as possible.

 + Match one or more occurrences of the preceding character, and match as many as possible.

 *? Match zero or more occurrences of the preceding character, and match as few as possible.

 +? Match one or more occurrences of the preceding character, and match as few as possible.

 ? Match either one or none of the preceding character.

 {x} Match x occurrences of the preceding character.

 {x,y} Match at least x occurrences and at most y occurrences.

 The last important aspect of regular expressions you need to understand at this stage is character
classes . These allow you to match against a specific set of characters. For example, you can scan through all
the vowels in a string:

 "This is a test".scan(/[aeiou]/) { |x| puts x }

 i
 i
 a
 e

 [aeiou] means “match any of a, e, i, o, or u.” You can also specify ranges of characters inside the square
brackets, like so:

 "This is a test".scan(/[a-m]/) { |x| puts x }

 h
 i
 i
 a
 e

 This scan matches all lowercase letters between a and m .
 Regular expressions can be complex and confusing, and entire books larger than this one have been

dedicated to them. Most coders only need to understand the basics, as the more advanced techniques will
become apparent with time—but they’re a powerful tool when you experiment with and master them.

 You’ll be using and expanding on all the techniques covered in this section in code examples
throughout the rest of the book.

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

46

 Matching
 Making substitutions and extracting certain text from strings is useful, but sometimes you merely want
to check whether a certain string matches against the pattern of your choice. You might want to establish
quickly if a string contains any vowels:

 puts "String has vowels" if "This is a test" =~ /[aeiou]/

 In this example, =~ is another form of operator: a matching operator. If the string has a match with the
regular expression following the operator, then the expression returns the position of the first match (2 in this
case—which logically is non-false, so the if condition is satisfied). You can, of course, do the opposite:

 puts "String contains no digits" unless "This is a test" =~ /[0-9]/

 This time you’re saying that unless the range of digits from 0 to 9 matches against the test string, tell the
user that there are no digits in the string.

 It’s also possible to use a method called match , provided by the String class. Whereas =~ returns the
position of the first match or nil depending on whether the regular expression matches the string, match
provides a lot more power. Here’s a basic example:

 puts "String has vowels" if "This is a test".match(/[aeiou]/)

 In regular expressions, if you surround a section of the expression with parentheses—(and)—the data
matched by that section of the regular expression is made available separately from the rest. match lets you
access this data:

 x = "This is a test".match(/(\w+) (\w+)/)
 puts x[0]
 puts x[1]
 puts x[2]

 This is
 This
 is

 match returns a MatchData object that can be accessed like an array. The first element (x[0]) contains
the data matched by the entire regular expression. However, each successive element contains that which
was matched by each match group of the regular expression. In this example, the first (\w+) matched This
and the second (\w+) matched is .

 ■ Note Matching can get far more complex than this, but I’ll be covering more advanced uses in the next
chapter when you put together your first complete Ruby program.

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

47

 Arrays and Lists
 So far in this chapter, you’ve created single instances of number and string objects and manipulated them.
After a while, it becomes necessary to create collections of these objects and to work with them as a list. In
Ruby, you can represent ordered collections of objects using arrays .

 Basic Arrays
 Here’s a basic array:

 x = [1, 2, 3, 4]

 This array has four elements . Each element is an integer, and is separated by commas from its
neighboring elements. Square brackets are used to denote an array literal .

 Elements can be accessed by their index (their position within the array). To access a particular
element, an array (or a variable containing an array) is followed by the index contained within square
brackets. This is called an element reference . For example:

 x = [1, 2, 3, 4]
 puts x[2]

 3

 As with most programming languages, the indexing for Ruby’s arrays starts from 0, so the first element
of the array is element 0, and the second element of the array is element 1, and so on. In our example,
this means x[2] is addressing what we’d call the third element of the array, which in this case is an object
representing the number 3. To change an element, you can simply assign it a new value or manipulate it as
you’ve manipulated numbers and strings earlier in this chapter:

 x[2] += 1
 puts x[2]

 4

 Or:

 x[2] = "Fish" * 3
 puts x[2]

 FishFishFish

 Arrays don’t need to be set up with predefined entries or have elements allocated manually. You can
create an empty array like so:

 x = []

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

48

 The array is empty, and trying to address, say, x[5] results in nil being returned. You can add things to
the end of the array by pushing data into it, like so:

 x = []
 x << "Word"

 After this, the array contains a single element: a string saying "Word". With arrays, << is the operator for
pushing an item onto the end of an array. You can also use the push method, which is equivalent:

 x.push("Word")

 You can also remove entries from an array one by one. Traditionally, arrays act as a “last in, first out”
system where items can be pushed onto the end but also popped from the end (popping is the process of
retrieving and removing items from the end of the array).

 x = []
 x << "Word"
 x << "Play"
 x << "Fun"
 puts x.pop
 puts x.pop
 puts x.length

 Fun
 Play
 1

 You push "Word", "Play", and "Fun" into the array held in x , and then display the first “popped”
element on the screen. Elements are popped from the end of the array, so "Fun" comes out first. Next comes
 "Play". For good measure, you then print out the length of the array at that point, using the aptly named
length method (size works, too, and gives exactly the same result), which is 1 because only "Word" is still
present in the array.

 Another useful feature is that if an array is full of strings, you can join all the elements together into one
big string by calling the join method on the array:

 x = ["Word", "Play", "Fun"]
 puts x.join

 WordPlayFun

 The join method can take an optional parameter that’s placed between each element in the resulting
string:

 x = ["Word", "Play", "Fun"]
 puts x.join(', ')

 Word, Play, Fun

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

49

 This time you join the array elements together, but between each set of elements you place a comma
and a space. This results in cleaner output.

 Splitting Strings into Arrays
 In the section relating to strings, you used scan to iterate through the contents of the string looking for
characters that matched patterns you expressed as regular expressions. With scan , you used a block of code
that accepted each set of characters and displayed them on the screen. However, if you use scan without a
block of code, it returns an array of all the matching parts of the string, like so:

 puts "This is a test".scan(/\w/).join(',')

 T,h,i,s,i,s,a,t,e,s,t

 First you define a string literal, then you scan over it for alphanumeric characters (using /\w/) , and
finally you join the elements of the returned array together with commas.

 What if you don’t want to scan for particular characters, but instead want to split a string into
multiple pieces? You can use the split method and tell it to split a string into an array of strings on the
periods, like so:

 puts "Short sentence. Another. No more.".split(/\./).inspect

 ["Short sentence", " Another", " No more"]

 There are a couple of important points here. First, if you’d used . in the regular expression rather than
\., you’d be splitting on every character rather than on full stops, because . represents “any character” in a
regular expression. Therefore, you have to escape it by prefixing it with a backslash (escaping is the process of
specifically denoting a character to make its meaning clear). Second, rather than joining and printing out the
sentences, you’re using the inspect method to get a tidier result.

 The inspect method is common to almost all built-in classes in Ruby and it gives you a textual
representation of the object. For example, the preceding output shows the result array in the same way that
you might create an array yourself. inspect is incredibly useful when experimenting and debugging!

 split is also happy splitting on newlines, or multiple characters at once, to get a cleaner result:

 puts "Words with lots of spaces".split(/\s+/).inspect

 ["Words", "with", "lots", "of", "spaces"]

 With Ruby and some regular expressions, you’re never far from solving any text-processing problem!
 It is also important to cover p , an alternative to using inspect . The previous example could also be

written in this way:

 p "Words with lots of spaces".split(/\s+/)

 ["Words", "with", "lots", "of", "spaces"]

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

50

 p is an extremely useful alternative to using puts when playing with expressions in irb. It automatically
shows you the structure of the object(s) returned by the expression following it. We will use p extensively
throughout the rest of this chapter. You will almost never need to use it in a production application, but for
debugging and learning, it’s excellent—not to mention quick to type!

 Array Iteration
 Iterating through arrays is simple and uses the each method. The each method goes through each element of
the array and passes it as a parameter to the code block you supply. For example:

 [1, "test", 2, 3, 4].each { |element| puts element.to_s + "X" }

 1X
 testX
 2X
 3X
 4X

 Although each iterates through elements of an array, you can also convert an array on the fly using the
 collect method:

 [1, 2, 3, 4].collect { |element| element * 2 }

 [2, 4, 6, 8]

 collect iterates through an array element by element, and assigns to that element the result of any
expression within the code block. In this example, you multiply the value of the element by 2.

 ■ Note map is functionally equivalent to collect . You may see both being used in this book and in other code
you encounter.

 Programmers who have come from less dynamic and possibly non–object-oriented languages might
see these techniques as being quite modern. It’s possible to do things “the old-fashioned way” with Ruby
if required:

 a = [1, "test", 2, 3, 4]
 i = 0

 while (i < a.length)
 puts a[i].to_s + "X"
 i += 1
 end

 This works in a similar way to the each example from earlier, but loops through the array in a way more
familiar to traditional programmers (from languages such as C, BASIC, or JavaScript). However, it should
be immediately apparent to anyone why iterators, code blocks, and methods such as each and collect are
preferable with Ruby, as they make the code significantly easier to read and understand.

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

51

 Other Array Methods
 Arrays have a lot of interesting methods, some of which I’ll cover in this section.

 Array Addition and Concatenation
 If you have two arrays , you can quickly combine their results into one:

 x = [1, 2, 3]
 y = ["a", "b", "c"]
 z = x + y
 p z

 [1, 2, 3, "a", "b", "c"]

 ■ Note We’re using p here instead of puts z.inspect . Go back to the “Splitting Strings into Arrays” section if
you missed the explanation of this key point.

 Array Subtraction and Difference
 You can also compare two arrays by subtracting one against the other. This technique removes any elements
from the main array that are in both arrays:

 x = [1, 2, 3, 4, 5]
 y = [1, 2, 3]
 z = x - y
 p z

 [4, 5]

 Checking for an Empty Array
 If you’re about to iterate over an array , you might want to check if it has any items yet. You could do this by
checking if array.size or array.length is larger than 0, but a more popular shorthand is to use empty? :

 x = []
 puts "x is empty" if x.empty?

 x is empty

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

52

 Checking an Array for a Certain Item
 The include? method returns true if the supplied parameter is in the array, and false otherwise:

 x = [1, 2, 3]
 p x.include?("x")
 p x.include?(3)

 false
 true

 Accessing the First and Last Elements of the Array
 Accessing the first and last elements of an array is easy with the first and last methods :

 x = [1, 2, 3]
 puts x.first
 puts x.last

 1
 3

 If you pass a numeric parameter to first or last , you’ll get that number of items from the start or the
end of the array:

 x = [1, 2, 3]
 puts x.first(2).join("-")

 1-2

 Reversing the Order of the Array’s Elements
 Like a string, an array can be reversed:

 x = [1, 2, 3]
 p x.reverse

 [3, 2, 1]

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

53

 Hashes
 Arrays are collections of objects, and so are hashes. However, hashes have a different storage format and way
to define each object within the collection. Rather than having an assigned position in a list, objects within a
hash are given a key that points to them. It’s more like a dictionary than a list, as there’s no guaranteed order,
but just simple links between keys and values. Here’s a basic hash with two entries:

 dictionary = { 'cat' => 'feline animal', 'dog' => 'canine animal' }

 The variable storing the hash is dictionary , and it contains two entries, as you can inspect:

 puts dictionary.size

 2

 One entry has a key of cat and a value of feline animal , while the other has a key of dog and a
value of canine animal . Like arrays, you use square brackets to reference the element you wish to retrieve.
For example:

 puts dictionary['cat']

 feline animal

 As you can see, a hash can be viewed as an array that has names for elements instead of position
numbers. You can even change values in the same way as an array:

 dictionary['cat'] = "fluffy animal"
 puts dictionary['cat']

 fluffy animal

 ■ Note It won’t be immediately useful to you, but it’s worth noting that both keys and values can be objects
of any type. Therefore, it’s possible to use an array (or even another hash) as a key. This might come in useful
when you’re dealing with more complex data structures in the future.

 Basic Hash Methods
 As with arrays, hashes have many useful methods that you’ll look at in this section.

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

54

 Iterating Through Hash Elements
 With arrays, you can use the each method to iterate through each element of the array. You can do the same
with hashes:

 x = { "a" => 1, "b" => 2 }
 x.each { |key, value| puts "#{key} equals #{value}" }

 a equals 1
 b equals 2

 ■ Note In Ruby 1.8, there is no guarantee that elements will be returned in a specific order. In Ruby 1.9,
however, the order in which the elements were inserted into the hash will be remembered, and each will return
them in that order.

 The each iterator method for a hash passes two parameters into the code block: first, a key, and second,
the value associated with that key. In this example, you assign them to variables called key and value and
use string interpolation to display their contents on the screen.

 Retrieving Keys
 Sometimes you might not be interested in the values in a hash, but want to get a feel for what the hash
contains. A great way to do this is to look at the keys. Ruby gives you an easy way to see the keys in any hash
immediately, using the keys method:

 x = { "a" => 1, "b" => 2, "c" => 3 }
 p x.keys

 ["a", "b", "c"]

 keys returns an array of all the keys in the hash, and if you’re ever in the mood, values will return an
array of all the values in the hash, too. Generally, however, you’ll look up values based on a key.

 Deleting Hash Elements
 Deleting hash elements is easy with the delete method . All you do is pass in a key as a parameter, and the
element is removed:

 x = { "a" => 1, "b" => 2 }
 x.delete("a")
 p x

 {"b"=>2}

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

55

 Deleting Hash Elements Conditionally
 Let’s say you want to delete any hash elements whose value is below a certain figure. Here’s an example of
how to do this:

 x = { "a" => 100, "b" => 20 }
 x.delete_if { |key, value| value < 25 }
 p x

 {"a"=>100}

 Hashes Within Hashes
 It’s possible to have hashes (or, indeed, any sort of object) within hashes, and even arrays within hashes,
within hashes! Because everything is an object and hashes and arrays can contain any other objects, you
could create giant tree structures with hashes and arrays. Here’s a demonstration:

 people = {
 'fred' => {
 'name' => 'Fred Elliott',
 'age' => 63,
 'gender' => 'male',
 'favorite painters' => ['Monet', 'Constable', 'Da Vinci']
 },
 'janet' => {
 'name' => 'Janet S Porter',
 'age' => 55,
 'gender' => 'female'
 }
 }

 puts people['fred']['age']
 puts people['janet']['gender']
 p people['janet']

 63
 female
 {"name"=>"Janet S Porter", "age"=>55, "gender"=>"female"}

 Although the structure of the hash looks a little confusing at first, it becomes reasonably easy when you
break it down into sections. The 'fred' and 'janet' sections are simple hashes of their own, but they’re
wrapped up into another giant hash assigned to people . In the code that queries the giant hash, you simply
chain the lookups on top of each other, as with puts people['fred']['age']. First it gets people['fred'],
which returns Fred’s hash, and then you request ['age'] from that, yielding the result of 63 .

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

56

 Even the array embedded within Fred’s hash is easy to access:

 puts people['fred']['favorite painters'].length
 puts people['fred']['favorite painters'].join(", ")

 3
 Monet, Constable, Da Vinci

 These techniques are used more and explained in greater depth in following chapters.

 Flow Control
 In this chapter, you’ve used comparisons, together with if and unless , to perform different operations
based on the circumstances. if and unless work well on single lines of code, but when combined with large
sections of code, they become even more powerful. In this section, you’ll be looking at how Ruby lets you
control the flow of your programs with these and other constructs.

 if and unless
 The first use of if within this chapter used this demonstration:

 age = 10
 puts "You're too young to use this system" if age < 18

 If the value of age is under 18 , the string is printed to the screen. The following code is equivalent:

 age = 10
 if age < 18
 puts "You're too young to use this system"
 end

 It looks similar, but the code to be executed if the expression is true is contained between the if
expression and end , instead of the if expression being added onto the end of a single line of code. This
construction makes it possible to put any number of lines of code in between the if statement and the
end line:

 age = 10
 if age < 18
 puts "You're too young to use this system"
 puts "So we're going to exit your program now"
 exit
 end

 ■ Note If you copy and paste the previous code directly into irb, the exit call on the fifth line will result in irb
closing, so don’t be surprised by this. You will also see this in the next example.

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

57

 It’s worth noting that unless can work in exactly the same way because unless is just the opposite of if :

 age = 10
 unless age >= 18
 puts "You're too young to use this system"
 puts "So we're going to exit your program now"
 exit
 end

 It’s possible to nest logic, too, as in this example:

 age = 19
 if age < 21
 puts "You can't drink in most of the United States"
 if age >= 18
 puts "But you can in the United Kingdom!"
 end
 end

 if and unless also supply the else condition, used to delimit lines of code that you want to be executed
if the main expression is false :

 age = 10
 if age < 18
 puts "You're too young to use this system"
 else
 puts "You can use this system"
 end

 ?, the Ternary Operator
 The ternary operator makes it possible for an expression to contain a mini if/else statement. It’s a
construction that’s entirely optional to use, and some developers are oblivious to its existence. However,
because it can be useful to produce more compact code, it’s worth learning early. Let’s dive in with an example:

 age = 10
 type = age < 18 ? "child" : "adult"
 puts "You are a " + type

 The second line contains the ternary operator. It starts by assigning the result of an expression to the
variable, type . The expression is age < 18 ? "child" : "adult". The structure is as follows:

 <condition> ? <result if condition is true> : <result if condition is false>

 In our example, age < 18 returns true, so the first result , "child", is returned and assigned to type.
However, if age < 18 were to be false, "adult" would be returned.

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

58

 Consider an alternative:

 age = 10
 type = 'child' if age < 18
 type = 'adult' unless age < 18
 puts "You are a " + type

 The double comparison makes it harder to read. Another alternative is to use the multiline if/else option:

 age = 10
 if age < 18
 type = 'child'
 else
 type = 'adult'
 end
 puts "You are a " + type

 The ternary operator shows its immediate benefit in its conciseness, and as it can be used to build
expressions on a single line, you can use it easily in calls to methods or within other expressions where if
statements would be invalid. Consider this even simpler version of the first example from this section:

 age = 10
 puts "You are a " + (age < 18 ? "child" : "adult")

 elsif and case
 Sometimes it’s desirable to make several comparisons with the same variable at the same time. You could do
this with the if statement, as covered previously:

 fruit = "orange"
 color = "orange" if fruit == "orange"
 color = "green" if fruit == "apple"
 color = "yellow" if fruit == "banana"

 If you want to use else to assign something different if fruit is not equal to orange , apple , or banana ,
it will quickly get messy, as you’d need to create an if block to check for the presence of any of these words,
and then perform the same comparisons as earlier. An alternative is to use elsif , meaning “else if ”:

 fruit = "orange"
 if fruit == "orange"
 color = "orange"
 elsif fruit == "apple"
 color = "green"
 elsif fruit == "banana"
 color = "yellow"
 else
 color = "unknown"
 end

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

59

 elsif blocks act somewhat like else blocks, except that you can specify a whole new comparison
expression to be performed, and if none of those match, you can specify a regular else block to be executed.

 A variant of this technique is to use a case block. Our preceding example, with a case block, becomes
the following:

 fruit = "orange"
 case fruit
 when "orange"
 color = "orange"
 when "apple"
 color = "green"
 when "banana"
 color = "yellow"
 else
 color = "unknown"
 end

 This code is similar to the if block, except that the syntax is a lot cleaner. A case block works by
processing an expression first, and then by finding a contained when block that matches the result of that
expression. If no matching when block is found, then the else block within the case block is executed instead.

 case has another trick up its sleeve. As all Ruby expressions return a result, you can make the previous
example even shorter:

 fruit = "orange"
 color = case fruit
 when "orange"
 "orange"
 when "apple"
 "green"
 when "banana"
 "yellow"
 Else
 "unknown"
 end

 In this example, you use a case block, but you assign the result of whichever inner block is executed
directly to color .

 ■ Note If you are familiar with the switch/case syntax in C (or a C-related language), you might think
 case/when is Ruby’s equivalent. It’s very similar, but only one “case” can be matched in Ruby, as execution
does not continue through the list of options once a match has been made.

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

60

 while and until
 In previous sections, you’ve performed loops using iterator methods, like so:

 1.upto(5) { |number| puts number }

 1
 2
 3
 4
 5

 However, it’s possible to loop code in other ways. while and until allow you to loop code based on the
result of a comparison made on each loop:

 x = 1
 while x < 100
 puts x
 x = x * 2
 end

 1
 2
 4
 8
 16
 32
 64

 In this example, you have a while block that denotes a section of code that is to be repeated over and
over while the expression x < 100 is satisfied. Therefore, x is doubled loop after loop and printed to the
screen. Once x is 100 or over, the loop ends.

 until provides the opposite functionality, looping until a certain condition is met:

 x = 1
 until x > 99
 puts x
 x = x * 2
 end

 It’s also possible to use while and until in a single line setting, as with if and unless :

 i = 1
 i = i * 2 until i > 1000
 puts i

 1024

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

61

 The value of i is doubled over and over until the result is over 1000, at which point the loop ends (1024
being 2 to the power of 10).

 Code Blocks
 Code blocks have been used in several code examples in this chapter. For example:

 x = [1, 2, 3]
 x.each { |y| puts y }

 1
 2
 3

 The each method accepts a single following code block. The code block is defined within the { and }
symbols or, alternatively, do and end delimiters:

 x = [1, 2, 3]
 x.each do |y|
 puts y
 end

 The code between { and } or do and end is a code block—essentially an anonymous, nameless method or
function. This code is passed to the each method, which then runs the code block for each element of the array.

 You can write methods of your own to handle code blocks. For example:

 def each_vowel(&code_block)
 %w{a e i o u}.each { |vowel| code_block.call(vowel) }
 end

 each_vowel { |vowel| puts vowel }

 a
 e
 i
 o
 u

 each_vowel is a method that accepts a code block, as designated by the ampersand (&) before the
variable name code_block in the method definition. It then iterates over each vowel in the literal array %w{a
e i o u} and uses the call method on code_block to execute the code block once for each vowel, passing
in the vowel variable as a parameter each time.

 ■ Note Code blocks passed in this way result in objects that have many methods of their own, such as call .
Remember, almost everything in Ruby is an object! (Many elements of syntax are not objects, nor are code
blocks in their literal form.)

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

62

 An alternate technique is to use the yield method, which automatically detects any passed code block
and passes control to it:

 def each_vowel
 %w{a e i o u}.each { |vowel| yield vowel }
 end

 each_vowel { |vowel| puts vowel }

 This example is functionally equivalent to the last, although it’s less obvious what it does because you
see no code block being accepted in the function definition. Which technique you choose to use is up to you.

 ■ Note Only one code block can be passed at any one time. It’s not possible to accept two or more
code blocks as parameters to a method. However, code blocks may accept none, one, or more parameters
themselves.

 It’s also possible to store code blocks within variables, using the lambda method:

 print_parameter_to_screen = lambda { |x| puts x }
 print_parameter_to_screen.call(100)

 100

 As with accepting a code block into a method, you use the lambda object’s call method to execute it, as
well as to pass any parameters in.

 ■ Note The term lambda is used due to its popularity elsewhere and in other programming languages. You
can certainly continue to call them code blocks, and they are sometimes referred to as procs , although there are
some differences between procs and lambdas to consider once you are at an advanced level.

 Other Useful Building Blocks
 So far in this chapter, we’ve covered the primary built-in data classes of numbers, strings, arrays, and hashes.
These few types of objects can get you a long way and will be used in all your programs. You’ll be looking at
objects in more depth in Chapter 6 , but before you get that far, there are a few other important points you
need to look at first.

 Dates and Times
 A concept that’s useful to represent within many computer programs is time, in the form of dates and times.
Ruby provides a class called Time to handle these concepts.

 Internally, Time stores times as a number of microseconds since the UNIX time epoch: January 1, 1970
00:00:00 Greenwich Mean Time (GMT) /Coordinated Universal Time (UTC). This makes it easy to compare
times using the standard comparison operators, such as < and > .

http://dx.doi.org/10.1007/978-1-4842-1278-3_6

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

63

 Let’s look at how to use the Time class:

 puts Time.now

 2015-07-01 00:00:00 +0100

 Time.now creates an instance of class Time that’s set to the current time. However, because you’re trying
to print it to the screen, it’s converted into the preceding string.

 You can manipulate time objects by adding and subtracting numbers of seconds to them. For example:

 puts Time.now
 puts Time.now - 10
 puts Time.now + 86400

 2015-07-01 00:00:00 +0100
 2015-06-30 23:59:50 +0100
 2015-07-02 00:00:00 +0100

 In the first example, you print the current time, and then the current time minus 10 seconds, and then
the current time with 86,400 seconds (exactly one day) added on. Because times can be manipulated so
easily in Ruby using normal mathematical operators, but because people prefer to work with minutes, hours,
and days rather than seconds all of the time, some developers extend the Fixnum class with some helper
methods to make time manipulation even easier:

 class Fixnum
 def seconds
 self
 end
 def minutes
 self * 60
 end
 def hours
 self * 60 * 60
 end
 def days
 self * 60 * 60 * 24
 end
 end

 puts Time.now
 puts Time.now + 10.minutes
 puts Time.now + 16.hours
 puts Time.now - 7.days

 2015-07-01 00:00:00 +0100
 2015-07-01 00:10:00 +0100
 2015-07-01 16:00:00 +0100
 2015-06-24 00:00:00 +0100

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

64

 Don’t worry if this code seems confusing and unfamiliar, as we’ll be covering this type of technique
more in the following chapters. Do note, however, the style used in the final puts statements. It’s easy to
manipulate dates with these helpers!

 The Time class also allows you to create Time objects based on arbitrary dates:

 year = 2016
 month = 1
 day = 16
 hour = 12
 min = 57
 sec = 10
 msec = 42
 Time.local(year, month, day, hour, min, sec, msec)

 The preceding code creates a Time object based on the current (local) time zone. All arguments
from month onward are optional and take default values of 1 or 0 . You can specify months numerically
(between 1 and 12), or as three-letter abbreviations of their English names.

 Time.gm(year, month, day, hour, min, sec, msec)

 The preceding code creates a Time object based on GMT/UTC. Argument requirements are the same as
for Time.local .

 Time.utc(year, month, day, hour, min, sec, msec)

 The preceding code is identical to Time.gm , although some might prefer this method’s name.
 You can also convert Time objects to an integer representing the number of seconds since the UNIX

time epoch:

 Time.gm(2015, 05).to_i

 1430438400

 Likewise, you can convert epoch times back into Time objects. This technique can be useful if you
want to store times and dates in a file or a format where only a single integer is needed, rather than an entire
 Time object:

 epoch_time = Time.gm(2015, 5).to_i
 t = Time.at(epoch_time)
 puts t.year, t.month, t.day

 2015
 5
 1

 As well as demonstrating the conversions of times between Time objects and epoch times, this code
shows that Time objects also have methods that can be used to retrieve certain sections of a date/time. A list
of these methods is shown in Table 3-6 .

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

65

 Note that these methods are for retrieving attributes from a date or time, and cannot be used to set
them. If you want to change elements of a date or time, you’ll either need to add or subtract seconds, or
construct a new Time object using Time.gm or Time.local .

 ■ Note In Chapter 16 , you’ll look at a Ruby library called Chronic that lets you specify dates and times in a
natural, English language form and have them converted to valid Time objects.

 Large Numbers
 A common story that’s told about the invention of the game of chess revolves around large numbers .
A powerful king demanded a game he could play in his spare time, and a poor mathematician devised the
game of chess for him. The king loved the game and offered the mathematician anything he would like as
a reward. The mathematician said that he’d like rice, distributed on his chessboard. He wanted one grain
on the first square, two on the second square, four on the third square, and so on, double the amount from
square to square, until the board was full. The king thought the mathematician to be a fool, as he saw how
few grains it took to fill the first row of the board.

 Let’s create a simulation of this situation with Ruby using an iterator and some interpolation:

 rice_on_square = 1
 64.times do |square|
 puts "On square #{square + 1} are #{rice_on_square} grain(s)"
 rice_on_square *= 2
 end

 Table 3-6. Time Object Methods Used to Access Date/Time Attributes

 Method What the Method Returns

 hour A number representing the hour in 24-hour format (21 for 9 p.m., for example).

 min The number of minutes past the hour.

 sec The number of seconds past the minute.

 usec The number of microseconds past the second (there are 1,000,000 microseconds per second).

 day The number of the day in the month.

 mday Synonym for the day method, considered to be “month” day.

 wday The number of the day in terms of the week (Sunday is 0 , Saturday is 6).

 yday The number of the day in terms of the year.

 month The number of the month of the date (11 for November, for example).

 year The year associated with the date.

 zone Returns the name of the time zone associated with the time.

 utc? Returns true or false depending on if the time/date is in the UTC/GMT time zone or not.

 gmt? Synonym for the utc ? method for those who prefer to use the term GMT.

http://dx.doi.org/10.1007/978-1-4842-1278-3_16

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

66

 You get the following results:

 On square 1 are 1 grain(s)
 On square 2 are 2 grain(s)
 On square 3 are 4 grain(s)
 On square 4 are 8 grain(s)
 On square 5 are 16 grain(s)
 On square 6 are 32 grain(s)
 On square 7 are 64 grain(s)
 On square 8 are 128 grain(s)
 [Results for squares 9 through 61 trimmed for brevity.]
 On square 62 are 2305843009213693952 grain(s)
 On square 63 are 4611686018427387904 grain(s)
 On square 64 are 9223372036854775808 grain(s)

 By square 64, you’re up to placing many trillions of grains of rice on each square! The story ends with the
king realizing his position and unable to fulfill his promise. However, it proves that Ruby is able to deal with
extremely large numbers, and unlike many other programming languages, there are no inconvenient limits.

 Other languages often have limitations on the size of numbers that can be represented. Commonly
this is 32 binary bits, resulting in a limit on values to roughly 4.2 billion in languages that enforce 32-bit
integers. Most operating systems and computer architectures also have similar limitations. Ruby, on the
other hand, seamlessly converts between numbers that the computer can handle natively (that is, with ease)
and those that require more work. It does this with different classes, one called Fixnum that represents easily
managed smaller numbers, and another, aptly called Bignum , that represents “big” numbers Ruby needs to
manage internally. On most systems, the boundary is the number 4611686018427387903—you can find it by
experimenting in irb:

 puts 4611686018427387903.class

 Fixnum

 puts 4611686018427387904.class

 Bignum

 If you don’t get exactly the same results, don’t worry. Ruby will handle Bignums and Fixnums for you,
and you can perform arithmetic and other operations without any problems. Results might vary depending
on your system’s architecture, but as these changes are handled entirely by Ruby, there’s no need to worry.

 Ranges
 Sometimes it’s useful to be able to store the concept of a list, instead of its actual contents. For example, if
you want to represent all the letters between A and Z , you could begin to create an array, like so:

 x = ['A', 'B', 'C', 'D', 'E' .. and so on..]

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

67

 It would be nice, though, merely to store the concept of “everything between A and Z .” With a range , you
can do that. A range is represented in this way:

 ('A'..'Z')

 The range class offers a simple way to convert a range into an array with to_a. This one-line example
demonstrates:

 ('A'..'Z').to_a.each { |letter| print letter }

 It’s compact, but it does the job. It converts the range 'A' to 'Z' into an array with 26 elements, each
one containing a letter of the alphabet. It then iterates over each element using each , which you first used in
the previous section on arrays, and passes the value into letter , which is then printed to the screen.

 ■ Note Remember that as you’ve used print , rather than puts , the letters are printed one after another on
the same line, whereas puts starts a new line every time it’s used.

 Even though working with arrays is perhaps more obvious, the range class does have an each method of
its own, so while there is no array involved, the preceding example could be rewritten as follows:

 ('A'..'Z').each { |letter| print letter }

 The range class comes with other methods baked in, too. It might also be useful to test if something
is included in the set of objects specified by the range. For example, with your ('A'..'Z') range, you can
check to see if R is within the range, using the include ? method, like so:

 ('A'..'Z').include?('R')

 => true

 Being a lowercase letter, however, r is not included:

 ('A'..'Z').include?('r')

 => false

 You can also use ranges as array indices to select multiple elements at the same time:

 a = [2, 4, 6, 8, 10, 12]
 p a[1..3]

 [4, 6, 8]

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

68

 Similarly, you can use them to set multiple elements at the same time (and following on from the
current contents of a):

 a[1..3] = ["a", "b", "c"]
 p a

 [2, "a", "b", "c", 10, 12]

 You can use ranges with objects belonging to many different classes, including ones you create yourself.

 Symbols
 Symbols are abstract references represented, typically, by a short string prefixed with a colon. Examples
include :blue, :good, and :name . Sadly, there is no succinct, easy-to-learn trick to symbols, so you’ll need
to read this whole section—maybe even more than once—to get it to stick. It certainly took me a while to
pick them up when I started with Ruby, but they are used so heavily by Rubyists that it’s worth the effort!

 Among mainstream languages, symbols are reasonably unique to Ruby (although Lisp and Erlang do
have similar concepts) and tend to confuse most new users, so let’s jump straight into an illustrative example:

 current_situation = :good
 puts "Everything is fine" if current_situation == :good
 puts "PANIC!" if current_situation == :bad

 Everything is fine

 In this example, :good and :bad are symbols. Symbols don’t contain values or objects, like variables do.
Instead, they’re used as a consistent name within code. For example, in the preceding code, you could easily
replace the symbols with strings, like so:

 current_situation = "good"
 puts "Everything is fine" if current_situation == "good"
 puts "PANIC!" if current_situation == "bad"

 This gives the same result, but isn’t as efficient. In this example, every mention of “good” and “bad”
creates a new object stored separately in memory, whereas symbols are single reference values that are only
initialized once. In the first code example, only : good and : bad exist, whereas in the second example, you end
up with the full strings of " good ", " good ", and " bad " taking up memory.

 Symbols also result in cleaner code in many situations. Often you’ll use symbols to give method parameters
a name. Having varying data as strings and fixed information as symbols results in easier-to-read code.

 You might want to consider symbols to be literal constants that have no value, but whose name is the
most important factor. If you assign the :good symbol to a variable, and compare that variable with :good in
the future, you’ll get a match. This makes symbols useful in situations where you don’t necessarily want to
store an actual value, but a concept or an option.

 Symbols are particularly useful when creating hashes and you want to have a distinction between keys
and values. For example:

 s = { :key => 'value' }

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

69

 This technique can also be useful when there’s a specification or consistency in which key names to use:

 person1 = { :name => "Fred", :age => 20, :gender => :male }
 person2 = { :name => "Laura", :age => 23, :gender => :female }

 Many methods provided by Ruby classes use this style to pass information into that method (and often
for return values). You’ll see examples of this construction throughout this book.

 Think of symbols as less flexible, straitjacketed strings that are used as identifiers. If it still doesn’t
make complete sense to you, keep an eye out for where we use symbols later on in the book and refer back to
this section.

 Converting Objects to Other Classes
 Numbers, strings, symbols, and other types of data are just objects belonging to various classes. Numbers
belong to Fixnum , Bignum, Float , and/or Integer classes. Strings are objects of the String class, symbols
are objects of the Symbol class, and so on.

 In most cases, you can convert objects between the different classes, so a number can become a string
and a string can become a number. Consider the following:

 puts "12" + "10"
 puts 12 + 10

 1210
 22

 The first line joins two strings, which happen to contain representations of numbers, together, resulting
in 1210 . The second line adds two numbers together, resulting in 22 .

 However, converting these objects to representations in different classes is possible:

 puts "12".to_i + "10".to_i
 puts 12.to_s + 10.to_s

 22
 1210

 The tables have been turned with the to_ methods. The String class provides the to_i and to_f
methods to convert a string to an object of class Integer or Float , respectively. The String class also offers
 to_sym , which converts a string into a symbol. Symbols provide the inverse, with a to_s method to convert
them into strings.

 Likewise, the number classes support to_s to convert themselves into textual representations, as well as
 to_i and to_f to convert to and between integers and floats.

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

70

 Summary
 In this chapter, you’ve looked at the key building blocks of all computer programs—data, expressions, and
logic—and discovered how to implement them with Ruby. The topics in this chapter provide a critical
foundation for every other chapter in this book, as almost every future line of your Ruby code will contain an
expression, an iterator, or some sort of logic.

 ■ Note It’s important to remember that due to the depth of Ruby, I haven’t tried to cover every single
combination of classes and methods here. There’s more than one way to do anything in Ruby, and we’ve looked
at the easiest routes first, before moving on to more advanced techniques later in the book.

 You have not yet exhausted the different types of data within Ruby. Objects and classes, as covered in
Chapter 2 , are actually types of data, too, although they might appear not to be. In Chapter 6 , you’ll directly
manipulate objects and classes in a similar way to how you’ve manipulated the numbers and strings in this
chapter, and the bigger picture will become clear.

 Before moving on to Chapter 4 , where you’ll develop a full but basic Ruby program, let’s reflect on what
we’ve covered so far:

• Variable : A placeholder that can hold (or refer to) an object—from numbers, to text,
to arrays, to objects of your own creation. (Variables were covered in Chapter 2 , but
this chapter extended your knowledge of them.)

• Operator : Something that’s used in an expression to manipulate objects such as
 + (plus), - (minus), * (multiply), and / (divide). You can also use operators to do
comparisons, such as with < , > , and && .

• Integer : A whole number, such as 5 or 923737 .

• Float : A number with a decimal portion, such as 1.0 or 3.141592 .

• Character : A single letter, digit, unit of space, or typographic symbol (punctuation
and the like).

• String : A collection of characters such as Hello, world ! or Ruby is cool .
In Ruby, we represent strings by enclosing them in quotation marks, such as "Hello"
or 'Hello' .

• Constant : A variable with a fixed value. Constant variable names begin with a
capital letter.

• Iterator : A special method such as each, upto , or times that steps through a list
element by element. This process is called iteration, and each, upto , and times are
 iterator methods .

• Interpolation : The mixing of expressions into strings.

• Array : A collection of objects or values with a defined, regular order.

• Hash : A collection of objects or values associated with keys. A key can be used to find
its respective value inside a hash, but items inside a hash have no specific order. It’s a
lookup table, much like the index of a book or a dictionary.

http://dx.doi.org/10.1007/978-1-4842-1278-3_2
http://dx.doi.org/10.1007/978-1-4842-1278-3_6
http://dx.doi.org/10.1007/978-1-4842-1278-3_4
http://dx.doi.org/10.1007/978-1-4842-1278-3_2

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

71

• Regular expression : A way to describe patterns in text that can be matched
and compared against. If you want to play with these and their operation, visit
 http://rubular.com/ for a handy tool.

• Flow control : The process of managing which sections of code to execute based on
certain conditions and states.

• Code block : A section of code, often used as an argument to an iterator method,
that has no discrete name and that is not a method itself, but that can be called and
handled by a method that receives it as an argument. Code blocks can also be stored
in variables as objects of the Proc class (or as lambdas).

• Range : The representation for an entire range of values between a start point and
an endpoint.

• Symbol : A unique reference defined by a string prefixed with a colon (for example,
 :blue or :name). Symbols don’t contain values as variables do, but can be used to
maintain a consistent reference within code. They can be considered as identifiers or
constants that stand alone in what they abstractly represent.

 Now it’s time to put together some of these basic elements and develop a fully working program,
which you’ll do in Chapter 4 .

http://rubular.com/
http://dx.doi.org/10.1007/978-1-4842-1278-3_4

73© Peter Cooper 2016
P. Cooper, Beginning Ruby, DOI 10.1007/978-1-4842-1278-3_4

 CHAPTER 4

 Developing Your First Ruby
Application

 Up to this point, we’ve focused on covering the basics of the Ruby language and how it works at the ground
level. In this chapter, we’ll move into the world of real software development and develop a complete,
though very basic, Ruby application with a basic set of features. Once we’ve developed and tested the basic
application, we’ll look at different ways to extend it to become more useful. On our way, we’ll cover some
new facets of development that haven’t been mentioned so far.

 First, let’s look at the basics of source code organization before moving on to actual programming.

 Working with Source Code Files
 So far in this book, we’ve focused on using the irb immediate Ruby prompt to learn about the language.
However, for developing anything you wish to reuse over and over, it’s essential to store the source code in a file
(or often multiple files) that can be kept on your hard drive, sent over the Internet, kept on a drive, and so forth.

 The mechanism by which you create and manipulate source code files on your system varies by
operating system and personal preference. On Windows, you might be familiar with the included Notepad
software for creating and editing text files. At a Linux prompt, you might be using vi, Emacs, pico, or nano.
Mac users have TextEdit or Xcode at their disposal. Whatever you use, you need to be able to create new files
and save them as plain text so that Ruby can use them properly. In the next few sections, you’re going to look
at some available tools that tie in well with Ruby development.

 Creating a Test File
 The first step to developing a Ruby application is to get familiar with your text editor. If you’re already
familiar with text editors and how they relate to writing and saving source code, skip down to the section
titled “A Simple Source Code File.”

 Visual Studio Code
 In 2015, Microsoft released a free, cross-platform code editor called Visual Studio Code—not to be confused
with their professional Visual Studio suite (Figure 4-1). At https://code.visualstudio.com/ , you can
download Visual Studio Code for Windows, Mac OS X, and Linux, and quickly install and use it as an editor
for your future Ruby code.

https://code.visualstudio.com/

CHAPTER 4 ■ DEVELOPING YOUR FIRST RUBY APPLICATION

74

 After installing and running Visual Studio Code (as seen in Figure 4-1), you can simply type or paste Ruby
code, and use the File ➤ Save menu option to save your text to a location on your drive. It would probably be
good to create a folder called ruby within your home or user folder and save your initial Ruby source code
there (using a filename such as myapp.rb), as this is what the instructions assume in the next section.

 If you would prefer a full IDE (integrated development environment) experience that goes beyond what
even Visual Studio Code offers, you could use RubyMine by JetBrains, although it is a commercial product.
You can find it at https://www.jetbrains.com/ruby/ .

 Alternatives to Linux
 Visual Studio Code is available for Linux , but desktop Linux distributions typically come with at least one
text editor already which you may prefer to use. If you’re working entirely from the shell or terminal, you
might be familiar with vi, Emacs, pico, or nano, and all of these are suitable for editing Ruby source code.
Some editors (such as vi and Emacs) have extensions available that are specifically designed to make
working with Ruby easier. If you’re using Linux with a graphical interface, you might have Kate (KDE
Advanced Text Editor) and/or gedit (GNOME Editor) available. All the preceding are great text and
source code editors. Choose one and learn how to use it, if you don’t choose to use Visual Studio Code or
another IDE.

 Figure 4-1. Using Visual Studio Code

https://www.jetbrains.com/ruby/

CHAPTER 4 ■ DEVELOPING YOUR FIRST RUBY APPLICATION

75

 At this stage, it would be a good idea to create a folder in your home directory called “ruby”, or something
similar, so that you can save your Ruby code there and have it in an easily remembered place.

 A Simple Source Code File
 Once you’ve got an environment where you can edit and save text files, enter the following code:

 x = 2
 print "This program is running okay if 2 + 2 = #{x + x}"

 ■ Note If this code looks like nonsense to you, you’ve skipped too many chapters. Head back to Chapter 3 !
This chapter requires full knowledge of everything covered in Chapter 3 .

 Save the code with a filename of example1.rb in a folder or directory of your choice. It’s advisable that
you create a folder called ruby located somewhere that’s easy to find. On Windows this might be directly off
of your C drive, and on OS X or Linux this could be a folder located in your home directory.

 ■ Note .rb is the de facto standard file extension for Ruby files, much like .php is standard for PHP, .txt is
common for text files, and .jpg is standard for JPEG images.

 Now you’re ready to run the code.

 Running Your Source Code
 Once you’ve created the basic Ruby source code file, example1.rb , you need to get Ruby to execute it.
As always, the process by which to do this varies by operating system. Read the particular following section
that matches your operating system. If your operating system isn’t listed, the OS X and Linux instructions are
most likely to match those for your platform.

 Whenever this book asks you to “run” your program, this is what you’ll be doing each time.

 ■ Note Even though you’re going to be developing an application in this chapter, there are still times
when you’ll want to use irb to follow along with the tests or basic theory work throughout the chapter.
Use your judgment to jump between these two methods of development. irb is extremely useful for testing small
concepts and short blocks of code without the overhead of jumping back and forth between a text editor and
the Ruby interpreter.

 Windows
 Running Ruby from the command line provides the most flexibility and the most predictable behavior. To do
this, load the command prompt using the item in the Start menu within the Ruby menu. This will ensure that
the ruby command will work directly from the prompt. Once the command prompt is loaded, you’ll need to
navigate to the folder containing example1.rb using the cd command, and then type ruby example1.rb .

http://dx.doi.org/10.1007/978-1-4842-1278-3_3
http://dx.doi.org/10.1007/978-1-4842-1278-3_3

CHAPTER 4 ■ DEVELOPING YOUR FIRST RUBY APPLICATION

76

 Mac OS X / macOS
 The simplest method to run Ruby applications on OS X is from Terminal, much in the same way as irb is run.
Terminal was explained in Chapter 1 . If you followed the preceding instructions, continue like so:

 1. Launch Terminal (found in Applications/Utilities , or use Spotlight to launch it).

 2. Use cd to navigate to the folder where you placed example1.rb , like so: cd ~/ruby .
This tells Terminal to take you to the ruby folder located in your home user folder.

 3. Type ruby example1.rb and press Enter to execute the example1.rb Ruby script.

 4. If you get an error such as ruby: No such file or directory -- example1.rb
(LoadError), you aren’t in the same folder as the example1.rb source file, and
you need to establish where you have saved it.

 If you get a satisfactory response from example1.rb , you’re ready to move on to the “Our Application:
A Text Analyzer” section.

 Alternatively, if you’re using Visual Studio Code or Sublime Text, there are other ways you can run your
code directly from the editor. However, it may not always be an option, so it’s essential to at least be familiar
with how to run Ruby scripts from the terminal, too.

 Linux and Other UNIX-Based Systems
 In Linux or other UNIX-based systems , you run your Ruby applications from the shell (that is, within a
terminal window) in the same way that you ran irb. The process to run irb was explained in Chapter 1 , so if
you’ve forgotten how to get that far, you need to recap before continuing, like so:

 1. Launch your terminal emulator (such as xterm or, on Ubuntu, simply
“Terminal”) so you get a Linux shell/command prompt.

 2. Navigate to the directory where you placed example1.rb using the cd command
(for example, cd ~/ruby takes you to the ruby directory located directly under
your home directory, usually /home/<your username>/).

 3. Type ruby example1.rb and press Enter to make Ruby execute the
example1.rb script.

 If you get a satisfactory response from example1.rb , you’re ready to move on.

 TEXT EDITORS VS. SOURCE CODE EDITORS

 Source code is basically the same as plain text, and although you can write your code in a general text
editor, some developers prefer to use a specialist source code editor (typically known as an IDE).

 RubyMine and Sapphire are examples of IDEs specifically created for Ruby developers. They allow you
to edit text, as with any other text editor, but both offer extended features such as source code syntax
coloring and the ability to run code directly from the editor. Sublime Text and Visual Studio Code look like
regular text editors, but also offer some IDE-like functionality, including source code syntax coloring.

 Some developers find source code syntax coloring an invaluable feature, as it makes their code easier
to read. Variable names, expressions, string literals, and other elements of your source code are all
given different colors, which makes it easy to pick them out.

http://dx.doi.org/10.1007/978-1-4842-1278-3_1
http://dx.doi.org/10.1007/978-1-4842-1278-3_1

CHAPTER 4 ■ DEVELOPING YOUR FIRST RUBY APPLICATION

77

 Whether you choose an IDE or a basic text editor depends on your own preference, but it’s worth trying
both. Many developers prefer the freedom of a regular text editor and then running their Ruby programs
from the command line, whereas others prefer to work entirely within a single environment. This book
will not assume, however, that are you using an IDE, so you may have a separate learning curve for
picking up the IDE’s functions as well as Ruby’s in general.

 Our Application: A Text Analyzer
 The application you’re going to develop in this chapter will be a text analyzer. Your Ruby code will read in
text supplied in a separate file, analyze it for various patterns and statistics, and print out the results for the
user. It’s not a 3D graphical adventure or a fancy web site, but text processing programs are the bread and
butter of systems administration and most application development. They can be vital for parsing log files
and user-submitted text on web sites, and manipulating other textual data.

 Ruby is well suited for text and document analysis with its regular expression features, along with the
ease of use of scan and split , and you’ll be using these heavily in your application.

 ■ Note With this application, you’ll be focusing on implementing the features quickly and pragmatically,
rather than developing an elaborate object-oriented structure, any documentation, or a testing methodology.
The sole aim of this project is to build a simple script that performs a number of operations in sequence. I’ll
be covering object orientation and its usage in larger programs in depth in Chapter 6 , and documentation and
testing are covered in Chapter 8 .

 Required Basic Features
 Your text analyzer will provide the following basic statistics :

• Character count

• Character count (excluding spaces)

• Line count

• Word count

• Sentence count

• Paragraph count

• Average number of words per sentence

• Average number of sentences per paragraph

 In the last two cases, the statistics are easily calculated from each other. That is, once you have the total
number of words and the total number of sentences, it becomes a matter of a simple division to work out the
average number of words per sentence.

http://dx.doi.org/10.1007/978-1-4842-1278-3_6
http://dx.doi.org/10.1007/978-1-4842-1278-3_8

CHAPTER 4 ■ DEVELOPING YOUR FIRST RUBY APPLICATION

78

 Building the Basic Application
 When starting to develop a new program, it’s useful to think of the key steps involved. In the past it was
common to draw flow charts to show how the operation of a computer program would flow, but it’s easy to
experiment, change things about, and remain agile with modern tools such as Ruby. Let’s outline the basic
steps as follows:

 1. Load a file containing the text or document you want to analyze.

 2. As you load the file line by line, keep a count of how many lines there were
(one of your statistics taken care of).

 3. Put the text into a string and measure its length to get your character count.

 4. Temporarily remove all whitespace and measure the length of the resulting string
to get the character count excluding spaces.

 5. Split out all the whitespace to find out how many words there are.

 6. Split on full stops to find out how many sentences there are.

 7. Split on double newlines to find out how many paragraphs there are.

 8. Perform calculations to work out the averages.

 Create a new, blank Ruby source file and save it as analyzer.rb in your Ruby folder. As you work
through the next few sections, you’ll be able to fill it out.

 Obtaining Some Dummy Text
 Before you start to code, the first step is to get some test data that your analyzer can process. The first chapter
of Oliver Twist is an ideal piece of text to use, as it’s copyright free and easy to obtain. It’s also of a reasonable
length. You can find the text at http://www.rubyinside.com/ book/oliver.txt for you to copy into a local
text file. Save the file in the same folder you saved example1.rb , and call it text.txt . Your application will
read from text.txt by default (although you’ll make it more dynamic and able to accept other sources of
data later on).

 ■ Tip If the preceding web page is unavailable at the time of reading, use your favorite search engine
to search for “twist workhouse rendered profound thingummy” (without the quotation marks) and you’re
guaranteed to find it. Alternatively, use any large block of text you can obtain.

 If you’re using the Oliver Twist text and want your results to match up roughly with those given as examples
throughout this chapter, make sure you only copy and paste the text including and between these sections:

 Among other public buildings in a certain town, which for many
 reasons it will be prudent to refrain from mentioning

 and

 Oliver cried lustily. If he could have known that he was an
 orphan, left to the tender mercies of church-wardens and
 overseers, perhaps he would have cried the louder.

http://www.rubyinside.com/

CHAPTER 4 ■ DEVELOPING YOUR FIRST RUBY APPLICATION

79

 Loading Text Files and Counting Lines
 Now it’s time to get coding! The first step is to load the file. Ruby provides a comprehensive set of file
manipulation methods via the File class. Whereas other languages can make you jump through hoops to
work with files, Ruby keeps the interface simple. Here’s some code that opens up your text.txt file:

 File.open("text.txt").each { |line| puts line }

 Type this into analyzer.rb and run the code. If text.txt is in the current directory, the result is that
you’ll see the entire text file flying up the screen.

 You’re asking the File class to open up text.txt , and then, much like with an array, you can call
the each method on the file directly, resulting in each line being passed to the inner code block one by
one, where puts sends the line as output to the screen. (In Chapter 9 , you’ll look at how file access and
manipulation work in more detail, along with more robust techniques than are used in this chapter!)

 Edit the code to look like this instead:

 line_count = 0
 File.open("text.txt").each { |line| line_count += 1 }
 puts line_count

 You initialize line_count to store the line count , and then open the file and iterate over each line while
incrementing line_count by 1 each time. When you’re done, you print the total to the screen (approximately
127 if you’re using the Oliver Twist chapter). You have your first statistic!

 You’ve counted the lines, but still don’t have access to the contents of the file to count the words,
paragraphs, sentences, and so forth. This is easy to fix. Let’s change the code a little and add a variable, text ,
to collect the lines together as one as we go:

 text=''
 line_count = 0
 File.open("text.txt").each do |line|
 line_count += 1
 text << line
 end

 puts "#{line_count} lines"

 ■ Note Remember that using { and } to surround blocks is the standard style for single-line blocks, but using
 do and end is preferred for multiline blocks.

 Compared to your previous attempt, this code introduces the text variable and adds each line onto
the end of it in turn. When the iteration over the file has finished—that is, when you run out of lines— text
contains the entire file in a single string ready for you to use.

 That’s a simple-looking way to get the file into a single string and count the lines, but File also has other
methods that can be used to read files more quickly. For example, you can rewrite the preceding code like this:

 lines = File.readlines("text.txt")
 line_count = lines.size
 text = lines.join

 puts "#{line_count} lines"

http://dx.doi.org/10.1007/978-1-4842-1278-3_9

CHAPTER 4 ■ DEVELOPING YOUR FIRST RUBY APPLICATION

80

 Much simpler! File implements a readlines method that reads an entire file into an array, line by line.
You can use this both to count the lines and join them all into a single string.

 Counting Characters
 The second easiest statistic to work out is the number of characters in the file. As you’ve collected the entire
file into the text variable, and text is a string, you can use the length method that all strings supply to get
the exact size of the file, and therefore the number of characters.

 To the end of the previous code in analyzer.rb , add the following:

 total_characters = text.length
 puts "#{total_characters} characters"

 If you ran analyzer.rb now with the Oliver Twist text, you’d get output like this:

 127 lines
 6376 characters

 ■ Note Don’t worry about your results being identical to those shown in this chapter. As long as they’re
roughly in the same ballpark, you’re on the right track.

 The second statistic you wanted to get relating to characters was a character total excluding whitespace.
If you can remember back to Chapter 3 , strings have a gsub method that performs a global substitution
(like a search and replace) upon the string. For example:

 "this is a test".gsub(/t/, 'X')

 Xhis is a XesX

 You can use gsub to eradicate the spaces from your text string in the same way, and then use the
 length method to get the length of the newly “de-spacified” text . Add the following code to analyzer.rb :

 total_characters_nospaces = text.gsub(/\s+/, '').length
 puts "#{total_characters_nospaces} characters excluding spaces"

 If you run analyzer.rb in its current state against the Oliver Twist text, the results should be similar to
the following:

 127 lines
 6376 characters
 5140 characters (excluding spaces)

http://dx.doi.org/10.1007/978-1-4842-1278-3_3

CHAPTER 4 ■ DEVELOPING YOUR FIRST RUBY APPLICATION

81

 Counting Words
 A common feature offered by word processing software is a “word counter.” All it does is count the number of
complete words in your document or a selected area of text. This information is useful to work out how many
pages the document will take up when printed. Many assignments also have requirements for a certain
number of words, so knowing the number of words in a piece of text is certainly useful.

 You can approach this feature in a couple of ways:

 1. Count the number of groups of contiguous letters using scan to create an array of
those groups and then use the length of the array.

 2. Split the text on whitespace and count the resulting fragments using split and size .

 Let’s look at each method in turn to see what’s best. Recall from Chapter 3 that scan works by iterating
over a string of text and finding certain patterns over and over. For example:

 puts "this is a test".scan(/\w/).join

 thisisatest

 In this example, scan looked through the string for anything matching \w , a special term representing
all alphanumeric characters (and underscores), and placed them into an array that you’ve joined together
into a string and printed to the screen.

 You can do the same with groups of alphanumeric characters. In Chapter 3 , you learned that to match
multiple characters with a regular expression, you could follow the character with +. So let’s try again:

 puts "this is a test".scan(/\w+/).join('-')

 this-is-a-test

 This time, scan has looked for all groups of alphanumeric characters and placed them into the array that
you’ve then joined together into a string using - as the separation character.

 To get the number of words in the string, you can use the length or size array methods to count the
number of elements rather than join them together:

 puts "this is a test".scan(/\w+/).length

 4

 Excellent! So what about the split approach?
 The split approach demonstrates a core tenet of Ruby (as well as some other languages, particularly

Perl): there’s always more than one way to do it! Analyzing different methods to solve the same problem is a
crucial part of becoming a good programmer, as different methods can vary in their efficacy.

 Let’s split the string by spaces and get the length of the resulting array, like so:

 puts "this is a test".split.length

 4

http://dx.doi.org/10.1007/978-1-4842-1278-3_3
http://dx.doi.org/10.1007/978-1-4842-1278-3_3

CHAPTER 4 ■ DEVELOPING YOUR FIRST RUBY APPLICATION

82

 As it happens, by default , split will split by whitespace (single or multiple characters of spaces, tabs,
newlines, and so on), and that makes this code shorter and easier to read than the scan alternative.

 So what’s the difference between these two methods? Simply, one is looking for words and returning them
to you for you to count, and the other is splitting the string by that which separates words—whitespace—and
telling you how many parts the string was broken into. Interestingly, these two approaches can yield
different results:

 text = "First-class decisions require clear-headed thinking."
 puts "Scan method: #{text.scan(/\w+/).length}"
 puts "Split method: #{text.split.length}"

 Scan method: 7
 Split method: 5

 Interesting! The scan method is looking through for all blocks of alphanumeric characters, and, sure
enough, there are seven in the sentence. However, if you split by spaces, there are five words. The reason is the
hyphenated words. Hyphens aren’t “alphanumeric,” so scan is seeing “first” and “class” as separate words.

 Returning to analyzer.rb , let’s apply what we’ve learned here. Add the following:

 word_count = text.split.length
 puts "#{word_count} words"

 Running the complete analyzer.rb gets these results:

 127 lines
 6376 characters
 5140 characters (excluding spaces)
 1111 words

 Counting Sentences and Paragraphs
 Once you understand the logic of counting words, counting the sentences and paragraphs becomes easy.
Rather than splitting on whitespace, sentences and paragraphs have different splitting criteria.

 Sentences end with full stops, question marks, and exclamation marks. They can also be separated with
dashes and other punctuation, but we won’t worry about these rare cases here. The split is simple. Instead
of asking Ruby to split the text on one type of character, you simply ask it to split on any of three types of
characters, like so:

 sentence_count = text.split(/\.|\?|!/).length

 The regular expression looks odd here, but the full stop, question mark, and exclamation mark are
clearly visible. Let’s look at the regular expression directly:

 /\.|\?|!/

 The forward slashes at the start and the end are the usual delimiters for a regular expression, so those
can be ignored. The first section is \. , and this represents a full stop. The reason why you can’t just use .
without the backslash in front is because . represents “any character” in a regular expression (as covered
in Chapter 3), so it needs to be escaped with the backslash to identify itself as a literal full stop. This also

http://dx.doi.org/10.1007/978-1-4842-1278-3_3

CHAPTER 4 ■ DEVELOPING YOUR FIRST RUBY APPLICATION

83

explains why the question mark is escaped with a backslash, as a question mark in a regular expression
usually means “zero or one instances of the previous character”—also covered in Chapter 3 . The ! is not
escaped, as it has no other meaning in terms of regular expressions.

 The pipes (| characters) separate the three main characters, which means they’re treated separately
so that split can match one or another of them. This is what allows the split to split on periods, question
marks, and exclamation marks all at the same time. You can test it like so:

 puts "Test code! It works. Does it? Yes.".split(/\.|\?|!/).length

 4

 Paragraphs can also be split apart with regular expressions. Whereas paragraphs in a printed book, such
as this one, tend not to have any spacing between them, paragraphs that are typed on a computer typically
do, so you can split by a double newline (as represented by the special combination \n\n —simply, two
newlines in succession) to get the paragraphs separated. For example:

 text = %q{
 This is a test of
 paragraph one.

 This is a test of
 paragraph two.

 This is a test of
 paragraph three.
 }

 puts text.split(/\n\n/).length

 3

 Let’s add both these concepts to analyzer.rb :

 paragraph_count = text.split(/\n\n/).length
 puts "#{paragraph_count} paragraphs"

 sentence_count = text.split(/\.|\?|!/).length
 puts "#{sentence_count} sentences"

 Calculating Averages
 The final statistics required for your basic application are the average number of words per sentence and the
average number of sentences per paragraph. You already have the paragraph, sentence, and word counts
available in the variables word_count , paragraph_count , and sentence_count , so only basic arithmetic is
required, like so:

 puts "#{sentence_count / paragraph_count} sentences per paragraph (average)"
 puts "#{word_count / sentence_count} words per sentence (average)"

http://dx.doi.org/10.1007/978-1-4842-1278-3_3

CHAPTER 4 ■ DEVELOPING YOUR FIRST RUBY APPLICATION

84

 The calculations are so simple that they can be interpolated directly into the output commands rather
than pre-calculated. When run now, we’d see this:

 127 lines
 6376 characters
 5140 characters excluding spaces
 1111 words
 20 paragraphs
 45 sentences
 2 sentences per paragraph (average)
 24 words per sentence (average)

 ■ Note The astute reader will notice that we’re dividing an integer by an integer in the preceding
code— thus resulting in integer division—without first converting the numbers to floating point numbers to
gain accurate division (recall from Chapter 2 that 10 / 3 == 3, but 10.0 / 3 == 3.3333333333333). In this
case, integer division is fine, as it makes little sense to say that there are, say, 2.8 sentences per paragraph on
average—it’s nicer just to see “3.”

 The Source Code So Far
 You’ve been updating the source code as you’ve gone along, and in each case you’ve put the logic next to the
 puts statement that shows the result to the user. However, for the final version of your basic application, it
would be tidier to separate the logic from the presentation a little and put the calculations in a separate block
of code before everything is printed to the screen.

 There are no logic changes, but the finished source for analyzer.rb looks a little cleaner this way:

 lines = File.readlines("text.txt")
 line_count = lines.size
 text = lines.join
 word_count = text.split.length
 character_count = text.length
 character_count_nospaces = text.gsub(/\s+/, '').length
 paragraph_count = text.split(/\n\n/).length
 sentence_count = text.split(/\.|\?|!/).length

 puts "#{line_count} lines"
 puts "#{character_count} characters"
 puts "#{character_count_nospaces} characters excluding spaces"
 puts "#{word_count} words"
 puts "#{paragraph_count} paragraphs"
 puts "#{sentence_count} sentences"
 puts "#{sentence_count / paragraph_count} sentences per paragraph (average)"
 puts "#{word_count / sentence_count} words per sentence (average)"

http://dx.doi.org/10.1007/978-1-4842-1278-3_2

CHAPTER 4 ■ DEVELOPING YOUR FIRST RUBY APPLICATION

85

 When run, the result will be somewhat like the following:

 127 lines
 6376 characters
 5140 characters excluding spaces
 1111 words
 20 paragraphs
 45 sentences
 2 sentences per paragraph (average)
 24 words per sentence (average)

 If you’ve made it this far and everything’s making sense, congratulations are due. Let’s look at how to
extend our application a little further with some more interesting statistics.

 Adding Extra Features
 Your analyzer has a few basic functions, but it’s not particularly interesting. Line, paragraph, and word
counts are useful statistics, but with the power of Ruby, you can extract significantly more interesting data
from the text. The only limit is your imagination, but in this section, you’ll look at a couple other features you
can implement, and how to do so.

 Percentage of “Useful” Words
 Most written material, including this very book, contains a large number of words that, although providing
context and structure, are not directly useful or interesting. In the last sentence, the words that , and , are , and
 or are not of particular interest, even if the sentence would make less sense to a human without them.

 These words are typically called stop words , and are often ignored by computer systems whose job is
to analyze and search through text, because they aren’t words most people are likely to be searching for
(as opposed to nouns, for example). Google is a perfect example of this, as it doesn’t want to have to store
information that takes up space and that’s generally irrelevant to searches.

 ■ Note For more information about stop words, including links to complete lists, visit
 http://en.wikipedia.org/wiki/Stop_words .

 It can be argued that more “interesting” text should have a lower percentage of stop words and a higher
percentage of useful or interesting words. You can easily extend your application to work out the percentage
of non–stop words in the supplied text.

 The first step is to build up a list of stop words. There are hundreds of possible stop words, but you’ll
start with just a handful. Let’s create an array to hold them:

 stopwords = %w{the a by on for of are with just but and to the my I has some in}

 This code results in an array of stop words being assigned to the stopwords variable.

http://en.wikipedia.org/wiki/Stop_words

CHAPTER 4 ■ DEVELOPING YOUR FIRST RUBY APPLICATION

86

 ■ Tip In Chapter 3 , you saw arrays being defined like so: x = ['a', 'b', 'c'] . However, like many
languages, Ruby has a shortcut that builds arrays quickly with string-separated text. This segment can be
shortened to the equivalent x = %w{a b c} , as demonstrated in the preceding stop word code.

 For demonstration purposes, let’s write a small, separate program to test the concept:

 text = %q{Los Angeles has some of the nicest weather in the country.}
 stopwords = %w{the a by on for of are with just but and to the my in I has some}

 words = text.scan(/\w+/)
 keywords = words.select { |word| !stopwords.include?(word) }

 puts keywords.join(' ')

 When you run this code, you get the following result:

 Los Angeles nicest weather country

 Cool, right? First you put some text into the program, then the list of stop words. Next you get all the
words from text into an array called words . Then you get to the magic:

 keywords = words.select { |word| !stopwords.include?(word) }

 This line first takes your array of words, words , and calls the select method with a block of code to
process for each word (like the iterators you played with in Chapter 3). The select method is available to all
arrays and hashes that return the elements of that array or hash that match the expression in the code block.

 In this case, the code in the code block takes each word via the variable word , and asks the stopwords
array whether it includes any elements equal to word . This is what stopwords.include?(word) does.

 The exclamation mark (!) before the expression negates the expression (an exclamation mark negates
any Ruby expression). The reason for this is you don’t want to select words that are in the stopwords array.
You want to select words that aren’t .

 In closing, then, you select all elements of words that are not included in the stopwords array and
assign them to keywords . Don’t read on until that makes sense, as this type of single-line construction is
common in Ruby programming.

 After that, working out the percentage of non–stop words to all words uses some basic arithmetic:

 ((keywords.length.to_f / words.length.to_f) * 100).to_i

 The reason for the .to_f ’s is so that the lengths are treated as floating decimal point numbers, and the
percentage is worked out more accurately. When you work it up to the real percentage (out of 100), you can
convert back to an integer once again.

 Here’s a look at how we can bring these concepts together with our other program fragments so far:

 stopwords = %w{the a by on for of are with just but and to the my I has some in}
 lines = File.readlines(“text.txt”)
 line_count = lines.size
 text = lines.join

http://dx.doi.org/10.1007/978-1-4842-1278-3_3
http://dx.doi.org/10.1007/978-1-4842-1278-3_3

CHAPTER 4 ■ DEVELOPING YOUR FIRST RUBY APPLICATION

87

 # Count the words, characters, paragraphs and sentences
 word_count = text.split.length
 character_count = text.length
 character_count_nospaces = text.gsub(/\s+/, '').length
 paragraph_count = text.split(/\n\n/).length
 sentence_count = text.split(/\.|\?|!/).length

 # Make a list of words in the text that aren't stop words,
 # count them, and work out the percentage of non-stop words
 # against all words
 all_words = text.scan(/\w+/)
 good_words = all_words.reject{ |word| stopwords.include?(word) }
 good_percentage = ((good_words.length.to_f / all_words.length.to_f) * 100).to_i

 # Give the analysis back to the user
 puts "#{line_count} lines"
 puts "#{character_count} characters"
 puts "#{character_count_nospaces} characters (excluding spaces)"
 puts "#{word_count} words"
 puts "#{sentence_count} sentences"
 puts "#{paragraph_count} paragraphs"
 puts "#{sentence_count / paragraph_count} sentences per paragraph (average)"
 puts "#{word_count / sentence_count} words per sentence (average)"
 puts "#{good_percentage}% of words are non-fluff words"

 With these results:

 127 lines
 6376 characters
 5140 characters (excluding spaces)
 1111 words
 45 sentences
 20 paragraphs
 2 sentences per paragraph (average)
 24 words per sentence (average)
 76% of words are non-fluff words

 Summarizing by Finding “Interesting” Sentences
 Word processors such as Microsoft Word generally have summarization features that can take a long piece of
text and seemingly pick out the best sentences to produce an “at-a-glance” summary. The mechanisms for
producing summaries have become more complex over the years, but one of the simplest ways to develop a
summarizer of your own is to scan for sentences with certain characteristics.

 One technique is to look for sentences that are of about average length and that look like they contain
nouns. Tiny sentences are unlikely to contain anything useful, and long sentences are likely to be simply too
long for a summary. Finding nouns reliably would require systems that are far beyond the scope of this book,
so you could “cheat” by looking for words that indicate the presence of useful nouns in the same sentence,
such as “is” and “are” (for example, “Noun is,” “Nouns are,” “There are x nouns”).

CHAPTER 4 ■ DEVELOPING YOUR FIRST RUBY APPLICATION

88

 Let’s assume that you want to throw away two-thirds of the sentences—a third that are the shortest
sentences and a third that are the longest sentences—leaving you with an ideal third of the original
sentences that are ideally sized for your task.

 For ease of development, let’s create a new program from scratch and transfer your logic over to the
main application later. Create a new program called summarize.rb and use this code:

 text = %q{
 Ruby is a great programming language. It is object oriented
 and has many groovy features. Some people don't like it, but that's
 not our problem! It's easy to learn. It's great. To learn more about Ruby,
 visit the official Ruby web site today.
 }

 sentences = text.gsub(/\s+/, ' ').strip.split(/\.|\?|!/)
 sentences_sorted = sentences.sort_by { |sentence| sentence.length }
 one_third = sentences_sorted.length / 3
 ideal_sentences = sentences_sorted.slice(one_third, one_third + 1)
 ideal_sentences = ideal_sentences.select { |sentence| sentence =~ /is|are/ }
 puts ideal_sentences.join(". ")

 And for good measure, run it to see what happens:

 Ruby is a great programming language. It is object oriented and has many groovy features

 Seems like a success! Let’s walk through the program.
 First you define the variable text to hold the long string of multiple sentences, much like in analyzer.rb .

Next you split text into an array of sentences like so:

 sentences = text.gsub(/\s+/, ' ').strip.split(/\.|\?|!/)

 This is slightly different from the method used in analyzer.rb . There is an extra gsub in the chain, as
well as strip . The gsub gets rid of all large areas of whitespace and replaces them with a single space
 (\s+ meaning “one or more whitespace characters”). This is simply for cosmetic reasons. The strip
removes all extra whitespace from the start and end of the string. The split is then the same as that used
in the analyzer.

 Next you sort the sentences by their lengths, as you want to ignore the shortest third and the longest third:

 sentences_sorted = sentences.sort_by { |sentence| sentence.length }

 Arrays and hashes have the sort_by method, which can rearrange them into almost any order you
want. sort_by takes a code block as its argument, where the code block is an expression that defines what
to sort by. In this case, you’re sorting the sentences array. You pass each sentence in as the sentence
variable, and choose to sort them by their length , using the length method on the sentence. After this line,
 sentences_sorted contains an array with the sentences in length order.

 Next you need to get the middle third of the length-sorted sentences in sentences_sorted , as these
are the ones you’ve deemed to be probably the most interesting. To do this, you can divide the length of the
array by 3 to get the number of elements in a third, and then grab that number of elements from one third

CHAPTER 4 ■ DEVELOPING YOUR FIRST RUBY APPLICATION

89

into the array (note that you grab one extra element to compensate for rounding caused by integer division).
This is done like so:

 one_third = sentences_sorted.length / 3
 ideal_sentences = sentences_sorted.slice(one_third, one_third + 1)

 The first line takes the length of the array and divides it by 3 to get the quantity that is equal to
“a third of the array.” The second line uses the slice method to “cut out” a section of the array to assign to
 ideal_sentences . In this case, assume that the sentences_sorted is six elements long. 6 divided by 3 is 2,
so a third of the array is 2 elements long. The slice method then cuts from element 2 for 2 (plus 1) elements,
so you effectively carve out elements 2, 3, and 4 (remember that array elements start counting from 0). This
means you get the “inner third” of the ideal-length sentences you wanted.

 The penultimate line checks to see if the sentence includes the word is or are , and only accepts each
sentence if so:

 ideal_sentences = ideal_sentences.select { |sentence| sentence =~ /is|are/ }

 It uses the select method, as the stop-word removal code in the previous section did. The expression in
the code block uses a regular expression that matches against sentence , and only returns true if is or are are
present within sentence . This means ideal_sentences now only contains sentences that are in the middle
third lengthwise and contain either is or are .

 The final line simply joins the ideal_sentences together with a full stop and space between them to
make them readable:

 puts ideal_sentences.join(". ")

 Analyzing Files Other Than text.txt
 So far your application has the filename text.txt hard-coded into it. This is acceptable, but it would be a lot
nicer if you could specify, when you run the program, what file you want the analyzer to process.

 ■ Note This technique is only practical to demonstrate if you’re running analyzer.rb from a command
prompt or shell, or if your IDE supports passing in command-line arguments.

 Typically, if you’re starting a program from the command line, you can append parameters onto the end
of the command, and the program will process them. You can do the same with your Ruby application.

 Ruby automatically places any parameters that are appended to the command line when you launch
your Ruby program into a special array called ARGV . To test it out, create a new script called argv.rb and use
this code:

 puts ARGV.join('-')

 From the command prompt, run the script like so:

 ruby argv.rb

CHAPTER 4 ■ DEVELOPING YOUR FIRST RUBY APPLICATION

90

 The result will be blank, but then try to run it like so:

 ruby argv.rb test 123

 test-123

 This time the parameters are taken from ARGV , joined together with a hyphen, and displayed on the
screen. You can use this to replace the reference to text.txt in analyzer.rb by replacing "text.txt" with
 ARGV[0] or ARGV.first (which both mean exactly the same thing— the first element of the ARGV array). The
line that reads the file becomes the following:

 lines = File.readlines(ARGV[0])

 To process text.txt now, you’d run it like so:

 ruby analyzer.rb text.txt

 You’ll learn more about deploying programs and making them friendly to other users, along with ARGV ,
in Chapter 10 .

 ■ Note If you ran the above but specified a file that did not exist, the program would still run but File.readlines
would throw an error. We look at ways to tackle this issue later.

 The Completed Program
 You’ve already got the source for the completed basic program, but it’s time to add all the new, extended
features from the previous few sections to analyzer.rb to create the final version of your text analyzer.

 ■ Note Remember that source code for this book is available in the Source Code area at
 http://www .apress.com , so it isn’t strictly necessary to type in code directly from the book.

 Here we go:

 # analyzer.rb -- Text Analyzer

 stopwords = %w{the a by on for of are with just but and to the my I has some in}
 lines = File.readlines(ARGV[0])
 line_count = lines.size
 text = lines.join

 # Count the words, characters, paragraphs and sentences
 word_count = text.split.length
 character_count = text.length
 character_count_nospaces = text.gsub(/\s+/, '').length
 paragraph_count = text.split(/\n\n/).length
 sentence_count = text.split(/\.|\?|!/).length

http://dx.doi.org/10.1007/978-1-4842-1278-3_10
http://www.apress.com

CHAPTER 4 ■ DEVELOPING YOUR FIRST RUBY APPLICATION

91

 # Make a list of words in the text that aren't stop words,
 # count them, and work out the percentage of non-stop words
 # against all words
 all_words = text.scan(/\w+/)
 good_words = all_words.reject{ |word| stopwords.include?(word) }
 good_percentage = ((good_words.length.to_f / all_words.length.to_f) * 100).to_i

 # Summarize the text by cherry picking some choice
 sentences = text.gsub(/\s+/, ' ').strip.split(/\.|\?|!/)
 sentences_sorted = sentences.sort_by { |sentence| sentence.length }
 one_third = sentences_sorted.length / 3
 ideal_sentences = sentences_sorted.slice(one_third, one_third + 1)
 ideal_sentences = ideal_sentences.select { |sentence| sentence =~ /is|are/ }

 # Give the analysis back to the user
 puts "#{line_count} lines"
 puts "#{character_count} characters"
 puts "#{character_count_nospaces} characters (excluding spaces)"
 puts "#{word_count} words"
 puts "#{sentence_count} sentences"
 puts "#{paragraph_count} paragraphs"
 puts "#{sentence_count / paragraph_count} sentences per paragraph (average)"
 puts "#{word_count / sentence_count} words per sentence (average)"
 puts "#{good_percentage}% of words are non-fluff words"
 puts "Summary:\n\n" + ideal_sentences.join(". ")
 puts "-- End of analysis"

 ■ Note Have you noticed that the good_words line no longer uses select but reject ? It’s a quick exercise to
you to work out how these methods differ and why it has been used here instead of the original code.

 Running the completed analyzer.rb with the Oliver Twist text now results in an output like the following:

 127 lines
 6376 characters
 5140 characters (excluding spaces)
 1111 words
 45 sentences
 20 paragraphs
 2 sentences per paragraph (average)
 24 words per sentence (average)
 76% of words are non-fluff words
 Summary:

 ' The surgeon leaned over the body, and raised the left hand. Think what it is to be a
mother, there's a dear young lamb do. 'The old story,' he said, shaking his head: 'no
wedding-ring, I see. What an excellent example of the power of dress, young Oliver Twist
was. ' Apparently this consolatory perspective of a mother's prospects failed in producing
its due effect. ' The surgeon had been sitting with his face turned towards the fire: giving
the palms of his hands a warm and a rub alternately. ' 'You needn't mind sending up to me,

CHAPTER 4 ■ DEVELOPING YOUR FIRST RUBY APPLICATION

92

if the child cries, nurse,' said the surgeon, putting on his gloves with great deliberation.
She had walked some distance, for her shoes were worn to pieces; but where she came from, or
where she was going to, nobody knows. ' He put on his hat, and, pausing by the bed-side on
his way to the door, added, 'She was a good-looking girl, too; where did she come from
 -- End of analysis

 Try analyzer.rb with some other text of your choice (a web page, perhaps), and see if you can make
improvements to its features. This application is rife for improvement with the concepts you’ll learn over the
next several chapters, so keep it in mind if you’re looking for some code to play with.

 CODE COMMENTS

 You might notice text in source code prefixed with # symbols. These are comments and are generally
used in programs for the benefit of the original developer(s), along with anyone else who might need
to read the source code. They’re particularly useful for making notes to remind you of why you took a
particular course of action that you’re likely to forget in the future.

 You can place comments in any Ruby source code file on their own lines, or even at the end of a line of
code. Here are some valid examples of commenting in Ruby:

 puts “2+2 = #{2+2}” # Adds 2+2 to make 4
 # A comment on a line by itself

 As long as a comment is on a line by itself, or is the last thing on a line, it’s fine. Comment liberally, and
your code will be easier to understand, especially if you come back to it a long time later.

 Summary
 In this chapter, you developed a complete, basic application that realized a set of requirements and desired
features. You then extended it with some nonessential but useful elaborations. Ruby makes developing quick
applications a snap.

 The application you’ve developed in this chapter has demonstrated that if you have a lot of text to process
or a number of calculations to do, and you’re dreading doing the work manually, Ruby can take the strain.

 To keep things simple, we didn’t use any methods or flow control in our application. It simply went
through a process step by step to give a set of results. This is the simplest form of a useful program. More
complex programs will undoubtedly involve flow control and methods, and we’ll be covering those in more
depth in the following chapters.

 Chapter 4 marks the end of the practical programming exercises in the first part of this book. Next,
in Chapter 5 , you’ll take a look at the history of Ruby, Ruby’s community of developers, and the historical
reasons behind certain features in Ruby. You’ll also learn how to get help from and become part of the Ruby
community. Code makes up only half the journey to becoming a great programmer!

http://dx.doi.org/10.1007/978-1-4842-1278-3_4
http://dx.doi.org/10.1007/978-1-4842-1278-3_5

93© Peter Cooper 2016
P. Cooper, Beginning Ruby, DOI 10.1007/978-1-4842-1278-3_5

 CHAPTER 5

 The Ruby Ecosystem

 As with other programming languages, Ruby has its own culture and “ecosystem.” Ruby’s ecosystem is
made up of thousands of developers, maintainers, documenters, bloggers, companies, and those who help
sponsor or fund the development of the language.

 Some programmers who are new to a language assume that learning about a language’s history and
community is pointless, but the most successful developers quickly learn about the ecosystem and get
involved in it. The motivations behind a language’s development can provide significant clues about the best
approaches to take when solving problems, and understanding the vocabulary of other developers greatly
helps when it comes to looking for help and advice.

 This chapter takes a break from the code-focused tutorials to bring you up to speed with how the Ruby
world works, the motivations behind the language, and the best ways to find help and get involved with the
community. If you’re new to software development, this chapter will also explain some of the terms and
phrases used by developers relating to software development.

 You’ll also take a quick look at Ruby’s history, Ruby’s creator, the idiomatic processes and terminology
that Ruby developers use, and the technologies that have taken Ruby from being relatively unknown to being
a first-class programming language of significance.

 Ruby’s History
 Ruby is relatively young in the world of programming languages, having been first developed in 1993,
making it roughly the same age as both Perl and Python. Among the most popular programming languages
still in use today, Fortran, for example, was developed in 1953, and C was developed in the early 1970s.
Ruby’s relative modernity is an asset rather than a downfall, however. From day one it was designed with
object-oriented programming in mind, and its syntax has remained consistent over time. Older languages
have frequently been forced to complicate their syntax and change radically to address modern concepts
such as object orientation, networking, and graphical environments.

 Unlike languages that are formed out of pure necessity or research, Ruby’s birth came from a sense of
frustration with existing languages. Despite the presence of so many established programming languages,
a plucky Japanese computer scientist felt development was becoming ever more complex and tiresome,
and decided some fun had to be injected into the world of programming languages.

 The Land of the Rising Sun
 Ruby began life in Japan as the creation of Yukihiro Matsumoto, known more commonly as Matz. Unlike that
of most language developers, Matz’s motivation for Ruby was fun and a principle of “least surprise,” in order
to improve overall developer productivity. He couldn’t find a language that resonated with his mindset, so
he took his own outlook about how programming should work and created Ruby (named after the gemstone
in homage to the “Perl” programming language).

CHAPTER 5 ■ THE RUBY ECOSYSTEM

94

 A longtime object-oriented programming fan, Matz felt object orientation was the best model to adopt.
However, unlike other languages, such as Perl, object orientation with Ruby wouldn’t be an afterthought,
but act as the core foundation for the language. Everything (within reason) would be an object, and methods
would fill the roles of the procedures and functions developers had come to expect in older procedural
languages. As Matz himself said in a 2001 interview, “I wanted a language that was more powerful than Perl,
and more object-oriented than Python. That’s why I decided to design my own language.”

 In December 1995, Matz released the first public alpha version of Ruby, and soon thereafter a
community began to form in Japan. However, although Ruby quickly became relatively popular in Japan,
it struggled to gain a foothold elsewhere.

 ■ Note In software development, the terms alpha , beta , and gamma , among others, are used to denote the
development stage of a piece of software. An initial release that’s not for general use is often called an alpha.
A release that implements most of the required features, but might not be entirely tested or stable, is often
called a beta, although this term is becoming muddied by the plethora of web sites and games now more
permanently using the term “beta” on otherwise fully released products and services.

 In 1996, the development of Ruby was opened up significantly, and a small team of core developers and
other contributors began to form alongside the more general community of Ruby developers. Ruby 1.0 was
released on December 25, 1996. These core developers help Matz develop Ruby and submit their patches
(adjustments to the code) and ideas to him. Matz continues to act as a “benevolent dictator” who ultimately
controls the direction of the language, despite the ever-widening influence of other developers.

 ■ Note Although developing software privately is still common, many projects are now worked upon in a
public manner, allowing them to be extended and worked upon by any competent programmer. In many cases
this makes it possible for other developers to fork the project (taking the existing code and splitting it into their
own version).

 Ruby’s Influences
 In developing Ruby, Matz was heavily influenced by the programming languages he was familiar with.
Larry Wall, the developer of the popular Perl language, was a hero of Matz’s, and Perl’s principle of there is
more than one way to do it (TMTOWTDI) is present in Ruby.

 Some languages, such as Python, prefer to provide more rigid structures and present a clean method
for developers to have a small number of options to perform a certain task. Ruby allows its developers to
solve problems in any one of many ways. This allows the language great flexibility, and combined with the
object-oriented nature of the language, Ruby is highly customizable.

 In terms of its object-oriented nature, Ruby has also been heavily influenced by Smalltalk, a prolific
object-oriented language developed in the 1970s. As in Smalltalk, almost everything in Ruby is an object,
and Ruby also gives programmers the ability to change many details of the language’s operation within their
own programs on the fly. This feature is called reflection .

 To a lesser extent, Python, Lisp, Eiffel, Ada, and C++ have also influenced Ruby. These influences
demonstrate that Ruby isn’t a language that’s afraid to take on the best ideas from other languages. This is
one of many reasons why Ruby is such a powerful and dynamic language. The implementation of many
of these features has also made the migration from other languages to Ruby significantly easier. Learning
Ruby means, to a great extent, learning the best features of other programming languages for free. (Refer to
Appendix A for a comparison between Ruby and other languages.)

CHAPTER 5 ■ THE RUBY ECOSYSTEM

95

 Go West
 As a language initially developed for Matz’s own use in Japan, the initial documentation was entirely in
Japanese, locking most non-Japanese users out. Although Ruby has always used English for its keywords
(such as print, puts, if , and so on) like most programming languages, it wasn’t until 1997 that the initial
documentation actually written in English began to be produced.

 Matz first began to officially promote the Ruby language in English in late 1998 with the creation of the
 ruby-talk mailing list, still one of the best places to discuss the Ruby language, as well as a useful resource
with more than 300,000 messages archived at the list’s web site (http://blade.nagaokaut.ac.jp/ruby/
ruby-talk/index.shtml).

 ■ Note You can subscribe to ruby-talk yourself by sending an e-mail containing “subscribe” followed by
your first and last name to ruby-talk-ctl@ruby-lang.org .

 An official English language web site soon followed in late 1999 with the creation of ruby-lang.org
(http://www.ruby-lang.org/), which is still Ruby’s official English language web site (see Figures 5-1
and 5-2 for a comparison of the official site between then and now).

 Figure 5-1. The official English language Ruby homepage in 2000

http://blade.nagaokaut.ac.jp/ruby/ruby-talk/index.shtml)
http://blade.nagaokaut.ac.jp/ruby/ruby-talk/index.shtml)
http://mailto:ruby-talk-ctl@ruby-lang.org/
http://www.ruby-lang.org/)

CHAPTER 5 ■ THE RUBY ECOSYSTEM

96

 Ruby failed to catch on with all but a few ardent developers until 2000 and 2001 (with the main Ruby
Usenet newsgroup comp.lang.ruby being created in May 2000), and even then the English-speaking Ruby
community was tiny. Matz didn’t consider this to be important though, and was even surprised that other
people found his language useful, having only created it to fit his own way of thinking.

 However, the exposure of Ruby to the larger audience of software developers continued to be low. IBM
published an article with a brief overview of Ruby and an interview with Matz in 2000, and the much-revered
 Dr. Dobb’s Journal published an article by Dave Thomas and Andy Hunt with a similar introduction in
January 2001.

 Despite Ruby’s obvious power, it appeared as if Python and PHP were going to win the race to become
“the next Perl” as general scripting and web languages, respectively, up until 2004. But then everything
changed when a young Dane released Ruby on Rails, a Ruby-powered web application framework that
quickly changed the perception of Ruby in the worldwide development community. Before we look at Rails,
however, we need to see how else Ruby has flourished in the last several years.

 Alternative Ruby Implementations
 Until around 2007, the official Ruby implementation as developed by Matz and the Ruby core team (known
as MRI—Matz’s Ruby Interpreter) was the only reliable way to run Ruby scripts. Since then, some alternative
Ruby implementations have become viable for certain uses.

 Figure 5-2. The official Ruby homepage as of 2015

CHAPTER 5 ■ THE RUBY ECOSYSTEM

97

 This book does not focus on any implementations other than the official ones for learning the language,
but as the alternative implementations may have relevance for you in the future, here are a few of the most
popular ones:

• JRuby (http://jruby.org/): A Ruby implementation that runs on the Java Virtual
Machine (JVM). Even in 2009, it was on par with Ruby 1.9 in terms of performance,
and since then has proven to be faster than MRI in many situations. As a Java-based
implementation, JRuby gives Ruby developers access to the whole Java ecosystem,
including Java libraries, distribution tools, and application servers. Conversely,
developers on the JVM platform get access to Ruby’s benefits.

• IronRuby (http://ironruby.net/): An implementation of Ruby for Microsoft’s
.NET platform. The head developer was John Lam, who worked for Microsoft. As of
2012, the project appeared to no longer be regularly updated.

• Rubinius (http://rubini.us/): A major attempt at implementing Ruby in Ruby. It can
run a lot of Ruby 1.8 code and is used in many production situations where high levels
of concurrency or JIT are required. It is under active development as of mid-2016.

 In practical terms, as of mid-2016, both JRuby and Rubinius are serious alternatives to MRI for
day-to-day and production use, although they each have their pros and cons. JRuby’s support for all things
Java makes it an attractive option in settings where a Java ecosystem is well established. For anyone new to
Ruby, however, I would strongly recommend sticking with MRI.

 Ruby on Rails
 In the last several years, it has become impossible to publish any book or article about Ruby without at least
mentioning Ruby on Rails (or Rails , for short). Rails is a web application framework that has propelled the
popularity of Ruby outside of Japan from a humble core of avid developers to hundreds of thousands of
developers all now interested in using the language. This section examines Rails, explains why it’s important,
and discusses how its presence has changed the whole dynamic of the Ruby ecosystem.

 ■ Note An application framework is a set of conventions, structures, and systems that provide an underlying
structure to make application development easier. Ruby on Rails is such a framework for web application
development.

 I’ll be covering Ruby on Rails development briefly (the framework advances too quickly for a full tutorial
in a long-lasting book like this one) in Chapter 13 , but let’s first look at the motivation behind the framework
and how it has changed the entire Ruby landscape.

 Why Rails Came into Existence
 37signals (http://www.37signals.com/), a successful web software company recently renamed Basecamp,
was founded in 1999 initially as a web design agency that promoted the use of clean, fast, and functional
designs over the gee-whiz Flash-based web sites that were popular at the time. With only two cofounders
running the entire company, they quickly realized they needed some tools to help them run their business
efficiently. They tried some off-the-shelf software but found nothing that matched their needs, and found
most solutions to be bloated and complex. They felt their attitude toward web design should also be applied
to applications, and in mid-2003 decided to develop their own project management tool.

http://jruby.org/):
http://ironruby.net/):
http://rubini.us/)
http://dx.doi.org/10.1007/978-1-4842-1278-3_13
http://www.37signals.com/)

CHAPTER 5 ■ THE RUBY ECOSYSTEM

98

 As designers rather than coders, 37signals turned to the services of David Heinemeier Hansson, a student
in Copenhagen, Denmark, to develop their project management application. Rather than use the then-common
tools such as Perl or PHP, Hansson was convinced that 37signals could develop the application far more quickly
and completely by using Ruby. Previously a PHP coder, Hansson was beginning to feel the pain of using PHP
for large web application development, and felt a new direction should be sought.

 As development on the nascent application (called Basecamp) progressed, the team members showed
it to others in the industry and quickly realized from the responses they heard that they should release the
application to the public rather than keep it for their own use.

 With a successful public release of Basecamp in February 2004—only about four months after
beginning the project—the development methodology adopted by 37signals and Hansson was proven, and
37signals began a rapid transition into an application development company, with Hansson eventually
becoming a partner at the company.

 Ruby proved to be the silver bullet that powered the rapid development of Basecamp. Hansson used
Ruby’s object orientation and reflection features to build a framework that made developing database-driven
web applications easier than ever before. This framework became known as Ruby on Rails, and was first
released to the public in July 2004. 37signals continued to develop new products quickly using the power of
the new framework.

 Like Ruby itself, the Ruby on Rails framework didn’t immediately experience an explosion of popularity,
but found a small number of ardent fans who began to realize its power and, in many cases, wished to
replicate 37signals’ success.

 How the Web (2.0) Was Won
 Ruby on Rails wasn’t a wallflower for long. 2005 was an epic year for Ruby on Rails, and Ruby’s popularity
exploded alongside it. The initial fans of Ruby on Rails had begun blogging feverishly about the technology
and were winning over converts with an unintentional, but surprisingly potent, grassroots viral marketing
campaign.

 In January 2005, Slashdot, the world’s most popular technology community web site at the time,
published its first post mentioning Ruby on Rails, and since then has run scores of stories on the technology,
each encouraging existing PHP, Perl, and Python developers to give Ruby and Ruby on Rails a try.

 In March 2005, Hansson announced the development of the first commercial Rails book, which came
out in beta PDF form in May of that year. In September 2005, the print version of the book went on sale and
immediately topped the Amazon.com chart for programming books.

 In the space of a year, Rails books were under development and being released by a multitude of
publishers; tens of thousands of blog posts had been made about the technology; hundreds of thousands of
screencasts (video tutorials demonstrating how to use Rails) had been watched online; and David Heinemeier
Hansson had won numerous awards, including Google and O’Reilly’s “Best Hacker of the Year 2005.” Tens of
thousands of developers were suddenly flocking to Ruby on Rails and, as a consequence, to Ruby.

 The Ruby ecosystem was thrust into the limelight, especially on the back of the then-popular Web 2.0
concept, a coined term that referred to a supposed second generation in Internet-based services, and was
often used to refer to the growing culture of blogs, social networking, wikis, and other user-content–driven
web sites. As Ruby and Rails made these sites easy to develop, many developers used these tools to their
advantage to get ahead in the Web 2.0 field and beyond.

 The Open Source Culture
 When Ruby was initially developed, Matz didn’t have a specific development culture in mind. He developed
the language to be for his own use and to fit his own mindset. For the first couple years, he kept the language
mostly to himself. Most of today’s culture relating to how to develop software with Ruby has evolved in the
last several years and is partly shared with other programming languages.

CHAPTER 5 ■ THE RUBY ECOSYSTEM

99

 A common element of the Ruby development culture that’s crucial to understand is the open source
movement.

 ■ Tip Feel free to skip this section and move on to “Where and How to Get Help” if you’re already familiar
with the concepts surrounding open source.

 What Is Open Source?
 If you’ve used Linux or downloaded certain types of software, you might be familiar with the term open source .
Simply, open source means that the source code to an application or library is made available publicly for
other people to look at and use. There might be restrictions on what people can do with the code (generally
via a license), but it’s publicly viewable. Much like Linux, Ruby, along with nearly all its libraries, is released
under an open source license—in contrast to, say, Microsoft Windows, whose source code isn’t readily
available (although Microsoft is continuing to make more moves toward open source in recent years).

 The terms of Ruby’s license don’t require that any applications you produce with Ruby also need to
be made open source. You can develop proprietary “closed source” applications with Ruby and never let
anyone else see the code. Choosing whether to release your code as open source or not can be a tough
decision.

 There are often shades of gray in the open source vs. closed source decision. When 37signals developed
the first Ruby on Rails–powered application, Basecamp, they didn’t release the source openly, but they
did extract the Ruby on Rails framework and release that as open source. The result is that their company
has received a lot of publicity, and 37signals has hired some great coders who worked on Ruby on Rails for
free, benefiting everybody. Software products such as the popular Apache httpd and nginx web servers and
the PostgreSQL database system are also available under varying open source licenses, and are routinely
improved by unpaid coders.

 The open source community is one of sharing knowledge freely and collaborating to improve the
systems and services that most of us use. Although proprietary software will always have its place, open
source is rapidly becoming the de facto way to develop programming languages, libraries, and other non-
application types of software.

 Understanding open source is an important key to understanding the Ruby community. Although many
developers don’t necessarily open source the code to their applications, they’ll often release the tools and
code tricks to the community so that they can benefit from the peer review and popularity that results.

 Releasing your code as open source isn’t necessarily a bad business decision. It could actually improve
the quality of your code and tools, and make you much better known in the industry.

 Where and How to Get Help
 This book will help you learn all the essentials about Ruby and more besides, but it’s often useful to get more
timely or domain-specific assistance while coding. In this section, you’ll look at a few ways that you can get
assistance from the large community of Ruby developers. (There’s also a more succinct and complete list of
resources in Appendix B that you might prefer for future reference.)

 Mailing Lists
 For decades, mailing lists have been popular havens for discussion about programming languages. Favored
by the more technical members of any programming language’s culture, they’re a good place to ask
questions about the internals or future of the language, along with esoteric queries that only a true language
uber-geek could answer. They are not, however, suited for basic queries.

CHAPTER 5 ■ THE RUBY ECOSYSTEM

100

 Ruby has three official mailing lists for English speakers to which you can subscribe, as follows:

• ruby-talk : Deals with general topics and questions about Ruby

• ruby-core : Discussion of core Ruby issues, specifically about the development
of the language

• ruby-doc : Discussion of the documentation standards and tools for Ruby
(rarely used)

 Further information about these lists is available at http://www.ruby-lang.org/en/ community/
mailing-lists/ .

 Lists are also available in Japanese, French, and Portuguese, and these are similarly listed on the
first page in the preceding paragraph. The Japanese mailing lists, being composed of some of the most
experienced Ruby developers, are often read by English speakers using translation software. Information
about this is also available at the aforementioned web page. Ruby’s mailing lists appear to be getting quieter
year by year, but do still work.

 Internet Relay Chat (IRC)
 Internet Relay Chat is a real-time Internet chat system that allows potentially thousands of people to
congregate into “channels” to discuss various topics. The immediacy of real-time chat makes IRC suitable
for quick questions, although participants are often surprisingly willing to help users with deeper problems
(see Figure 5-3 for an example of an IRC channel in operation). The only downside is that you might get no
response at all and be left reading a conversation already in progress.

 Figure 5-3. A sample conversation in the Ruby on Rails IRC channel

 IRC has proven popular with Ruby developers, and there are three notable channels where
almost–24-hour support for Ruby and Ruby on Rails is available, as follows:

• For Ruby language discussion : #ruby on the irc.freenode.net server

• For Ruby on Rails discussion : #rubyonrails on the irc.freenode.net server

http://www.ruby-lang.org/en/

CHAPTER 5 ■ THE RUBY ECOSYSTEM

101

 To use IRC, historically it has been necessary to download and install an IRC “client” onto your
computer, which allows you to get onto the real-time IRC channels. Although the installation of this software
is beyond the scope of this book, I recommend the following clients for Windows, Linux, and OS X:

• Windows : mIRC (http://www.mirc.com/).

• Mac OS X : LimeChat (htt p://limechat.net/mac/). LimeChat was written using
Ruby and it’s a great demonstration of a Ruby-powered GUI app.

• Linux/UNIX : XChat (http://www.xchat.org/) or Irssi (http://irssi.org/).

 One benefit of the Freenode IRC server that the #ruby-lang and #rubyonrails channels are located
on is that you can access the chatroom via a web browser if you prefer. You can do this at https://webchat.
freenode.net/ .

 Be sure to respect that other users in the channel are not solely there to answer your questions;
otherwise you might be deemed a “help vampire” and be ignored! However, with care, you can easily talk to
some of the biggest names in the Ruby world on these channels.

 ■ Note To learn more about IRC, see http://en.wikipedia.org/wiki/Internet_Relay_Chat .

 Documentation
 There’s a significant amount of documentation available on the Web (as well as within Ruby itself) for Ruby
developers. The site at http://www.ruby-doc.org/ provides a web-based rendering of the documentation
that comes with Ruby 1.8 through to 2.3, and allows you to look up references for all of the internal classes
and the standard library.

 The API documentation for the current stable release of Ruby is available at http://www .ruby-doc.
org/core/ . Produced automatically from the Ruby source code with Ruby’s built-in documentation tool,
 rdoc , the structure of the documentation isn’t immediately obvious. Usually you can choose between
viewing documentation for certain files that make up Ruby, documentation for each different base class, or
documentation for certain methods. You don’t get a logical order to follow, and there are no deep tutorials.
This sort of documentation is for reference purposes only.

 Most Ruby libraries and applications use a similar scheme for their documentation, and the links to
this are made available on their official sites. For example, Ruby on Rails’ API documentation is available at
 http://api.rubyonrails.org/ .

 Forums
 Forums make up some of the most popular web sites on the Internet. Unlike newsgroups or mailing lists,
which tend to be the domain of more technical people, forums provide extremely easy access to a non–real-
time discussion on the Web. Forums are a particularly good place to ask more basic questions and to get
general advice.

http://www.mirc.com/)
http://limechat.net/mac/
http://www.xchat.org/)
http://irssi.org/)
https://webchat.freenode.net/
https://webchat.freenode.net/
http://en.wikipedia.org/wiki/Internet_Relay_Chat
http://www.ruby-doc.org/
http://api.rubyonrails.org/
http://www.ruby-doc.org/core/
http://www.ruby-doc.org/core/

CHAPTER 5 ■ THE RUBY ECOSYSTEM

102

 Several Ruby forums are available to try:

• Ruby-Forum.com (http://www.ruby-forum.com/): Ruby-Forum.com provides a
forum style view onto some of the popular Ruby mailing lists. This means it isn’t
a true forum in the strictest sense, but people used to forums will appreciate the
structure.

• SitePoint Ruby Forums (http://community.sitepoint.com/c/ruby): SitePoint is a
popular web development site that provides forums on many development-related
topics. Their Ruby forum is well populated and friendly.

• Rails Forum (http://railsforum.com/): Rails Forum is a popular forum focused on
Ruby on Rails that began in 2006. It’s particularly friendly to beginners.

 Joining the Community
 One of the reasons for programming communities is for people to get help from others who are experienced
with the language, but also to share knowledge and to develop useful tools and documentation together.
Solely “taking” from the community is natural at the start of a developer’s experience with a new language,
but it’s essential to give something back once you’ve developed some knowledge of your own. Ruby
developers are proud that their community is one of the friendliest and easiest to get involved with, and
there are a number of ways to make a mark.

 Give Help to Others
 In the previous section, we looked at the ways that you can get help from other Ruby developers, but once
you’ve gained a certain amount of Ruby knowledge, you’ll be able to start helping people yourself. You can
participate on the IRC chatrooms, forums, and mailing lists, and begin to answer some of the questions for
those with lesser knowledge than yourself.

 Helping others isn’t always the selfless, time-consuming act it might seem at first. Often, questions are
asked that relate to your knowledge but require you to work out something new or identify a new solution
to a problem you’ve already solved. My personal experience with helping people in the IRC chatrooms has
been that my mind has been constantly stretched. Although sometimes I might have the best answer, other
times I might give an inaccurate or confusing answer that’s then corrected by someone else, helping me to
gain new insights.

 Don’t be afraid to dive in and try to help others. If you feel your answer is right, even if it’s not, it’s likely
that several people will try to help, and the Ruby community is generally forgiving of such errors. In the Ruby
 community , effort is often prized above prowess.

 Contribute Code
 Once you begin to develop your own Ruby applications, you might find features missing in the applications
or libraries you wish to use, and you’ll either develop your own or work on upgrading those that already
exist. If a project is open source, you should be able to supply your changes and upgrades back to the project,
meaning that you improve the quality of the software for the entire community. Other than benefiting others,
this also means your code is likely to be extended and improved itself, and you’ll be able to reap even more
benefit than if you kept your code to yourself.

 All open source Ruby libraries and applications have someone who is in charge of maintaining them,
and if no guidance is provided on the project’s web site, simply contact the maintainer and see whether you
can contribute your code.

http://www.ruby-forum.com/)
http://community.sitepoint.com/c/ruby):
http://railsforum.com/)

CHAPTER 5 ■ THE RUBY ECOSYSTEM

103

 Alternatively, if you don’t feel confident enough to supply code, but see large gaps in the documentation
for a project—perhaps even in Ruby itself—maintainers are often ecstatic if you’ll supply documentation.
You can learn more about how to document Ruby programs in Chapter 7 . Many coders aren’t good at
documentation or don’t have the time to complete it, so if you have a skill for it, contributing documentation
to a project could make you very popular indeed!

 News Sites and Sources
 There are a variety of sites and podcasts through which you can get up-to-date Ruby news and articles. The
following are some of the most popular:

• RubyFlow (http://www.rubyflow.com/): This is a Ruby community link blog where
all of the items are supplied by other Ruby developers. You’ll find a lot of interesting
Ruby-related announcements and links to tutorials scattered across the Web. Of
course, if you write anything helpful of your own, you can post it to RubyFlow and get
the attention of the Ruby community.

• Ruby Weekly (http://rubyweekly.com/): A weekly e-mail newsletter dedicated to
sharing the latest from the entire Ruby world.

• Ruby5 (https://ruby5.codeschool.com/): A podcast originally started by Gregg
Pollack but now hosted by a rotating cast. Ruby5 covers the gamut of Ruby-related
news in five minutes or so on a weekly basis.

• Ruby on Reddit (http://reddit.com/r/ruby): The Ruby section of the popular
social bookmarking and discussion site aggregates most of the best Ruby blogs into a
single page.

 By visiting these sites, you’ll quickly learn about hundreds of other Ruby resources, tricks, and sources
of documentation. If you comment on these sites and begin to update a blog yourself with your experiences
of Ruby, you’ll quickly become established in the Ruby community.

 Summary
 In this chapter, we’ve taken a break from coding to focus on the culture, community, and ecosystem
surrounding the Ruby language. Understanding the larger world around the Ruby language is extremely useful,
as it’s from this community that most developers will get assistance, advice, code, and even paying work.

 Being able to get help and give help in return benefits the community, helps the cause of Ruby to
progress, and ultimately helps with your own programming skills.

 The Ruby community is important and friendly to new Ruby developers, making it ideal to get involved
as soon as possible when you begin to learn Ruby. Make sure you use the resources the community provides
to the fullest as you learn Ruby and begin to develop applications. A single book cannot turn anyone into a
Ruby expert, but a collection of valuable resources and participation in the community can.

 Refer to Appendix B for a larger collection of URLs and links to other Ruby resources that are
available online.

http://dx.doi.org/10.1007/978-1-4842-1278-3_7
http://www.rubyflow.com/)
http://rubyweekly.com/
http://www.railsenvy.com/)
http://reddit.com/r/ruby

 PART 2

 The Core of Ruby

 This part of the book walks you through the remaining essential elements of Ruby and goes into
more detail about some previously seen aspects of the language. By the end of Part 2, you’ll be able
to develop Ruby applications complete with complex class and object arrangements of your own;
you’ll know how to test, document, and deploy your applications; and you’ll use databases and
external data sources to feed your applications.

107© Peter Cooper 2016
P. Cooper, Beginning Ruby, DOI 10.1007/978-1-4842-1278-3_6

 CHAPTER 6

 Classes, Objects, and Modules

 In Chapter 2 we dived straight into the principles of object orientation, the method of representing concepts
in Ruby by using classes and objects . Since then we’ve looked at Ruby’s standard classes, such as String and
 Array ; worked with them; and then branched off to look at Ruby’s logic and other core features.

 In this chapter the focus is back onto object orientation, but rather than looking at the concepts
from afar, we’ll be getting into the details. We’ll look at why classes and objects behave the way they do,
why object orientation is a viable development tool, how you can implement classes to match your own
requirements, and how to override and extend the classes Ruby provides by default. Finally, you’ll implement
a basic dungeon text adventure to demonstrate how several real-world concepts can combine into an easily
maintainable set of interconnected classes.

 Why Use Object Orientation?
 Object orientation is not the only development approach with which to develop software. The procedural
style of programming predates it, and continues to be used in languages such as C. Whereas object
orientation dictates that you define concepts and processes as classes from which you can create objects,
programming procedurally means you focus on the steps required to complete a task instead, without
paying particular attention to how the data is managed.

 Imagine two developers within a single softwaredevelopment company who are vying to be respected
as the most knowledgeable programmer in the company. Capitalizing on the rivalry, their boss issues both
of them the same tasks and uses the best code in each case. There’s only one difference between the two
programmers. One follows the principles of object-oriented development, and the other is a procedural
programmer coding without using classes and objects.

 For a forthcoming project, the boss demands some code that can work out the perimeter and area of
various shapes. She says the shapes required are squares and triangles.

 The procedural programmer rushes away and quickly comes up with four obvious routines:

 def perimeter_of_square(side_length)
 side_length * 4
 end

 def area_of_square(side_length)
 side_length * side_length
 end

 def perimeter_of_triangle(side1, side2, side3)
 side1 + side2 + side3
 end

http://dx.doi.org/10.1007/978-1-4842-1278-3_2

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

108

 def area_of_triangle(base_width, height)
 base_width * height / 2
 end

 ■ Note Remember, it’s not necessary to use return to return values from methods in Ruby. The last
expression within the method is used as the return value by default. If it feels right for the situation or seems
clearer to you, however, you can certainly use return with impunity!

 Finishing first, the procedural programmer is sure his code will be chosen.
 The object-oriented programmer takes longer. He recognizes that the specifications might change in

the future, and that it would be useful to define a Shape class and then create classes that would inherit from
 Shape . This would mean that if extra features needed to be added to shapes in general, the code would be
ready. He submit his initial solution:

 class Shape
 end

 class Square < Shape
 def initialize(side_length)
 @side_length = side_length
 end

 def area
 @side_length * @side_length
 end

 def perimeter
 @side_length * 4
 end
 end

 class Triangle < Shape
 def initialize(base_width, height, side1, side2, side3)
 @base_width = base_width
 @height = height
 @side1 = side1
 @side2 = side2
 @side3 = side3
 end

 def area
 @base_width * @height / 2
 end

 def perimeter
 @side1 + @side2 + @side3
 end
 end

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

109

 ■ Note This code might seem complex and alien at this time, but we’ll be covering the techniques used here
later in this chapter. For now, simply recognize the structure of laying down classes and methods, as covered in
Chapter 2 .

 The procedural programmer scoffs at the object-oriented solution. “Why all the pointless assignments
of data? That object-oriented code is 90 percent structure and 10 percent logic!”

 The boss is impressed by the shortness of the procedural code, but decides to try out both versions for
herself. She quickly spots a big difference:

 puts area_of_triangle(6,6)
 puts perimeter_of_square(5)

 18
 20

 my_square = Square.new(5)
 my_triangle = Triangle.new(6, 6, 7.81, 7.81, 7.81)
 puts my_square.area
 puts my_square.perimeter
 puts my_triangle.area
 puts my_triangle.perimeter

 25
 20
 18
 23.43

 The boss notices that with the object-oriented code, she can create as many shapes as she wants in a
logical way, whereas the procedural code expects her to have a mental note of the shapes she wants to work
with. She isn’t without her concerns, though.

 “More lines of code means more time required,” she says. “Is it worth taking the object-oriented route if
it means more lines of code, more time, and more hassles?”

 The object-oriented developer has heard this complaint before, and immediately springs into action.
“Try dealing with a large number of random shapes,” he says.

 The boss isn’t entirely up to date with modern development trends, but when she discovers that many
new types of shapes can be produced easily by copying and pasting the existing classes with some minor
tweaks, she begins to be won over. She also realizes that if a shape could be stored as an object referenced
by a single variable, and that if each shape class accepted the same methods, the type of shape presented
wouldn’t matter (this quality is often referred to as polymorphism). She could call the perimeter or area
method on any shape without worry. The procedural code, on the other hand, is just a jumble of different
routines, and the developer would be forced to keep track of the different types of shapes to know which
procedures to run. The Shape class also provides a way to give general functionality to all the different types
of shapes if it’s necessary in the future. The boss knows which code to choose!

 “Object-oriented code requires a little more setup, but when it comes to scaling that code to fit real-life
requirements, there’s no contest,” she says.

http://dx.doi.org/10.1007/978-1-4842-1278-3_2

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

110

 ■ Note It’s worth noting that in the latter triangle example, the data provided is erroneous (how can a side
be 7.81 units long, yet the base be 6 units long?). The beauty of object-oriented programming, however, is that
since the triangle is a single object, it would be easy to add a “validation” routine to check the parameters used
to define the object and reject or recalculate those that are incorrect. With the procedural code, the developer
should perform any “checks” manually every time he wants to work with a triangle built from fresh data!

 The basic advantage with object-oriented programming is that even if there’s more structure involved in
setting up your code, it’s easy for a non-expert to understand how classes and objects relate, and it’s easier to
maintain and update the code to deal with real-life situations.

 Object-Orientation Basics
 Let’s recap the basic knowledge of classes and objects that you acquired over the past few chapters:

 A class is a blueprint for objects. You have only one class called Shape , but with it you can create multiple
 instances of shapes (Shape objects), all of which have the methods and attributes defined by the Shape class.

 An object is an instance of a class. If Shape is the class, then x = Shape.new creates a new Shape instance
and makes x reference that object. You would then say x is a Shape object, or an object of class Shape .

 Local, Global, Object, and Class Variables
 In Chapter 2 you created some classes and added methods to them. To recap, here’s a simple demonstration
of a class with two methods, and how to use it. First, here’s the class itself:

 class Square
 def initialize(side_length)
 @side_length = side_length
 end

 def area
 @side_length * @side_length
 end
 end

 Next, let’s create some square objects and use their area methods:

 a = Square.new(10)
 b = Square.new(5)
 puts a.area
 puts b.area

 100
 25

 The first method—and when I say “first,” I mean the first method in our example; the actual order of
methods in code is irrelevant—in the Square class is initialize. initialize is a special method that’s
called when a new object based on that class is created. When you call Square.new(10) , the Square class
creates a new object instance of itself, and then calls initialize on that object.

http://dx.doi.org/10.1007/978-1-4842-1278-3_2

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

111

 In this case, initialize accepts a single argument into side_length as passed by Square.new(10) , and
assigns the number 10 (now referenced by side_length) to a variable called @side_length . The @ symbol
before the variable name is important in this case. But why? To understand why some variables are prefixed
with certain symbols requires understanding that there are multiple types of variables, such as local, global,
object, and class variables.

 Local Variables
 In previous examples you’ve created variables simply, like so:

 x = 10
 puts x

 10

 In Ruby, this sort of basic variable is called a local variable . It can be used only in the same place it is
defined. If you jump to using an object’s methods or a separate method of your own, the variable x doesn’t
come with you. It’s considered to be local in scope . That is, it’s only present within the local area of code.
Here’s an example that demonstrates this:

 def basic_method
 puts x
 end

 x = 10
 basic_method

 This example defines x to equal 10 , and then jumps to a local method called basic_method . If you ran
this code through irb, you would get an error like this:

 NameError: undefined local variable or method 'x' for main:Object

 What’s happening is that when you jump to basic_method , you’re no longer in the same scope as the
variable x that you created. Because x is a local variable, it exists only where it was defined. To avoid this
problem, it’s important to remember to use only local variables where they’re being directly used.

 Here’s an example where you have two local variables with the same name but in different scopes:

 def basic_method
 x = 50
 puts x
 end

 x = 10
 basic_method
 puts x

 50
 10

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

112

 This demonstrates that local variables live entirely in their original scope. You set x to 10 in the main
code, and set x to 50 inside the method, but x is still 10 when you return to the original scope. The x variable
inside basic_method is not the same x variable that’s outside of the method. They’re separate variables, distinct
within their own scopes.

 Global Variables
 In opposition to local variables, Ruby can also use global variables . As their name suggests, global variables
are available from everywhere within an application, including inside classes or objects.

 Global variables can be useful, but aren’t commonly used in Ruby. They don’t mesh well with the ideals
of object-oriented programming, as once you start using global variables across an application, your code
is likely to become dependent on them. Because the ability to separate blocks of logic from one another is a
useful aspect of object-oriented programming, global variables are not favored.

 You define global variables by putting a dollar sign ($) in front of the variable name, like so:

 def basic_method
 puts $x
 end

 $x = 10
 basic_method

 10

 $x is defined as a global variable, and you can use it anywhere in your application.

 ■ Note The $ and @ characters that denote global variables and object variables (as demonstrated in the next
section) are technically called sigils . Many developers are, however, unaware of this. This book is not beyond
giving you knowledge that can make you more popular at cocktail parties!

 Instance or Object Variables
 Where local variables are specific to the local scope, and global variables have global scope, instance
variables (also known as object variables) are so named because they have scope within, and are associated
with, the current object. A demonstration of this concept was shown at the start of this section with the
 Square class:

 class Square
 def initialize(side_length)
 @side_length = side_length
 end

 def area
 @side_length * @side_length
 end
 end

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

113

 Instance variables are prefixed with an @ symbol. In the Square class, you assign the side_length
provided to the class to @side_length. @side_length , as an instance variable, is then accessible from any
other method inside that object. That’s how the area method can then use @side_length to calculate the
area of the square represented by the object:

 a = Square.new(10)
 b = Square.new(5)
 puts a.area
 puts b.area

 100
 25

 The results are different, even though the code to work out the area in both cases is @side_length
* @side_length . This is because @side_length is an instance variable associated only with the current object
or instance.

 ■ Tip If you didn’t fully understand the Shape/Square/Triangle example at the start of this chapter, now
would be a good time to look back at it, as it used several object variables to develop its functionality.

 Class Variables
 The last major type of variable is the class variable . The scope of a class variable is within the class itself, as
opposed to within specific objects of that class. Class variables start with two @ symbols (@@) as opposed to
the single @ symbol of instance variables.

 Class variables can be useful for storing information relevant to all objects of a certain class. For
example, you could store the number of objects created so far in a certain class using a class variable like so:

 class Square
 def initialize
 if defined?(@@number_of_squares)
 @@number_of_squares += 1
 else
 @@number_of_squares = 1
 end
 end

 def self.count
 @@number_of_squares
 end
 end
 a = Square.new
 b = Square.new
 puts Square.count

 2

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

114

 Because @@number_of_squares is a class variable, it’s already defined each time you create a new object
(except for the first time, but that’s why you check to see if it’s defined, and if not, give it an initial value of 1).

 ■ Note In recent years, class variables have begun to fall out of favor among professional Ruby developers.
Fashions come and go in the Ruby world but ultimately enable developers to work together more smoothly.
Since all classes are themselves objects within Ruby, it has become more popular to simply use object variables
within the context of class methods in order to keep things simple.

 Class Methods versus Instance Methods
 In your Square class you defined two methods: initialize and area . Both are instance methods, as they
relate to, and operate directly on, an instance of an object. Here’s the code again:

 class Square
 def initialize(side_length)
 @side_length = side_length
 end

 def area
 @side_length * @side_length
 end
 end

 Once you’ve created a square with s = Square.new(10) , you can use s.area to get back the area of the
square represented by s . The area method is made available in all objects of class Square , so it’s considered
to be an instance method .

 However, methods are not just useful to have available on object instances. It can be useful to have
methods that work directly on the class itself. In the previous section you used a class variable to keep a count
of how many square objects had been created, and it would be useful to access the @@number_of_squares
class variable in some way other than through Square objects.

 Here’s a simple demonstration of a class method:

 class Square
 def self.test_method
 puts "Hello from the Square class!"
 end

 def test_method
 puts "Hello from an instance of class Square!"
 end

 Square.test_method
 Square.new.test_method

 Hello from the Square class!
 Hello from an instance of class Square!

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

115

 This class has two methods. The first is a class method, and the second is an instance method, although
both have the same name of test_method . The difference is that the class method is denoted with self. ,
where self represents the current class, so def self.test_method defines the method as being specific to
the class. However, with no prefix, methods are automatically instance methods.

 Alternatively, you could define the method like so:

 class Square
 def self.test_method
 puts "Hello from the Square class!"
 end
 end

 The style you use (ClassName.method_name versus self.method_name) comes down to personal
preference. Using self.method_name (as in self.test_method) doesn’t require you to restate the class name
over and over, but ClassName.method_name (as in Square.test_method) is a closer match to what you’ll be
using to call that method later on.

 ■ Note Throughout the rest of this book, I’ll mostly use the self.method_name style, but you can use
whichever style you like in your own code. The main disadvantage of using the class name rather than self is
that using self makes it easier to rename the class later on without having to update the names of all your
class methods.

 Class methods give you the mechanism to properly implement the “object counter” hinted at earlier:

 class Square
 def initialize
 if defined?(@@number_of_squares)
 @@number_of_squares += 1
 else
 @@number_of_squares = 1
 end
 end

 def self.count
 @@number_of_squares
 end
 end

 Let’s give it a try:

 a = Square.new
 puts Square.count
 b = Square.new
 puts Square.count
 c = Square.new
 puts Square.count

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

116

 1
 2
 3

 Notice you don’t refer to a , b , or c at all to get the count. You just use the Square.count class method
directly. Consider it as if you’re asking the class to do something that’s relevant to the class as a whole, rather
than asking the objects.

 Inheritance
 An interesting object-oriented programming concept is inheritance , which allows you to generate a taxonomy
of classes and objects. If you consider all living things as a class called LivingThing (see Figure 6-1), under
that class you could have (and let’s keep this simple, biologists!) Plant and Animal classes. Under Animal
you’d have Mammal , Fish , Amphibian , and so forth. Digging into Mammal , you could work through Primate and
 Human . A Human is a living thing, a Human is an Animal , a Human is a Mammal , and so forth, but each level down is
more specific and targeted than that above it. This is class inheritance in action! The same system applied to
the Shape example where Triangle and Square inherited directly from Shape .

 Figure 6-1. An example of a hierarchy of “living things”

 The benefit of inheritance is that classes lower down the hierarchy get the features of those higher up,
but can also add specific features of their own. The basic “all living things” class is so generic that the only
functionality you could give to it is a basic “living or dead” method. However, at the animal level, you could
add methods such as eat , excrete , or breathe . At the human level you’d inherit all this functionality but be
able to add human methods and qualities such as sing , dance , and love .

 Ruby’s inheritance features are similarly simple. Any class can inherit the features and functionality of
another class, but a class can inherit only from a single other class. Some other languages support multiple
inheritance , a feature that allows classes to inherit features from multiple classes, but Ruby doesn’t support
this. Multiple inheritance can cause some confusing situations—for instance, classes could inherit from one
another in an endless loop—and the efficacy of multiple inheritance is debatable.

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

117

 Let’s look at how inheritance works in code form:

 class ParentClass
 def method1
 puts "Hello from method1 in the parent class"
 end

 def method2
 puts "Hello from method2 in the parent class"
 end
 end

 class ChildClass < ParentClass
 def method2
 puts "Hello from method2 in the child class"
 end
 end

 my_object = ChildClass.new
 my_object.method1

 Hello from method1 in the parent class

 my_object.method2

 Hello from method2 in the child class

 First you create the ParentClass with two methods, method1 and method2 . Then you create ChildClass
and make it inherit from ParentClass using the ChildClass < ParentClass notation. Last, you create an
object instance of ChildClass and call its method1 and method2 methods.

 The first result demonstrates inheritance perfectly. ChildClass has no method1 of its own, but because
it has inherited from ParentClass , and ParentClass has a method1 , it uses it.

 However, in the second case, ChildClass already has a method2 method, so the method2 method
supplied by the parent class is ignored. In many cases, this is ideal behavior, as it allows your more specific
classes to override behavior provided by more general classes. However, in some situations you might want a
child method to call an inherited method and do something with the result.

 Consider some basic classes that represent different types of people:

 class Person
 def initialize(name)
 @name = name
 end

 def name
 return @name
 end
 end

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

118

 class Doctor < Person
 def name
 "Dr. " + super
 end
 end

 In this case you have a Person class that implements the basic functionality of storing and returning
a person’s name. The Doctor class inherits from Person and overrides the name method. Within the name
method for doctors, it returns a string starting with Dr. , appended with the name as usual. This occurs
by using super , which looks up the inheritance chain and calls the method of the same name on the next
highest class. In this example, you only have two tiers, so using super within the name method in Doctor
then uses the name method in Person .

 The benefit of using inheritance in this way is that you can implement generic functionality in generic
classes, and then implement only the specific functionality that more specific child classes require. This
saves a lot of repetition and means that if you make changes to the parent classes, child classes will inherit
these changes too. A good example of this might be if you changed Person to take two arguments, firstname
and lastname . The Doctor class wouldn’t need to be changed at all to support this change. With one child
class this doesn’t seem too important, but when you have hundreds of different classes in an application, it
pays to cut down on repetition!

 ■ Note In the Ruby world, the concept of cutting down on repetition is commonly called DRY , meaning Don’t
Repeat Yourself. If you can code something once and reuse it from multiple places, that’s usually the best way
to practice “DRY”.

 Overriding Existing Methods
 Because it’s a dynamic language, one clever thing you can do with Ruby is override existing classes and
methods . For example, consider Ruby’s String class. As covered in Chapter 3 , if you create a string, you end
up with an object of class String ; for example:

 x = "This is a test"
 puts x.class

 String

 You can call a number of different methods upon the String object stored in x :

 puts x.length
 puts x.upcase

 14
 THIS IS A TEST

http://dx.doi.org/10.1007/978-1-4842-1278-3_3

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

119

 Let’s stir things up a bit by overriding the length method of the String class:

 class String
 def length
 20
 end
 end

 Many newcomers to Ruby, even experienced developers, initially fail to believe this will work, but the
results are exactly as the code dictates:

 puts "This is a test".length
 puts "a".length
 puts "A really long line of text".length

 20
 20
 20

 Some libraries and extensions (add-ons) to Ruby override the methods supplied by the core classes to
extend the functionality of Ruby in general. However, this demonstration shows why it’s always necessary to
tread with caution and be aware of what’s going on in your application. If you were relying on being able to
measure the length of strings, and the length method gets overridden, you’re going to have a hard time!

 You should also note that you can override your own methods. In fact, you’ve probably been doing it a
lot already by following these examples in irb:

 class Dog
 def talk
 puts "Woof!"
 end
 end

 my_dog = Dog.new
 my_dog.talk

 Woof!

 class Dog
 def talk
 puts "Howl!"
 end
 end

 my_dog.talk

 Howl!

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

120

 In this example, you created a basic class with a simple method, then reopened that class and redefined
a method on the fly. The results of the redefinition were made effective immediately, and my_dog began to
howl as a result.

 This ability to reopen classes and add and redefine methods is relatively unique among object-
oriented languages. Although it allows you to perform a number of interesting tricks (some of which
you’ll see in action later), it can also cause the same sections of code to act in different ways depending on
whether certain classes upon which you depend were changed in the application, as demonstrated by your
redefinition of String ’s length method previously.

 ■ Note You might have noticed this class-reopening technique in action in some of our earlier examples where
you created methods in one example, only to add new methods in a later example. If running under irb or within
the same program, reopening a class lets you add new methods or change old ones without losing anything.

 Reflection and Discovering an Object’s Methods
 Reflection is the process by which a computer program can inspect, analyze, and modify itself while it’s
running and being used. Ruby takes reflection to an extreme and allows you to change the functionality of
great swathes of the language itself while running your own code.

 It’s possible to query almost any object within Ruby for the methods that are defined within it. This is
another part of reflection.

 a = "This is a test"
 puts a.methods.join(' ')

 <=> == === eql? hash casecmp + * % [] []= insert length size bytesize empty? =~ match
succ succ! next next! upto index rindex replace clear chr getbyte setbyte byteslice scrub
scrub! freeze to_i to_f to_s to_str inspect dump upcase downcase capitalize swapcase
upcase! downcase! capitalize! swapcase! hex oct split lines bytes chars codepoints
reverse reverse! concat << prepend crypt intern to_sym ord include? start_with? end_with?
scan ljust rjust center sub gsub chop chomp strip lstrip rstrip sub! gsub! chop! chomp!
strip! lstrip! rstrip! tr tr_s delete squeeze count tr! tr_s! delete! squeeze! each_line
each_byte each_char each_codepoint sum slice slice! partition rpartition encoding force_
encoding b valid_encoding? ascii_only? unpack encode encode! to_r to_c unicode_normalize
unicode_normalize! unicode_normalized? to_json to_json_raw to_json_raw_object >>= <<=
between? nil? !~ class singleton_class clone dup itself taint tainted? untaint untrust
untrusted? trust frozen? methods singleton_methods protected_methods private_methods
public_methods instance_variables instance_variable_get instance_variable_set instance_
variable_defined? remove_instance_variable instance_of? kind_of? is_a? tap send public_
send respond_to? extend display method public_method singleton_method define_singleton_
method object_id to_enum enum_for equal? ! != instance_eval instance_exec __send__ __id__

 The methods method on any object (unless it has been overridden, of course!) returns an array of
methods made available by that object. Due to Ruby’s heavily object-oriented structure, that’s usually a
significantly larger number of methods than those you have specifically defined yourself!

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

121

 ■ Note The preceding method list may vary depending on your environment and the specific Ruby interpreter
you’re using. As long as your list is similar , you’re doing fine.

 The results reveal some other reflective methods too. For example, protected_methods , private_methods ,
and public_methods all reveal methods encapsulated in different ways (more on this in the next section).

 Another interesting method is instance_variables . It returns the names of any object variables
associated with an instance (as opposed to class variables):

 class Person
 attr_accessor :name, :age
 end

 p = Person.new
 p.name = "Fred"
 p.age = 20
 puts p.instance_variables

 @age
 @name

 At this stage you might not see the value in these reflective methods, but as you progress toward
becoming more proficient with Ruby and object orientation, they’ll become more important. This book
doesn’t go deeply into the arts of metaprogramming and advanced reflective techniques, as although they’re
interesting topics, they aren’t widely used until you reach a significant level of competence, and are therefore
beyond the scope of a beginner’s book.

 Encapsulation
 Encapsulation describes the way in which data and methods can be bundled together into objects that
operate as a single unit. Within Ruby, however, the term is often used to describe the ability for an object to
have certain methods and attributes available for use publicly (from any section of code), but for others to be
visible only within the class itself or by other objects of the same class.

 The rationale for encapsulation is that some developers believe you should make as few methods as
possible available from your classes, so that even if you choose to rewrite the internals of your classes, you
can maintain a few methods that interface between other elements of your system and your classes and
objects. Encapsulation helps you keep a lot of functionality within your classes, but gives you the security
of only having a few ways for the outside world to manipulate your object’s data (thus maintaining the
overall “single unit” of data and code bound together). This can allow you to extend and change your classes
without the worry that other elements of your application will break.

 Here’s an example class that represents a person:

 class Person
 def initialize(name)
 set_name(name)
 end

 def name
 @first_name + ' ' + @last_name
 end

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

122

 def set_name(name)
 first_name, last_name = name.split(/\s+/)
 set_first_name(first_name)
 set_last_name(last_name)
 end

 def set_first_name(name)
 @first_name = name
 end

 def set_last_name(name)
 @last_name = name
 end
 end

 In previous examples, you would have written this with a single attr_accessor :name and simply assigned
the name to an object variable. Unfortunately, though, real-life constraints often require a different approach.

 In this case, the first name and last name are stored separately within each Person object, in object
variables called @first_name and @last_name . When a Person object is created, the name is split into
two halves and each is assigned to the correct object variable by set_first_name and set_last_name ,
respectively. One possible reason for such a construction could be that although you want to work with
complete names in your application, the database design might demand you have first names and last
names in separate columns. Therefore, you need to hide this difference by handling it in the class code, as in
the preceding code.

 ■ Note A side benefit of this approach is that you can perform checks on the data before assigning it to the
object variables. For example, in the set_first_name and set_last_name methods, you could check that the
names contain enough characters to be considered valid names. If not, you can then raise an error.

 The code appears to work fine:

 p = Person.new("Fred Bloggs")
 puts p.name

 Fred Bloggs

 However, you still seem to have some problems:

 p = Person.new("Fred Bloggs")
 p.set_last_name("Smith")
 puts p.name

 Fred Smith

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

123

 Uh-oh! You wanted to abstract the first name/last name requirement and only allow full names to be set
or retrieved. However, the set_first_name and set_last_name are still public and you can use them directly
from any code where you have Person objects. Luckily, encapsulation lets you solve the problem:

 class Person
 def initialize(name)
 set_name(name)
 end

 def name
 @first_name + ' ' + @last_name
 end

 private

 def set_name(name)
 first_name, last_name = name.split(/\s+/)
 set_first_name(first_name)
 set_last_name(last_name)
 end

 def set_first_name(name)
 @first_name = name
 end

 def set_last_name(name)
 @last_name = name
 end
 end

 The only difference in the Person class from the first time you created it is that the keyword private has
been added. private tells Ruby that any methods declared in this class from there on should be kept private.
This means that only code within the object’s methods can access those private methods, whereas code
outside of the class cannot. For example, this code no longer works:

 p = Person.new("Fred Bloggs")
 p.set_last_name("Smith")

 private method 'set_last_name' called for #<Person:0x337b68
 @last_name="Bloggs", @first_name="Fred">

 The opposite of the private keyword is public . You could put private before one method, but then
revert to public methods again afterwards using public , like so:

 class Person
 def anyone_can_access_this
 ...
 end

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

124

 private
 def this_is_private
 ...
 end

 public
 def another_public_method
 ...
 end
 end

 You can also use private as a command by passing in symbols representing the methods you want to
keep private, like so:

 class Person
 def anyone_can_access_this; ...; end

 def this_is_private; ...; end

 def this_is_also_private; ...; end

 def another_public_method; ...; end

 private :this_is_private, :this_is_also_private
 end

 ■ Note Ruby supports ending lines of code with semicolons (;) and allows you to put multiple lines of code
onto a single line (for example, x = 10; x += 1 ; putsx). In this case, it’s been done to save on lines of code in
the example, although it’s not considered good style in production-quality Ruby code.

 The command tells Ruby that this_is_private and this_is_also_private are to be made into
 private methods. Whether you choose to use private as a directive before methods or as a command
specifying the method names directly is up to you, and is another of many technically unimportant stylistic
decisions you’ll make as a Ruby programmer. However, it’s important to note that in the preceding example,
the private declaration has to come after the methods are defined.

 Ruby supports a third form of encapsulation (other than public and private) called protected that
makes a method private, but within the scope of a class rather than within a single object. For example, you
were unable to directly call a private method outside the scope of that object and its methods. However, you
can call a protected method from the scope of the methods of any object that’s a member of the same class:

 class Person
 def initialize(age)
 @age = age
 end

 def age
 @age
 end

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

125

 def age_difference_with(other_person)
 (self.age - other_person.age).abs
 end

 protected :age
 end

 fred = Person.new(34)
 chris = Person.new(25)
 puts chris.age_difference_with(fred)
 puts chris.age

 9
 protected method 'age' called for #<Person:0x1e5f28 @age=25> (NoMethodError)

 The preceding example uses a protected method so that the age method cannot be used directly,
except within any method belonging to an object of the Person class. However, if age were made private ,
the preceding example would fail because other_person.age would be invalid. That’s because private
makes methods accessible only by methods of a specific object.

 Note that when you use age directly, on the last line, Ruby throws an exception.

 ■ Note Some Ruby developers do not believe marking methods as private or protected provides any
significant value and that, indeed, it prevents developers from having free and open access to their code. We’re
not going to push a particular opinion here, but you may wish to avoid using these features until you have a
strong opinion either way.

 Polymorphism
 Polymorphism is the concept of writing code that can work with objects of multiple types and classes at
once. For example, the + method works for adding numbers, joining strings, and adding arrays together.
What + does depends entirely on what type of things you’re adding together.

 Here’s a Ruby interpretation of a common demonstration of polymorphism:

 class Animal
 attr_accessor :name

 def initialize(name)
 @name = name
 end
 end

 class Cat < Animal
 def talk
 "Meaow!"
 end
 end

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

126

 class Dog < Animal
 def talk
 "Woof!"
 end
 end

 animals = [Cat.new("Flossie"), Dog.new("Clive"), Cat.new("Max")]
 animals.each do |animal|
 puts animal.talk
 end

 Meaow!
 Woof!
 Meaow!

 In this example, you define three classes: an Animal class, and Dog and Cat classes that inherit from
 Animal . In the code at the bottom, you create an array of various animal objects: two Cat objects and a Dog
object (whose names are all processed by the generic initialize method from the Animal class).

 Next, you iterate over each of the animals, and on each loop you place the animal object into the local
variable, animal . Last, you run puts animal.talk for each animal in turn. As the talk method is defined on
both the Cat and Dog class, but with different output, you get the correct output of two “Meaow!”s and two
“Woof!”s.

 This demonstration shows how you can loop over and work on objects of different classes, but get the
expected results in each case if each class implements the same methods.

 If you were to create new classes under the Cat or Dog classes with inheritance (for example, class
Labrador < Dog), then Labrador.new.talk would still return “ Woof !” thanks to inheritance.

 Some of Ruby’s built-in standard classes (such as Array , Hash , String , and so on) have polymorphic
methods of their own. For example, you can call the to_s method on many built-in classes to return the
contents of the object as a string:

 puts 1000.to_s
 puts [1,2,3].to_s
 puts ({ :name => 'Fred', :age => 10 }).to_s

 1000
 [1,2,3]
 {:name => ‘Fred’, :age => 10}

 The output isn’t particularly useful in this case, but being able to rely on most objects to return a string
with to_s can come in useful in many situations, such as when putting representations of objects into strings.

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

127

 Nested Classes
 In Ruby, it’s possible to define classes within other classes. These are called nested classes. Nested classes
are useful when a class depends on other classes, but those classes aren’t necessarily useful anywhere else.
They can also be useful when you want to separate classes into groups of classes rather than keep them all
distinct. Here’s an example:

 class Drawing
 class Line
 end

 class Circle
 end
 end

 Nested classes are defined in the same way as usual. However, they’re used differently.
 From within Drawing , you can access the Line and Circle classes directly, but from outside the Drawing

class, you can only access Line and Circle as Drawing::Line and Drawing::Circle . For example:

 class Drawing
 def self.give_me_a_circle
 Circle.new
 end

 class Line
 end

 class Circle
 def what_am_i
 "This is a circle"
 end
 end
 end

 a = Drawing.give_me_a_circle
 puts a.what_am_i
 a = Drawing::Circle.new
 puts a.what_am_i
 a = Circle.new
 puts a.what_am_i

 This is a circle
 This is a circle
 NameError: uninitialized constant Circle

 a = Drawing.give_me_a_circle calls the give_me_a_circle class method, which returns a new
instance of Drawing::Circle. Next, a = Drawing::Circle.new gets a new instance of Drawing::Circle
directly, which also works. The third attempt, a = Circle.new , does not work, however, because Circle
doesn’t exist. That’s because as a nested class under Drawing , it’s known as Drawing::Circle instead.

 You’re going to use nested classes in a project at the end of this chapter, where you’ll see how they work
in the scope of an entire program.

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

128

 The Scope of Constants
 In Chapter 3 you looked at constants : special variables whose value(s) are unchanging and permanent
throughout an application, such as Pi = 3.141592 . Here’s an example:

 def circumference_of_circle(radius)
 2 * Pi * radius
 end

 Pi = 3.141592
 puts circumference_of_circle(10)

 62.83184

 In this sense, a constant appears to work like a global variable, but it’s not. Constants are defined within the
scope of the current class and are made available to all child classes, unless they’re overridden. For example:

 Pi = 3.141592

 class OtherPlanet
 Pi = 4.5
 def self.circumference_of_circle(radius)
 radius * 2 * Pi
 end
 end

 puts OtherPlanet.circumference_of_circle(10)

 90.0

 puts OtherPlanet::Pi

 4.5

 puts Pi

 3.141592

 This example demonstrates that constants have scope within the context of classes. The OtherPlanet
class has its own definition of Pi . However, if you hadn’t redefined it there, the original Pi would have been
available to OtherPlanet , as the OtherPlanet class is defined within the global scope.

 The second section of the preceding example also demonstrates that you can interrogate constants
within other classes directly. OtherPlanet::Pi refers directly to the Pi constant within OtherPlanet .

http://dx.doi.org/10.1007/978-1-4842-1278-3_3

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

129

 Modules, Namespaces, and Mix-Ins
 Modules provide a structure to collect Ruby classes, methods, and constants into a single, separately named
and defined unit. This is useful so you can avoid clashes with existing classes, methods, and constants, and
also so that you can add (mix in) the functionality of modules into your classes. First, we’ll look at how to use
modules to create namespaces to avoid name-related clashes.

 Namespaces
 One common feature used in Ruby is the ability to include code situated in other files into the current
program (this is covered in depth in the next chapter). When including other files, you can quickly run into
conflicts, particularly if files or libraries you’re including then include multiple files of their own. You cannot
guarantee that no file that’s included (or one that’s included in a long chain of includes) will clash with code
you’ve already written or processed.

 Take this example:

 def random
 rand(1000000)
 end

 puts random

 The random method returns a random number between 0 and 999,999. This method could be in a
remote file where it’s easily forgotten, which would cause problems if you had another file you included
using require that implemented a method like so:

 def random
 (rand(26) + 65).chr
 end

 This random method returns a random capital letter.

 ■ Note (rand(26) + 65).chr generates a random number between 0 and 25 and adds 65 to it, giving
a number in the range of 65 to 90. The chr method then converts a number into a character using the ASCII
standard where 65 is A, through to 90, which is Z. You can learn more about the ASCII character set at
 http://en.wikipedia.org/wiki/ASCII , or refer to Chapter 3 , where this topic was covered in more detail.

 Now you have two methods called random . If the first random method is in a file called number_stuff.rb
and the second random method is in a file called letter_stuff.rb , you’re going to hit problems:

 require './number_stuff'
 require './letter_stuff'

 puts random

 Which version of the random method is called?

http://en.wikipedia.org/wiki/ASCII
http://dx.doi.org/10.1007/978-1-4842-1278-3_3

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

130

 ■ Note require is a Ruby statement used to load in code contained within another file. This is covered in
detail in the next chapter.

 As the last file loaded, it turns out to be the latter version of random , and a random letter should appear
onscreen. Unfortunately, however, it means your other random method has been “lost.”

 This situation is known as a name conflict , and it can happen in even more gruesome situations than
the simplistic example shown in the preceding code. For example, class names can clash similarly, and you
could end up with two classes mixed into one by accident. If a class called Song is defined in one external file
and then defined in a second external file, the class Song available in your program will be a dirty mix of the
two. Sometimes this might be the intended behavior, but in other cases this can cause significant problems.

 Modules help to solve these conflicts by providing namespaces that can contain any number of classes,
methods, and constants, and allow you to address them directly. For example:

 module NumberStuff
 def self.random
 rand(1000000)
 end
 end

 module LetterStuff
 def self.random
 (rand(26) + 65).chr
 end
 end

 puts NumberStuff.random
 puts LetterStuff.random

 184783
 X

 ■ Note Due to the randomness introduced by using rand , the results will vary every time you run the program!

 In this demonstration it’s clear which version of random you’re trying to use in the two last lines. The
 modules defined in the preceding code look a little like classes, except they’re defined with the word module
instead of class . However, in reality you cannot define instances of a module, as they’re not actually
classes, nor can they inherit from anything. Modules simply provide ways to organize methods, classes, and
constants into separate namespaces.

 A more complex example could involve demonstrating two classes with the same name, but in different
modules:

 module ToolBox
 class Ruler
 attr_accessor :length
 end
 end

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

131

 module Country
 class Ruler
 attr_accessor :name
 end
 end

 a = ToolBox::Ruler.new
 a.length = 50
 b = Country::Ruler.new
 b.name = "Genghis Khan from Moskau"

 Rather than having the Ruler classes fighting it out for supremacy, or ending up with a mutant Ruler
class with both name and length attributes (how many measuring rulers have names?), the Ruler classes are
kept separately in the ToolBox and Country namespaces.

 You’ll be looking at why namespaces are even more useful than this later, but first you have to look at
the second reason why modules are so useful.

 Mix-Ins
 Earlier you studied inheritance: the feature of object orientation that allows classes (and their instance
objects) to inherit methods from other classes. You discovered that Ruby doesn’t support multiple
inheritance , the ability to inherit from multiple classes at the same time. Instead, Ruby’s inheritance
functionality only lets you create simple trees of classes, avoiding the confusion inherent with multiple
inheritance systems.

 However, in some cases it can be useful to share functionality between disparate classes. In this sense,
modules act like a sort of bundle of methods, classes, and constants that can be included into other classes,
extending that class with the methods the module offers. For example:

 module UsefulFeatures
 def class_name
 self.class.to_s
 end
 end

 class Person
 include UsefulFeatures
 end

 x = Person.new
 puts x.class_name

 Person

 In this code, UsefulFeatures looks almost like a class and, well, it almost is. However, modules are
organizational tools rather than classes themselves. The class_name method exists within the module and is
then included in the Person class. Here’s another example:

 module AnotherModule
 def do_stuff
 puts "This is a test"
 end
 end

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

132

 include AnotherModule
 do_stuff

 This is a test

 As you can see, you can include module methods in the current scope, even if you’re not directly within
a class. Somewhat like a class, though, you can use the methods directly:

 AnotherModule.do_stuff

 Therefore, include takes a module and includes its contents into the current scope.
 Ruby comes with several modules by standard that you can use. For example, the Kernel module

contains all the “standard” commands you use in Ruby (such as load , require , exit , puts , and eval)
without getting involved with objects or classes. None of those methods are taking place directly in the scope
of an object (as with the methods in your own programs), but they’re special methods that get included in all
classes (including the main scope), by default, through the Kernel module.

 However, of more interest to us are the modules Ruby provides that you can include in your own classes
to gain more functionality immediately. Two such modules are Enumerable and Comparable .

 Enumerable
 In previous chapters you’ve performed the process of iteration , like so:

 [1,2,3,4,5].each { |number| puts number }

 In this case, you create a temporary array containing the numbers 1through 5and use the each iterator to
pass each value into the code block, assigning each value to number that you then print to the screen with puts .

 The each iterator gives you a lot of power, as it allows you to go through all the elements of an array or a
hash and use the data you retrieve to work out, for example, the mean of an array of numbers, or the length
of the longest string in an array, like so:

 my_array = %w{this is a test of the longest word check}
 longest_word = ''
 my_array.each do |word|
 longest_word = word if longest_word.length < word.length
 end
 puts longest_word

 longest

 In this case, you loop through my_array , and if the currently stored longest word is shorter than the
length of word , you assign it to longest_word . When the loop finishes, the longest word is in longest_word .

 The same code could be tweaked to find the largest (or smallest) number in a set of numbers:

 my_array = %w{10 56 92 3 49 588 18}
 highest_number = 0
 my_array.each do |number|
 number = number.to_i

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

133

 highest_number = number if number > highest_number
 end
 puts highest_number

 588

 However, the Array class (for one) has pre-included the methods provided by the Enumerable module ,
a module that supplies about 20 useful countingand iteration-related methods, including collect , detect ,
 find , find_all , include? , max , min , select , sort ,and to_a . All of these use Array ’s each method to do their
jobs, and if your class can implement an each method, you can include Enumerable , and get all those
methods for free in your own class!

 First, some examples of the methods provided by Enumerable :

 [1,2,3,4].collect { |i| i.to_s + "x" }

 => ["1x", "2x", "3x", "4x"]

 [1,2,3,4].detect { |i| i.between?(2,3) }

 => 2

 [1,2,3,4].select { |i| i.between?(2,3) }

 => [2,3]

 [4,1,3,2].sort

 => [1,2,3,4]

 [1,2,3,4].max

 => 4

 [1,2,3,4].min

 => 1

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

134

 You can make your own class, implement an each method, and get these methods for “free”:

 class AllVowels
 VOWELS = %w{a e i o u}

 def each
 VOWELS.each { |v| yield v }
 end
 end

 This is a class that, in reality, doesn’t need to provide multiple objects, as it only provides an
enumeration of vowels. However, to keep the demonstration simple, it is ideal. Here’s how it works:

 x = AllVowels.new
 x.each { |v| puts v }

 a
 e
 i
 o
 u

 Your AllVowels class contains an array constant containing the vowels, and the instance-level each
method iterates through the array constant VOWELS and yields to the code block supplied to each , passing in
each vowel, using yield v . Let’s get Enumerable involved:

 class AllVowels
 include Enumerable

 VOWELS = %w{a e i o u}

 def each
 VOWELS.each { |v| yield v }
 end
 end

 ■ Note yield and its relationship to code blocks were covered near the end of Chapter 3 ; refer to that if you
need a refresher.

 Now let’s try to use those methods provided by Enumerable again. First let’s get an AllVowels object:

 x = AllVowels.new

http://dx.doi.org/10.1007/978-1-4842-1278-3_3

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

135

 Now you can call the methods on x :

 x.collect { |i| i + "x" }

 => ["ax", "ex", "ix", "ox", "ux"]

 x.detect { |i| i > "j" }

 => "o"

 x.select { |i| i > "j" }

 => ["o", "u"]

 x.sort

 => ["a", "e", "i", "o", "u"]

 x.max

 => "u"

 x.min

 => "a"

 Comparable
 The Comparable module provides methods that give other classes comparison operators such as < (less
than), <= (less than or equal to), == (equal to), >= (greater than or equal to), and > (greater than), as well as
the between ? method that returns true if the value is between (inclusively) the two parameters supplied (for
example, 4.between?(3,10) == true).

 To provide these methods, the Comparable module uses the <=> comparison operator on the class that
includes it. <=> returns -1 if the supplied parameter is higher than the object’s value, 0 if they are equal, or 1
if the object’s value is higher than the parameter. For example:

 1 <=> 2

 -1

 1 <=> 1

 0

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

136

 2 <=> 1

 1

 With this simple method, the Comparable module can provide the other basic comparison operators
and between ?. Create your own class to try it out:

 class Song
 include Comparable

 attr_accessor :length

 def <=>(other)
 @length <=> other.length
 end

 def initialize(song_name, length)
 @song_name = song_name
 @length = length
 end

 end

 a = Song.new('Rock around the clock', 143)
 b = Song.new('Bohemian Rhapsody', 544)
 c = Song.new('Minute Waltz', 60)

 Here are the results of including the Comparable module:

 a < b

 => true

 b >= c

 => true

 c > a

 => false

 a.between?(c,b)

 => true

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

137

 You can compare the songs as if you’re comparing numbers. Technically, you are. By implementing the
 <=> method on the Song class, individual song objects can be compared directly, and you use their lengths
to do so. You could have implemented <=> to compare by the length of the song title, or any other attribute, if
you wished.

 Modules give you the same ability to implement similar generic sets of functionality that you can then
apply to arbitrary classes. For example, you could create a module that implements longest and shortest
methods that could be included into Array , Hash ,or other classes, and returns the longest or shortest string
in a list.

 Using Mix-Ins with Namespaces and Classes
 In a previous example, I demonstrated how you can use modules to define namespaces using the
following code:

 module ToolBox
 class Ruler
 attr_accessor :length
 end
 end

 module Country
 class Ruler
 attr_accessor :name
 end
 end

 a = ToolBox::Ruler.new
 a.length = 50
 b = Country::Ruler.new
 b.name = "Genghis Khan of Moskau"

 In this case, the Ruler classes were accessed by directly addressing them via their respective modules
(as ToolBox::Ruler and Country::Ruler).

 However, what if you wanted to assume temporarily that Ruler (with no module name prefixed) was
 Country::Ruler , and that if you wanted to access any other Ruler class, you’d refer to it directly? include
makes it possible.

 In the previous sections, you’ve used include to include the methods of a module in the current
class and scope, but it also includes the classes present within a module (if any) and makes them locally
accessible too. Say, after the prior code, you did this:

 include Country
 c = Ruler.new
 c.name = "King Henry VIII"

 Success! The Country module’s contents (in this case, just the Ruler class) are brought into the current
scope, and you can use Ruler as if it’s a local class. If you want to use the Ruler class located under ToolBox ,
you can still refer to it directly as ToolBox::Ruler .

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

138

 Building a Dungeon Text Adventure with Objects
 So far in this chapter you’ve looked at object-oriented concepts in depth, mostly in a technical sense. At this
point, it would be useful to extend that knowledge by applying it in a real-world scenario.

 In this section, you’re going to implement a mini text adventure/virtual dungeon. Text adventures were
popular in the 1980s, but have fallen out of favor with modern gamers seeking graphical thrills. They’re
perfect playgrounds for experimenting with classes and objects, though, as replicating the real world in a
virtual form requires a complete understanding of mapping real-world concepts into classes.

 Dungeon Concepts
 Before you can develop your classes, you have to figure out what you’re trying to model. Your dungeon isn’t
going to be complex at all, but you’ll design it to cope with at least the following concepts:

• Dungeon : You need a general class that encapsulates the entire concept of the
dungeon game.

• Player : The player provides the link between the dungeon and you. All experience of
the dungeon comes through the player. The player can move between rooms in the
dungeon.

• Rooms : The rooms of the dungeon are the locations that the player can navigate
between. These will be linked together in multiple ways (doors to the north, west,
east, and south, for example) and have descriptions.

 A complete adventure would also have concepts representing items, enemies, other characters,
waypoints, spells, and triggers for various puzzles and outcomes. You could easily extend what you’ll
develop into a more complete game later on if you want.

 Creating the Initial Classes
 Our first concept to develop is that of the dungeon and the game itself. Within this framework come the
other concepts, such as the player and rooms.

 Using nested classes, you can lay down the initial code like so:

 class Dungeon
 attr_accessor :player

 def initialize(player)
 @player = player
 @rooms = {}
 end
 end

 class Player
 attr_accessor :name, :location

 def initialize(player_name)
 @name = player_name
 end
 end

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

139

 class Room
 attr_accessor :reference, :name, :description, :connections

 def initialize(reference, name, description, connections)
 @reference = reference
 @name = name
 @description = description
 @connections = connections
 end
 end

 This code lays down the framework for your dungeon.
 Your dungeon currently has instance variables to store the player (since the player may change the state

of the dungeon in some way) and the list of rooms (@rooms = {} creates an empty Hash ; it’s equivalent to
@rooms = Hash.new).

 The Player class lets the player object keep track of his or her name and current location. The Room
class lets room objects store their name, description (for example, “Torture Chamber” and “This is a dark,
foreboding room.”), and connections to other rooms, as well as a reference (to be used by other rooms for
their connections).

 When you create a dungeon with Dungeon.new , it expects to receive the name of the player, whereupon
it creates that player and assigns it to the dungeon’s object variable @player . This is because the player and
the dungeon need to be linked, so storing the player object within the dungeon object makes sense. You can
easily access the player because the player variable has been made into an accessor with attr_accessor .
For example:

 me = Player.new("Fred Bloggs")
 my_dungeon = Dungeon.new(me)
 puts my_dungeon.player.name

 Fred Bloggs

 You can access the player functionality directly by going through the dungeon object. As @player
contains the player object, and as @player has been made publicly accessible with attr_accessor
:player , you get complete access.

 Structs: Quick and Easy Data Classes
 One thing should stand out about the main code listing so far. It’s repetitive. The Room and Player classes are
merely acting as basic placeholders for data rather than as true classes with logic and functionality. There’s an
easier way to create this sort of special data-holding class in Ruby with a single line of a class called a struct .

 A struct is a special class whose only job is to have attributes and to hold data. Here’s a demonstration:

 Person = Struct.new(:name, :gender, :age)
 fred = Person.new("Fred", "male", 50)
 chris = Person.new("Chris", "male", 25)
 puts fred.age + chris.age

 75

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

140

 Simply, the Struct class builds classes to store data. On the first line you create a new class called
 Person that has built-in name, gender, and age attributes. On the second line you create a new object
instance of Person and set the attributes on the fly. The first line is equivalent to this longhand method:

 class Person
 attr_accessor :name, :gender, :age

 def initialize(name, gender, age)
 @name = name
 @gender = gender
 @age = age
 end
 end

 ■ Note In actuality, this code is not exactly equivalent to the struct code (though pragmatically it’s close
enough), because parameters are optional when initializing a Struct class, whereas the preceding Person class
code requires the three parameters (name , gender , and age) be present.

 This code creates a Person class the “long way.” If all you want to do is store some data, then the struct
technique is quicker to type and easier to read, although if you ultimately want to add more functionality
to the class, creating a class the long way is worth the effort. However, the good thing is that you can start
out with a struct and recode it into a full class when you’re ready. This is what you’re going to do with your
dungeon. Let’s rewrite it from scratch:

 class Dungeon
 attr_accessor :player

 def initialize(player)
 @player = player
 @rooms = {}
 end
 end

 Player = Struct.new(:name, :location)
 Room = Struct.new(:reference, :name, :description, :connections)

 It’s certainly shorter, and because parameters are optional when creating instances of Struct classes, you
can still use Player.new(player_name), and the location attribute is merely set to nil . If you ever need to add
methods to Player or Room , you can rewrite them as classes and add the attributes back with attr_accessor .

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

141

 attr_accessor

 Throughout the code in this chapter, as well as in Chapter 2 , you have used attr_accessor within
classes to provide attributes for your objects. Recall that attr_accessor allows you to do this:

 class Person
 attr_accessor :name, :age
 end

 x = Person.new
 x.name = "Fred"
 x.age = 10
 puts x.name, x.age

 However, in reality attr_accessor isn’t doing anything magical. It’s simply writing some code for you.
This code is equivalent to the single attr_accessor :name, :age line in the preceding Person class:

 class Person
 def name
 @name
 end

 def name=(name)
 @name = name
 end

 def age
 @age
 end

 def age=(age)
 @age = age
 end
 end

 This code defines the name and age methods that return the current object variables for those attributes,
so that x.name and x.age (as in the prior code) work. It also defines two “setter” methods that assign
the values to the @name and @age object variables.

 If you pay attention to the names of the setter methods, you’ll see they’re the same as the methods that
return values but suffixed with an equals sign (=). This means they’re the methods that are run for code
such as x.name = "Fred" and x.age = 10 . In Ruby, assignments are just calls to regular methods!
Indeed, x.name = "Fred" is merely shorthand for x.name=("Fred") .

http://dx.doi.org/10.1007/978-1-4842-1278-3_2

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

142

 Creating Rooms
 Your dungeon now has the basic classes in place, but there’s still no way to create rooms, so let’s add a
method to the Dungeon class:

 class Dungeon
 def add_room(reference, name, description, connections)
 @rooms[reference] = Room.new(reference, name, description, connections)
 end
 end

 You want to add rooms to the dungeon, so adding a method to dungeon objects makes the most sense.
Now you can create rooms like so (if my_dungeon is still defined, of course):

 my_dungeon.add_room(:largecave, "Large Cave", "a large cavernous cave", {
 :west => :smallcave })

 my_dungeon.add_room(:smallcave, "Small Cave", "a small, claustrophobic cave", {
 :east => :largecave })

 add_room accepts the reference , name , description , and connections arguments and creates a new
 Room object with them before adding that object to the @rooms hash.

 The reference , name , and descriptions arguments should seem obvious, but the connections
argument is designed to accept a hash that represents the connections that a particular room has with other
rooms. For example, { :west => :smallcave } ties two symbols (:west and :smallcave) together. Your
dungeon logic uses this link to connect the rooms. A connections hash of { :west => :smallcave, :south
=> :another_room } would create two connections (one to the west heading to “small cave”, and one to the
south heading to “another room”).

 Making the Dungeon Work
 You have all the rooms loaded for your basic dungeon (and can add more whenever you like with the add_
room method), but you have no way of navigating the dungeon itself.

 The first step is to create a method within Dungeon that starts everything off by placing the user into the
dungeon and giving you the description of the initial location:

 class Dungeon
 def start(location)
 @player.location = location
 show_current_description
 end

 def show_current_description
 puts find_room_in_dungeon(@player.location).full_description
 end

 def find_room_in_dungeon(reference)
 @rooms[reference]
 end
 end

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

143

 class Room
 def full_description
 @name + "\n\nYou are in " + @description
 end
 end

 You define a start method within the dungeon that sets the player’s location attribute. It then calls the
dungeon’s show_current_description method , which finds the room based on the player’s location, and
then prints the full description of that location to the screen. full_description does the work of taking the
location’s name and description and turning it into a full, useful description. find_room_in_dungeon , on the
other hand, returns the room whose reference matches that of the current location.

 However, the problem with the preceding code is that Room is a struct , rather than a full class, so it
becomes necessary to turn it into a full class once again (as hinted at earlier). This change requires a few key
changes, so to keep things simple, here’s the complete code so far, along with the change of Room to a regular
class and some additional methods to aid navigation of the dungeon:

 class Dungeon
 attr_accessor :player

 def initialize(player)
 @player = player
 @rooms = {}
 end

 def add_room(reference, name, description, connections)
 @rooms[reference] = Room.new(reference, name, description, connections)
 end

 def start(location)
 @player.location = location
 show_current_description
 end

 def show_current_description
 puts find_room_in_dungeon(@player.location).full_description
 end

 def find_room_in_dungeon(reference)
 @rooms[reference]
 end

 def find_room_in_direction(direction)
 find_room_in_dungeon(@player.location).connections[direction]
 end

 def go(direction)
 puts "You go " + direction.to_s
 @player.location = find_room_in_direction(direction)
 show_current_description
 end
 end

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

144

 class Player
 attr_accessor :name, :location

 def initialize(name)
 @name = name
 end
 end

 class Room
 attr_accessor :reference, :name, :description, :connections

 def initialize(reference, name, description, connections)
 @reference = reference
 @name = name
 @description = description
 @connections = connections
 end

 def full_description
 @name + "\n\nYou are in " + @description
 end
 end

 player = Player.new("Fred Bloggs")
 my_dungeon = Dungeon.new(player)

 # Add rooms to the dungeon
 my_dungeon.add_room(:largecave,
 "Large Cave",
 "a large cavernous cave",
 { :west => :smallcave })

 my_dungeon.add_room(:smallcave,
 "Small Cave",
 "a small, claustrophobic cave",
 { :east => :largecave })

 # Start the dungeon by placing the player in the large cave
 my_dungeon.start(:largecave)

 Large Cave
 You are in a large cavernous cave

 It’s a long piece of source code, but most of it should make sense by now. You’ve changed Room and
 Player into true classes once more, and implemented the basics of the dungeon.

 Two particularly interesting methods have been added to the Dungeon class:

 def find_room_in_direction(direction)
 find_room_in_dungeon(@player.location).connections[direction]
 end

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

145

 def go(direction)
 puts "You go " + direction.to_s
 @player.location = find_room_in_direction(direction)
 show_current_description
 end

 The go method is what makes navigating the dungeon possible. It takes a single argument—the
direction to travel in—and uses that to change the player’s location to the room that’s in that direction. It
does this by calling find_room_in_direction , a method that takes the reference related to the relevant
direction’s connection on the current room, and returns the reference of the destination room. Remember
that you define a room like so:

 my_dungeon.add_room(:largecave,
 "Large Cave",
 "a large cavernous cave",
 { :west => :smallcave })

 If :largecave is the current room, then find_room_in_direction(:west) will use the connections on
that room to return : smallcave , and this is then assigned to @player.location to define that as the new
current location.

 To test the navigation of the dungeon, you can simply type the go commands if you’re using irb, or if
you’re working with a source file in an editor, you’ll need to add the go commands to the end of your source
code and re-run it. Here’s what happens:

 my_dungeon.show_current_description

 Large Cave

 You are in a large cavernous cave

 my_dungeon.go(:west)

 You go west
 Small Cave

 You are in a small, claustrophobic cave

 my_dungeon.go(:east)

 You go east
 Large Cave

 You are in a large cavernous cave

 The code has no error checking (try going to a nonexistent room with my_dungeon. go(:south)) , and
lacks items, an inventory, and other basic text-adventure features, but you now have an operational group of
objects that represents a dungeon, and that can be navigated in a basic fashion.

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

146

 This code is rife for extension and manipulation. With another class and several more methods you
could easily add support for items within the game that you can place at different locations, pick up, and
then drop at other locations.

 If you want an exercise, you can try turning the preceding dungeon code into a truly interactive program
by creating a loop that uses the gets method to retrieve instructions from the player and then to “go”
wherever the player determines. You can use chomp to strip off the newline characters from the incoming
text, and to_sym to convert strings into symbols for the go method. This might seem like a tough task at this
stage, but if you pull it off I guarantee you’ll have learned a lot and you’ll be confident about going on to the
next chapter.

 In Chapter 9 you’ll look at how to interact with files and read data from the keyboard. At that point,
you could extend the dungeon game to be properly interactive and accept input from the user, validate that
it represents a valid direction, and then call the go method if so. With these additions and the addition of
several more rooms, you’re most of the way to a viable text adventure!

 Summary
 In this chapter we covered the essentials of object orientation and the features Ruby provides to make
object-oriented code a reality. You looked at the concepts that apply to object orientation in most languages,
such as inheritance, encapsulation, class methods, instance methods, and the types of variables that you can
use. Lastly, you developed a basic set of classes to produce a simple dungeon.

 Let’s reflect on some of the concepts we covered in this chapter:

• Classes : A class is a collection of methods and data that are used as a blueprint to
create multiple objects relating to that class.

• Objects : An object is a single instance of a class. An object of class Person is a single
person. An object of class Dog is a single dog. If you think of objects as real-life objects,
a class is the classification, whereas an object is the actual object or “thing” itself.

• Local variable : A variable that can only be accessed and used from the current scope.

• Instance/object variable : A variable that can be accessed and used from the scope of
a single object. An object’s methods can all access that object’s object variables.

• Global variable : A variable that can be accessed and used from anywhere within the
current program.

• Class variable : A variable that can be accessed and used within the scope of a class
and all of its child objects.

• Encapsulation : The concept of objects containing both data and methods that
operate on that data, as well as allowing those methods to have differing degrees of
visibility outside of their class or associated object.

• Polymorphism : The concept of methods being able to deal with different classes of
data and offering a more generic implementation (as with the area and perimeter
methods offered by your Square and Triangle classes).

• Module : An organizational element that collects together any number of classes,
methods, and constants into a single namespace.

• Namespace : A named element of organization that keeps classes, methods, and
constants from clashing.

• Mix-in : A module that can mix its methods in to a class to extend that class’s functionality.

http://dx.doi.org/10.1007/978-1-4842-1278-3_9

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES

147

• Enumerable : A mix-in module, provided as standard with Ruby, that implements
iterators and list-related methods for other classes, such as collect , map , min , and
 max . Ruby uses this module by default with the Array and Hash classes.

• Comparable : A mix-in module, provided as standard with Ruby, that implements
comparison operators (such as < , > , and ==) on classes that implement the generic
comparison operator <=> .

 Throughout the next several chapters, I’ll assume you have acknowledge of how classes and objects
work, and how the different scopes of variables (including local, global, instance, and class variables) work.

149© Peter Cooper 2016
P. Cooper, Beginning Ruby, DOI 10.1007/978-1-4842-1278-3_7

 CHAPTER 7

 Projects and Libraries

 In previous chapters we’ve looked at and worked with Ruby from a low-level perspective by working directly
with classes, objects, and functions. Each line of code we’ve used in the small projects so far has been written
specifically for that project from scratch. In this chapter, we’ll look at how to build larger projects with Ruby,
and how to reuse code written previously. Finally, we’ll look at how to use code already written and prepared
by other developers within your own applications so that you don’t need to reinvent the wheel every time
you create a new program.

 This chapter is about the bigger picture: dealing with projects and libraries.

 Projects and Using Code from Other Files
 As you become more familiar with Ruby and find more uses for it, it’s likely that you’ll want to move from
writing single small programs (with fewer than 100 or so lines) to more complex applications and systems
made up of multiple parts. Larger applications and systems therefore often become known as projects , and
are managed in a different way than simple one-file scripts.

 The most common way to separate functionality in Ruby is to put different classes in different files. This
gives you the ability to write classes that could be used in multiple projects simply by copying the file into
your other project.

 Basic File Inclusion
 Consider this code:

 puts "This is a test".vowels.join('-')

 If you try to execute this code, you’ll get an error complaining that the vowels method is not available
for the " This is a test " object of class String . This is true because Ruby doesn’t provide that method.
Let’s write an extension to the String class to provide it:

 class String
 def vowels
 self.scan(/[aeiou]/i)
 end
 end

CHAPTER 7 ■ PROJECTS AND LIBRARIES

150

 If this definition were included in the same file as the prior puts code—say, my_test.rb —the result
would be as follows:

 i-i-a-e

 In this case, you’ve extended String with a vowels method that uses scan to return an array of all the
vowels (the i option on the end makes the regular expression case-insensitive).

 However, you might want to write a number of methods to add to String that you’d like to use in
multiple programs. Rather than copy and paste the code each time, you can copy it to a separate file and use
the require command to load the external file into the current program. For example, put this code in a file
called string_extensions.rb :

 class String
 def vowels
 self.scan(/[aeiou]/i)
 end
 end

 And put this code in a file called vowel_test.rb :

 require './string_extensions'
 puts "This is a test".vowels.join('-')

 If you run vowel_test.rb , the expected result would appear onscreen. The first line, require './
string_extensions ', simply loads in the string_extensions.rb file from the current directory (as signified
by the ./) and processes it as if the code were local. This means that, in this case, the vowels method is
available, all with a single line.

 Ruby does not include the current directory in the path of directories to search for Ruby files by default,
so you can either specify the current directory specifically by using ./ , as above, or by using require_relative .
So this example is operationally identical to the previous one:

 require_relative 'string_extensions'
 puts "This is a test".vowels.join('-')

 As well as require and require_relative , you can use load to load external source code files into your
program. For example, this code would seem to function identically to the preceding code:

 load 'string_extensions.rb'
 puts "This is a test".vowels.join('-')

 ■ Note load requires a full filename, including the .rb suffix, whereas require assumes the .rb suffix.

 The output is the same in this case, but let’s try a different example to see the difference. Put this in a .rb :

 puts "Hello from a.rb"

CHAPTER 7 ■ PROJECTS AND LIBRARIES

151

 And put this in a file called b.rb :

 require_relative 'a'
 puts "Hello from b.rb"
 require_relative 'a'
 puts "Hello again from b.rb"

 Run with ruby b.rb to get the result:

 Hello from a.rb
 Hello rom b.rb
 Hello again from b.rb

 In this example, the a.rb file is included only once. It’s included on line 1, and "Hello from a.rb"
gets printed to the screen, but then when it’s included again on line 3 of b.rb , nothing occurs. In contrast,
consider this code:

 load 'a.rb'
 puts "Hello from b.rb"
 load 'a.rb'
 puts "Hello again from b.rb"

 Hello from a.rb
 Hello from b.rb
 Hello from a.rb
 Hello again from b.rb

 With load , the code is loaded and reprocessed anew each time you use the load method. require and
 require_relative , on the other hand, process external files only once.

 ■ Note Ruby programmers nearly always use require or require_relative rather than load . The effects
of load are useful only if the code in the external file has changed or if it contains active code that will be
executed immediately. However, a good programmer will avoid the latter situation, and external files will only
contain classes and modules that will, generally, rarely change.

 Inclusions from Other Directories
 load and require have different approaches to finding files to load. load and require_relative can bring
in local files, but require does not. require 'a' looks for a.rb in a multitude of other directories on your
storage drive. By default, these other directories are the various directories where Ruby stores its own files
and libraries, although you can override this, when necessary.

CHAPTER 7 ■ PROJECTS AND LIBRARIES

152

 Ruby stores the list of directories to search for included files in a special variable called $: (or, if you
prefer , $LOAD_PATH). You can see what $: contains by default, using irb :

 $:.each { |d| puts d }

 /usr/local/lib/ruby/site_ruby/2.2.0
 /usr/local/lib/ruby/site_ruby/2.2.0/i686-darwin8.8.1
 /usr/local/lib/ruby/site_ruby
 /usr/local/lib/ruby/2.2.0
 /usr/local/lib/ruby/2.2.0/i686-darwin8.8.1
 .

 ■ Note This result is what appears on my machine but the list of directories will probably differ significantly
on your machine, particularly if you’re using Windows, where the path layout will be entirely different, with the
drive letter at the start and backslashes instead of forward slashes.

 If you want to add directories to this, it’s simple:

 $:.push '/your/directory/here'
 require 'yourfile'

 $: is an array, so you can push extra items to it or use unshift to add an element to the start of the list (if
you want your directory to be searched before the default Ruby ones—useful if you want to override Ruby’s
standard libraries).

 Logic and Including Code
 require and load both act like normal code in Ruby programs. You can put them at any point in your Ruby
code and they’ll behave as if they were processed at that point. For example:

 $debug_mode = 0
 require_relative $debug_mode == 0 ? "normal-classes" : "debug-classes"

 It’s an obscure example, but it checks if the global variable $debug_mode is set to 0 . If it is, it requires
 normal-classes.rb , and if not, debug-classes.rb . This gives you the power to include a different source file
dependent on the value of a variable, ideal for situations where your application has “regular” and “debug”
modes. You could even write an application that works perfectly, but then use a different require to include
a whole different set of files that have new or experimental functionality.

 A commonly used shortcut uses arrays to quickly load a collection of libraries at once. For example:

 %w{file1 file2 file3 file4 file5}.each { |l| require l }

 This loads five different external files or libraries with just two lines of code. However, some coders are
not keen on this style, as it can make the code harder to read, even if it’s more efficient.

CHAPTER 7 ■ PROJECTS AND LIBRARIES

153

 Nested Inclusions
 Code from files that are included in others with require and load has the same freedom as if the
code were pasted directly into the original file. This means files that you include can call load , require ,
 or require_relative themselves. For example, assume a.rb contains the following:

 require_relative 'b'

 and b.rb contains the following:

 require_relative 'c'

 and c.rb contains the following:

 def example
 puts "Hello!"
 end

 and d.rb contains the following:

 require_relative 'a'
 example

 When d.rb is then run,

 Hello!

 d.rb includes a.rb with require , a.rb includes b.rb , and b.rb includes c.rb , meaning the example
method is available to d.rb .

 This functionality makes it easy to put together large projects with interdependent parts, as the
structure can be as deep as you like.

 Libraries
 In computer programming, a library is a collection of routines that can be called by separate programs but
that exist independently of those programs. For example, you could create a library to load and process a
data file, and then use the routines in that library from any number of other programs.

 Earlier in this chapter we looked at using the require command to load external files into your Ruby
programs, and back in Chapter 6 we looked at how modules can be used to separate elements of functionality
into separate namespaces. You can use both of these concepts, jointly, to make libraries in Ruby.

 At the start of this chapter you developed an extremely simple library called string_extensions.rb , like so:

 class String
 def vowels
 self.scan(/[aeiou]/i)
 end
 end

http://dx.doi.org/10.1007/978-1-4842-1278-3_6

CHAPTER 7 ■ PROJECTS AND LIBRARIES

154

 And you used this library with the following code:

 require 'string_extensions'
 puts "This is a test".vowels.join('-')

 i-i-a-e

 Nearly all libraries are more complex than this simple example, but nonetheless, THIS is a basic
demonstration of how a library works.

 Next we’re going to look at the libraries that come standard with Ruby, and look at a way to download
and use libraries that other developers have made available on the Internet.

 The Standard Libraries
 Ruby comes with many standard libraries. They provide Ruby with a wide selection of functionality “out of
the box,” from webserving and networking tools through to encryption, benchmarking, and testing routines.

 ■ Note Collectively the “standard libraries” are often called “the Standard Library.” When you see this term
(it’s used particularly often in Chapter 16), it’s important to remember it most likely refers to the collection
rather than one library in particular—a “library of libraries,” if you will.

 In this section we’re going to look at how you can use just two random standard libraries (net/http and
 OpenStruct), so that you’re prepared for using and working with other libraries in later chapters, where you’ll
be using many other standard libraries in a similar way. The choice of these two libraries is reasonably arbitrary,
although both are commonly used by Rubyists whereas some of the standard libraries get little use at all.

 A list of all the standard libraries, including documentation, is available at http:// www.ruby-doc.org/
stdlib/ , although a sizable number of them are covered in more detail in Chapter 16 of this book.

 ■ Note Some users might discover that the number of standard libraries might have been trimmed
down, particularly if using a preinstalled version of Ruby. However, if you installed Ruby from source, all the
demonstrations in this section should work.

 net/http
 HTTP stands for HyperText Transfer Protocol , and it’s the main protocol that makes the World Wide Web
work, as it provides the mechanism by which web pages, files, and other media can be sent between Web
servers and clients.

 Ruby provides basic support for HTTP via the net/http library. For example, it’s trivial to write a Ruby
script that can download and print out the contents of a particular web page:

 require 'net/http'
 Net::HTTP.get_print('www.rubyinside.com', '/')

http://dx.doi.org/10.1007/978-1-4842-1278-3_16
http://www.ruby-doc.org/stdlib/
http://www.ruby-doc.org/stdlib/
http://dx.doi.org/10.1007/978-1-4842-1278-3_16

CHAPTER 7 ■ PROJECTS AND LIBRARIES

155

 If you ran this code, after a few seconds many pages of HTML code should fly past on your screen. The
first line loads the net/http library into the current program, and the second line calls a class method on the
 Net::HTTP class (where Net is a module defining the Net namespace, and HTTP is a subclass) that gets and
prints (hence get_print) the web page at http://www.rubyinside.com/ .

 It’s just as easy to put the contents of any web page into a string, for further manipulation by your program:

 require 'net/http'
 url = URI.parse('http://www.rubyinside.com/')
 response = Net::HTTP.start(url.host, url.port) do |http|
 http.get(url.path)
 end
 content = response.body

 In this example, you use the URI library (another standard library, and one that’s loaded automatically
by net/http) to decipher a URL such as http://www.rubyinside.com/ into its constituent parts for the
net/http library to use to make its request. Once the URL has been parsed, an HTTP connection is “started,”
and within the scope of that connection, a GET request is made with the get method (if this doesn’t make
sense, don’t worry; it’s part of how the HTTP protocol works). Finally, you retrieve the content from
 response.body , a string containing the contents of the web page at http://www.rubyinside.com/ .

 ■ Note The net/http library is only a basic library, and it requires its input to be sanitized in advance, as in
the preceding examples. The URI library is ideally suited to this task.

 In Chapter 14 , we’ll look at net/http and some of its sister libraries, such as net/pop and net/smtp , in
more detail.

 OpenStruct
 In Chapter 6 you worked with a special type of data structure called Struct. Struc t allowed you to create
small data-handling classes on the fly, like so:

 Person = Struct.new(:name, :age)
 me = Person.new("Fred Bloggs", 25)
 me.age += 1

 Struct gives you the luxury of being able to create simple classes without having to define a class in the
long-handed way.

 The OpenStruct class provided by the ostruct library makes it even easier. It allows you to create data
objects without specifying the attributes, and allows you to create attributes on the fly:

 require 'ostruct'
 person = OpenStruct.new
 person.name = "Fred Bloggs"
 person.age = 25

 person is a variable pointing to an object of class OpenStruct , and OpenStruct allows you to call
attributes whatever you like, on the fly. It’s similar to how a hash works, but using the object notation.

http://www.rubyinside.com/
http://www.rubyinside.com/
http://www.rubyinside.com/
http://dx.doi.org/10.1007/978-1-4842-1278-3_14
http://dx.doi.org/10.1007/978-1-4842-1278-3_6

CHAPTER 7 ■ PROJECTS AND LIBRARIES

156

 As the name implies, OpenStruct is more flexible than Struct , but this comes at the cost of harder-to-
read code. There’s no way to determine exactly, at a glance, which attributes have been used. However, with
traditional struct s, you can see the attribute names at the same place the struct is created.

 As you can see, using libraries is pretty easy. In most cases you just use require to load the relevant classes
and methods, and then you can start using them right away. However, for more complex scenarios, read on!

 RubyGems
 RubyGems is a packaging system for Ruby programs and libraries. It enables developers to package their
Ruby libraries in a form that’s easy for users to maintain and install. RubyGems makes it easy to manage
different versions of the same libraries on your machine, and gives you the ability to install them with a
single line at the command prompt.

 Each individually packaged Ruby library (or application) is known simply as a gem or RubyGem. Gems
have names, version numbers, and descriptions. You can manage your computer’s local installations of
gems using the gem command, available from the command line. RubyGems comes standard with Ruby
nowadays, but it was not included with distributions of Ruby 1.8 (except in certain situations, such as with
the default installation of Ruby on Mac OS X). You no longer need to be concerned with how it is installed as
it’s available "out of the box"!

 Finding Gems
 It’s useful to get a list of the gems that are installed on your machine, as well as get a list of the gems available
for download and installation. To do this, you use gem’s list command . If you run gem list from your
command line, you’ll get a result similar to this:

 *** LOCAL GEMS ***

 bigdecimal (1.2.6)
 json (1.8.1)
 minitest (5.4.3)

 It’s not much, but it’s a start. This list shows that you have three different gems installed, along with their
version numbers. Your list of gems may be significantly longer than this, but as long as it looks like a list and
not an error message, you’re good to go.

 You can query the remote gem server (currently hosted by rubygems.org , but you can add other sources
later) like so:

 gem list --remote
 abstract (1.0.0)
 ackbar (0.1.1, 0.1.0)
 action_profiler (1.0.0)

 [..1,000s of lines about other gems removed for brevity..]

 Within a minute or so, many thousands of gems and descriptions should go flying past.
 Wading through such a list is impractical for most purposes, but generally you’ll be aware of which gem

you want to install before you get to this stage. People on the Internet will recommend gems, or you’ll be
asked to install a particular gem by this book or another tutorial.

CHAPTER 7 ■ PROJECTS AND LIBRARIES

157

 However, if you wish to “browse,” the best way to do so is to visit http://rubygems.org/ , the home for the
RubyGems repository. The site features search tools and more information about each gem in the repository.

 Installing a Simple Gem
 Once you’ve found the name of a gem you wish to install, you can install it with a single command at the
command line (where chronic would be replaced with the name of the gem you wish to install , although
feedtools is a fine gem to test with):

 gem install chronic

 If all goes well, you’ll get output like this:

 Fetching: chronic-0.10.2.gem (100%)
 Successfully installed chronic-0.10.2
 Parsing documentation for chronic-0.10.2
 Installing ri documentation for chronic-0.10.2
 Done installing documentation for chronic after 1 seconds
 1 gem installed

 First, RubyGems looks to see if the gem exists in the current directory (you can keep your own store of
gems locally, if you like), and if not, it heads off to rubygems.org to download the gem and install it from
afar. Last, it builds the documentation for the library using rdoc (covered in Chapter 8), and installation is
complete. This process is the same for nearly all gems.

 ■ Note In many cases, installing one gem requires other gems to be installed too. That is, the gem you’re
trying to install might have other gems it needs to operate, also known as "dependencies".

 If you run gem list again at this point, your local list of gems will include the newly installed gem (in
this case, chronic).

 If you are aware that you need to install a specific version of a gem (such as version 0.10.2 of Chronic, as
above), you can specify this like so:

 gem install -v 0.10.2 chronic

 Using Gems
 As the RubyGems system isn’t an integrated part of Ruby, it’s necessary to tell your programs that you want
to use and load gems.

 To demonstrate how gems can be used, you’ll install the redcloth gem, a library that can convert
specially formatted text into HTML, ready to be used on a web page. Use gem install chronic (or sudo gem
install chronic , depending on your setup), as demonstrated earlier, to install the gem.

http://rubyforge.org/
http://dx.doi.org/10.1007/978-1-4842-1278-3_8

CHAPTER 7 ■ PROJECTS AND LIBRARIES

158

 Once the gem is installed, run irb or create a new Ruby source file, and use the chronic gem like so:

 require 'chronic'
 puts Chronic.parse('may 10th')

 2016-05-10 12:00:00 +0100

 In this example, we load the Chronic library with require and then we can use the Chronic class to do
various things—in this case, time manipulation. Congratulations, you’ve used your first gem.

 Upgrading and Uninstalling Gems
 One of the main features of RubyGems is that gems can be updated easily. You can update all of your
currently installed gems with a single line:

 gem update

 This makes RubyGems go to the remote gem repository, look for new versions of all the gems you
currently have installed, and if there are new versions, install them. If you want to upgrade only a specific
gem, suffix the preceding command line with the name of the gem in question.

 Uninstalling gems is the simplest task of all. Use the uninstall command (where feedtools is replaced
by the name of the gem you wish to uninstall):

 gem uninstall feedtools

 ■ Note Again, remember to use sudo when the situation demands it, as covered in previous sections.

 If there are multiple versions of the same gem on the machine, RubyGems will ask you which version
you want to uninstall first (or you can tell it to uninstall all versions at once), as in this example:

 $ gem uninstall rubyforge

 Select RubyGem to uninstall:
 1. rubyforge-0.3.0
 2. rubyforge-0.3.1
 3. All versions

 Creating Your Own Gems
 Naturally, it’s possible to create gems from your own libraries and applications. This entire process is
covered in Chapter 10 , along with the other ways you can deploy your applications to users.

http://dx.doi.org/10.1007/978-1-4842-1278-3_10

CHAPTER 7 ■ PROJECTS AND LIBRARIES

159

 Bundler
 Bundler (http://bundler.io/) is a tool that was developed to help you manage the dependencies of a
project (essentially, the libraries upon which your project depends) in a more structured way. It comes by
default on some Ruby installs, but you can always ensure it's installed with gem install bundler .

 Consider, for example, that you create a project that depends on several libraries or gems. To run this
application locally, you'd need to make sure that you have the right versions of each gem installed on your
system. But if you have numerous projects with wide varieties of dependencies, you'll start to find it hard to
track which gems you have installed and what versions they are.

 Bundler lets you create a file (called Gemfile) within a project's directory that specifies what libraries
the project depends on. Here's an example of a very simple Gemfile :

 source 'https://rubygems.org'
 gem 'nokogiri'
 gem 'rack', '~>1.1'

 This specifies where the gems are to be downloaded from by default, and then which two gems the
current project depends upon. Nokogiri is specified without a version number, but in Rack's case, a version
query is specified at the end of the line which says any version that's 1.1 or above (but not version 2 or
above - so 1.2, 1.3, 1.4, etc.).

 If you run bundle install from the directory where a Gemfile is present, Bundler ensures that the right
gems are installed or upgraded to the right versions:

 Fetching gem metadata from https://rubygems.org/.........
 Fetching version metadata from https://rubygems.org/..
 Resolving dependencies...
 Using mini_portile2 2.0.0
 Installing rack 1.6.4
 Using bundler 1.11.2
 Using nokogiri 1.6.7.2
 Bundle complete! 2 Gemfile dependencies, 4 gems now installed.
 Use 'bundle show [gemname]` to see where a bundled gem is installed.

 The correct gems, as specified in Gemfile , are now installed. You can use these from within your project,
or if you want to ensure that the right versions are loaded, you can specify require 'bundler/setup' within
your program, like so:

 require 'bundler/setup'
 require 'rack'
 # Now Rack 1.1 or above is loaded properly

http://bundler.io/

CHAPTER 7 ■ PROJECTS AND LIBRARIES

160

 One other thing to be aware of is that when you install or upgrade gems, another file is created or
updated called Gemfile.lock . This is not a file you are meant to change yourself, but it simply reflects what
the precise set of dependencies are, along with their version numbers, so that if you distribute the project
anywhere else, the very same set of libraries and versions will be installed properly. Here's an example of the
 Gemfile.lock produced by the install above:

 GEM
 remote: https://rubygems.org/
 specs:
 mini_portile2 (2.0.0)
 nokogiri (1.6.7.2-x86-mingw32)
 mini_portile2 (~> 2.0.0.rc2)
 rack (1.6.4)

 PLATFORMS
 x86-mingw32

 DEPENDENCIES
 nokogiri
 rack (~> 1.1)

 BUNDLED WITH
 1.11.2

 Even though our main Gemfile specifies any version of Rack over 1.0 and under 2.0, we specifically have
1.6.4 installed as that's the latest matching version at the time of writing. If I transferred this project to you in the
future, however, 1.7 may be the latest matching Rack, and this could break the code. The Gemfile.lock ’s job,
therefore, is to explicitly communicate which versions of which libraries are working with the project right now.

 Bundler is a powerful but ever-changing tool that may even be a core part of Ruby if you are reading this
book a year or two after its publication. For this reason, I advise you visit its homepage at http://bundler.io/
to learn more about its operation and any new developments that may have occurred, as you will run into
Bundler in many situations when working with other Ruby developers.

 Summary
 In this chapter, we’ve looked at some of the methods Ruby provides to make it possible to handle large
projects, as well as access the vast universe of prewritten code libraries to make development easier.

 Ruby provides a wealth of useful libraries within the main distribution, but using tools such as
RubyGems allows you to get access to code written by thousands of other Ruby developers, allowing you to
implement more-complex programs more quickly than would otherwise be possible.

 Let’s reflect on the main concepts covered in this chapter:

• Project : Any collection of multiple files and subdirectories that form a single instance
of a Ruby application or library.

• Library : A collection of routines, classes, methods, and/or modules that provides a
set of features that many other applications can use.

• RubyGems : The packaging system for Ruby libraries and/or applications that makes
them easier to install and maintain by developers.

http://bundler.io/

CHAPTER 7 ■ PROJECTS AND LIBRARIES

161

• Gem : A single library (or application) packaged using the RubyGems system.
Can also be called a “RubyGem.”

• require : A method that loads and processes the Ruby code from a separate file,
including whatever classes, modules, methods, and constants are in that file, into the
current scope. load is similar, but rather than performing the inclusion operation once,
it reprocesses the code every time load is called. require_relative is like require but
lets you load files from the current directory too without prefixing their names with ./ .

• Bundler: A tool that makes it easier to handle the libraries that a particular
application depends on. It can install gems, handle the upgrading of gems, and help
lock certain versions of gems to your specific projects.

 In many of the chapters from here on, we’ll be using the power of libraries and combining multiple
libraries to make single applications. One such example is the Ruby on Rails framework we’ll be covering in
Chapter 13 , which is, in essence, a giant library made up of several libraries itself!

http://dx.doi.org/10.1007/978-1-4842-1278-3_13

163© Peter Cooper 2016
P. Cooper, Beginning Ruby, DOI 10.1007/978-1-4842-1278-3_8

 CHAPTER 8

 Documentation, Error Handling,
Debugging, and Testing

 In this chapter we’re going to look at the finer details of developing reliable programs: documentation, error
handling, debugging, and testing. These tasks aren’t what most people think of as “development,” but are as
important to the overall process as general coding tasks. Without documenting, debugging, and testing your
code, it’s unlikely that anyone but you could work on the code with much success, and you run the risk of
releasing faulty scripts and applications.

 This chapter demonstrates how to produce documentation, handle errors in your programs, test the
efficiency of your code, and make sure that your code is (mostly) bug-free, all using tools that come with Ruby.

 Documentation
 Even if you’re the only person to use and work on your Ruby code, it’s inevitable that over time you’ll forget
the nuances of how it was put together and how it works. To guard against code amnesia, you should
document your code as you develop it.

 Traditionally, documentation would often be completed by a third party rather than the developer,
or would be written after the majority of the development had been completed. Although developers have
always been expected to leave comments in their code, true documentation of a quality such that other
developers and users can understand it without seeing the source code has had less importance.

 Ruby makes it extremely easy to document your code as you create it, using a utility called RDoc
(standing for “Ruby Documentation”).

 Generating Documentation with RDoc
 RDoc calls itself a “Document Generator for Ruby Source.” It’s a tool that reads through your Ruby source
code files and creates structured HTML documentation. It comes with the standard Ruby distribution, so it’s
easy to find and use.

 RDoc understands a lot of Ruby syntax and can create documentation for classes, methods, modules,
and numerous other Ruby constructs without much prompting.

 The way you document your code in a way that RDoc can use is to leave comments prior to the
definition of the class, method, or module you want to document. For example:

 # This class stores information about people.
 class Person
 attr_accessor :name, :age, :gender

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

164

 # Create the person object and store their name
 def initialize(name)
 @name = name
 end

 # Print this person's name to the screen
 def print_name
 puts "Person called #{@name}"
 end
 end

 This is a simple class that’s been documented using comments. It’s quite readable already, but RDoc
can turn it into a pretty set of HTML documentation in seconds.

 To use RDoc, simply run it from the command line using rdoc <name of source file>.rb , like so:

 rdoc person.rb

 ■ Note On Linux and OS X this should simply work “out of the box” (as long as the directory containing
RDoc—usually /usr/bin or /usr/local/bin —is in the path). On Windows it might be necessary to prefix
 rdoc with its full location.

 This command tells RDoc to process person.rb and produce the HTML documentation. By default, it
does this by creating a directory called doc from the current directory and placing its HTML and CSS files in
there. Once RDoc has completed, you can open index.html , located within doc , and you should see some
basic documentation, as in Figure 8-1 .

 Figure 8-1. Basic RDoc HTML output as seen from a web browser

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

165

 The HTML documentation is shown with three frames across the top containing links to the
documented files, classes, and methods, respectively, and a main frame at the bottom containing the
documentation being viewed at present. The top three frames let you jump between the various classes and
methods with a single click. In a large set of documentation, this quickly becomes useful.

 When viewing the documentation for the Person class, the documentation shows what methods it
contains, the documentation for those methods, and the attributes the class provides for its objects. RDoc
works this out entirely from the source code and your comments.

 RDoc Techniques
 In the prior section, you got RDoc to generate documentation from a few simple comments in your source
file. However, RDoc is rarely useful on such a small example, and its real power comes into play when you’re
working on larger projects and using its advanced functions. This section will cover some of these functions
so you can comment the code on your larger projects correctly.

 ■ Note The following sections give only a basic overview of some of RDoc’s features. To read the full
documentation for RDoc and learn about features that are beyond the scope of this book, visit the official RDoc
site at http://docs.ruby-lang.org/en/2.2.0/RDoc.html .

 Producing Documentation for an Entire Project
 Previously you used rdoc along with a filename to produce documentation for a single file. However, in the
case of a large project, you could have many hundreds of files that you want processed. If you run RDoc
with no filenames supplied, RDoc will process all the Ruby files found in the current directory and all other
directories under that. The full documentation is placed into the doc directory, as before, and the entire set
of documentation is available from index.html .

 Basic Formatting
 Formatting your documentation for RDoc is easy. RDoc automatically recognizes paragraphs within your
comments, and can even use spacing to recognize structure. Here’s an example of some of the formatting
RDoc recognizes:

 #= RDoc Example
 #
 #== This is a heading
 #
 #* First item in an outer list
 # * First item in an inner list
 # * Second item in an inner list
 #* Second item in an outer list
 # * Only item in this inner list
 #
 #== This is a second heading
 #
 #Visit www.rubyinside.com
 #

http://rdoc.sourceforge.net/doc/

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

166

 #== Test of text formatting features
 #
 #Want to see *bold* or _italic_ text? You can even embed
 #+text that looks like code+ by surrounding it with plus
 #symbols. Indented code will be automatically formatted:
 #
 # class MyClass
 # def method_name
 # puts "test"
 # end
 # end

 class MyClass
 end

 If you process this with RDoc, you’ll get a result that looks like Figure 8-2 . To learn more about
RDoc’s general formatting features, the best method is to look at existing code that is extensively prepared
for RDoc, such as the source code to the Ruby on Rails framework, or refer to the documentation at
 http://docs.ruby-lang.org/en/2.2.0/RDoc/Markup.html .

 Figure 8-2. How RDoc renders the formatting feature test file

http://rdoc.sourceforge.net/doc/

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

167

 Modifiers and Options
 RDoc can work without the developer knowing much about it, but to get the most from RDoc it’s necessary
to know how several of its features work and how they can be customized. RDoc supports a number of
modifiers within comments, along with a plethora of command-line options.

 :nodoc: Modifier
 By default, RDoc will attempt to use anything it considers relevant to build up its documentation.
Sometimes, however, you’d rather RDoc ignore certain modules, classes, or methods, particularly if you
haven’t documented them yet. To make RDoc ignore something in this way, simply follow the module, class,
or method definition with a comment of : nodoc: , like so:

 # This is a class that does nothing
 class MyClass
 # This method is documented
 def some_method
 end
 def secret_method #:nodoc:
 end
 end

 In this instance, RDoc will ignore secret_method .
 :nodoc: only operates directly on the elements upon which it is placed. If you want : nodoc: to apply to

the current element and all those beneath it (all methods within a class, for example), do this:

 # This is a class that does nothing
 class MyClass #:nodoc: all
 # This method is documented (or is it?)
 def some_method
 end

 def secret_method
 end
 end

 Now none of MyClass is documented by RDoc.

 Turning RDoc Processing On and Off
 You can stop RDoc from processing comments temporarily using #++ and #-- , like so:

 # This section is documented and read by RDoc.
 #--
 # This section is hidden from RDoc and could contain developer
 # notes, private messages between developers, etc.
 #++
 # RDoc begins processing again here after the ++.

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

168

 This feature is particularly ideal in sections where you want to leave comments to yourself that aren’t for
general consumption.

 ■ Note RDoc doesn’t process comments that are within methods, so your usual code comments are not used
in the documentation produced. RDoc will also not process comments that are separated from other comments
with blank lines.

 Command-Line Options
 Like most command-line applications , including Ruby itself, you can give RDoc a number of options,
as follows:

• --all : Usually RDoc processes only public methods, but --all forces RDoc to
document all methods within the source files.

• --fmt <format name> : Produce documentation in a certain format (which currently
includes darkfish, pot, and ri).

• --help : Get help with using RDoc’s command-line options and find out which
output formatters are available.

• --inline-source : Usually source code is shown using popups, but this option forces
code to be shown inline with the documentation.

• --main <name> : Set the class, module, or file that appears as the main index page for
the documentation to <name> (for example, rdoc --main MyClass).

 After any command-line options, rdoc is suffixed with the filename(s) of the files you want to have
RDoc document. Alternatively, if you specify nothing, RDoc will traverse the current directory and all
subdirectories and generate documentation for your entire project.

 ■ Note RDoc supports many more command-line options than these, and they are all covered in RDoc’s
official documentation. Alternatively, run RDoc with rdoc --help at the command line to get a list of its options.

 Debugging and Errors
 Errors happen. It’s unavoidable that programs you develop will contain bugs, and you won’t immediately be
able to see what the errors are. A misplaced character in a regular expression, or a typo with a mathematical
symbol, can make the difference between a reliable program and one that constantly throws errors or
generates undesirable output.

 Exceptions and Error Handling
 An exception is an event that occurs when an error arises within a program. An exception can cause the
program to quit immediately with an error message, or can be handled by error handling routines within the
program to recover from the error in a sensible way.

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

169

 For example, a program might depend on a network connection (the Internet, for example), and if the
network connection is unavailable, an error will arise when the program attempts to use the network. Rather
than brusquely terminating with an obscure error message, the code can handle the exception and print a
human-friendly error message to the screen first. Alternatively, the program might have a mechanism by
which it can work offline, and you can use the exception raised by trying to access an inaccessible network or
server to enter that mode of operation instead.

 Raising Exceptions
 In Ruby, exceptions are packaged into objects of class Exception or one of Exception ’s many subclasses.
Ruby has about 30 main predefined exception classes that deal with different types of errors, such as
 NoMemoryError , StandardError , RuntimeError , SecurityError , ZeroDivisionError , and NoMethodError .
You might have already seen some of these in error messages while working in irb.

 When an exception is raised (exceptions are said to be raised when they occur within the execution of
a program), Ruby immediately looks back up the tree of routines that called the current one (known as the
 stack) and looks for a routine that can handle that particular exception. If it can’t find any error-handling
routines, it quits the program with the raw error message. For example:

 irb(main):001:0> puts 10 / 0

 ZeroDivisionError: divided by 0
 from (irb):1:in `/'
 from (irb):1

 This error message shows that an exception of type ZeroDivisionError has been raised, because you
attempted to divide ten by zero.

 Ruby can raise exceptions automatically when you perform incorrect functions, and you can raise
exceptions from your own code too. You do this with the raise method and by using an existing exception
class, or by creating one of your own that inherits from the Exception class.

 One of the standard exception classes is ArgumentError , which is used when the arguments provided
to a method are fatally flawed. You can use this class as an exception if bad data is supplied to a method
of your own:

 class Person
 def initialize(name)
 raise ArgumentError, "No name present" if name.empty?
 end
 end

 If you create a new object from Person and supply a blank name, an exception will be raised:

 fred = Person.new('')

 ArgumentError: No name present

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

170

 ■ Note You can call raise with no arguments at all, and a generic RuntimeError exception will be raised.
This is not good practice, though, as the exception will have no message or meaning along with it. Always
provide a message and a class with raise , if possible.

 However, you could create your own type of exception if you wanted to. For example:

 class BadDataException < RuntimeError
 end

 class Person
 def initialize(name)
 raise BadDataException, "No name present" if name.empty?
 end
 end

 This time you’ve created a BadDataException class inheriting from Ruby’s standard RuntimeError
exception class.

 At this point, it might seem meaningless as to why raising different types of exceptions is useful. The
reason is so that you can handle different exceptions in different ways with your error-handling code, as
you’ll do next.

 Handling Exceptions
 In the previous section we looked at how exceptions work. When raised, exceptions halt the execution of
the program and trace their way back up the stack to find some code that can handle them. If no handler
for the exception is found, the program ceases execution and dies with an error message with information
about the exception.

 However, in most situations, stopping a program because of a single error isn’t necessary. The error
might only be minor, or there might be an alternative option to try. Therefore, it’s possible to handle
exceptions. In Ruby, the rescue clause is used, along with begin and end , to define blocks of code to handle
exceptions. For example:

 begin
 puts 10 / 0
 rescue
 puts "You caused an error!"
 end

 You caused an error!

 In this case, begin and end define a section of code to be run, where if an exception arises, it’s
handled with the code inside the rescue block. First, you try to work out ten divided by zero, which raises
an exception of class ZeroDivisionError . However, being inside a block containing a rescue section
means that the exception is handled by the code inside that rescue section. Rather than dying with a
 ZeroDivisionError , the text “You caused an error!” is instead printed to the screen.

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

171

 This can become important in programs that rely on external sources of data. Consider this pseudo-code:

 data = ""
 begin
 <..code to retrieve the contents of a Web page..>
 data = <..content of Web page..>
 rescue
 puts "The Web page could not be loaded! Using default data instead."
 data = <..load data from local file..>
 end
 puts data

 This code demonstrates why handling exceptions is extremely useful. If retrieving the contents of a web
page fails (if you’re not connected to the Internet, for example), then the error-handling routine rescues the
exception, alerts the user of an error, and then loads some data from a local file instead—certainly better
than exiting the program immediately!

 In the previous section we looked at how to create your own exception classes, and the motivation
for doing this is that it’s possible to rescue different types of exceptions in a different way. For example,
you might want to react differently if there’s a fatal flaw in the code, versus a simple error such as a lack of
network connectivity. There might also be errors you want to ignore, and only specific exceptions you wish
to handle.

 rescue ’s syntax makes handling different exceptions in different ways easy:

 begin
 ... code here ...
 rescue ZeroDivisionError
 ... code to rescue the zero division exception here ...
 rescue YourOwnException
 ... code to rescue a different type of exception here ...
 rescue
 ... code that rescues all other types of exception here ...
 end

 This code contains multiple rescue blocks, each of which is caused depending on the type of exception
raised. If a ZeroDivisionError is raised within the code between begin and the rescue blocks, the rescue
 ZeroDivisionError code is executed to handle the exception.

 Handling Passed Exceptions
 As well as handling different types of exceptions using different code blocks, it’s possible to receive
exceptions and use them. This is achieved with a little extra syntax on the rescue block:

 begin
 puts 10 / 0
 rescue => e
 puts e.class
 end

 ZeroDivisionError

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

172

 Rather than merely performing some code when an exception is raised, the exception object itself is
assigned to the variable e , whereupon you can use that variable however you wish. This is particularly useful
if the exception class contains extra functionality or attributes that you want to access.

 Catch and Throw
 Although creating your own exceptions and exception handlers is useful for resolving error situations,
sometimes you want to be able to break out of a thread of execution (say, a loop) during normal operation in
a similar way to an exception, but without actually generating an error. Ruby provides two methods, catch
and throw , for this purpose.

 catch and throw work in a way a little reminiscent of raise and rescue , but catch and throw work with
symbols rather than exceptions. They’re designed to be used in situations where no error has occurred, but
being able to escape quickly from a nested loop, method call, or similar, is necessary.

 The following example creates a block using catch . The catch block with the :finish symbol as an
argument will immediately terminate (and move on to any code after that block) if throw is called with the
 :finish symbol .

 catch(:finish) do
 1000.times do
 x = rand(1000)
 throw :finish if x == 123
 end

 puts "Generated 1000 random numbers without generating 123!"
 end

 Within the catch block you generate 1,000 random numbers, and if the random number is ever 123, you
immediately escape out of the block using throw :finish . However, if you manage to generate 1,000 random
numbers without generating the number 123, the loop and the block complete, and you see the message.
 catch and throw don’t have to be directly in the same scope. throw works from methods called from within a
 catch block:

 def generate_random_number_except_123
 x = rand(1000)
 throw :finish if x == 123
 end

 catch(:finish) do
 1000.times { generate_random_number_except_123 }
 puts "Generated 1000 random numbers without generating 123!"
 end

 This code operates in an identical way to the first. When throw can’t find a code block using :finish in
its current scope, it jumps back up the stack until it can.

 The Ruby Debugger
 Debugging is the process of fixing the bugs in a piece of code. This process can be as simple as changing a
small section of your program, running it, monitoring the output, and then looping through this process
again and again until the output is correct and the program behaves as expected.

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

173

 However, constantly editing and re-running your program gives you no insight into what’s actually
happening deep within your code. Sometimes you want to know what each variable contains at a certain
point within your program’s execution, or you might want to force a variable to contain a certain value. You
can use puts to show what variables contain at certain points in your program, but you can soon make your
code messy by interspersing it with debugging tricks.

 Ruby provides a debugging tool you can use to step through your code line by line (if you wish), set
 breakpoints (places where execution will stop for you to check things out), and debug your code. It’s a little
like irb, except you don’t need to type out a whole program. You can specify your program’s filename, and
you’ll be acting as if you are within that program.

 For example, create a basic Ruby script called debugtest.rb :

 i = 1
 j = 0
 until i > 1000000
 i *= 2
 j += 1
 end
 puts "i = #{i}, j = #{j}"

 If you run this code with ruby debugtest.rb , you’ll get the following result:

 i = 1048576, j = 20

 But say you run it with the Ruby debugger like this:

 ruby –r debug debugtest.rb

 You’ll see something like this appear:

 Debug.rb
 Emacs support available

 debugtest.rb:1:i = 1 (rdb:1)

 This means the debugger has loaded. The third line shows you the current line of code ready to be
executed (the first line, in this case), and the fourth line is a prompt that you can type on.

 The function of the debugger is similar to irb, and you can type expressions and statements directly onto
the prompt here. However, its main strength is that you can use special commands to run debugtest.rb line
by line, or set breakpoints and “watches” (breakpoints that rely on a certain condition becoming true—for
example, to stop execution when x is larger than 10).

 Here are the most useful commands to use at the debugger prompt:

• list : Lists the lines of the program currently being worked upon. You can follow
list by a range of line numbers to show. For example, list 2-4 shows code lines 2
through 4. Without any arguments, list shows a local portion of the program to the
current execution point.

• step : Runs the next line of the program. step literally steps through the program line
by line, executing a single line at a time. After each step, you can check variables,
change values, and so on. This allows you to trace the exact point at which bugs
occur. Follow step by the number of lines you wish to execute if it’s higher than one,
such as step 2 to execute two lines.

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

174

• cont : Runs the program without stepping. Execution will continue until the program
ends, reaches a breakpoint, or a watch condition becomes true .

• break : Sets a breakpoint at a particular line number, such as with break 3 to set a
breakpoint at line 3. This means that if you continue execution with cont , execution
will run until line 3 and then stop again. This is useful for stopping execution at a
place where you want to see what’s going on.

• watch : Sets a condition breakpoint. Rather than choosing a certain line upon which to stop,
you specify a condition that causes execution to stop. For example, if you want the program
to stop when x is larger than 10, use watch x > 10 . This is perfect for discovering the exact
point where a bug occurs if it results in a certain condition becoming true .

• quit : Exits the debugger.

 A simple debugging session with your debugtest.rb code might look like this:

 # ruby -r debug debugtest.rb
 Debug.rb

 Emacs support available.
 debugtest.rb:1:i = 1
 (rdb:1) list
 [-4, 5] in debugtest.rb
 => 1 i = 1
 2 j = 0
 3 until i > 1000000
 4 i *= 2
 5 j += 1
 (rdb:1) step
 debugtest.rb:2:j = 0
 (rdb:1) i
 1
 (rdb:1) i = 100
 100
 (rdb:1) step
 debugtest.rb:3:until i > 1000000
 (rdb:1) step
 debugtest.rb:4: i *= 2
 (rdb:1) step
 debugtest.rb:5: j += 1
 (rdb:1) i = 200
 (rdb:1) watch i > 10000
 Set watchpoint 1:i > 10000
 (rdb:1) cont
 Watchpoint 1, toplevel at debugtest.rb:5
 debugtest.rb:5: j += 1
 (rdb:1) i
 12800
 (rdb:1) j
 6
 (rdb:1) quit
 Really quit? (y/n) y

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

175

 This debugging session demonstrates stepping through the code, inspecting variables, changing
variables in situ, and setting watch points. These are the tools you’ll use 99 percent of the time while
debugging, and with practice the debugging environment can become a powerful tool, much like irb.

 However, many Ruby developers don’t use the debugger particularly often, as its style of debugging and
its workflow can seem a little out of date compared to modern techniques such as test-driven development and
 unit testing , which we’ll look at next. If the debugger seems like it could be useful, testing will make you drool.

 Testing
 Testing is a powerful part of modern software development, and can help you resolve many development
snafus. Without a proper testing system in place, you can never be confident that your app is bug-free. With a
good testing system in place, you might only be 99 percent bug free, but it’s a significant improvement.

 Previously, we’ve looked at how to handle explicit errors, but sometimes your programs might perform
oddly in certain situations. For example, certain data might cause an algorithm to return an incorrect result,
or invalid data might be produced that, although invalid, does not result in an explicit error.

 One way to resolve these problems is to debug your code, as you’ve seen, but debugging solves only
one problem at a time. It’s possible to debug your code to solve one problem, but create many others!
Therefore, debugging alone has become viewed as a poor method of resolving bugs, and testing the overall
functionality of code has become important.

 In the past, users and developers might have performed testing manually by performing certain actions
and seeing what happens. If an error occurs, the bug in question is fixed and testing continues. Indeed, there
was a time when it was it commonplace solely to use user feedback as a testing mechanism!

 However, things have changed quickly with the rapidly growing popularity of test driven development
(also often known as test-first development), a new philosophy that turns software-development practices
on their head. Ruby developers have been at the forefront of promoting and encouraging this technique.

 The Philosophy of Test-Driven Development
 Test-driven development is a technique where developers create a set of tests for a system to pass before
coding the system itself, and then rigidly use these tests to maintain the integrity of the code. In a lighter
form, however, it can also refer to the technique of implementing tests for any code, even if you don’t
necessarily create the tests before the code you’re testing.

 There is a variant called behavior-driven development that is essentially the same but that has different
semantics, different buzzwords, and slightly different expectations. For this introduction, however, we’ll
focus on test-driven development.

 ■ Note This section provides only a basic overview of test-driven development. The topic is vast, and many
books and resources are available on the topic if you wish to learn more. Wikipedia’s entry on the topic at
 http://en.wikipedia.org/wiki/Test-driven_development is a great place to start.

 For example, you might add a simple method to String that’s designed to capitalize text into titles:

 class String
 def titleize
 self.capitalize
 end
 end

http://en.wikipedia.org/wiki/Test-driven_development

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

176

 Your intention is to create a method that can turn “this is a test” into “This Is A Test”; that is, a method
that makes strings look as if they’re titles. titleize , therefore, capitalizes the current string with the
 capitalize method. If you’re in a rush or not bothering to test your code, disaster will soon strike when the
code is released into the wild. capitalize capitalizes only the first letter of a string, not the whole string!

 puts "this is a test".titleize

 "This is a test"

 That’s not the intended behavior! However, with test-driven development, you could have avoided the
pain of releasing broken code by first writing some tests to demonstrate the outcome you expect:

 raise "Fail 1" unless "this is a test".titleize == "This Is A Test"
 raise "Fail 2" unless "another test 1234".titleize == "Another Test 1234"
 raise "Fail 3" unless "We're testing titleize".titleize == "We're Testing Titleize"

 These three lines of code raise exceptions unless the output of titleize is what you expect it to be.

 ■ Note These tests are also known as assertions , as they’re asserting that a certain condition is true .

 If titleize passes these three tests, you can expect the functionality to be okay for other examples.

 ■ Note A set of tests or assertions that test a single component or a certain set of functionality is known
as a test case .

 Your current code fails on the first test of this test case, so let’s write the code to make it work:

 class String
 def titleize
 self.gsub(/\b\w/) { |letter| letter.upcase }
 end
 end

 This code takes the current string, finds all word boundaries (with \b), passes in the first letter of each
word (as obtained with \w), and converts it to upper case. Job done? Run the three tests again.

 RuntimeError: Failed test 3

 Why does test 3 fail?

 puts "We're testing titleize".titleize

 We'Re Testing Titleize

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

177

 \b isn’t smart enough to detect true word boundaries. It merely uses whitespace, or “non-word”
characters to discriminate words from non-words. Therefore, in “We’re,” both the W and the R get
capitalized. You need to tweak your code:

 class String
 def titleize
 self.gsub(/\s\w/) { |letter| letter.upcase }
 end
 end

 If you make sure the character before the letter to capitalize is whitespace, you’re guaranteed to now be
scanning with a true, new word.

 Re-run the tests:

 RuntimeError: Failed test 1

 You’re back to square one.
 One thing you failed to take into account is that looking for whitespace before a word doesn’t allow

the first word of each string to be capitalized, because those strings start with a letter, and not whitespace. It
sounds trivial, but it’s a great demonstration of how complex simple functions can become, and why testing
is so vital to eradicate bugs. However, the ultimate solution is simple:

 class String
 def titleize
 self.gsub(/(\A|\s)\w/){ |letter| letter.upcase }
 end
 end

 If you run the tests again, you’ll notice they pass straight through. Success!
 This basic example provides a sharp demonstration of why testing is important. Small changes can

lead to significant changes in functionality, but with a set of trusted tests in place, you can focus on solving
problems rather than worrying if your existing code has bugs.

 Rather than writing code and waiting for bugs to appear, you can proactively determine what your code
should do and then act as soon as the results don’t match up with the expectations.

 Unit Testing
 In the previous section you created some basic tests using raise, unless , and == , and compared the results
of a method call with the expected results. It’s possible to test a lot in this way, but with more than a few tests
it soon becomes messy, as there’s no logical place for the tests to go (and you certainly don’t want to include
tests with your actual, functional code).

 Luckily, Ruby comes with a library, Minitest, that makes testing easy and organizes test cases into a
clean structure. Unit testing is the primary component of test-driven development, and means that you’re
testing each individual unit of functionality within a program or system. Minitest is Ruby’s official library for
performing unit tests.

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

178

 ■ Note Formerly, Ruby’s standard testing library was called Test::Unit . Minitest was a reimplementation
that brought new features to the table, including better performance. Minitest is now considered the de facto
official testing library in Ruby. If you see code elsewhere written for Test::Unit , however, never fear, because
it will probably work fine as is with Minitest.

 One of the benefits of Minitest is that it gives you a standardized framework for writing and performing
tests. Rather than writing assertions in an inconsistent number of ways, Minitest gives you a core set of
assertions to use.

 Let’s take the titleize method from before to use as a demonstration of Minitest’s features and create
a new file called test_titleize.rb :

 class String
 def titleize
 self.gsub(/(\A|\s)\w/){ |letter| letter.upcase }
 end
 end

 require 'minitest/autorun'

 class TestTitleize < Minitest::Test
 def test_basic
 assert_equal("This Is A Test", "this is a test".titleize)
 assert_equal("Another Test 1234", "another test 1234".titleize)
 assert_equal("We're Testing", "We're testing".titleize)
 end
 end

 First you include the titleize extension to String (typically this would be in its own file that you’d
then require in, but for this simple example we’ll keep it associated with the test code). Next you load the
Minitest class using require . Finally you create a test case by inheriting from Minitest::Test . Within this
class you have a single method (though you can have as many as you like to separate your tests logically)
that contains three assertions, similar to the assertions made in the previous section.

 If you run this script, you’ll see the tests in action:

 Run options: --seed 45484
 # Running:
 .
 Finished in 0.002585s, 386.8906 runs/s, 1160.6718 assertions/s.
 1 runs, 3 assertions, 0 failures, 0 errors, 0 skips

 This output shows that the tests are started, a single test method is run (test_basic , in this case), and
that a single test method with three assertions passed successfully.

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

179

 Say you add an assertion to test_basic that’s certainly going to fail, like so:

 assert_equal("Let's make a test fail!", "foo".titleize)

 and re-run the tests:

 Loaded suite t2
 Started
 F
 ==
 Failure:
 test_basic(TestTitleize)
 t2.rb:14:in `test_basic'
 11: assert_equal("This Is A Test", "this is a test".titleize)
 12: assert_equal("Another Test 1234", "another test 1234".titleize)
 13: assert_equal("We're Testing", "We're testing".titleize)
 => 14: assert_equal("Let's make a test fail!", "foo".titleize)
 15: end
 16: end
 17:
 <"Let's make a test fail!"> expected but was
 <"Foo">

 diff:
 ? Let's make a test fail!
 ? Foo
 ==

 Finished in 0.015194 seconds.

 1 tests, 4 assertions, 1 failures, 0 errors, 0 pendings, 0 omissions, 0 notifications
 0% passed

 You’ve added an assertion that was bound to fail, and it has. However, Minitest has given you a full
explanation of what happened. Using this information, you can go back and either fix the assertion or fix the
code that caused the test to fail. In this case, you forced it to fail, but if your assertions are created normally,
a failure such as this would demonstrate a bug in your code.

 More Minitest Assertions
 In the previous section you used a single type of assertion, assert_equal. assert_equal asserts that the
first and second arguments are equal (whether they’re numbers, strings, arrays, or objects of any other kind).
The first argument is assumed to be the expected outcome and the second argument is assumed to be the
generated output, as with your prior assertion:

 assert_equal("This Is A Test", "this is a test".titleize)

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

180

 ■ Note assert_equal can also accept an optional third argument as a message to be displayed if the
assertion fails. A message might, in some cases, prove more useful than the default assertion failure message.

 You’re likely to find several other types of assertions useful as follows:

• assert(<boolean expression>) : Passes only if the Boolean expression isn’t false
or nil (for example, assert 2 == 1 will always fail). refute is its direct opposite.

• assert_equal(expected, actual) : Passes only if the expected and actual values
are equal (as compared with the == operator). assert_equal ('A', 'a'.upcase) will
pass.

• refute_equal (expected, actual): The opposite of assert_equal. This test will fail
if the expected and actual values are equal. Any negative/“not” assertions can be
prefixed with refute_ , but it’s a personal preference as to which you use.

• assert_raise(exception_type, ..) { <code block> } : Passes only if the code
block following the assertion raises an exception of the type(s) passed as arguments.
 assert_raise (ZeroDivisionError) { 2 / 0 } will pass.

• assert_instance_of(class_expected, object) : Passes only if object is of class
 class_expected .

• flunk : flunk is a special type of assertion in that it will always fail. It’s useful if you
haven’t quite finished writing your tests and you want to add a strong reminder that
your test case isn’t complete!

 ■ Note All the preceding assertions, including flunk , can take an optional message argument as the last
argument, as with assert_equal .

 You’ll use assertions and unit testing more in Chapter 12 , where you’ll develop a set of tests for a library
you’ll build.

 Benchmarking and Profiling
 Once your code is bug-free and working properly, it’s natural to think it’s ready for release. In the real
world, however, code can often be inefficient or run more slowly than it needs to. As of version 1.8, the Ruby
interpreter is not particularly fast, although Ruby 1.9, with its entirely new implementation, is significantly
faster (double the speed at the time of writing). However, it’s always important to benchmark your code to
make sure it’s running as efficiently as possible.

 Benchmarking is the process in which you get your code or application to perform a function (often
many hundreds of times in succession to average out discrepancies), and the time it takes to execute is
measured. You can then refer to these times as you optimize your code. If future benchmarks run faster than
previous ones, you’re heading in the right direction. Luckily, Ruby provides a number of tools to help you
benchmark your code.

http://dx.doi.org/10.1007/978-1-4842-1278-3_12

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

181

 Simple Benchmarking
 Ruby’s standard library includes a module called Benchmark . Benchmark provides several methods that
measure the speed it takes to complete the code you provide. For example:

 require 'benchmark'
 puts Benchmark.measure { 10000.times { print "." } }

 This code measures how long it takes to print 10,000 periods to the screen. Ignoring the periods
produced, the output (on my machine; yours might vary) is as follows:

 0.050000 0.040000 0.090000 (0.455168)

 The columns, in order, represent the amount of user CPU time, system CPU time, total CPU, and “real”
time taken. In this case, although it took nine-hundredths of a second of CPU time to send 10,000 periods to
the screen or terminal, it took almost half a second for them to finish being printed to the screen among all
the other things the computer was doing.

 Because measure accepts code blocks, you can make it as elaborate as you wish:

 require 'benchmark'
 iterations = 1000000

 b = Benchmark.measure do
 for i in 1..iterations do
 x = i
 end
 end

 c = Benchmark.measure do
 iterations.times do |i|
 x = i
 end
 end

 puts b
 puts c

 In this example, you benchmark two different ways of counting from one to one million. The results
might look like this:

 0.800000 0.010000 0.810000 (0.949338)
 0.890000 0.010000 0.900000 (1.033589)

 These results show little difference, except that slightly more user CPU time is used when using the
 times method rather than using for . You can use this same technique to test different ways of calculating the
same answers in your code and optimize your code to use the fastest methods.

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

182

 Benchmark also includes a way to make completing multiple tests more convenient. You can rewrite the
preceding benchmarking scenario like this:

 require 'benchmark'
 iterations = 1000000

 Benchmark.bm do |bm|
 bm.report("for:") do
 for i in 1..iterations do
 x = i
 end
 end
 bm.report("times:") do
 iterations.times do |i|
 x = i
 end
 end
 end

 The primary difference with using the bm method is that it allows you to collect a group of benchmark
tests together and display the results in a prettier way. Example output for the preceding code is as follows:

 User system total real
 for: 0.850000 0.000000 0.850000 (0.967980)
 times: 0.970000 0.010000 0.980000 (1.301703)

 bm makes the results even easier to read and provides headings for each column.
 Another method, bmbm , repeats the benchmark set twice, using the first as a “rehearsal” and the second

for the true results, as in some situations CPU caching, memory caching, and other factors can taint the
results. Therefore, repeating the test can lead to more accurate figures. Replacing the bm method with bmbm in
the preceding example (for the Benchmark method) gives results like these:

 Rehearsal --
 for: 0.780000 0.000001 0.780001 (0.958378)
 times: 0.100000 0.010000 0.110000 (1.342837)
 ------------------------------- total: 0.890001sec

 User system total real
 for: 0.850000 0.000000 0.850000 (0.967980)
 times: 0.970000 0.010000 0.980000 (1.301703)

 bmbm runs the tests twice and gives both sets of results, where the latter set should be the most accurate.

 Profiling
 Whereas benchmarking is the process of measuring the total time it takes to achieve something and
comparing those results between different versions of code, profiling tells you what code is taking what
amount of time . For example, you might have a single line in your code that’s causing the program to run
slowly, so by profiling your code you can immediately see where you should focus your optimization efforts.

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

183

 ■ Note Some people consider profiling to be the holy grail of optimization. Rather than thinking of efficient
ways to write your application ahead of time, some developers suggest writing your application, profiling it,
and then fixing the slowest areas. This is to prevent premature optimization. After all, you might prematurely
optimize something that didn’t actually warrant it, but miss out on an area of code that could do with significant
optimization.

 Ruby comes with a code profiler but it is increasingly showing its age, and I would recommend instead
installing ruby-prof (https://github.com/ruby-prof/ruby-prof). This is available as a gem, so can be
simply installed with:

 gem install ruby-prof

 ■ Note The installation process on Windows is a little more involved, so look at the ruby-prof GitHub
repository at https://github.com/ruby-prof/ruby-prof for further guidance.

 Once installed successfully, simply use ruby-prof to run your Ruby code and you’ll get a print out of the
profiler’s findings.

 For example, let’s say we have the following Ruby program:

 require 'profile'
 class Calculator
 def self.count_to_large_number
 x = 0
 100000.times { x += 1 }
 end
 def self.count_to_small_number
 x = 0
 1000.times { x += 1 }
 end
 end

 Calculator.count_to_large_number
 Calculator.count_to_small_number

 This can then be run using ruby-prof:

 ruby-prof calculator.rb

 Measure Mode: wall_time
 Thread ID: 70244689641980
 Fiber ID: 70244707131020
 Total: 0.032527
 Sort by: self_time

https://github.com/ruby-prof/ruby-prof
https://github.com/ruby-prof/ruby-prof

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

184

 %self total self wait child calls name
 65.46 0.032 0.021 0.000 0.011 2 Integer#times
 34.42 0.011 0.011 0.000 0.000 101000 Fixnum#+
 0.06 0.033 0.000 0.000 0.032 2 Global#[No method]
 0.03 0.000 0.000 0.000 0.000 2 IO#set_encoding
 0.02 0.000 0.000 0.000 0.000 1 <Class::Calculator>#count_to_small_number
 0.01 0.032 0.000 0.000 0.032 1 <Class::Calculator>#count_to_large_number
 0.00 0.000 0.000 0.000 0.000 1 Class#inherited
 0.00 0.000 0.000 0.000 0.000 2 BasicObject#singleton_method_added

 There’s a lot of information given, but it’s easy to read. The code itself is simple. Two class methods are
defined that both count up to different numbers. Calculator.count_to_large_ number contains a loop that
repeats 100,000 times, and Calculator.count_to_ small_number contains a loop that repeats 1,000 times.

 ■ Note The reason larger numbers, such as the 1,000,000 loops in the benchmarking tests, weren’t used is
because profiling adds a severe overhead to the operating speed of a program, unlike benchmarking. Although
the program will run slower, this slowdown is consistent, so the accuracy of the profiling results is ensured
regardless.

 The result contains a number of columns. The first is the percentage of time spent within the method
named in the far right column. In the preceding example, the profiler shows that 65.46 percent of the total
execution time was spent in the times method in the Integer class . The second column shows the amount
of time in seconds rather than as a percentage.

 The calls column specifies how many times that method was called. In our case, times was called only
twice. This is true, even though the code block passed to times was run 101,000 times. This is reflected in the
number of calls for Fixnum ’s addition (+) method, with 101,000 total calls shown there.

 You can use the profiler’s results to discover the “sticky” points in your program and help you work
around using inefficient methods that suck up CPU time. It’s not worth spending time optimizing routines
that barely consume any time, so use the profile to find those routines that are using the lion’s share of the
CPU, and focus on optimizing those.

 ■ Tip ruby-prof can also be used from within code, rather than via the ruby-prof program, in order to profile
certain pieces of code rather than an entire script. See ruby-prof’s documentation for more information.

 Summary
 In this chapter we’ve looked at the process behind, and the tools Ruby supplies for, documentation, error
handling, testing, benchmarking, and profiling.

 The quality of the documentation, error handling, and tests associated with a program or section of
code demonstrates the professionalism of the developer and the program. Small, quickly developed scripts
might not require any of these elements, but if you’re developing a system that’s designed to be used by
other people or that’s mission-critical, it’s essential to understand the basics of error handling and testing to
avoid the embarrassment of your code causing problems and behaving erroneously.

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

185

 Furthermore, it’s important to benchmark and profile your code so that your code has the ability to
scale over time. You might expect your code to perform only a certain small set of functions—for example,
processing small files—but in the future you might need to process significantly larger amounts of data with
the same code and add extra, unanticipated features. The small amount of time taken to benchmark, profile,
and optimize your code can pay dividends with reduced execution times later.

 Let’s reflect on the main concepts covered in this chapter:

• RDoc : A tool that comes with Ruby that builds HTML documentation using the
structure and comments in your source code.

• Debugging : The process of resolving errors in source code, often by stepping through
and inspecting the state of a program in situ.

• Test-driven development/test-first development : The development process of first
writing tests that enforce certain expectations, then writing the code to produce the
correct results. Behavior-driven development is a popular alternative that merely uses
different semantics.

• Test case : A group of tests to check the functionality of a section of your program (for
example, a class or module).

• Assertion : A single test to see whether a certain condition or result is met, which
checks that a certain piece of code is working properly.

• Unit testing : The process of testing code by making assertions on its various pieces of
functionality to make sure each operates as expected.

• Optimization : The process of improving the efficiency of your code by reworking
algorithms and finding new ways of solving problems.

• Benchmarking : A process involving testing the speed of your code to see how quick
it is under certain conditions, or using certain methods and algorithms. You can use
the benchmark results to compare different versions of code, or compare coding
techniques.

• Profiling : A process that shows you which methods and routines are taking up the
most execution time (or memory) in your programs.

 Most of these concepts are not used directly in the code samples in this book, as they’re principally
relevant to longer-term projects or code being prepared for release. This doesn’t mean they’re unimportant
concepts, but as in-depth parts of a longer development process they aren’t within the scope of the code
examples used in other chapters.

 We’ll look briefly at testing methodologies again in Chapter 12 , where we implement some simple tests
while developing a library.

http://dx.doi.org/10.1007/978-1-4842-1278-3_12

187© Peter Cooper 2016
P. Cooper, Beginning Ruby, DOI 10.1007/978-1-4842-1278-3_9

 CHAPTER 9

 Files and Databases

 In this chapter, we’re going to look at how to store, process, and interact with external sources of data from
our Ruby programs. In Chapter 4 , we briefly looked at how to load files to get data into an application,
but this chapter will extend upon that greatly and allow you to create files from scratch from your Ruby
programs.

 Later in this chapter, we’ll look at databases—specialized organizations of data—and how to interact
with them, along with some notes on interacting with popular database systems such as SQLite, MySQL, and
PostgreSQL. You can use databases for simple tasks such as storing information about a small set of items or
as an address book, but databases are also used in the world’s busiest data processing environments. By the
end of this chapter, you’ll be able to use databases the same way as, or at least in a similar way to, those used
by professional developers around the world.

 Input and Output
 Interaction, in computer terms, relates to the input and output of data, or I/O for short. Most programming
languages have built-in support for I/O, and Ruby’s is well designed and easy to use.

 I/O streams are the basis for all input and output in Ruby. An I/O stream is a conduit or channel for
input and output operations between one resource and another. Usually this will be between your Ruby
program and the keyboard, or between your Ruby program and a file. Along this stream, input and output
operations can take place. In some cases, such as when using the keyboard, I/O only works in one direction,
as you can’t send data to a keyboard, and data can only be sent to , and not from, a display.

 In this section, we’re going to look at using the keyboard, using files, and other forms of I/O in Ruby and
how they can be used.

 Keyboard Input
 The simplest way to get external data into a program is to use the keyboard. For example:

 a = gets
 puts a

 gets accepts a single line of data from the standard input —the keyboard in this case—and assigns
it to a . You then print it, using puts , to the standard output—the screen in this case.

http://dx.doi.org/10.1007/978-1-4842-1278-3_4

CHAPTER 9 ■ FILES AND DATABASES

188

 STANDARD INPUT AND OUTPUT

 The standard input is a default stream available in many operating systems that relates to the standard
way to accept input from a user or external process. In our case, the standard input is the keyboard, but
if, for example, you were to redirect data to a Ruby program from a UNIX-like operating system, such as
Linux or Mac OS X, the standard input would be the data being directed to it. For example, let’s assume
we put the preceding code example into a file called test.rb and then ran it like so:

 ruby test.rb < somedata.txt

 The output provided this time would be the first line of somedata.txt , as gets would retrieve a
single line from the standard input that, in this case, would be the contents of the file somedata.txt .
Essentially, the file is now the input, not the keyboard.

 Conversely, standard output is usually referring to the screen or display, but if the results of your Ruby
script are being redirected to a file or another program, that destination file or program becomes the
target for the standard output.

 Alternatively, you can read multiple lines in one go by using readlines :

 lines = readlines
 puts lines.length

 readlines accepts line after line of input until a terminator, most commonly known as EOF (End Of
File), is found. You can create EOF on most platforms by pressing Ctrl+D. When the terminating line is
found, all the lines of input given are put into an array that’s assigned to lines . This is particularly ideal for
programs that accept piped or redirected input on standard input.

 Note that on the second line above we then look at the length of the lines array. So if the above code
were in a file called linecount.rb and you passed in a text file containing ten lines:

 ruby linecount.rb < textfile.txt

 You’d get this result:

 10

 In reality, however, this mechanism is rarely used, unless writing shell scripts for use at a UNIX prompt.
In most cases, you’ll be writing to and from files directly, and you’ll require only minimal keyboard input
that you can get with gets .

 File I/O
 In Chapter 4 , you used the File class to open a text file so you could read in the contents for your program to
process. The File class is used as an abstraction to access and handle file objects that can be accessed from a
Ruby program. The File class lets you write to both plain text and binary files (there’s not really an inherent
difference—they’re both just sets of data) and offers a collection of methods to make handling files easy.

http://dx.doi.org/10.1007/978-1-4842-1278-3_4

CHAPTER 9 ■ FILES AND DATABASES

189

 Opening and Reading Files
 The most common file-related procedure is reading a file’s data for use within a program. As you saw in
Chapter 4 , this is easily done:

 File.open("text.txt").each { |line| puts line }

 The File class’s open method is used to open the text file, text.txt , and upon that File object, the each
method returns each line one by one. You can also do it this way:

 File.new("text.txt", "r").each { |line| puts line }

 This method clarifies the process involved. By opening a file, you’re creating a new File object that you
can then use. The second parameter, "r" , defines that you’re opening the file for reading. This is the default
mode, but when using File.new , it can help to clarify what you want to do with the file (as ‘new’ might imply
the creation of a file, which is not usually the case). This becomes important later when you write to files or
create new ones from scratch.

 For opening and reading files, File.new and File.open are identical, but File.open has one,
extra feature. File.open can accept a code block, and once the block is finished, the file will be closed
automatically. However, File.new only returns a File object referring to the file. To close the file, you have to
use its close method. Let’s compare the two methods. First, look at File.open :

 File.open("text.txt") do |f|
 puts f.gets
 end

 This code opens text.txt and then passes the file handle into the code block as f .
 puts f.gets takes a line of data from the file and prints it to the screen. Now, have a look at the File.

new approach:

 f = File.new("text.txt", "r")
 puts f.gets
 f.close

 In this example, a file handle/object is assigned to f directly. You close the file handle manually with the
 close method at the end.

 Both the code block and file handle techniques have their uses. Using a code block is a clean way to
open a single file quickly and perform operations in a single location. However, assigning the File object
with File.new (or File.open , if you choose) makes the file reference available throughout the entire current
scope without needing to contain file-manipulation code within a single block.

 ■ Note You might need to specify the location of files directly, as text.txt might not appear to be in the
current directory. Simply replace f = File.new("text.txt", "r") with f = File.new("c:\ full\ path\
here\text.txt", "r") , including the full path as necessary (this example demonstrates a Windows-style
path). Alternatively, use the result of Dir::pwd to see what the current working directory is and put text.txt
there.

http://dx.doi.org/10.1007/978-1-4842-1278-3_4

CHAPTER 9 ■ FILES AND DATABASES

190

 You could also choose to assign the file handle to a class or instance variable:

 class MyFile
 attr_reader :handle

 def initialize(filename)
 @handle = File.new(filename, "r")
 end

 def finished
 @handle.close
 end
 end

 f = MyFile.new("text.txt")
 puts f.handle.gets
 f.finished

 More File-Reading Techniques
 In the previous section, you used a File object’s each method to read each line one by one within a code
block. However, you can do a lot more than that. Let’s assume your text.txt file contains this dummy data:

 Fred Bloggs,Manager,Male,45
 Laura Smith,Cook,Female,23
 Debbie Watts,Professor,Female,38

 Next, we’ll look at some of the different techniques you can use to read the file, along with their outputs.
First, you can read an I/O stream line by line using each :

 File.open("text.txt").each { |line| puts line }

 Fred Bloggs,Manager,Male,45
 Laura Smith,Cook,Female,23
 Debbie Watts,Professor,Female,38

 ■ Note each technically reads from the file delimiter by delimiter, where the standard delimiter is a
“newline” character. You can change this delimiter.

CHAPTER 9 ■ FILES AND DATABASES

191

 You can read an I/O stream with each using a custom delimiter of your choosing:

 File.open("text.txt").each(',') { |line| puts line }
 Fred Bloggs,
 Manager,
 Male,
 45
 Laura Smith,
 Cook,
 Female,
 23
 Debbie Watts,
 Professor,
 Female,
 38

 In this case, you passed an optional argument to each that specified a different delimiter from the
default “newline” delimiter. Commas delimit the input.

 ■ Tip You can override the default delimiter by setting the special variable $/ to any delimiter you choose.

 You can read an I/O stream byte by byte with each_byte :

 File.open("text.txt").each_byte { |byte| puts byte }

 70
 114
 101
 100
 ...many lines skipped for brevity...
 51
 56
 10

 ■ Note When reading byte by byte, you get the single byte values of each character rather than the
characters themselves, much like when you do something like puts "test"[0] . To convert into text characters,
you can use the chr method.

CHAPTER 9 ■ FILES AND DATABASES

192

 There’s also an alternative called each_char that lets you read character by character. In some character
sets, characters may be represented by more than one byte, so this can be useful:

 File.open("text.txt").each_char { |byte| puts byte }

 F
 r
 e
 d
 ...many lines skipped for brevity...
 ,
 3
 8

 Here’s how to read an I/O stream line by line using gets :

 File.open("text.txt") do |f|
 2.times { puts f.gets }
 end

 Fred Bloggs,Manager,Male,45
 Laura Smith,Cook,Female,23

 gets isn’t an iterator like each or each_byte . Therefore, you have to call it multiple times to get multiple
lines. In this example, it was used twice, and pulled out the first two lines of the example file. Like each ,
however, gets can accept an optional delimiter:

 File.open("text.txt") do |f|
 2.times { puts f.gets(',') }
 end

 Fred Bloggs,
 Manager,

 There’s also a noniterative version of each_byte called getc :

 File.open("text.txt") do |f|
 2.times { puts f.getc }
 end

 F
 r

CHAPTER 9 ■ FILES AND DATABASES

193

 You can also read an entire file into an array, split by lines, using readlines :

 puts File.open("text.txt").readlines.join("--")

 Fred Bloggs,Manager,Male,45
 --Laura Smith,Cook,Female,23
 --Debbie Watts,Professor,Female,38

 ■ Note The “newline” characters that are present at the end of each line of the file are not removed,
meaning that a newline occurs before each instance of -- .

 Lastly, you can choose to read an arbitrary number of bytes from a file into a single variable using read :

 File.open("text.txt") do |f|
 puts f.read(6)
 end

 Fred B

 ■ Note You can use all these methods on any file, such as binary files (images, executables, and so on),
not just text files. However, on Windows, you might need to open the file in binary mode. This is covered in the
section “Writing to Files.”

 The File class makes some convenient methods available so that you don’t need to do things like File.
open("text.txt").read to be able to read a file into a string. Instead, you can do this:

 data = File.read("text.txt")

 This acts as a shorthand for opening the file, using the standard read method, and then closing the file
again.

 You can also do this:

 array_of_lines = File.readlines("text.txt")

 Simple!
 Generally, you should try to use these shortcut methods wherever possible, as they result in shorter,

easier-to-read code, and you don’t have to worry about closing the files. Everything is taken care of for you in
one step. Of course, if reading a file line by line is necessary (perhaps if you’re working with extremely large
files), then you can use the techniques demonstrated earlier in this chapter for reading line by line.

CHAPTER 9 ■ FILES AND DATABASES

194

 Your Position Within a File
 When reading a file, it can be useful to know where you are within that file. The pos method gives you access
to this information:

 f = File.open("text.txt")
 puts f.pos
 puts f.gets
 puts f.pos

 0
 Fred Bloggs,Manager,Male,45
 28

 Before you begin to read any text from the file, the position is shown as 0 . Once you’ve read a line of text,
the position is shown as 28 . This is because pos returns the position of the file pointer (that is, the current
location within the file that you’re reading from) in the number of bytes from the start of the file.

 However, pos can work both ways, as it has a sister method, pos= :

 f = File.open("text.txt")
 f.pos = 8
 puts f.gets
 puts f.pos

 ggs,Manager,Male,45
 28

 In this instance, the file pointer was placed eight bytes into the file before reading anything. This meant
that “Fred Blo” was skipped, and only the rest of the line was retrieved.

 Writing to Files
 The ability to jump easily around files, read lines based on delimiters, and handle data byte by byte makes
Ruby ideal for manipulating data, but I haven’t yet covered how to write new information to files or how to
make changes to existing files.

 Generally, you can mirror most of the techniques used to read files when writing to files. For example:

 File.open("text.txt", "w") do |f|
 f.puts "This is a test"
 end

 This code creates a new file (or overwrites an existing file) called text.txt and puts a single line of text
within it. Previously, you’ve used puts on its own to output data to the screen. However, when used with a
 File object, puts writes the data to the file instead. Simple!

 The "w" passed as the second argument to File.open tells Ruby to open the file for writing only, and
to create a new file or overwrite what is already in the file. This is in contrast with the "r" mode used earlier
when opening a file for reading only.

CHAPTER 9 ■ FILES AND DATABASES

195

 However, you can use several different file modes, as covered in Table 9-1 .

 Table 9-1. File Modes Usable with File.open/File. new

 File Mode Properties of the I/O Stream

 r Read-only. The file pointer is placed at the start of the file.

 r+ Both reading and writing are allowed. The file pointer is placed at the start of the file.

 w Write-only. A new file is created (or an old one overwritten as if new).

 w+ Both reading and writing are allowed, but File.new creates a new file from scratch (or
overwrites an old one as if new).

 a Write (in append mode). The file pointer is placed at the end of the file and writes will make
the file longer.

 a+ Both reading and writing are allowed (in append mode). The file pointer is placed at the end
of the file and writes will make the file longer.

 b Binary file mode. You can use it in conjunction with any of the other modes listed.

 Using the append mode described in Table 9-1 , it’s trivial to create a program that appends a line of text
to a file each time it’s run:

 f = File.new("logfile.txt", "a")
 f.puts Time.now
 f.close

 If you run this code multiple times, logfile.txt will contain several dates and times, one after the
other. Append mode is particularly ideal for log file situations where new information has to be added at
different times.

 The read and write modes work in a simple manner. If you want to open a file in a mode where it can be
read from and written to at the same time, you can do just that:

 f = File.open("text.txt", "r+")
 puts f.gets
 f.puts "This is a test"
 puts f.gets
 f.close

 The second line of this code reads the first line of text from the file, meaning the file pointer is waiting
at the start of the second line of data. However, the following f.puts statement then puts a new line of text
into the file at that position. Unfortunately, this action will not push the previously existing second line to the
third line of the file. All it does is overwrite the equivalent number of bytes, so you end up with a broken third
line! This behavior means you really need to think carefully before writing data into the middle of an existing
file, as you may not get the outcome you thought you would!

 Whereas puts outputs lines of text, you can perform the writing equivalents of getc and read with putc
and write :

 f = File.open("text.txt", "r+")
 f.putc "X"
 f.close

CHAPTER 9 ■ FILES AND DATABASES

196

 This example opens text.txt for reading and writing, and changes the first character of the first line to X .
Similarly:

 f = File.open("text.txt", "r+")
 f.write "123456"
 f.close

 This example overwrites the first six characters of the first line with 123456 .

 ■ Note It’s worth noticing that putc and write overwrite existing content in the file rather than inserting it.

 Character Sets and Encodings
 Ruby 1.9 and later come with built-in support for automatically handling alternative character encodings
when reading files. Character encodings are explained and covered in depth in Chapter 11 ’s “Unicode,
Character Encodings, and UTF-8 Support” section.

 ■ Note If you are not already familiar with character encodings or are using Ruby 1.8, this section will be of
no use to you, so you can skip forward to “Renaming and Deleting Files,” and use this section as a reference
later, as needed.

 Whereas strings have just “internal” encodings, I/O objects also have “external” encodings, since I/O
objects deal with data coming from, or going to, somewhere else.

 In all of the previous file reading examples in this chapter, Ruby used the default encoding to represent
data that is read in, even though this may be incorrect. Specifying an external encoding when opening a file
requires that you append any supplied file mode with a colon and then specify the encoding’s name. For
example, if you want to read a file that uses the UTF-8 encoding scheme:

 File.new("text.txt", "r:utf-8").each { |line| puts line }

 In this example, we’re reading a file (as specified by the "r" mode), but we’re also telling the File object
to treat the data as if it’s in the UTF-8 encoding (whether it actually is or not). This encoding is then applied
for all data read from (or written to, if you’re in the right mode) the file.

 It is possible to determine the external encoding of an I/O object (such as those of the File class) using
its external_encoding method:

 p File.open("text.txt", "r:iso-8859-1").external_encoding
 p File.open("text.txt", "r").external_encoding

 #<Encoding:ISO-8859-1>
 #<Encoding:UTF-8>

http://dx.doi.org/10.1007/978-1-4842-1278-3_11

CHAPTER 9 ■ FILES AND DATABASES

197

 ■ Note If your default encoding is not UTF-8, the second line will return whatever your default encoding
actually is, since no external encoding was specified when creating the File object.

 Another function of Ruby I/O encoding support is in transcoding from one encoding to another. For
example, you might be opening a file in the UTF-8 encoding system, but want Ruby to “translate” it to
another encoding on the fly as the data is read. This is achieved by adding another colon and encoding the
name to the file mode parameter:

 File.open("text.txt", "r:utf-8:iso-8859-1") do |f|
 p f.external_encoding
 first_line = f.gets
 p first_line.encoding
 end

 #<Encoding:UTF-8>
 #<Encoding:ISO-8859-1>

 The transcoding feature will be useful if you want to represent all text within your application in a
certain encoding (UTF-8 would be a good choice, as you will see in Chapter 11), but need to read files of
varying encodings. In each case, use the relevant external coding, but get Ruby to convert everything into
UTF-8!

 Renaming and Deleting Files
 If you want to change the name of a file, you could create a new file with the new name and read into that file
all the data from the original file. However, this isn’t necessary, and you can simply use File.rename like so:

 File.rename("file1.txt", "file2.txt")

 Deleting a file is just as simple. You can delete either one file at a time or many at once:

 File.delete("file1.txt")
 File.delete("file2.txt", "file3.txt", "file4.txt")
 File.unlink("file1.txt")

 ■ Note File.unlink does exactly the same thing as File.delete .

 File Operations
 The File class offers you more than just the ability to read and write files. You can also perform a number of
checks and operations upon files.

http://dx.doi.org/10.1007/978-1-4842-1278-3_11

CHAPTER 9 ■ FILES AND DATABASES

198

 Creating Filenames Platform-Independently

 Windows and UNIX-related operating systems have different ways of denoting filenames. Windows
filenames look like c:\directory\filename.ext , whereas UNIX-style filenames look like /directory/
filename.ext . If your Ruby scripts work with filenames and need to operate under both systems, the File
class provides the join method.

 Under both systems, filenames (and complete paths) are built up from directory names and local
filenames. For example, in the preceding examples, the directory is called directory , but on Windows,
backslashes are used as opposed to forward slashes.

 ■ Note In modern versions (1.9+) of Ruby on Windows, it’s fine to use UNIX-style pathnames using forward
slashes as directory separators, rather than having to format filenames in a Windows style with backslashes.
However, this section is included for completeness, or for instances where you need to work with libraries that
don’t respect UNIX-style pathnames on other operating systems.

 On Windows, you can use File.join to put together a filename using directory names and a final
filename:

 File.join('full', 'path', 'here', 'filename.txt')

 full\path\here\filename.txt

 ■ Note Depending on how your system is set up, you might even see a forward-slash version of the
preceding code on Windows, although that is technically a UNIX-style path.

 On UNIX-related operating systems, such as Linux, the code is the same:

 File.join('full', 'path', 'here', 'filename.txt')

 full/path/here/filename.txt

 The File.join method is simple to use, and it allows you to write the same code to run on both systems
rather than choosing between backslashes and forward slashes in your code.

 The separator itself is stored in a constant called File::SEPARATOR , so you can easily turn a filename
into an absolute filename (with an absolute path) by appending the directory separator to the start, like so:

 File.join(File::SEPARATOR , 'full', 'path', 'here', 'filename.txt')

 /full/path/here/filename.txt

CHAPTER 9 ■ FILES AND DATABASES

199

 Similarly, you can use File.expand_path to turn basic filenames into complete paths. For example:

 File.expand_path("text.txt")

 /Users/peter/text.txt

 ■ Note The result of File.expand_path will vary according to the operating system the code is run under.
As text.txt is a relative filename, it converts it to an absolute filename and references the current working
directory.

 Seeking

 In a previous example, you changed the position of the file pointer using pos= . However, this only allows you
to specify the exact position of the file pointer. If you want to move the pointer forward by a certain offset or
move the pointer to a certain position backward from the end of the file, you need to use seek .

 seek has three modes of operation:

• IO::SEEK_CUR : Seeks a certain number of bytes ahead of the current position.

• IO::SEEK_END : Seeks to a position based on the end of the file. This means that
to seek to a certain position from the end of the file, you’ll probably need to use a
negative value.

• IO::SEEK_SET : Seeks to an absolute position in the file. This is identical to pos= .

 Therefore, to position the file pointer five bytes from the end of the file and change the character to an X ,
you would use seek as follows:

 f = File.open("text.txt", "r+")
 f.seek(-5, IO::SEEK_END)
 f.putc "X"
 f.close

 ■ Note Notice that because you’re writing to the file, you use the r+ file mode to enable writing as well as
reading.

 Or you could do this to print every fifth character in a file:

 f = File.open("text.txt", "r")
 while a = f.getc
 puts a.chr
 f.seek(5, IO::SEEK_CUR)
 end

CHAPTER 9 ■ FILES AND DATABASES

200

 Finding Out When a File Was Last Modified

 To establish when a file was last modified, use File.mtime :

 puts File.mtime("text.txt")

 2015-11-22 00:05:02 +0000

 The time is returned as a Time object, so you can get more information directly:

 t = File.mtime("text.txt")
 puts t.hour
 puts t.min
 puts t.sec

 00
 05
 02

 ■ Note You can learn more about the Time class and its methods in Chapter 3 .

 Checking Whether a File Exists

 It’s useful to check whether a file actually exists, particularly if your program relies on that file or if a user
supplied the filename. If the file doesn’t exist, you can raise a user-friendly error or exception. Invoke the
 File.exist? method to check for the existence of a file:

 puts "It exists!" if File.exist?("file1.txt")

 File.exist? returns true if the named file exists. You could edit the MyFile class created in a previous
example to check for the existence of a file before opening it to avoid a potential exception being thrown, like so:

 class MyFile
 attr_reader :handle

 def initialize(filename)
 if File.exist?(filename)
 @handle = File.new(filename, "r")
 else
 return false
 end
 end
 end

http://dx.doi.org/10.1007/978-1-4842-1278-3_3

CHAPTER 9 ■ FILES AND DATABASES

201

 Getting the Size of a File

 File.size returns the size of a file in bytes. If the file doesn’t exist, an exception is thrown, so it would make
sense to check its existence with File.exist? first.

 puts File.size("text.txt")

 How to Know When You’re at the End of a File

 In previous examples, either you’ve used iterators to give you all the lines or bytes in a file, or you’ve pulled
only a few lines from a file here and there. However, it would be useful to have a foolproof way to know when
the file pointer is at, or has gone past, the end of the file. The eof ? method provides this feature:

 f = File.new("test.txt", "r")
 while !f.eof?
 puts f.gets
 end
 f.close

 This example uses an “infinite” loop that will only conclude once f.eof? is true. This specific example is
not particularly useful, as f.each could have performed a similar task, but in situations where you might be
moving the file pointer around manually, or making large jumps through a file, checking for an “end of file”
situation is useful.

 Directories
 All files are contained within various directories , and Ruby has no problem handling these. Whereas the File
class handles files, directories are handled with the Dir class.

 Navigating Through Directories

 To change directory within a Ruby program, use Dir.chdir :

 Dir.chdir("/usr/bin")

 This example changes the current directory to /usr/bin .
 You can find out what the current directory is with Dir.pwd . For example, here’s the result on my

installation:

 puts Dir.pwd

 /Users/peter

 Dir.chdir("/usr/bin")
 puts Dir.pwd

 /usr/bin

CHAPTER 9 ■ FILES AND DATABASES

202

 You can get a list of the files and directories within a specific directory using Dir.entries :

 puts Dir.entries("/usr/bin").join(' ')

 ... a2p aclocal aclocal-1.6 addftinfo afmtodit alias amlint ant appleping appletviewer
apply apropos apt ar arch as asa at at_cho_prn atlookup atos atprint ... items removed for
brevity ... zless zmore znew zprint

 Dir.entries returns an array with all the entries within the specified directory. Dir.foreach provides
the same feature, but as an iterator:

 Dir.foreach("/usr/bin") do |entry|
 puts entry
 end

 An even more concise way of getting directory listings is by using Dir ’s class array method:

 Dir["/usr/bin/*"]

 ["/usr/bin/a2p", "/usr/bin/aclocal", "/usr/bin/aclocal-1.6",
 "/usr/bin/addftinfo", "/usr/bin/afmtodit", "/usr/bin/alias", "/usr/bin/amlint", "/usr/bin/
ant", ... items removed for brevity ...]

 In this case, each entry is returned as an absolute filename, making it easy to use the File class’s
methods to perform checks on each entry if you wished.

 Creating a Directory

 You use Dir.mkdir to create directories , like so:

 Dir.mkdir("mynewdir")

 Once the directory has been created, you can navigate to it with Dir.chdir .
 You can also specify absolute paths to create directories under other specific directories:

 Dir.mkdir("/mynewdir")
 Dir.mkdir("c:\test")

 However, you cannot create directories under directories that don’t yet exist themselves. If you want to
create an entire structure of directories, you must create them one by one from the top down.

 ■ Note On UNIX-related operating systems, Dir.mkdir accepts a second optional argument: an integer
specifying the permissions for the directory. You can specify this in octal, as with 0666 or 0777 , representing
modes 666 and 777, respectively.

CHAPTER 9 ■ FILES AND DATABASES

203

 Deleting a Directory

 Deleting a directory is similar to deleting a file:

 Dir.delete("mynewdir")

 ■ Note Dir.unlink and Dir.rmdir perform exactly the same function and are provided for convenience.

 As with Dir.mkdir , you can use absolute pathnames.
 One thing you need to consider when deleting directories is whether they’re empty. If a directory

isn’t empty, you cannot delete it with a single call to Dir.delete . You need to iterate through each of the
subdirectories and files and remove them all first. You can do that iteration with Dir.foreach , looping
recursively through the file tree by pushing new directories and files to remove onto an array.

 Alternatively, you can use the rm_f method of the FileUtils library that comes with Ruby:

 require 'fileutils'
 FileUtils.rm_f(directory_name)

 ■ Caution If you choose to use rm_f , tread carefully, as you might accidentally delete the wrong thing!

 Creating Files in the Temporary Directory

 Most operating systems have the concept of a “temporary” directory where temporary files can be stored.
Temporary files are those that might be created briefly during a program’s execution but aren’t a permanent
store of information.

 Dir.tmpdir provides the path to the temporary directory on the current system, although the method is
not available by default. To make Dir.tmpdir available, it’s necessary to use require 'tmpdir' :

 require 'tmpdir'
 puts Dir.tmpdir

 /tmp

 ■ Note On Mac OS X, the result might be somewhat more esoteric. For example, I was given the temporary
directory of /var/folders/80/80DFegkBHLmcQjJHdZ5SCE+++TI/-Tmp- . On Windows, I got C:/Users/
username/AppData/Local/Temp .

CHAPTER 9 ■ FILES AND DATABASES

204

 You can use Dir.tmpdir with File.join to create a platform-independent way of creating a temporary file:

 require 'tmpdir'
 tempfilename = File.join(Dir.tmpdir, "myapp.dat")
 tempfile = File.new(tempfilename, "w")
 tempfile.puts "This is only temporary"
 tempfile.close
 File.delete(tempfilename)

 This code creates a temporary file, writes data to it, and deletes it.
 Ruby’s standard library also includes a library called tempfile that can create temporary files for you:

 require 'tempfile'
 f = Tempfile.new('myapp')
 f.puts "Hello"
 puts f.path
 f.close

 /tmp/myfile1842.0

 Unlike creating and managing your own temporary files, tempfile automatically deletes the files it
creates after they have been used. This is an important consideration when choosing between the two
techniques.

 Basic Databases
 Many applications need to store, access, or manipulate data. In some cases, this is by loading files, making
changes to them, and outputting data to the screen or back to a file. In many situations, however, a database
is required.

 A database is a system for organizing data on a computer in a systematic way. A database can be as
simple as a text file containing data that can be manipulated by a computer program, or as complex as many
gigabytes of data spread across hundreds of dedicated database servers. You can use Ruby in these scenarios
and for those in between.

 First, we’re going to look at how to use simple text files as a form of organized data.

 Text File Databases
 One simple type of database can be stored in a text file in a format commonly known as CSV. CSV stands
for comma-separated values, and means that for each item of data you’re storing, you can have multiple
attributes separated with commas. The dummy data in your text.txt file in the previous section used CSV
data. To recap, text.txt initially contained this code:

 Fred Bloggs,Manager,Male,45
 Laura Smith,Cook,Female,23
 Debbie Watts,Professor,Female,38

 Each line represents a different person, and commas separate the attributes relating to each person.
The commas allow you to access (and change) each attribute separately.

CHAPTER 9 ■ FILES AND DATABASES

205

 Ruby’s standard library includes a library called csv that allows you to use text files containing CSV data
as simple databases that are easy to read, create, and manipulate.

 Reading and Searching CSV Data
 The CSV class provided by the csv standard library will manage the manipulation of CSV data for you:

 require 'csv'
 CSV.open('text.txt').each do |person|
 p person
 end

 ["Fred Bloggs", "Manager", "Male", "45"]
 ["Laura Smith", "Cook", "Female", "23"]
 ["Debbie Watts", "Professor", "Female", "38"]

 You open the text.txt file by using CSV.open , and each line (that is, each individual “person” in the
file) is passed into the block one by one using each . The inspect method demonstrates that each entry is
now represented in array form. This makes it easier to read the data than when it was in its plain text form.

 You can also use CSV alongside the File class:

 require 'csv'
 people = CSV.parse(File.read('text.txt'))
 puts people[0][0]
 puts people[1][0]
 puts people[2][0]

 Fred Bloggs
 Laura Smith
 Debbie Watts

 This example uses the File class to open and read in the contents of a file, and CSV.parse immediately
uses these to convert the data into an array of arrays. The elements in the main array represent each line in
the file, and each element in those elements represents a different attribute (or field) of that line. Therefore,
by printing out the first element of each entry, you get the people’s names only.

 An even more succinct way of loading the data from a CSV-formatted file into an array is with CSV.read :

 require 'csv'
 p CSV.read('text.txt')

 [["Fred Bloggs", "Manager", "Male", "45"], ["Laura Smith", "Cook", "Female", "23"],
 ["Debbie Watts", "Professor", "Female", "38"]]

CHAPTER 9 ■ FILES AND DATABASES

206

 The find and find_all methods (also known as detect and select , respectively) provided by the
 Enumerable module to Array make it easy for you to perform searches on the data available in the array. For
example, you’d use this code if you wanted to pick out the first person in the data called Laura:

 require 'csv'
 people = CSV.read('text.txt')
 laura = people.find { |person| person[0] =~ /Laura/ }
 p laura

 ["Laura Smith", "Cook", "Female", "23"]

 Using the find (or detect) method with a code block that looks for the first matching line where the
name contains “Laura” gives you back the data you were looking for.

 Where find returns the first matching element of an array or hash, find_all (or select) returns all
valid matches. Let’s say you want to find the people in your database whose ages are between 20 and 40:

 young_people = people.find_all do |p|
 p[3].to_i.between?(20, 40)
 end
 p young_people

 [["Laura Smith", "Cook", "Female", "23"], ["Debbie Watts", "Professor",
 "Female", "38"]]

 This operation provides you with the two matching people contained within an array that you can
iterate through.

 Saving Data Back to the CSV File
 Once you can read and query data , the next step is being able to change it, delete it, and rewrite your CSV file
with a new version of the data for future use. Luckily, this is as simple as reopening the file with write access
and “pushing” the data back to the file. The CSV module handles all of the conversion.

 require 'csv'
 people = CSV.read('text.txt')
 laura = people.find { |person| person[0] =~ /Laura/ }
 laura[0] = "Lauren Smith"

 CSV.open('text.txt', 'w') do |csv|
 people.each do |person|
 csv << person
 end
 end

 You load in the data, find a person to change, change her name, and then open the CSV file and rewrite
the data back to it. Notice, however, that you have to write the data person by person. Once complete, text.
txt is updated with the name change. This is how to write back CSV data to file.

CHAPTER 9 ■ FILES AND DATABASES

207

 Storing Objects and Data Structures
 Working with CSV is easy, but it doesn’t feel very smooth. You’re always dealing with arrays, so rather than
getting nice names such as name , age , or job for the different attributes, you have to remember in which
element and at which position each attribute is located.

 You’re also forced to store simple arrays for each separate entry. There’s no nesting, no way to relate one
thing to another, no relationship to object orientation, and the data is “flat.” This is sufficient for basic data,
but what if you simply want to take data that already exists in structures like arrays and hashes and save that
data to disk for later use?

 PStore
 PStore is a core Ruby library that allows you to use Ruby objects and data structures as you normally would,
and then store them in a file. Later on, you can reload the objects back into memory from the disk file. This
technique is known as object persistence , and relies on a technique called marshalling, where standard data
structures are turned into a form of flat data that can be stored to disk or transmitted over a network for later
reconstruction.

 Let’s create a class to represent the structure of the data you were using in the CSV examples:

 class Person
 attr_accessor :name, :job, :gender, :age
 end

 You can re-create your data like so:

 fred = Person.new
 fred.name = "Fred Bloggs"
 fred.age = 45

 laura = Person.new
 laura.name = "Laura Smith"
 laura.age = 23

 ■ Note For brevity, you’ll work only with these two objects in this example.

 Rather than have your data in arrays, you now have your data available in a fully object-oriented
fashion. You could create methods within the Person class to help you manipulate your objects and so forth.
This style of storing and manipulating data is true to the Ruby way of things and is entirely object-oriented.
However, until now, your objects have only lasted until the end of a program, but with PStore it’s easy to
write them to a file:

 require 'pstore'
 store = PStore.new("storagefile")
 store.transaction do
 store[:people] ||= Array.new
 store[:people] << fred
 store[:people] << laura
 end

CHAPTER 9 ■ FILES AND DATABASES

208

 In this example, you create a new PStore in a file called storagefile . You then start a transaction (data
within a PStore file can only be read or updated while inside a “transaction” to prevent data corruption), and
within the transaction you make sure the :people element of the store contains something or gets assigned
to be an array. Next, you push the fred and laura objects to the :people element of the store, and then end
the transaction.

 The reason for the hash syntax is because a PStore is, effectively, a disk-based hash. You can then store
whatever objects you like within that hash. In this example, you’ve created an array within store[:people]
and pushed your two Person objects to it.

 Later on, you can retrieve the data from the PStore database:

 require 'pstore'
 store = PStore.new("storagefile")
 people = []
 store.transaction do
 people = store[:people]
 end

 # At this point the Person objects inside people can be treated
 # as totally local objects.
 people.each do |person|
 puts person.name
 end

 Fred Bloggs
 Laura Smith

 ■ Note It’s necessary for the Person class to be defined and ready to use before loading the Person objects
from the PStore file, so if you ran the previous example separately from the first, make sure you include the
 Person class definition again.

 With only a simple storage and retrieval process, PStore makes it easy to add storage facilities to existing
Ruby programs by allowing you to store existing objects into a PStore database. Object persistence is not
ideal for many types of data storage, but if your program is heavily dependent on objects, and you want to
store those objects to disk for later use, PStore provides a simple method to use.

 YAML
 YAML (standing for YAML Ain’t Markup Language) is a special text-based markup language that was
designed as a data serialization format that’s readable by humans. You can use it in a similar way to PStore to
serialize data structures, but unlike PStore’s data, humans can easily read YAML data, and even directly edit
it with a text editor and a basic knowledge of YAML syntax.

CHAPTER 9 ■ FILES AND DATABASES

209

 The YAML library comes as part of Ruby’s standard library, so it’s easy to use. Unlike PStore, though, the
YAML library converts data structures to and from YAML and doesn’t provide a hash to use, so the technique
is a little different. This example writes an array of objects to disk:

 require 'yaml'

 class Person
 attr_accessor :name, :age
 end

 fred = Person.new
 fred.name = "Fred Bloggs"
 fred.age = 45

 laura = Person.new
 laura.name = "Laura Smith"
 laura.age = 23
 test_data = [fred, laura]

 puts test_data.to_yaml

 - !ruby/object:Person
 age: 45
 name: Fred Bloggs
 - !ruby/object:Person
 name: Laura Smith
 age: 23

 You can use the to_yaml method to convert your Person object array into YAML data, which, as you
might agree, is extremely readable! YAML.load performs the operation in the other direction, turning YAML
code into working Ruby objects. For example, let’s modify the YAML data a little and see if it translates back
into working objects:

 require 'yaml'

 class Person
 attr_accessor :name, :age
 end

 yaml_string = <<END_OF_DATA

 - !ruby/object:Person
 age: 45
 name: Jimmy
 - !ruby/object:Person
 age: 23
 name: Laura Smith
 END_OF_DATA

CHAPTER 9 ■ FILES AND DATABASES

210

 test_data = YAML.load(yaml_string)
 puts test_data[0].name
 puts test_data[1].name

 Jimmy
 Laura Smith

 Here YAML.load converts the YAML data back into the test_data array of Person objects successfully.
 You can use YAML to convert between most types of Ruby objects (including basic types such as Array

and Hash) and YAML. This makes it an ideal intermediary format for storing data (such as configuration
files) your applications need to access.

 ■ Note When dealing with serialized objects, you must still have the classes used by those objects defined
within the program somewhere; otherwise, they won’t be usable.

 As plain text, you can safely transmit YAML via e-mail, store it in normal text files, and move it around
more easily than the binary data created by libraries such as PStore.

 To learn more about YAML formatting, read its Wikipedia entry at http://en.wikipedia.org/wiki/
YAML , or refer to the official YAML web site at http://www.yaml.org/ .

 Relational Databases and SQL
 In the previous section, you created some extremely simplistic “databases” using text files and object
persistence. Text files, of course, have their limitations. They’re not reliable if many processes are using them
at the same time, and they’re slow. Loading a CSV file into memory is fine when the dataset is small, but
when it grows, the process of working directly with files can soon become sluggish.

 When developing more robust systems, you pass database filing and management off to a separate
application or system, and applications simply connect to a database system to pass data back and forth. In
the previous section, you were working with database files and the data within them quite directly, and that’s
unacceptable when performance and reliability are necessary.

 Relational Database Concepts
 One major benefit of using a dedicated database system is getting support for relational databases . A
relational database is composed of data grouped into one or more tables that can be linked together. A table
stores information about one type of thing. For example, an address book database might be made up of a
 people table, an addresses table, and a phonenumbers table. Each table stores information about people,
addresses, and phone numbers, respectively.

 The people table would likely have a number of attributes (known as columns , in database land) such as
 name , age , and gender . Each row of the table—that is, an individual person—would then have information in
each column. Figure 9-1 shows an example.

http://en.wikipedia.org/wiki/YAML
http://en.wikipedia.org/wiki/YAML
http://www.yaml.org/

CHAPTER 9 ■ FILES AND DATABASES

211

 Figure 9-1 ’s example also includes a column called id . In relational databases, it’s standard procedure
to have an id column on most tables to identify each row uniquely. Although you could look up and retrieve
data based on other columns, such as name , numeric IDs are useful when you’re creating relationships
between tables.

 ■ Note In Figure 9-1 , the table headings are written in a typical style, as you’d expect in a normal address
book or spreadsheet. However, when dealing with relational databases at a lower level, it’s common to use
all lowercase names for column and table names. This explains why the text and later code examples in this
chapter refer to table and column names in lowercase only.

 One benefit of relational databases is the way rows in different tables can be related to one another. For
example, your people table could have an address_id column that stores the ID of the address associated
with this user. If you want to find out the address of a particular person, you can look up his or her address_
id , and then look up the relevant row of the addresses table.

 The reason for this sort of relationship is that many people in your people database might share the
same address, and rather than store the address separately for each person, it’s more efficient to store a
reference instead. This also means that if you update the address in the future, it updates for all the relevant
users at the same time.

 The relationship functionality also supports the definition of many-to-many relationships. You could
create a separate table called related_people that has two columns, first_person_id and second_person_
id . This table could store pairs of ID numbers that signify two people are related to each other. To work out
to whom a person is related, you can simply look for any rows mentioning his or her ID number, and you’d
get back the ID numbers of that person’s related people. This sort of relationship is used in most databases
and is what makes relational databases so useful.

 MySQL, PostgreSQL, and SQLite
 Three well-known relational database systems available today that work on both Windows and UNIX
operating systems are MySQL, PostgreSQL, and SQLite. Each has significantly different features from the
others, and therefore has different uses.

 Most web developers will be familiar with MySQL, as it comes with most web hosting packages and
servers, making it easily the most commonly used database engine on the Internet.

 For our purposes in the next few sections of this chapter, we’ll be using a system called SQLite.
Unlike MySQL, or PostgreSQL, SQLite doesn’t run as a “server,” so it doesn’t require any special resources.
Whereas MySQL and PostgreSQL both run as permanent server applications, SQLite is “on-demand” and
works entirely on your local machine. Despite this, it’s still fast and reliable, and is ideal for local database
purposes. You can easily carry much of the knowledge you learn with SQLite across to other systems. SQLite
is also the default database engine used with Ruby on Rails apps, as you’ll discover in Chapter 13 .

 Figure 9-1. A basic people table containing three rows

http://dx.doi.org/10.1007/978-1-4842-1278-3_13

CHAPTER 9 ■ FILES AND DATABASES

212

 Nonetheless, toward the end of this chapter we’ll look at how you can connect to databases using these
other architectures, so that you can get direct access to any existing databases you might have from your
Ruby applications.

 Installing SQLite
 The first step to getting a database system up and running quickly is to install SQLite3—the latest version
of SQLite. Mac OS X comes with SQLite 3 by default, as do some Linux distributions. On Ubuntu or Debian
Linux, you can run apt-get install sqlite3 libsqlite3-dev .

 Once the SQLite3 libraries are installed at the operating system level, you can install the Ruby library that
gives Ruby access to SQLite3 databases. It’s packaged as a gem called sqlite3-ruby and can be installed on all
systems with gem install sqlite3 or sudo gem install sqlite3 on UNIX-related operating systems if you
aren’t running as a superuser. (For information about installing Ruby gems, refer to Chapter 7 .)

 You can check that everything was installed okay with this code:

 require 'sqlite3'
 puts "It's all okay!" if defined?(SQLite3::Database)

 It's all okay!

 If the installation didn’t progress smoothly, links to SQLite resources are available in Appendix B

 A Crash Course in Basic Database Operations and SQL
 To manage databases with any of the various database systems at a basic level, knowledge of several SQL
commands is required. In this section, we’re going to look at how to create tables, add data to them, retrieve
data, delete data, and change data.

 Throughout this section, think entirely in terms of databases separately from Ruby. A demonstration
of how Ruby can use SQL to manipulate a database is covered in detail in the later section “Using SQLite
with Ruby.”

 ■ Note If you’re already familiar with SQL, you can skip the next few sections and jump straight to the
section “Using SQLite with Ruby” to see SQL in action alongside Ruby.

 What Is SQL?
 Structured Query Language (SQL) is a special language, often known as a query language, used to interact
with database systems. You can use SQL to create, retrieve, update, and delete data, as well as create and
manipulate structures that hold that data. Its basic purpose is to support the interaction between a client
and a database system. In this section, I’m going to give you a primer on SQL’s syntax and how you can use it
from Ruby.

 Be aware that this section is only a very basic introduction to SQL, as a full and deep explanation of SQL
is beyond the scope of this book.

http://dx.doi.org/10.1007/978-1-4842-1278-3_7

CHAPTER 9 ■ FILES AND DATABASES

213

 Note that the way different database systems use and implement SQL can vary wildly, which is why the
following sections will only cover that which is reasonably standard and enables you to perform basic data
operations.

 If you want to play along at home, you can use the command-line sqlite3 client to create a database
and perform SQL queries upon it without getting involved with Ruby at all. Just run sqlite3 test.db , where
 test.db is your chosen database filename. You can then type SQL and press Enter to execute it. To leave the
client, you can type .quit on a separate line and press Enter.

 ■ Note There are also libraries that remove the necessity of writing SQL in order to work with databases. We
mention some of these at the end of the chapter. Regardless, at least reading about how SQL works is going to
be beneficial to you in the long term.

 CREATE TABLE
 Before you can add data into a database, it’s necessary to create one or many tables to hold it. To create a
table, you need to know what you want to store in it, what you want to call it, and what attributes you want to
store.

 For your people table, you want to have name , job , gender , and age columns, as well as a unique id
column for possible relationships with other tables. To create a table, you use a syntax like so:

 CREATE TABLE table_name (
 column_name data_type options,
 column_name data_type options,
 ...,
 ...
);

 ■ Note SQL commands are typically written in capital letters for clarity (and it’s somewhat traditional).
However, you don’t have to do this. Table names and attributes, however, can be case-sensitive with some
database systems, so stick to lowercase for those!

 Therefore, for your people table, you’d use this syntax:

 CREATE TABLE people (
 id integer primary key,
 name varchar(50),
 job varchar(50),
 gender varchar(6),
 age integer);

 This SQL command creates a people table and gives it five columns. The data types for the name , job ,
and gender columns are all VARCHAR s, meaning they’re variable-length character fields. In basic terms, it
means they can contain strings. The number in brackets refers to the maximum length of that string, so the
name column can hold a maximum of 50 characters.

CHAPTER 9 ■ FILES AND DATABASES

214

 ■ Note SQLite is a reasonably pragmatic database, and it ignores most conventions relating to data types
in SQL. Almost any form of data will fit into any type of column. SQLite ignores the maximum lengths for these
 VARCHAR columns. This is one reason why SQLite is great for quick and easy development, but not so great for
crucial systems!

 The id column has the words primary key as its options. This means that the id column is the primary
reference to each row and that the ID must be unique for each row. This means SQLite will automatically
assign a unique ID to each row, so you don’t need to specify one yourself each time you add a new row.

 INSERT INTO
 You use the INSERT command to add rows to tables:

 INSERT INTO people (name, age, gender, job) VALUES ("Chris Scott", 25, "Male",
 "Technician");

 First, you specify the table you want to add a row to, and then list the columns you wish to fill out, before
passing in the values with which to fill the row.

 You can omit the list of columns if the data passed after VALUES is in the correct order:

 INSERT INTO people VALUES ("Chris Scott", 25, "Male", "Technician");

 ■ Caution This particular INSERT would cause an error on your people table! It’s missing the id column.

 However, it’s safer and more convenient if you specify the columns beforehand, as in the first example.
The second example clearly demonstrates why this is the case, as it’s hard to tell which item of data relates to
which column.

 Columns that don’t have any data specified for them will be filled in automatically with the defaults
specified in the CREATE TABLE statement for that table. In the case of the people table, the id column will
automatically receive a unique ID number for each row added.

 SELECT
 You use the SELECT command to retrieve data from tables. You specify which columns you want to retrieve
(or use * as a wildcard to retrieve them all) and the table you want to retrieve data from, and optionally
include a condition upon which to base the retrieval. For example, you might only want to choose a
particular row or rows that match certain criteria.

 This SQL statement retrieves the data from all columns for all rows in the people table:

 SELECT * FROM people;

 This SQL retrieves all the values from just the name column of rows in the people table (for example,
“Fred Bloggs,” “Chris Scott,” “Laura Smith”):

 SELECT name FROM people;

CHAPTER 9 ■ FILES AND DATABASES

215

 This SQL retrieves rows with an id column equal to 2 from the people table (usually, because id is a
column containing unique values, only one row would be returned for such a query):

 SELECT * FROM people WHERE id = 2;

 This SQL retrieves any rows that have a name column equal to “Chris Scott”:

 SELECT * FROM people WHERE name = "Chris Scott";

 This SQL retrieves all rows of people whose ages are between 20 and 40, inclusive:

 SELECT * FROM people WHERE age >= 20 AND age <= 40;

 The conditions used in SQL are somewhat similar to those used in Ruby and other programming
languages, except that logical operators such as AND and OR are written as plain English. Also, as in Ruby, you
can use parentheses to group expressions and build up more complex requests.

 It’s also possible to have the results returned in a certain order by appending an ORDER BY clause such
as ORDER column_name to the SQL query. You can further append ASC to the column name to sort in an
ascending fashion, or DESC to sort in a descending fashion. For example, this SQL returns all rows from the
people table ordered by the name column in descending order (so names starting with Z come before those
beginning with A):

 SELECT * FROM people ORDER BY name DESC;

 This SQL returns all rows of those people between the ages of 20 and 40 in order of age, youngest first:

 SELECT * FROM people WHERE age >= 20 AND age <= 40 ORDER BY age ASC;

 Another useful addition to a SELECT command is LIMIT. LIMIT allows you to place a limit on the
amount of rows returned on a single query:

 SELECT * FROM people ORDER BY name DESC LIMIT 5;

 In conjunction with ORDER , you can use LIMIT to find extremes in the data. For example, finding the
oldest person is easy:

 SELECT * FROM people ORDER BY age DESC LIMIT 1;

 This sorts the rows in descending order by age and returns the first result: the highest. To get the
youngest person, you could use ASC instead of DESC on the ordering.

 ■ Note Database engines sort columns automatically by their data type. Strings of text are formatted
alphanumerically, whereas integer and other number columns are sorted by their numeric value.

CHAPTER 9 ■ FILES AND DATABASES

216

 DELETE
 The DELETE SQL command deletes rows from tables. You can delete rows based on an SQL condition. For
example:

 DELETE FROM people WHERE name="Chris";
 DELETE FROM people WHERE age > 100;
 DELETE FROM people WHERE gender = "Male" AND age < 50;

 As with SELECT , you can place limits on the number of deletions:

 DELETE FROM people WHERE age > 100 LIMIT 10;

 In this case, only ten rows with an age over 100 would be deleted.
 Think of the DELETE command to be like SELECT , but instead of returning the rows, it erases them. The

format is otherwise reasonably similar.

 UPDATE
 UPDATE provides the ability to update and amend information within the database. As with DELETE , the
syntax for UPDATE is similar to that of SELECT . Consider this:

 SELECT * FROM people WHERE name = "Chris";
 UPDATE people SET name = "Christopher" WHERE name = "Chris";

 UPDATE first accepts the name of a table whose row(s) might be updated, then accepts the column(s)
to be changed along with the new data, and finally accepts an optional condition for the change. Some
examples follow.

 This SQL changes the name column to “Christopher” on all rows where the name column is currently
equal to “Chris”:

 UPDATE people SET name = "Christopher" WHERE name = "Chris";

 This SQL changes the name column to “Christopher” and the age column to 44 where the name column
is currently equal to “Chris”:

 UPDATE people SET name = "Christopher", age = 44 WHERE name = "Chris";

 This SQL changes the name column to “Christopher” where the name column is “Chris” and the age
column equals 25. Therefore, a row where the name is Chris and the age is 21 will not be updated by this
example query:

 UPDATE people SET name = "Christopher" WHERE name = "Chris" AND age = 25;

 This SQL changes the name column to “Christopher” on every row of the people table. This
demonstrates why it pays to be careful when building SQL queries, as short statements can have big
ramifications!

 UPDATE people SET name = "Christopher";

CHAPTER 9 ■ FILES AND DATABASES

217

 Using SQLite with Ruby
 Now that you’ve installed SQLite and we’ve covered the basics of how SQL works, let’s put together a basic
demonstration of how it all works in conjunction with Ruby. To do this, you’re going to write a program that
allows you to manipulate a database based on the people table that we’ve talked about so far in this chapter.

 The first step is to write the basic code that can load or create a database. The SQLiteRuby gem makes
this simple with the SQLite3::Database.new method. For example:

 require 'sqlite3'
 $db = SQLite3::Database.new("dbfile")
 $db.results_as_hash = true

 From this point, you can use $db in a similar way to the file handles you used earlier in this chapter. For
example, $db.close will similarly close the database file, just as you closed regular files.

 The $db.results_as_hash = true line forces SQLite to return data in a hash format rather than as an
array of attributes (as with CSV). This makes the results easier to access.

 ■ Note The database handle has been assigned to a global variable, $db , so that you can split your program
into multiple methods without creating a class. You can therefore access the database handle, $db , from anywhere
you wish. This isn’t what you’d do in a large program, but for learning to use SQLite3 here, it will suffice.

 To cope with the closing situation, you’ll create a method specifically for disconnecting the database
and ending the program:

 def disconnect_and_quit
 $db.close
 puts "Bye!"
 exit
 end

 ■ Note Remember that you must define methods before you use them, so put these separate methods at
the top of your source file.

 Now let’s create a method that will use the CREATE TABLE SQL statement to create the table where you’ll
store your data:

 def create_table
 puts "Creating people table"
 $db.execute %q{
 CREATE TABLE people (
 id integer primary key,
 name varchar(50),
 job varchar(50),
 gender varchar(6),
 age integer)
 }
 end

CHAPTER 9 ■ FILES AND DATABASES

218

 A database handle will allow you to execute arbitrary SQL with the execute method. All you need to do
is pass the SQL as an argument, and SQLite will execute the SQL upon the database.

 Next, let’s create a method that asks for input from the user to add a new person to the database:

 def add_person
 puts "Enter name:"
 name = gets.chomp
 puts "Enter job:"
 job = gets.chomp
 puts "Enter gender:"
 gender = gets.chomp
 puts "Enter age:"
 age = gets.chomp
 $db.execute("INSERT INTO people (name, job, gender, age) VALUES (?, ?, ?, ?)",
 name, job, gender, age)
 end

 ■ Note The chomp method added to gets removes the newline characters that appear at the end of
keyboard output retrieved with gets .

 The start of the add_person method is mundane. You ask for each of the person’s attributes in turn and
assign them to variables. However, $db.execute is more intriguing this time. In the previous section, the
 INSERT SQL was shown with the data in the main statement, but in this method you’re using question marks
(?) as placeholders for the data.

 Ruby performs an automatic substitution from the other parameters passed to execute into the
placeholders. This acts as a way of securing your database. The reason is that if you interpolated the user’s
input directly into the SQL, the user might type some SQL that could break your query. However, when you
use the placeholder method, the SQLite-Ruby library will clean up the supplied data for you and make sure
it’s safe to put into the database.

 Now you need a way to be able to access the data entered. Time for another method! This code example
shows how to retrieve the associated data for a given name and ID:

 def find_person
 puts "Enter name or ID of person to find:"
 id = gets.chomp

 person = $db.execute("SELECT * FROM people WHERE name = ? OR id = ?", id, id.to_i).first

 unless person
 puts "No result found"
 return
 end

 puts %Q{Name: #{person['name']}
 Job: #{person['job']}
 Gender: #{person['gender']}
 Age: #{person['age']}}
 end

CHAPTER 9 ■ FILES AND DATABASES

219

 The find_person method asks the user to enter either the name or the ID of the person he or she is
looking for. The $db.execute line cleverly checks both the name and id columns at the same time. Therefore,
a match on either the id or name will work. If no match is found, the user will be told, and the method will
end early. If there’s a match, the information for that user will be extracted and printed on the screen.

 You can tie it up with a main routine that acts as a menu system for the four methods described earlier.
You already have the database connection code in place, so creating a menu is simple:

 loop do
 puts %q{Please select an option:

 1. Create people table
 2. Add a person
 3. Look for a person
 4. Quit}

 case gets.chomp
 when '1'
 create_table
 when '2'
 add_person
 when '3'
 find_person
 when '4'
 disconnect_and_quit
 end
 end

 If the code is put together properly and then run, a typical first session could go like this:

 Please select an option:

 1. Create people table
 2. Add a person
 3. Look for a person
 4. Quit
 1
 Creating people table
 Please select an option:

 1. Create people table
 2. Add a person
 3. Look for a person
 4. Quit
 2
 Enter name:
 Fred Bloggs

CHAPTER 9 ■ FILES AND DATABASES

220

 Enter job:
 Manager
 Enter gender:
 Male
 Enter age:
 48
 Please select an option:

 1. Create people table
 2. Add a person
 3. Look for a person
 4. Quit
 3
 Enter name or ID of person to find:
 1
 Name: Fred Bloggs
 Job: Manager
 Gender: Male
 Age: 48
 Please select an option:

 1. Create people table
 2. Add a person
 3. Look for a person
 4. Quit
 3
 Enter name or ID of person to find:
 Jane Smith

 No result

 Your quick and basic application provides a way to add data and retrieve data from a remote data
source in only a handful of lines!

 ■ Note You should note that we have broken some of the best practices highlighted through this book in
the previous program. We used global variables and applied almost no structure to the code at all. The goal
here was solely to use SQLite3 quickly, but consider how you could dramatically improve the structure of the
program now that it works.

 Connecting to Other Database Systems
 In the previous section, we looked at SQL and how to use it with the SQLite library, a library that provides a
basic database system on the local machine. More commonly, however, you might want to use more elaborate
databases or connect to databases located on other machines (and potentially not even run by you).

CHAPTER 9 ■ FILES AND DATABASES

221

 Sequel (http://sequel.jeremyevans.net/) is a “database toolkit” for Ruby that uses a DSL (Domain
Specific Language) to abstract away some of the details of using a database and interfaces with the libraries
used to talk to various database systems. If you write your code in a certain way, using Sequel, you can,
as long as you do not use any database-specific features, switch that code between, say, MySQL and
PostgreSQL and it would continue to work.

 Sequel has “adapters” for a wide variety of database systems, the most popular including MySQL, IBM
DB, Oracle, PostgreSQL, and SQLite3. It also supports a variety of common database features like prepared
statements, stored procedures, and transactions, so if you’re already familiar with using databases, it’s a
library well worth checking out.

 Installing Sequel is easy:

 gem install sequel

 Once it’s installed, you’ll want to make sure you have the underlying driver library for your database of
choice installed too. For example, for MySQL, you could install the mysql2 library. For PostgreSQL, install
the pg library:

 gem install pg

 While this isn’t going to be a complete tour of Sequel, once you have things installed, you can begin to
write code like this:

 require 'sequel'
 require 'pg'

 DB = Sequel.connect('postgres://user:password@localhost/dbname')

 DB.create_table :people do
 primary_key :id
 String :first_name
 String :last_name
 Integer :age
 end

 people = DB[:people]
 people.insert(:first_name => "Fred", :last_name => "Bloggs", :age => 32)

 puts "There are #{people.count} people in the database"

 people.each do |person|
 puts person[:first_name]
 end

 DB.fetch("SELECT * FROM people") do |row|
 puts row[:first_name]
 end

 In a relatively short program, we’ve seen how we can create a table, populate that table with data, then
query both the length of the table and look up rows within that table in two different ways. As you may
notice, this is a lot more straightforward than working with a database driver library directly, as we did with
the sqlite3 library earlier!

http://sequel.jeremyevans.net/

CHAPTER 9 ■ FILES AND DATABASES

222

 ■ Note In the program above, you could require in sqlite3 and then change the first main line of code to
 DB = Sequel.sqlite to create a temporary, in-memory SQLite database. This will let you run the code if you
don’t have access to a PostgreSQL server.

 Refer to http://sequel.jeremyevans.net/ for more about using Sequel.

 ActiveRecord: A Sneak Peek
 So far in this chapter, you’ve worked directly with databases and had to learn a whole new language: SQL.
Working with a database with SQL in mind can make things more efficient and reliable than putting data into text
files, say, as you did earlier, but ActiveRecord makes it easier still (and even easier than Sequel). ActiveRecord is
a product of the Ruby on Rails framework, which we’ll look at in Chapter 13 , but can be used independently of it.
ActiveRecord will be covered in more depth in that chapter, but deserves a brief summary here.

 ActiveRecord abstracts away the details of SQL and makes it possible to relate to items within databases
in an object-oriented fashion, as you did with PStore.

 ActiveRecord gives you objects that correspond to rows and classes that correspond to tables, and you
can work with the data using Ruby syntax, like so:

 person = Person.where(name: "Chris").first
 person.age = 50
 person.save

 This code looks through the people table for a row whose name column matches “Chris,” and puts an
object relating to that row into person. ActiveRecord makes attributes available for all that row’s columns,
so changing the age column is as easy as assigning to the object’s attribute. However, once the object’s value
has been changed, you issue the save method to save the changes back to the database.

 ■ Note The pluralization from a Person class to a people table is an automatic part of ActiveRecord’s
functionality.

 The previous code could replace SQL such as this:

 SELECT * FROM people WHERE name = "Chris";
 UPDATE people SET age = 50 WHERE name = "Chris";

 Even SQL gurus familiar with Ruby tend to find Ruby’s syntax more natural, particularly in the scope of
a Ruby program. There’s no need to mix two different languages in one program if both sets of features can
be provided in Ruby alone.

 ActiveRecord will be covered again in Chapter 13 .

http://sequel.jeremyevans.net/
http://dx.doi.org/10.1007/978-1-4842-1278-3_13
http://dx.doi.org/10.1007/978-1-4842-1278-3_13

CHAPTER 9 ■ FILES AND DATABASES

223

 Summary
 In this chapter, we’ve looked at how data can flow into and out of your Ruby programs. Initially, we looked
at the low-level concept of I/O streams before quickly moving on to the pragmatism of databases. Databases
provide a way to work with data in a more abstracted fashion without worrying about the underlying
structure of the data on the computer’s filesystem. Indeed, databases can be located within memory or on
totally different machines, and our code could remain the same.

 Let’s reflect on the main concepts covered in this chapter:

• I/O : Input/output. The concept of receiving input and sending output by various
means on a computer, often via I/O streams.

• I/O stream : A channel along which data can be sent and/or received.

• Standard input (stdin) : A stream that relates to the default way of accepting data into
the application, usually the keyboard.

• Standard output (stdout) : A stream that relates to the default way of outputting data
from the application, usually to the screen.

• File pointer : An abstract reference to the current “location” within a file.

• Database : An organized collection of data structured in a way that makes it easy to be
accessed programmatically.

• CSV (comma-separated values) : A way of structuring data with attributes separated
with commas. CSV can be stored in plain text files.

• Marshalling : The process of converting a live data structure or object into a flat set of
data that can be stored on disk, sent across a network, and then used to reconstruct
the original data structure or object elsewhere or at some other time.

• Table : A collection of data organized into rows, with multiple columns, where each
column represents a different attribute of each row. There are usually multiple tables
within a database, containing different types of data.

• SQLite : An open source, public-domain relational database API and library that
works on a single-user basis on a local machine. It supports SQL as its querying
language.

• MySQL : An open source relational database system available in both community
and professional editions. It is maintained by MySQL AB. Web hosting companies
commonly offer MySQL database support.

• PostgreSQL : A free, open source relational database system licensed under the
BSD license, making it possible to repackage and sell within commercial products.
PostgreSQL is often considered to be of higher performance and have better
conformity to SQL standards than MySQL, although it’s less popular at the time of
writing.

• Primary key : A column (or multiple columns) on a table whose data uniquely
identifies each row.

CHAPTER 9 ■ FILES AND DATABASES

224

• SQL (Structured Query Language) : A language specifically designed to create,
amend, retrieve, and otherwise manipulate data in relational database systems.

• ActiveRecord : A library that abstracts databases, rows, columns, and SQL into
standard Ruby syntax using classes and objects. It’s a major part of the Ruby on Rails
framework, which is covered in Chapter 13 .

 With the ability to load, manipulate, and store data, the number of useful Ruby applications you can
develop increases significantly. Few applications depend entirely on data typed in every time, and having access
to files and databases makes it easy to build powerful systems that can be used over time to manage data.

 Next, in Chapter 10 , we’re going to look at a few ways that you can make your applications and libraries
available to the world.

http://dx.doi.org/10.1007/978-1-4842-1278-3_13
http://dx.doi.org/10.1007/978-1-4842-1278-3_10

225© Peter Cooper 2016
P. Cooper, Beginning Ruby, DOI 10.1007/978-1-4842-1278-3_10

 CHAPTER 10

 Distributing Ruby Code
and Libraries

 In this chapter, we’re going to look at how to distribute the Ruby code you write to other developers and users.
 Developing Ruby applications and libraries is so simple that you’ll soon want to release them to the

world. As covered in Chapter 5 , Ruby has a proud history of community and sharing, and nearly every Ruby
developer will release code or completed applications at some point.

 This chapter will walk you through the considerations and processes of deploying Ruby applications,
libraries, and remotely accessible services using HTTP daemons and CGI scripts.

 Distributing Basic Ruby Programs
 Ruby is an interpreted language, so to distribute Ruby programs you can simply distribute the source code
files you’ve written. Anyone else who has Ruby installed can then run the files in the same way that you do.

 This process of distributing the actual source code for a program is typically how most programs
developed using a scripting language, such as Ruby, are shared; but more traditionally, software has been
distributed without the source code included. Popular desktop application development languages such as
C and C++ are compiled languages whose source code is converted directly into machine code that runs on
a certain platform. This software can be distributed by copying the resulting compiled machine code files,
rather than the source, from machine to machine. However, this technique is not possible with Ruby, as there
is currently no Ruby compiler available (with the exception of that in JRuby, but this is still a nascent area),
so you have to distribute your source code in one sense or another for other people to be able to run your
programs.

 ■ Note Later in this chapter, we’ll look at making the functionality of your Ruby programs available across a
network. This technique does not require you to make your source code available, although it does require you
to maintain a running copy of your program on a machine that’s network accessible (such as a web server).

 To see how you can distribute Ruby source code, let’s take an example Ruby file and call it test.rb :

 puts "Your program works!"

http://dx.doi.org/10.1007/978-1-4842-1278-3_5

CHAPTER 10 ■ DISTRIBUTING RUBY CODE AND LIBRARIES

226

 If you copy test.rb to another computer that has the Ruby interpreter installed on it, you can run the
program directly with the Ruby interpreter as you would normally:

 ruby test.rb

 Your program works!

 This technique works well if you’re passing programs between your own machines or servers, or if
you’re distributing your programs to other developers. As long as the other users and machines have the
same Ruby libraries or gems that your program uses, your program should run fine. For example, if you
develop something to work with the standard version of Ruby that comes with Mac OS X, your program
should work just fine on other Mac OS X machines (assuming they are running the same or a later version of
OS X that includes Ruby).

 This ability to interpret the code in the same way on varying machines is one benefit of interpreted
languages over compiled languages. If the same version of the Ruby interpreter is available on a different
platform, it should run the same programs that your Ruby interpreter does. With compiled code (code
that is specifically compiled down to machine code for a specific platform), it is not the case that it will run
identically on all platforms; in fact, it usually won’t!

 What if you want to distribute your Ruby program to people who aren’t au fait with the Ruby
interpreter? Depending on the target operating system (that is, the operating system the user is running),
there are several ways to make deploying Ruby applications simpler.

 The Shebang Line
 On UNIX-related operating systems (Linux, OS X, BSD, and so on), you can engineer your program to run
more simply by using a shebang line .

 ■ Note In certain situations, such as when using the Apache HTTP server, shebang lines can work in
Windows. You can use shebang lines such as #!ruby and #!c:\ruby\bin\ruby.exe to make Ruby CGI scripts
work under Apache on Windows.

 For example, say your script were to look like this:

 #!/usr/bin/ruby

 puts "Your program works!"

 UNIX-related operating systems support putting the name of the interpreter of a file on the first line of
the file with a shebang line, where the “shebang” is simply the pound (#) sign and the exclamation mark (!).

 ■ Note The shebang line only needs to be in the file that’s initially run. It doesn’t need to be in library or
support files used by the main program.

CHAPTER 10 ■ DISTRIBUTING RUBY CODE AND LIBRARIES

227

 In this case, /usr/bin/ruby , the Ruby interpreter, is used to interpret the rest of the file. One problem
you might run into, though, is that your Ruby interpreter might be located in /usr/bin/local/ruby or have
a different name entirely. However, there’s a reasonably portable way to work around this problem. Many
UNIX-related operating systems (including most Linuxes and OS X) have a tool called env that stores the
location of certain applications and settings. You can use this tool to load Ruby without knowing its exact
location. For example:

 #!/usr/bin/env ruby

 puts "Your program works!"

 You could copy this example to many different Linux or OS X machines, for example, and it would work
on the majority (env is not universal).

 If this script were called test.rb and located in the current working directory, you could simply run it
from a command line, like so:

 ./test.rb

 ■ Note On most UNIX-like operating systems (including Mac OS X), as well as adding a shebang line,
it’s necessary to make the Ruby script “executable” by using chmod for the preceding example to work, as in
chmod +x test.rb .

 Naturally, if you copied the script elsewhere (/usr/bin , for example), you could access it directly:

 /usr/bin/test.rb

 Or if the script’s location is in the path, it’s even easier:

 test.rb

 You could even remove the . rb suffix and make it look like a regular executable if you wished.

 Associated File Types in Windows
 Whereas shebang lines are used on UNIX-like operating systems, Windows users are more familiar with file
extensions (such as DOC, EXE, JPG, MP3, or TXT) dictating how a file is processed.

 If you use My Computer or Windows Explorer to find a folder containing a Ruby file, the file might or
might not already be associated with the Ruby interpreter (depending on which Ruby package you installed).
Alternatively, Ruby files might be associated with your text editor. In any case, if you want to be able to
double-click Ruby files in Windows and have them run directly as regular Ruby programs, you can do this
by changing the default action for files with an extension of RB (or any other arbitrary extension you wish
to use).

 The easiest way to set an association is to right-click the icon representing a Ruby file and choose the
Open With option from the menu (or Open, if it’s currently not associated with any program). Associate
the program with the ruby.exe Ruby interpreter on your computer, and check the Always Use the Selected
Program to Open This Kind of File option. This will cause Ruby files to be executed directly by the Ruby
interpreter in the future.

CHAPTER 10 ■ DISTRIBUTING RUBY CODE AND LIBRARIES

228

 Detecting Ruby’s Runtime Environment
 Deploying Ruby programs can be made easier with the tools covered in the previous section, but you can use
a number of techniques directly within Ruby to make Ruby’s interactions with its surrounding environment
even better.

 For example, it’s possible to detect information about the machine upon which a Ruby script is running
and then change the way the program operates on the fly. You can also retrieve parameters passed to the
program via the command line.

 Detecting the runtime environment while the program is running can be useful to restrict access to
users on specific platforms if your program isn’t relevant to other users, or to tailor internal settings in your
program so that your program will work better on the user’s operating system. It can also be a useful way to
get system-specific information (rather than operating-system–specific information) that’s relevant directly
to the machine the program is running on, as it could affect the operation of your program. A common
example of this is retrieving the current user’s path : a string of various directory names on the system that
can be searched as default locations for files. There are also environment variables dictating where to store
temporary files, and so forth.

 Easy OS Detection with RUBY_PLATFORM
 Among the myriad special variables Ruby makes accessible, a variable called RUBY_PLATFORM contains the
name of the current environment (operating system) you’re running under. You can easily query this variable
to detect what operating system your program is running under. This can be useful if you want to use a certain
filesystem notation or features that are implemented differently under different operating systems.

 On my Windows machine, RUBY_PLATFORM contains i386-mswin32 , on my OS X machine it contains
 x86_64-darwin13 , and on my Linux machine it contains i686-linux . This gives you the immediate power to
segregate features and settings by operating system.

 if RUBY_PLATFORM =~ /win32/
 puts "We're in Windows!"
 elsif RUBY_PLATFORM =~ /linux/
 puts "We're in Linux!"
 elsif RUBY_PLATFORM =~ /darwin/
 puts "We're in Mac OS X!"
 elsif RUBY_PLATFORM =~ /freebsd/
 puts "We're in FreeBSD!"
 else
 puts "We're running under an unknown operating system."
 end

 Environment Variables
 Whenever a program is run on a computer, it’s contained with a certain environment , whether that’s the
command line or a GUI. The operating system sets a number of special variables called environment
variables that contain information about the environment. They vary by operating system, but can be a good
way of detecting things that could be useful in your programs.

CHAPTER 10 ■ DISTRIBUTING RUBY CODE AND LIBRARIES

229

 You can quickly and easily inspect the environment variables (as supplied by your operating system) on
your current machine with irb by using the special ENV hash:

 irb(main):001:0> ENV.each {|e| puts e.join(': ') }

 TERM: vt100
 SHELL: /bin/bash
 USER: peter
 PATH: /bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/opt/local/bin:/usr/local/sbin
 PWD: /Users/peter
 SHLVL: 1
 HOME: /Users/peter
 LOGNAME: peter
 SECURITYSESSIONID: 51bbd0
 _: /usr/bin/irb
 LINES: 32
 COLUMNS: 120

 Specifically, these are the results from my machine, and yours will probably be quite different. For
example, when I try the same code on a Windows machine, I get results such as these:

 ALLUSERSPROFILE: F:\Documents and Settings\All Users
 APPDATA: F:\Documents and Settings\Peter\Application Data
 CLIENTNAME: Console
 HOMEDRIVE: F:
 HOMEPATH: \Documents and Settings\Peter
 LOGONSERVER: \\PSHUTTLE
 NUMBER_OF_PROCESSORS: 2
 OS: Windows_NT
 Path: F:\ruby\bin;F:\WINDOWS\system32;F:\WINDOWS
 PATHEXT: .COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.RB;.RBW
 ProgramFiles: F:\Program Files
 SystemDrive: F:
 SystemRoot: F:\WINDOWS
 TEMP: F:\DOCUME~1\Peter\LOCALS~1\Temp
 TMP: F:\DOCUME~1\Peter\LOCALS~1\Temp
 USERDOMAIN: PSHUTTLE
 USERNAME: Peter
 USERPROFILE: F:\Documents and Settings\Peter
 windir: F:\WINDOWS

 You can use these environment variables to decide where to store temporary files, or to find out what
sort of features your operating system offers, in real time, much as you did with RUBY_PLATFORM :

 tmp_dir = '/tmp'
 if ENV['OS'] =~ /Windows_NT/
 puts "This program is running under Windows NT/2000/XP!"
 tmp_dir = ENV['TMP']
 elsif ENV['PATH'] =~ /\/usr/

CHAPTER 10 ■ DISTRIBUTING RUBY CODE AND LIBRARIES

230

 puts "This program has access to a UNIX-style file system!"
 else
 puts "I cannot figure out what environment I'm running in!"
 exit
 end

 # [.. do something here ..]

 ■ Note You can also set environment variables with ENV['variable_name'] = value , but only do this if you
have a valid reason to use them. However, setting environment variables from within a program only applies to
the local process and any child processes, meaning that the variables’ application is extremely limited.

 Although ENV acts like a hash, it’s technically a special object, but you can convert it to a true hash using
its . to_hash method, as in ENV.to_hash .

 Accessing Command-Line Arguments
 In Chapter 4 , you used a special array called ARGV. ARGV is an array automatically created by the Ruby
interpreter that contains the parameters passed to the Ruby program (whether on the command line or by
other means). For example, say you created a script called argvtest.rb :

 p ARGV

 You could run it like so:

 ruby argvtest.rb these are command line parameters

 ["these", "are", "command", "line", "parameters"]

 The parameters are passed into the program and become present in the ARGV array, where they can be
processed as you wish. Use of ARGV is ideal for command-line tools where filenames and options are passed
in this way.

 Using ARGV also works if you call a script directly. On UNIX operating systems, you could adjust
 argvtest.rb to be like this:

 #!/usr/bin/env ruby
 p ARGV

 And you could call it in this way:

 ./argvtest.rb these are command line parameters

 ["these", "are", "command", "line", "parameters"]

http://dx.doi.org/10.1007/978-1-4842-1278-3_4

CHAPTER 10 ■ DISTRIBUTING RUBY CODE AND LIBRARIES

231

 You generally use command-line arguments to pass options, settings, and data fragments that might
change between executions of a program. For example, a common utility found on most operating systems
is copy or cp , which is used to copy files. It’s used like so:

 cp /directory1/from_filename /directory2/destination_filename

 This would copy a file from one place to another (and rename it along the way) within the filesystem.
The two filenames are both command-line arguments, and a Ruby script could receive data in the same way,
like so:

 #!/usr/bin/env ruby
 from_filename = ARGV[0]
 destination_filename = ARGV[1]

 Distributing Ruby Libraries as Gems
 Over time, it’s likely you’ll develop your own libraries to solve various problems with Ruby so that you don’t
need to write the same code over and over in different programs, but can call on the library for support.

 Usually you’ll want to make these libraries available to use on other machines, on servers upon which
you deploy applications, or to other developers. You might even open source your libraries to get community
input and a larger developer base.

 If you’ve read Chapter 5 , you’ll have a good feel for Ruby’s commitment to open source and how open
source is important to Ruby developers. This section looks at how to release your code and libraries in such a
way that other developers can find them useful.

 Luckily, deploying libraries is generally less problematic than deploying entire applications, as the
target audience is made up of other developers who are usually familiar with installing libraries.

 In Chapter 7 , we looked at RubyGems, a library installation and management system for Ruby. We
looked at how RubyGems makes it easy to install libraries, but RubyGems also makes it easy to create “gems”
of your own from your own code.

 Creating a Gem
 There are easy ways to create gems and slightly less easy ways. I’m going to take a “raw” approach by
showing how to create a gem from the ground up. Later, we’ll look at a library that will do most of the grunt
work for you.

 Let’s first create a simple library that extends the String class and puts it in a file called string_extend.rb :

 class String
 def vowels
 scan(/[aeiou]/i)
 end
 end

 This code adds a vowels method to the String class , which returns an array of all the vowels in a string:

 "This is a test".vowels

 ["i", "i", "a", "e"]

http://dx.doi.org/10.1007/978-1-4842-1278-3_5
http://dx.doi.org/10.1007/978-1-4842-1278-3_7

CHAPTER 10 ■ DISTRIBUTING RUBY CODE AND LIBRARIES

232

 As a local library within the scope of a larger application, it could be loaded with require or
require_relative :

 require_relative 'string_extend'

 However, you want to turn it into a gem that you can use anywhere. Building a gem involves three steps.
The first is to organize your code and other files into a structure that can be turned into a gem. The second is
to create a specification file that lists information about the gem. The third is to use the gem program to build
the gem from the source files and the specification.

 Structuring Your Files
 Before you can build a gem, it’s necessary to collect all the files you want to make up the gem. This is usually
done using a standard structure . So far, you have your string_extend.rb file, and this is the only file you
want within your gem.

 First, it’s necessary to create a folder to contain all the gem’s folders, so you create a folder called
 string_extend . Under this folder, you create several other folders as follows:

• lib : This directory will contain the Ruby code related to the library.

• pkg : This is a temporary directory where the gem will be generated.

• test : This directory will contain any unit tests or other testing scripts related to the
library.

• doc : This is an optional directory that could contain documentation about the
library, particularly documentation created with or by RDoc.

• bin : This is another optional directory that can contain system tools and command-
line scripts that are related to the library. For example, RubyGems itself installs the
 gem command-line tool; such a tool would be placed into bin .

 At a minimum, you should end up with string_extend/lib , string_extend/pkg , and string_extend/test .
 In this example, you should place string_extend.rb within the string_extend/lib directory. If you

have tests, documentation, or command-line scripts, place them into the respective directories.

 ■ Note The preceding directory names are written in UNIX style, but on Windows would be represented
similarly to this : c:\gems\string_extend , c:\gems\string_extend\lib , and so on. Take this into account
throughout this entire section.

 Creating a Specification File
 Once your files are organized, it’s time to create a specification file that describes the gem and provides
RubyGems with enough information to create the final gem. Create a text file called string_extend.gemspec
(or a filename that matches your own project name) in the main string_extend folder , and fill it out like so:

 Gem::Specification.new do |s|
 s.name = 'string_extend'
 s.version = '0.0.1'
 s.summary = "StringExtend adds useful features to the String class"
 s.platform = Gem::Platform::RUBY

CHAPTER 10 ■ DISTRIBUTING RUBY CODE AND LIBRARIES

233

 s.files = Dir.glob("**/**/**")
 s.test_files = Dir.glob("test/*_test.rb")
 s.author = "Your Name"
 s.email = "your-email-address@email.com"
 s.has_rdoc = false
 s.required_ruby_version = '>= 1.8.2'
 end

 This is a basic specification file. The specification file is effectively a simple Ruby script that passes
information through to Gem::Specification . The information it provides is mostly simple, but let’s look at a
few key areas.

 First, you define the name of the gem, setting it to 'string_extend' :

 s.name = 'string_extend'

 Next, you define the version number. Typically, version numbers for Ruby projects (and for Ruby
itself) contain three parts in order of significance. Early versions of software—before an official release,
perhaps—often begin with 0 , as in 0.0.1 here:

 s.version = '0.0.1'

 The summary line is displayed by gem list , and can be useful to people prior to installing the gem.
Simply put together a short description of your library/gem here:

 s.summary = "StringExtend adds useful features to the String class"

 The files attribute accepts an array of all the files to include within the gem. In this case, you use
Dir.glob to get an array of all the files under the current directory:

 s.files = Dir.glob("**/**/**")

 However, you could explicitly reference every file in an array in the preceding line.
 The test_files attribute, like the files attribute, accepts an array of files, in this case associated with

tests. You can leave this line intact even if you have no test folder, as Dir.glob will just return an empty
array. For example:

 s.test_files = Dir.glob("test/*_test.rb")

 Last, sometimes libraries rely on features in certain versions of Ruby. You can specify the required
version of Ruby with the require_ruby_version parameter. If there’s no required version, you can simply
omit this line:

 s.required_ruby_version = '>= 1.8.2'

 ■ Note A full list of the parameters you can use in a RubyGems specification file is available at
http://guides.rubygems.org/specification-reference/ .

http://guides.rubygems.org/specification-reference/
http://guides.rubygems.org/specification-reference/

CHAPTER 10 ■ DISTRIBUTING RUBY CODE AND LIBRARIES

234

 Building the Gem
 Once the specifications file is complete, building the final .gem file is as simple as this:

 gem build <spec file>

 ■ Note gem build should be run from the directory that the spec file is in.

 In your case:

 gem build string_extend.gemspec

 This makes gem create the final gem file, called string_extend-0.0.1.gem .

 ■ Note In the future, once you change and update your library, simply update the version numbers and
rebuild, and you’ll have a new gem ready to go that can be installed to upgrade the existing installed gem.

 Beyond this point, you could install your own gem with gem install string_extend , and then use it
from other scripts using require 'string_extend' . It’s that simple.

 Easier Gem Creation
 In Chapter 7 , we looked at a popular tool within the Ruby world called Bundler. Bundler makes it easy to
manage the dependencies of your Ruby programs, but it also has a feature to create all of the boilerplate
code that you saw in the past few pages. Knowing how this code operates is important, which is why we
covered it, but once you're up to speed, using Bundler to automatically generate the files will save you time.

 To create a new gem using Bundler is as simple as:

 bundle gem string_extend

 ■ Note Bear in mind if you followed the previous section and created a gem by hand, what we're doing here
will conflict with that, so consider moving to a different directory or creating something with a different name.

 This results in a directory and a set of files being created, as well as the initialization of a Git repository:

 create string_extend/Gemfile
 create string_extend/Rakefile
 create string_extend/LICENSE.txt
 create string_extend/README.md
 create string_extend/.gitignore
 create string_extend/string_extend.gemspec
 create string_extend/lib/string_extend.rb
 create string_extend/lib/string_extend/version.rb
 Initializing git repo in /Users/peter/ruby/string_extend

http://dx.doi.org/10.1007/978-1-4842-1278-3_7

CHAPTER 10 ■ DISTRIBUTING RUBY CODE AND LIBRARIES

235

 Due to Bundler's boilerplate code needing to cope with almost any example of creating a gem out of the
box, its gem specification file is slightly more complex than the one we created earlier but follows the same
structure:

 # coding: utf-8
 lib = File.expand_path('../lib', __FILE__)
 $LOAD_PATH.unshift(lib) unless $LOAD_PATH.include?(lib)
 require 'string_extend/version'

 Gem::Specification.new do |spec|
 spec.name = "string_extend"
 spec.version = StringExtend::VERSION
 spec.authors = ["Peter Cooper"]
 spec.email = ["git@peterc.org"]
 spec.summary = %q{TODO: Write a short summary. Required.}
 spec.description = %q{TODO: Write a longer description. Optional.}
 spec.homepage = ""
 spec.license = "MIT"

 spec.files = 'git ls-files –z'.split("\x0")
 spec.executables = spec.files.grep(%r{^bin/}) { |f| File.basename(f) }
 spec.test_files = spec.files.grep(%r{^(test|spec|features)/})
 spec.require_paths = ["lib"]

 spec.add_development_dependency "bundler", "~> 1.7"
 spec.add_development_dependency "rake", "~> 10.0"
 end

 All that's left now is to fill out the blanks and carry on developing your library.

 Distributing a Gem
 Distributing a gem is easy. You can upload it to a web site or transfer it in any way you would normally
transfer a file. You can then install the gem with gem install by referring to the local file.

 The best way to distribute gems, however, is in a form where they can be installed over the Internet
without specifying a source. For example:

 gem install gem_name

 This command installs the gem gem_name by looking for it on the Internet and downloading it to the
local machine. But how does gem know where to download gems? By default, RubyGems searches a Ruby
project repository called RubyGems.org for gems if no source is specified. We’ll look at how to make gems
available in the default database using RubyGems.org next.

 RubyGems.org
 RubyGems.org (http://rubygems.org/) is the largest community repository for Ruby projects and libraries.
It contains thousands of projects and acts as a centralized location for the hosting of gems. Nearly all the
major Ruby libraries are available from or hosted there, including Ruby on Rails.

http://rubyforge.org/)

CHAPTER 10 ■ DISTRIBUTING RUBY CODE AND LIBRARIES

236

 If you want your gem to be installed easily by users, hosting it on RubyGems.org is key. And, happily, it's
entirely free.

 To host a project on RubyGems.org , you first need an account, but once you're set up you'll be able to
push any valid gem you've created on your local machine up to the RubyGems.org site like so:

 gem push your_gems_filename-0.0.1.gem

 ■ Note You will get an error if you push up a gem that has the same name as a gem that already exists on
the RubyGems.org site, so you might want to check if your name conflicts before you even start to build your
library, or at least be prepared to rename or namespace it.

 If you use the Bundler approach to creating a gem, as explained the previous section, you can use
Rake instead:

 rake release

 Deploying Ruby Applications as Remote Services
 An alternative to giving people your source or packaging it up to be run locally on a user’s machine is making
a program’s functionality available as a remote service over a network. This only works for a small subset of
functionality, but providing functionality remotely gives you more control over your code and how it is used.

 Ruby’s networking and web features will be covered in more depth in Chapters 14 and 15 , but in this
section we’ll look at how to put together basic services with Ruby that allow users to access a program’s
functionality over a network.

 ■ Note If you want to build a true web application, refer to Chapter 13 . This section is about building small,
ad hoc services.

 CGI Scripts
 A common way to make scripts available online is to upload them to web hosting providers as CGI scripts.
 Common Gateway Interface (CGI) is a standard that allows web server software (such as Apache or
Microsoft IIS) to launch programs and send data back and forth between them and the web client.

 Many people associate the term CGI with the Perl language, as Perl has been the most common
language with which to write CGI scripts. However, CGI is language agnostic, and you can just as easily write
CGI scripts with Ruby (more easily, in fact!).

 A Basic CGI Script
 The most basic Ruby CGI script looks like this:

 #!/usr/bin/ruby

 puts "Content-type: text/html\n\n"
 puts "<html><body>This is a test</body></html>"

http://dx.doi.org/10.1007/978-1-4842-1278-3_14
http://dx.doi.org/10.1007/978-1-4842-1278-3_15
http://dx.doi.org/10.1007/978-1-4842-1278-3_13

CHAPTER 10 ■ DISTRIBUTING RUBY CODE AND LIBRARIES

237

 If you called this script test.cgi and uploaded it to a UNIX-based web hosting provider (the most
common type) with the right permissions, you could use it as a CGI script. For example, if you have the web
site http://www.example.com/ hosted with a Linux web hosting provider and you upload test.cgi to the
main directory and give it execute permissions, then visiting http://www.example.com/test.cgi should
return an HTML page saying This is a test .

 ■ Note Although /usr/bin/ruby is referenced in the previous example, for many users or web hosting
providers, Ruby might be located at /usr/local/bin/ruby . Make sure to check, or try using /usr/bin/env ruby .

 When test.cgi is requested from a web browser, the web server looks for test.cgi on the web site,
and then executes it using the Ruby interpreter (due to the shebang line—as covered earlier in this chapter).
The Ruby script returns a basic HTTP header (specifying the content type as HTML) and then returns a basic
HTML document.

 Ruby comes with a special library called cgi that enables more sophisticated interactions than those
with the preceding CGI script. Let’s create a basic CGI script that uses cgi:

 #!/usr/bin/ruby

 require 'cgi'

 cgi = CGI.new

 puts cgi.header
 puts "<html><body>This is a test</body></html>"

 In this example, you created a CGI object and used it to print the header line for you. This is easier than
remembering what header to output, and it can be tailored. However, the real benefit of using the cgi library
is so that you can do things such as accept data coming from a web browser (or an HTML form) and return
more complex data to the user.

 Accepting CGI Variables
 A benefit of CGI scripts is that they can process information passed to them from a form on an HTML page
or merely specified within the URL. For example, if you had a web form with an <input> element with a
name of “text” that posted to test.cgi , you can access the data passed to it like this:

 #!/usr/bin/ruby

 require 'cgi'
 cgi = CGI.new

 text = cgi['text']

 puts cgi.header
 puts "<html><body>#{text.reverse}</body></html>"

 In this case, the user would see the text he or she entered on the form reversed. You could also test
this CGI script by passing the text directly within the URL, such as with http://www.example.com/test.
cgi?text=this+is+a+test .

http://www.example.com/
http://www.example.com/test.cgi
http://www.example.com/test.cgi?text=this+is+a+test
http://www.example.com/test.cgi?text=this+is+a+test

CHAPTER 10 ■ DISTRIBUTING RUBY CODE AND LIBRARIES

238

 Here’s a more complete example:

 #!/usr/bin/ruby

 require 'cgi'
 cgi = CGI.new

 from = cgi['from'].to_i
 to = cgi['to'].to_i

 number = rand(to-from+1) + from

 puts cgi.header
 puts "<html><body>#{number}</body></html>"

 This CGI script responds with a random number that’s between the number supplied in the from CGI
variable and the to CGI variable. An associated but basic form that could send the correct data would have
HTML code like so:

 <form method="POST" action="http://www.example.com/test.cgi">
 For a number between <input type="text" name="from" value="" /> and
 <input type="text" name="to" value="" /> <input type="submit"
 value="Click here!" /></form>

 In Chapter 16 , the cgi library is covered in more depth, along with information about using HTTP
cookies and sessions, so if this mode of deployment is of interest to you, refer there for extended information
and longer examples.

 In general, however, CGI execution is becoming unpopular due to its lack of speed and the need for
a Ruby interpreter to be executed on every request. This makes CGI unsuitable for high-use or heavy-load
situations.

 ■ Tip Depending on your setup (or hosting environment), you might find that Sinatra offers a nicer way to do
what we’ve looked at in this section. See the Sinatra section in Chapter 13 .

 Generic HTTP Servers
 HTTP is the communications protocol of the World Wide Web. Even though it’s commonly used to shuttle
web pages from one place to another, it can also be used on an internal network or even to communicate
between services on a single machine.

 Creating an HTTP server from your Ruby program can provide a way for users (or even other programs)
to make requests to your Ruby program, meaning you don’t need to distribute the source code, but can
instead make your program’s functionality available over a network (such as the Internet).

 In this section, we’re going to look directly at creating a basic HTTP server using WEBrick, part of Ruby's
standard library. It's useful to have experience building servers directly so that you can see how things work
at a low level, even though, ultimately, you will almost certainly choose to use a web app framework (as
covered in Chapter 13) to make life easier. Given this, if you find any code in this section intimidating, skip
to the Sinatra-based approach demonstrated in Chapter 13 as it will be a lot more straightforward and hide
many of the details covered here.

http://dx.doi.org/10.1007/978-1-4842-1278-3_16
http://dx.doi.org/10.1007/978-1-4842-1278-3_13
http://dx.doi.org/10.1007/978-1-4842-1278-3_13
http://dx.doi.org/10.1007/978-1-4842-1278-3_13

CHAPTER 10 ■ DISTRIBUTING RUBY CODE AND LIBRARIES

239

 ■ Note In this section, we’re creating scripts that are HTTP servers themselves and do not rely on established
HTTP servers such as Apache.

 WEBrick
 WEBrick is a Ruby library that makes it easy to build an HTTP server with Ruby. It comes with most
installations of Ruby by default (it’s part of the standard library), so you can usually create a basic web/HTTP
server with only several lines of code:

 require 'webrick'

 server = WEBrick::GenericServer.new(:Port => 1234)

 trap("INT"){ server.shutdown }

 server.start do |socket|
 socket.puts Time.now
 end

 This code creates a generic WEBrick server on the local machine on port 1234, shuts the server down
if the process is interrupted (often done with Ctrl+C), and for each new connection prints the current
date and time. If you run this code, you could try to view the results in your web browser by visiting
 http://127.0.0.1:1234/ or http://localhost:1234/ .

 ■ Caution Because your test program doesn’t output valid HTTP, it might fail with some particularly sensitive
web browsers. However, if you understand how to use the telnet program, you can use telnet 127.0.0.1 1234
to see the result. Otherwise, continue to the next example, where valid HTTP is returned for web browsers to view.

 However, a more powerful technique is when you create servlets that exist in their own class and have
more control over the requests and responses made to them:

 require 'webrick'

 class MyServlet < WEBrick::HTTPServlet::AbstractServlet
 def do_GET(request, response)
 response.status = 200
 response.content_type = "text/plain"
 response.body = "Hello, world!"
 end
 end

 server = WEBrick::HTTPServer.new(:Port => 1234)
 server.mount "/", MyServlet
 trap("INT"){ server.shutdown }
 server.start

 This code is more elaborate, but you now have access to request and response objects that represent
both the incoming request and the outgoing response.

http://127.0.0.1:1234/

CHAPTER 10 ■ DISTRIBUTING RUBY CODE AND LIBRARIES

240

 For example, you can now find out what URL the user tried to access in his or her browser with such a line:

 response.body = "You are trying to load #{request.path}"

 request.path contains the path within the URL (for example, /abcd from http://127.0.0.1:1234/abcd),
meaning you can interpret what the user was trying to request, call a different method, and provide the
correct output.

 Here’s a more elaborate example:

 require 'webrick'

 class MyNormalClass
 def MyNormalClass.add(a, b)
 a.to_i + b.to_i
 end
 def MyNormalClass.subtract(a,b)
 a.to_i - b.to_i
 end
 end

 class MyServlet < WEBrick::HTTPServlet::AbstractServlet
 def do_GET(request, response)
 if request.query['a'] && request.query['b']
 a = request.query['a']
 b = request.query['b']
 response.status = 200
 response.content_type = 'text/plain'
 result = nil

 case request.path
 when '/add'
 result = MyNormalClass.add(a,b)
 when '/subtract'
 result = MyNormalClass.subtract(a,b)
 else
 result = "No such method"
 end

 response.body = result.to_s + "\n"
 else
 response.status = 400
 response.body = "You did not provide the correct parameters"
 end
 end
 end

 server = WEBrick::HTTPServer.new(:Port => 1234)
 server.mount '/', MyServlet
 trap('INT'){ server.shutdown }
 server.start

http://127.0.0.1:1234/abcd

CHAPTER 10 ■ DISTRIBUTING RUBY CODE AND LIBRARIES

241

 In this example, you have a regular, basic Ruby class called MyNormalClass that implements two basic
arithmetic methods. The WEBrick servlet uses the request object to retrieve parameters from the URL, as well as
get the Ruby method requested from request.path . If the parameters aren’t passed, an HTTP error is returned.

 To use the preceding script, you’d use URLs such as these:

 http://127.0.0.1:1234/add?a=10&b=20

 30

 http://127.0.0.1:1234/subtract?a=100&b=10

 90

 http://127.0.0.1:1234/subtract

 You did not provide the correct parameters.

 http://127.0.0.1:1234/abcd?a=10&b=20

 No such method.

 Summary
 In this chapter, we looked at how to deploy Ruby programs and libraries, as well as how to make their
functions available to web browsers and other applications over a network. We also interrogated the
environment so we can pursue different techniques on a per-operating system basis if we choose.

 Let’s reflect on the main concepts covered in this chapter:

• Shebang line : A special line at the start of a source code file that determines which
interpreter is used to process the file. Used primarily on UNIX-based operating systems,
shebang lines can also work on Windows when used with the Apache web server.

• RUBY_PLATFORM : A special variable preset by Ruby that contains the name of the
current platform (environment).

• Environment variables : Special variables set by the operating system or other
processes that contain information relevant to the current execution environment
and information about the operating system.

• RubyGems.org : A centralized repository and web site dedicated to hosting and
distributing Ruby projects and libraries.

• GitHub : A popular hub and community site for users of the Git source code
management system—now popular in the Ruby world. You can find it at
https://github.com/ .

http://www.github.com/
http://www.github.com/

CHAPTER 10 ■ DISTRIBUTING RUBY CODE AND LIBRARIES

242

• CGI : Common Gateway Interface. A standard that enables web servers to execute
scripts and provide an interface between web users and scripts located on that server.

• WEBrick : A simple and easy HTTP server library for Ruby that comes with Ruby
as standard.

 In Chapter 15 , we’re going to return to looking at network servers, albeit in a different fashion; but first,
in Chapter 11 , we’re going to take a look at some more advanced Ruby topics to flesh out the ideas we’ve
covered so far.

http://dx.doi.org/10.1007/978-1-4842-1278-3_15
http://dx.doi.org/10.1007/978-1-4842-1278-3_11

243© Peter Cooper 2016
P. Cooper, Beginning Ruby, DOI 10.1007/978-1-4842-1278-3_11

 CHAPTER 11

 Advanced Ruby Features

 In this chapter, we’re going to look at some advanced Ruby techniques that have not been covered in
prior chapters. This chapter is the last instructional chapter in the second part of the book, and although we’ll
be covering useful libraries, frameworks, and Ruby-related technologies in Part 3, this chapter rounds off the
mandatory knowledge that any proficient Ruby programmer should have. This means that although this chapter
will jump between several different topics, each is essential to becoming a professional Ruby developer.

 The myriad topics covered in this chapter include how to create Ruby code dynamically on the fly,
methods to make your Ruby code safe, how to issue commands to the operating system, how to integrate
with Microsoft Windows, and how to create libraries for Ruby using other programming languages.
Essentially, this chapter is designed to cover a range of discrete, important topics that you might find you
need to use, but that fall outside the immediate scope of other chapters.

 Dynamic Code Execution
 As a dynamic, interpreted language, Ruby is able to execute code created dynamically. The way to do this is
with the eval method. For example:

 eval "puts 2 + 2"

 4

 Note that while 4 is displayed, 4 is not returned as the result of the whole eval expression . puts always
returns nil . To return 4 from eval , you can do this:

 puts eval("2 + 2")

 4

 Here’s a more complex example that uses strings and interpolation:

 my_number = 15
 my_code = %{#{my_number} * 2}
 puts eval(my_code)

 30

CHAPTER 11 ■ ADVANCED RUBY FEATURES

244

 The eval method simply executes (or evaluates) the code passed to it and returns the result. The first
example made eval execute puts 2 + 2 , whereas the second used string interpolation to build a expression
of 15 * 2 , which was then evaluated and printed to the screen using puts .

 Bindings
 In Ruby, a binding is a reference to a context, scope, or state of execution. A binding includes things such as
the current value of variables and other details of the execution environment.

 It’s possible to pass a binding to eval and to have eval execute the supplied code under that binding
rather than the current one. In this way, you can keep things that happen with eval separate from the main
execution context of your code.

 Here’s an example:

 def binding_elsewhere
 x = 20
 return binding
 end

 remote_binding = binding_elsewhere

 x = 10
 eval("puts x")
 eval("puts x", remote_binding)

 10
 20

 This code demonstrates that eval accepts an optional second parameter, a binding, which in this case
is returned from the binding_elsewhere method. The variable remote_binding contains a reference to the
execution context within the binding_elsewhere method rather than in the main code. Therefore, when you
print x, 20 is shown, as x is defined as equal to 20 in binding_elsewhere !

 ■ Note You can obtain the binding of the current scope at any point with the Kernel module’s binding method.

 Let’s build on the previous example:

 eval("x = 10")
 eval("x = 50", remote_binding)
 eval("puts x")
 eval("puts x", remote_binding)

 10
 50

 In this example, two bindings are in play: the default binding, and the remote_binding (from the
 binding_elsewhere method).

CHAPTER 11 ■ ADVANCED RUBY FEATURES

245

 Therefore, even though you set x first to 10 , and then to 50 , you’re not dealing with the same x in each
case. One x is a local variable in the current context, and the other x is a variable in the context of
 binding_elsewhere .

 Other Forms of eval
 Although eval executes code within the current context (or the context supplied with a binding),
 class_eval, module_eval , and instance_eval can evaluate code within the context of classes,
modules, and object instances, respectively.

 class_eval is ideal for adding methods to a class dynamically:

 class Person
 end

 def add_accessor_to_person(accessor_name)
 Person.class_eval %{
 attr_accessor :#{accessor_name}
 }
 end

 person = Person.new
 add_accessor_to_person :name
 add_accessor_to_person :gender
 person.name = "Peter Cooper"
 person.gender = "male"
 puts "#{person.name} is #{person.gender}"

 Peter Cooper is male

 In this example, you use the add_accessor_to_person method to add accessors dynamically to the
 Person class. Prior to using the add_accessor_to_person method, neither the name nor gender accessors
exist within Person .

 Note that the key part of the code, the class_eval method , operates by using string interpolation to
create the desired code for Person :

 Person.class_eval %{
 attr_accessor :#{accessor_name}
 }

 String interpolation makes the eval methods powerful tools for generating different features on the
fly. This ability is a power unseen in the majority of programming languages, and is one that’s used to great
effect in systems such as Ruby on Rails (covered in Chapter 13).

 It’s possible to take the previous example a lot further and add an add_accessor method to every class
by putting your class_eval cleverness in a new method, defined within the Class class (from which all
other classes descend):

 class Class
 def add_accessor(accessor_name)
 self.class_eval %{

http://dx.doi.org/10.1007/978-1-4842-1278-3_13

CHAPTER 11 ■ ADVANCED RUBY FEATURES

246

 attr_accessor :#{accessor_name}
 }
 end
 end

 class Person
 end

 person = Person.new
 Person.add_accessor :name
 Person.add_accessor :gender
 person.name = "Peter Cooper"
 person.gender = "male"
 puts "#{person.name} is #{person.gender}"

 In this example, you add the add_accessor method to the Class class, thereby adding it to every
other class defined within your program. This makes it possible to add accessors to any class dynamically,
by calling add_accessor . (If the logic of this approach isn’t clear, make sure to try this code yourself, step
through each process, and establish what is occurring at each step of execution.)

 The technique used in the previous example also lets you define classes like this:

 class SomethingElse
 add_accessor :whatever
 end

 Because add_accessor is being used within a class, the method call will work its way up to the add_
accessor method defined in class Class .

 Moving back to simpler techniques, using instance_ eval is somewhat like using regular eval , but
within the context of an object (rather than a method). In this example, you use instance_eval to execute
code within the scope of an object:

 class MyClass
 def initialize
 @my_variable = 'Hello, world!'
 end
 end

 obj = MyClass.new
 obj.instance_eval { puts @my_variable }

 Hello, world!

 Creating Your Own Version of attr_accessor
 So far, you’ve used the attr_accessor method within your classes to generate accessor functions for
instance variables quickly. For example, in longhand you might have this code:

 class Person
 def name
 @name
 end

CHAPTER 11 ■ ADVANCED RUBY FEATURES

247

 def name=(name)
 @name = name
 end
 end

 This allows you to do things such as puts person.name and person.name = 'Fred' . Alternatively,
however, you can use attr_accessor :

 class Person
 attr_accessor :name
 end

 This version of the class is more concise and has exactly the same functionality as the longhand version.
Now it’s time to ask the question, how does attr_accessor work?

 It turns out that attr_accessor isn’t as magical as it looks, and it’s extremely easy to implement your
own version using eval . Consider this code:

 class Class
 def add_accessor(accessor_name)
 self.class_eval %{
 def #{accessor_name}
 @#{accessor_name}
 end

 def #{accessor_name}=(value)
 @#{accessor_name} = value
 end
 }
 end
 end

 At first, this code looks complex, but it’s very similar to the add_accessor code you created in the
previous section. You use class_eval to define getter and setter methods dynamically for the attribute
within the current class.

 If accessor_name is equal to name , then the code that class_eval is executing is equivalent to this code:

 def name
 @name
 end

 def name=(value)
 @name = value
 end

 Thus, you have duplicated the functionality of attr_accessor .
 You can use this technique to create a multitude of different “code generators” and methods that can act

as a “macro” language to perform things in Ruby that are otherwise lengthy to type out.

CHAPTER 11 ■ ADVANCED RUBY FEATURES

248

 Running Other Programs from Ruby
 Often it’s useful to be able to run other programs on the system from your own programs. In this way, you
can reduce the amount of features your program needs to implement, as you can pass off work to other
programs that are already written. It can also be useful to hook up several of your own programs so that
functionality is spread among them. Rather than using the RPC systems covered in the previous chapter, you
can simply run other programs from your own with one of a few different methods made available by Ruby.

 Getting Results from Other Programs
 There are three simple ways to run another program from within Ruby: the system method (defined in the
 Kernel module), backtick syntax (̀ `), and delimited input literals (%x{}). Using system is ideal when you
want to run another program and aren’t concerned with its output, whereas you should use backticks when
you want the output of the remote program returned.

 These lines demonstrate two ways of running the system’s date program:

 x = system("date")
 x = `date`

 ■ Warning On Windows, you won’t want to call date , as this command attempts to set a new date on the
system. Instead try dir , which will list the contents of the current directory.

 For the first line, x equals true , whereas on the second line, x contains the output of the date command.
Which method you use depends on what you’re trying to achieve. If you don’t want the output of the other
program to show on the same screen as that of your Ruby script, then use backticks (or a literal, %x{}).

 ■ Note %x{} is functionally equivalent to using backticks; for example, %x{date} .

 Transferring Execution to Another Program
 Sometimes it’s desirable to jump immediately to another program and cease execution of the current
program. This is useful if you have a multistep process and have written an application for each. To end the
current program and invoke another, simply use the exec method in place of system . For example:

 exec "ruby another_script.rb"
 puts "This will never be displayed"

 In this example, execution is transferred to a different program, and the current program ceases
immediately—the second line is never executed.

 Running Two Programs at the Same Time
 Forking is where an instance of a program (a process) duplicates itself, resulting in two processes of that
program running concurrently . You can run other programs from this second process by using exec , and the
first (parent) process will continue running the original program.

CHAPTER 11 ■ ADVANCED RUBY FEATURES

249

 fork is a method provided by the Kernel module that creates a fork of the current process. It returns the
child process’s process ID in the parent, but nil in the child process—you can use this to determine which
process a script is in. The following example forks the current process into two processes, and only executes
the exec command within the child process (the process generated by the fork):

 if fork.nil?
 exec "ruby some_other_file.rb"
 end

 puts "This Ruby script now runs alongside some_other_file.rb"

 ■ Caution Don’t run the preceding code from irb. If irb forks, you’ll end up with two copies of irb running
simultaneously, and the result will be unpredictable.

 If the other program (being run by exec) is expected to finish at some point, and you want to wait for it
to finish executing before doing something in the parent program, you can use Process.wait to wait for all
child processes to finish before continuing. Here’s an example:

 child = fork do
 sleep 3
 puts "Child says 'hi'!"
 end

 puts "Waiting for the child process..."
 Process.wait child
 puts "All done!"

 Waiting for the child process...
 <3 second delay>
 Child says 'hi'!
 All done!

 ■ Note Forking is not possible with the Windows version of Ruby, as POSIX-style forking is not natively
supported on that platform. However, threads, which are covered later in this chapter, provide a reasonable
alternative.

 Interacting with Another Program
 The previous methods are fine for simple situations where you just want to get basic results from a remote
program and don’t need to interact directly with it in any way while it’s running. However, sometimes you
might want to pass data back and forth between two separate programs.

 Ruby’s IO module has a popen method that allows you to run another program and have an I/O stream
between it and the current program. The I/O stream between programs works like the other types of I/O
streams we looked at in Chapter 9 , but instead of reading and writing to a file, you’re reading and writing to
another program. Obviously, this technique only works successfully with programs that accept direct input
and produce direct output at a command prompt level (so not GUI applications).

http://dx.doi.org/10.1007/978-1-4842-1278-3_9

CHAPTER 11 ■ ADVANCED RUBY FEATURES

250

 Here’s a simple read-only example:

 ls = IO.popen("ls", "r")
 while line = ls.gets
 puts line
 end
 ls.close

 In this example, you open an I/O stream with ls (the UNIX command to list the contents of the current
directory—try it with dir if you’re using Microsoft Windows). You read the lines one by one, as with other
forms of I/O streams, and close the stream when you’re done.

 Similarly, you can also open a program with a read/write I/O stream and handle data in both directions:

 handle = IO.popen("other_program", "r+")
 handle.puts "send input to other program"
 handle.close_write
 while line = handle.gets
 puts line
 end

 ■ Note The reason for handle.close_write is to close the I/O stream’s writing stream, thereby sending any
data waiting to be written out to the remote program. IO also has a flush method that can be used if the write
stream needs to remain open.

 Safely Handling Data and Dangerous Methods
 It’s common for Ruby applications to be used in situations where the operation of a program relies on data
from an outside source. This data cannot always be trusted, and it can be useful to protect your machines
and environments from unfortunate situations caused by bad data or code. Ruby can be made safer both by
considering external data to be tainted and by setting a safe level under which the Ruby interpreter restricts
what features are made available to the code it executes.

 Tainted Data and Objects
 In Ruby, data is generally considered to be tainted if it comes from an external source, or if Ruby otherwise
has no way of establishing whether it is safe. For example, data collected from the command line could be
unsafe, so it’s considered tainted. Data read from external files or over a network connection is also tainted.
However, data that is hard-coded into the program, such as string literals, is considered to be untainted .

 Consider a simple program that illustrates why checking for tainted data can be crucial:

 while x = gets
 puts "=> #{eval(x)}"
 end

CHAPTER 11 ■ ADVANCED RUBY FEATURES

251

 This code acts like a miniature version of irb. It accepts line after line of input from the user and
immediately executes it:

 10+2
 => 12
 "hello".length
 => 5

 However, what would happen if someone wanted to cause trouble and typed in rm -rf /* ? It would run!

 ■ Caution Do not type the preceding code into the program! On a UNIX-related operating system under the
right circumstances, running rm -rf /* is an effective way to wipe clean much of your hard drive!

 Clearly there are situations where you need to check whether data has potentially been tainted by the
outside world.

 You can check if an object is considered tainted by using the tainted? method:

 x = "Hello, world!"
 puts x.tainted?

 y = [x, x, x]
 puts y.tainted?

 z = 20 + 50
 puts z.tainted?

 a = File.open("somefile").readlines.first
 puts a.tainted?

 b = [a]
 puts b.tainted?

 false
 false
 false
 true
 false

 ■ Note One of the preceding examples depends on somefile being a file that actually exists in the local
directory.

 The first three examples are all operating on data that is already defined within the program
(literal data), so are not considered tainted. The last two examples involve data from external sources
(a contains the first line of a file). So, why is the last example considered untainted?

CHAPTER 11 ■ ADVANCED RUBY FEATURES

252

 b is considered untainted because b is merely an array containing a reference to a . Although a is tainted,
an array containing a is not. Therefore, it’s necessary to check whether each piece of data you use is tainted,
rather than checking an overall data structure.

 ■ Note An alternative to having to do any checks is to set the “safe level” of the Ruby interpreter, and any
potentially dangerous operations will be disabled for you. This is covered in the following section.

 It’s possible to force an object to be seen as untainted by calling the untaint method on the object.
For example, here’s an extremely safe version of your Ruby interpreter:

 while x = gets
 next if x.tainted?
 puts "=> #{eval(x)}"
 end

 However, it’s incredibly useless, because all data accepted from the user is considered tainted, so
nothing is ever run. Safety by inactivity! Let’s assume, however, that you’ve come up with a method that can
tell if a certain operation is safe:

 def code_is_safe?(code)
 code =~ /[`;*-]/ ? false : true
 end

 while x = gets
 x.untaint if code_is_safe?(x)
 next if x.tainted?
 puts "=> #{eval(x)}"
 end

 ■ Caution code_is_safe? merely checks if the line of code contains a backtick, semicolon, asterisk, or
hyphen, and deems the code unsafe if it does. This is not a valid way to check for safe code, and is solely
provided as an illustration.

 In this example, you explicitly untaint the data if you deem it to be safe, so eval will execute any “safe” code.

 ■ Note Similarly, you can explicitly taint an object by calling its taint method.

 Safe Levels
 Although it’s possible to check whether data is tainted and perform preventative actions to clean it up, a
stronger form of protection comes with Ruby’s safe levels . Safe levels allow you to specify what features Ruby
makes available and how it should deal with tainted data.

CHAPTER 11 ■ ADVANCED RUBY FEATURES

253

 It’s worth noting before we get too far that Ruby’s safe level functionality is rarely used, so your use of
it will probably be limited to very particular situations. Manipulating the safe level is unpopular, primarily
because it can tread on the toes of what libraries can do on your system, and secondly because developers
usually strive to develop code that’s secure without needing to go to such lengths. An analogy would be that
it’s better to drive a car safely than to just have excellent airbags.

 If you do choose to use safe levels, however, the current safe level is represented by the variable $SAFE .
By default, $SAFE is set to 0 , providing the lowest level of safety and the highest level of freedom, but four
other safe modes are available, as shown in Table 11-1 .

 Table 11-1. Ruby’s Safe Levels , as Represented by $SAFE

 Value of $SAFE Description

 0 No restrictions. This is the default safe level.

 1 Potentially unsafe methods can’t use tainted data. Also, the current directory is not
added to Ruby’s search path for loading libraries.

 2 The restrictions of safe level 1, plus Ruby won’t load any external program files
from globally writable locations in the filesystem. This is to prevent attacks where
hackers upload malicious code and manipulate existing programs to load them.
Some potentially dangerous methods are also deactivated, such as File#chmod,
Kernel#fork, and Process::setpriority .

 3 The restrictions of level 2, plus newly created objects within the program are
considered tainted automatically. You also cannot untaint objects.

 To change the safe level, simply set $SAFE to whichever safe level you want to use. Do note, however,
that once you set the safe level, you can only increase the safe level, not decrease it. The reason for not being
able to decrease the safe level is that this could allow nefarious code that is executed later (such as an errant
library, or through the use of eval) to reduce the safe level by itself and cause havoc!

 Working with Microsoft Windows
 So far in this book, the examples have been reasonably generic, with a little bias toward UNIX-based
operating systems. Ruby is a relative latecomer to the world of Microsoft Windows, but it now includes some
libraries that make working directly with Windows’ APIs easy.

 This section looks at the basics of using the Windows API and Windows’ OLE capabilities from Ruby,
although you’ll need in-depth knowledge of these topics if you wish to put together more advanced code.

 Using the Windows API
 Microsoft Windows provides an Application Programming Interface (API) that acts as a library of core
Windows-related functions for access to the Windows kernel, graphics interface, control library, networking
services, and user interface. Ruby’s Win32API library (included in the standard library) gives developers raw
access to the Windows API’s features.

 ■ Note No code in this section will work under any operating system other than Microsoft Windows.

CHAPTER 11 ■ ADVANCED RUBY FEATURES

254

 It’s reasonably trivial to open a dialog box:

 require 'Win32API'

 title = "My Application"
 text = "Hello, world!"

 Win32API.new('user32', 'MessageBox', %w{L P P L}, 'I').call(0, text, title, 0)

 First, you load the Win32API library into the program, and then you set up some variables with the
desired title and contents of the dialog box. Next, you create a reference to the MessageBox function provided
by the Windows API, before calling it with your text and title. The result is shown in Figure 11-1 .

 Figure 11-1. Your basic dialog box

 The parameters to Win32API.new represent the following:

 1. The name of the system DLL containing the function you want to access

 2. The name of the function you wish to use

 3. An array describing the format of each parameter to be passed to the function

 4. A character representing the type of data to be returned by the function

 In this case, you specify that you want to call the MessageBox function provided by user32.dll , that
you’ll be supplying four parameters (a number, two strings, and another number— L represents numbers, P
represents strings), and that you expect an integer to be returned (I representing integer).

 Once you have the reference to the function, you use the call method to invoke it with the four
parameters. In MessageBox’ s case, the four parameters represent the following:

 1. The reference to a parent window (none in this case)

 2. The text to display within the message box

 3. The title to use on the message box

 4. The type of message box to show (0 being a basic OK button dialog box)

 The call method returns an integer that you don’t use in this example, but that will be set to a number
representing which button on the dialog box was pressed.

CHAPTER 11 ■ ADVANCED RUBY FEATURES

255

 You can, of course, create something more elaborate:

 require 'Win32API'

 title = "My Application"
 text = "Hello, world!"

 dialog = Win32API.new('user32', 'MessageBox', 'LPPL', 'I')
 result = dialog.call(0, text, title, 1)

 case result
 when 1
 puts "Clicked OK"
 when 2
 puts "Clicked Cancel"
 else
 puts "Clicked something else!"
 end

 This example keeps the result from the MessageBox function and uses it to work out which button was
pressed. In this case, you call the MessageBox function with a fourth parameter of 1, representing a dialog
box containing both an OK and a Cancel button, as shown in Figure 11-2 .

 Figure 11-2. The OK/Cancel dialog box

 If the OK button is clicked, dialog.call returns 1, whereas if Cancel is clicked , 2 is returned.

 ■ Note You can create many different types of dialog boxes with the MessageBox function alone. To learn
more, refer to Microsoft’s documentation on the MessageBox function.

 The Windows API provides many hundreds of functions that can do everything from printing, to
changing the desktop wallpaper, to creating elaborate windows. In theory, you could even put together an
entire Windows program using the raw Windows API functions, although this would be a major undertaking.
For more information about the Windows API, a good place is to start is the Wikipedia entry for it at
 http://en.wikipedia.org/wiki/ Windows_API .

http://en.wikipedia.org/wiki/

CHAPTER 11 ■ ADVANCED RUBY FEATURES

256

 Controlling Windows Programs
 Although the Windows API allows you to access low-level functions of the Microsoft Windows operating
system, it can also be useful to access functions made available by programs available on the system. The
technology that makes this possible is called Windows Automation. Windows Automation provides a way for
programs to trigger one another’s features and to automate certain functions among themselves.

 Access to Windows Automation is provided by Ruby’s WIN32OLE (also included in the standard library).
If you’re already familiar with Windows Automation, COM, or OLE technologies, Ruby’s interface will feel
instantly familiar. Even if you’re not, this code should be immediately understood:

 require 'win32ole'

 web_browser = WIN32OLE.new('InternetExplorer.Application')
 web_browser.visible = true
 web_browser.navigate('http://www.rubyinside.com/')

 This code loads the WIN32OLE library and creates a variable, web_browser , that references an OLE
automation server called 'InternetExplorer.Application '. This server is provided by the Internet Explorer
web browser that comes with Windows, and the OLE automation server allows you to control the browser’s
functions remotely. In this example, you make the web browser visible before instructing it to load a certain
web page.

 WIN32OLE does not implement the visible and navigate methods itself. These dynamic methods are
handled on the fly by method_missing (a special method that is run within a class whenever no predefined
method is found) and passed to the OLE Automation server. Therefore, you can use any methods made
available by any OLE Automation server directly from Ruby!

 You can extend this example to take advantage of further methods made available by Internet Explorer:

 require 'win32ole'

 web_browser = WIN32OLE.new('InternetExplorer.Application')
 web_browser.visible = true
 web_browser.navigate('http://www.rubyinside.com/')

 while web_browser.ReadyState != 4
 sleep 1
 end

 puts "Page is loaded"

 This example uses the ReadyState property to determine when Internet Explorer has successfully
finished loading the page. If the page is not yet loaded, Ruby sleeps for a second and checks again. This
allows you to wait until a remote operation is complete before continuing.

 Once the page loading is complete, Internet Explorer makes available the document property that
allows you to get full access to the Document Object Model (DOM) of the web page that it has loaded, much
in the same fashion as from JavaScript. For example:

 puts web_browser.document.getElementById('header').innerHtml.length

 1991

CHAPTER 11 ■ ADVANCED RUBY FEATURES

257

 ■ Note Many Windows applications implement OLE Automation and can be remotely controlled and
used from Ruby in this manner, but it’s beyond the scope of this book to provide an advanced guide to
Windows development. The Win32Utils project provides further Windows-related Ruby libraries at
 http://rubyforge.org/projects/win32utils/ .

 This section was designed to demonstrate that although Ruby’s origins are in UNIX-related operating
systems, Ruby’s Windows support is significant. You can access Windows’ APIs, use OLE and OLE
Automation, and access DLL files. Many Windows-related features are advanced and beyond the scope
of this book, but I hope this section whetted your appetite to research further if this area of development
interests you.

 Threads
 Thread is short for thread of execution. You use threads to split the execution of a program into multiple
parts that can be run concurrently. For example, a program designed to e-mail thousands of people at once
might split the task between 20 different threads that all send e-mail at once. Such parallelism is faster than
processing one item after another, especially on systems with more than one CPU, because different threads
of execution can be run on different processors. It can also be faster because rather than wasting time
waiting for a response from a remote machine, you can continue with other operations.

 Ruby 1.8 didn’t support threads in the traditional sense. Typically, threading capabilities are provided
by the operating system and vary from one system to another. However, Ruby 1.8 provided Ruby’s threading
capabilities directly which meant they lacked some of the power of traditional system-level threads. In Ruby
1.9, Ruby began to use system-based threads , and this is now the default expectation among Rubyists.

 While Ruby 1.9 and 2.x’s threads are system (native) threads, in order to remain compatible with 1.8
code a global interpreter lock (GIL) has been left in place so that threads do not truly run simultaneously.
This means that all of what is covered in this section is relevant to all of 1.8, 1.9, 2.0, and beyond. A Ruby
1.9-and-beyond–only alternative, fibers, is covered in the next primary section of this chapter.

 Basic Ruby Threads in Action
 Here’s a basic demonstration of Ruby threading in action:

 threads = []

 10.times do
 thread = Thread.new do
 10.times { |i| print i; $stdout.flush; sleep rand(2) }
 end

 threads << thread
 end

 threads.each { |thread| thread.join }

 You create an array to hold your Thread objects so that you can easily keep track of them. Then you
create ten threads, sending the block of code to be executed in each thread to Thread.new , and add each
generated thread to the array.

http://rubyforge.org/projects/win32utils/

CHAPTER 11 ■ ADVANCED RUBY FEATURES

258

 ■ Note When you create a thread, it can access any variables that are within scope at that point. However,
any local variables that are then created within the thread are entirely local to that thread. This is similar to the
behavior of other types of code blocks.

 Once you’ve created the threads, you wait for all of them to complete before the program finishes. You
wait by looping through all the thread objects in threads and calling each thread’s join method. The join
method makes the main program wait until a thread’s execution is complete before continuing. In this way,
you make sure all the threads are complete before exiting.

 The preceding program results in output similar to the following (the variation is due to the randomness
of the sleeping):

 001012000100101012123121242325123234532343366345443655467445487765578866897567656797
 9789878889899999

 The example has created ten Ruby threads whose sole job is to count and sleep randomly. This results
in the preceding pseudo-random output.

 Rather than sleeping, the threads could have been fetching web pages, performing math operations, or
sending e-mails. In fact, Ruby threads are ideal for almost every situation where concurrency within a single
Ruby program is desired.

 ■ Note In Chapter 15 , you’ll be using threads to create a server that creates new threads of execution for
each client that connects to it, so that you can develop a simple chat system.

 Advanced Thread Operations
 As you’ve seen, creating and running basic threads is fairly simple, but threads also offer a number of
advanced features. These are discussed in the following subsections.

 Waiting for Threads to Finish Redux
 When you waited for your threads to finish by using the join method , you could have specified a timeout
value (in seconds) for which to wait. If the thread doesn’t finish within that time, join returns nil . Here’s an
example where each thread is given only one second to execute:

 threads.each do |thread|
 puts "Thread #{thread.object_id} didn't finish in 1s" unless thread.join(1)
 end

 Getting a List of All Threads
 It’s possible to get a global list of all threads running within your program using Thread.list . In fact, if you
didn’t want to keep your own store of threads, you could rewrite the earlier example from the section “Basic
Ruby Threads in Action” down to these two lines:

 10.times { Thread.new { 10.times { |i| print i; $stdout.flush; sleep rand(2) } } } Thread.
list.each { |thread| thread.join unless thread == Thread.main }

http://dx.doi.org/10.1007/978-1-4842-1278-3_15

CHAPTER 11 ■ ADVANCED RUBY FEATURES

259

 However, keeping your own list of threads is essential if you’re likely to have more than one group of
threads working within an application and you want to keep them separate from one another when it comes
to using join or other features.

 The list of threads also includes the main thread representing the main program’s thread of execution,
which is why we explicitly do not join it in the prior code.

 Thread Operations from Within Threads Themselves
 Threads aren’t just tiny, dumb fragments of code. They have the ability to talk with the Ruby thread
scheduler and provide updates on their status. For example, a thread can stop itself:

 Thread.new do
 10.times do |i|
 print i
 $stdout.flush
 Thread.stop
 end
 end

 Every time the thread created in this example prints a number to the screen, it stops itself. It can then
only be restarted or resumed by the parent program calling the run method on the thread, like so:

 Thread.list.each { |thread| thread.run }

 A thread can also tell the Ruby thread scheduler that it wants to pass execution over to another thread.
The technique of voluntarily ceding control to another thread is often known as cooperative multitasking ,
because the thread or process itself is saying that it’s okay to pass execution on to another thread or process.
Used properly, cooperative multitasking can make threading even more efficient, as you can code in pass
requests at ideal locations. Here’s an example showing how to cede control from a thread:

 2.times { Thread.new { 10.times { |i| print i; $stdout.flush; Thread.pass } } } Thread.list.
each { |thread| thread.join unless thread == Thread.main }

 00112233445566778899

 In this example, execution flip-flops between the two threads, causing the pattern shown in the results.

 Fibers
 Fibers offer an alternative to threads in Ruby 1.9 and beyond. Fibers are lightweight units of execution that
control their own scheduling (often referred to as cooperative scheduling). Whereas threads will typically
run continually, fibers hand over control once they have performed certain tasks. Unlike regular methods,
however, once a fiber hands over control, it continues to exist and can be resumed at will.

 In short, fibers are pragmatically similar to threads, but fibers aren’t scheduled to all run together. You
have to manually control the scheduling.

CHAPTER 11 ■ ADVANCED RUBY FEATURES

260

 A Fiber in Action
 Nothing will demonstrate fibers as succinctly as a demonstration, so let’s look at a very simple
 implementation to generate a sequence of square numbers:

 sg = Fiber.new do
 s = 0
 loop do
 square = s * s
 Fiber.yield square
 s += 1
 end
 end

 10.times { puts sg.resume }

 0
 1
 4
 9
 16
 25
 36
 49
 64
 81

 In this example, we create a fiber using a block, much in the same style as we created threads earlier.
The difference, however, is that the fiber will run solely on its own until the Fiber.yield method is used to
yield control back to whatever last told the fiber to run (which, in this case, is the sg.resume method call).
Alternatively, if the fiber “ends,” the value of the last executed expression is returned.

 In this example, it’s worth noting that you don’t have to use the fiber forever, although since the fiber
contains an infinite loop, it would certainly be possible to do so. Even though the fiber contains an infinite
loop, however, the fiber is not continually running, so it results in no performance issues.

 If you do develop a fiber that has a natural ending point, calling its resume method once it has
concluded will result in an exception (which, of course, you can catch—refer to Chapter 8 ’s “Handling
Exceptions” section) that states you are trying to resume a dead fiber.

 Passing Data to a Fiber
 It is possible to pass data back into a fiber when you resume its execution as well as receive data from it. For
example, let’s tweak the square number generator fiber to support receiving back an optional new base from
which to provide square numbers:

 sg = Fiber.new do
 s = 0
 loop do
 square = s * s
 s += 1

http://dx.doi.org/10.1007/978-1-4842-1278-3_8

CHAPTER 11 ■ ADVANCED RUBY FEATURES

261

 s = Fiber.yield(square) || s
 end
 end

 puts sg.resume
 puts sg.resume
 puts sg.resume
 puts sg.resume
 puts sg.resume 40
 puts sg.resume
 puts sg.resume
 puts sg.resume 0
 puts sg.resume
 puts sg.resume

 0
 1
 4
 9
 1600
 1681
 1764
 0
 1
 4

 In this case, we start out by getting back square numbers one at a time as before. On the fifth attempt,
however, we pass back the number 40 , which is then assigned to the fiber’s s variable and used to generate
square numbers. After a couple of iterations, we then reset the counter to 0 . The number is received by the
fiber as the result of calling Fiber.yield .

 It is not possible to send data into the fiber in this way with the first resume , however, since the first
 resume call does not follow on from the fiber yielding or concluding in any way. In that case, any data you
passed is passed into the fiber block, much as if it were a method.

 Why Fibers?
 A motivation to use fibers over threads in some situations is efficiency. Creating hundreds of fibers is a lot
faster than creating the equivalent threads, especially in Ruby 1.9 and beyond where threads are created at
the operating system level. There are also significant memory efficiency benefits, too.

 The disadvantage of fibers compared to threads, however, is that fibers are not preemptive at all—you can
only run one fiber at a time (within a single thread), and you have to do the scheduling. In some situations,
of course, this might be a plus!

 You may decide that fibers have no place in your own code, which is fine. One of the greatest benefits of
fibers is in implementing lightweight I/O management routines within other libraries, so even if you don’t
use fibers directly, you might still end up benefiting from their use elsewhere.

CHAPTER 11 ■ ADVANCED RUBY FEATURES

262

 RubyInline
 As a dynamic, object-oriented programming language, Ruby wasn’t designed to be a high-performance language
in the traditional sense. This is not of particular concern nowadays, as most tasks are not computationally
intensive, but there are still situations where raw performance is required for a subset of functionality.

 In situations where extremely high performance is desirable, it can be a good idea to write the
computationally intensive code in a more powerful but less expressive language, and then call that code
from Ruby. Luckily there’s a library for Ruby called RubyInline , created by Ryan Davis and Eric Hodel, that
makes it possible to write code in other more powerful languages within your Ruby code. It’s most often used
to write high-performance code in the C or C++ languages, and we’ll focus on this in this section.

 Installing RubyInline on UNIX-related platforms (such as Linux and OS X) is easy with RubyGems:

 gem install RubyInline

 If you don’t have gcc —a C compiler—installed, RubyInline’s C support will not work, and RubyInline
itself might not install. Refer to your operating system’s documentation on how to install gcc.

 Why Use C as an Inline Language?
 C is a general purpose, procedural, compiled programming language developed in the 1970s by Dennis
Ritchie. It’s one of the most widely used programming languages in the world, and is the foundation of
nearly every major operating system currently available. C (and its object-oriented sister language, C++)
is still a popular language due to its raw speed and flexibility. Although languages such as Ruby have been
designed to be easy to develop with, C offers a lot of low-level access to developers, along with blazing speed.
This makes C perfect for writing performance-intensive libraries and functions that can be called from other
programming languages, such as Ruby.

 ■ Note This section is not a primer on the C language, as that would be an entire book in its own right.
To learn more about the C programming language itself, visit http://en.wikipedia.org/wiki/ C_programming_
language .

 Creating a Basic Method or Function
 An ideal demonstration of RubyInline and C’s power is to create a basic method (a function in C) to compute
factorials. The factorial of a number is the product of all integers from itself down to 1. So, for example, the
factorial of 8 is 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1, or 40,320.

 Calculating a factorial in Ruby is easy:

 class Fixnum
 def factorial
 (1..self).inject { |a, b| a * b }
 end
 end

 puts 8.factorial

 40320

http://en.wikipedia.org/wiki/

CHAPTER 11 ■ ADVANCED RUBY FEATURES

263

 You can use your knowledge of benchmarking (from Chapter 8) to test how fast this method is:

 require 'benchmark'

 Benchmark.bm do |bm|
 bm.report('ruby:') do
 100000.times do
 8.factorial
 end
 end
 end

 user system total real
 ruby: 0.930000 0.010000 0.940000 (1.537101)

 The results show that it takes about 1.5 seconds to run 100,000 iterations of your routine to compute the
factorial of 8—approximately 66,666 iterations per second.

 Let’s write a factorial method in C using RubyInline:

 require 'inline'

 class CFactorial
 inline do |builder|
 builder.c "
 long factorial(int max) {
 int i=max, result=1;
 while (i >= 2) { result *= i--; }
 return result;
 }"
 end
 end

 c = CFactorial.new()
 puts c.factorial(8)

 First, you create a CFactorial class to house your new method. Then inline do |builder| starts the
RubyInline environment, and builder.c is used to process the C code within the multiline string between
 %q{ and } . The reason for this level of depth is that RubyInline can work with multiple languages at the same
time, so you need to enter the RubyInline environment first and then explicitly specify code to be associated
with a particular language.

 The actual C code in the preceding example begins following the builder.c line. Let’s focus on it for a
moment:

 long factorial(int max) {
 int i=max, result=1;
 while (i >= 2) { result *= i--; }
 return result;
 }

 This code defines a C function called factorial that accepts a single integer parameter and returns a
single integer value. The internal logic counts from 1 to the supplied value, and multiplies each number to
obtain the factorial.

http://dx.doi.org/10.1007/978-1-4842-1278-3_8

CHAPTER 11 ■ ADVANCED RUBY FEATURES

264

 Benchmarking C versus Ruby
 Now that you have your C-based factorial routine written, let’s benchmark it and compare it to the Ruby-
based solution. Here’s a complete program to benchmark the two different routines (C and Ruby):

 require 'rubygems'
 require 'inline'
 require 'benchmark'

 class CFactorial
 inline do |builder|
 builder.c "
 long factorial(int max) {
 int i=max, result=1;
 while (i >= 2) { result *= i--; }
 return result;
 }"
 end
 end

 class Fixnum
 def factorial
 (1..self).inject { |a, b| a * b }
 end
 end

 Benchmark.bm do |bm|
 bm.report('ruby:') do
 100000.times { 8.factorial }
 end

 bm.report('c:') do
 c = CFactorial.new
 100000.times { c.factorial(8) }
 end
 end

 user system total real
 ruby: 0.930000 0.010000 3.110000 (1.571207)
 c: 0.020000 0.000000 0.120000 (0.044347)

 The C factorial function is so much faster as to barely leave a whisper on the benchmarking times! It’s at
least 30 times faster. There are certainly ways both implementations could be improved, but this benchmark
demonstrates the radical difference between the performance of compiled and interpreted code, as well as
the effect of Ruby’s object-oriented overhead on performance.

CHAPTER 11 ■ ADVANCED RUBY FEATURES

265

 Unicode, Character Encodings, and UTF-8 Support
 Unicode is the industry standard way of representing characters from every writing system (character set) in
the world. It’s the only viable way to be able to manage multiple different alphabets and character sets in a
reasonably standard context.

 One of Ruby 1.8’s most cited flaws was in the way it dealt with character encodings —namely, hardly at
all. There were some workarounds, but they were hackish. Ruby 1.8 treated strings as simple collections of
bytes rather than true characters , which is just fine if you’re using a standard English character set, but if you
wanted to work with, say, Arabic or Japanese, you have problems!

 Ruby 1.9 and beyond, on the other hand, support Unicode, alternative character sets, and encodings
out of the box. In this chapter, we’ll focus on the direct support in Ruby 1.9 and up.

 ■ Note For a full rundown of Unicode and how it works and relates to software development, read
 http:// www.joelonsoftware.com/articles/Unicode.html . The official Unicode site, at http://unicode.org/ ,
also has specifications and further details.

 Ruby 1.9 and Beyond’s Character Encoding Support
 Unlike with Ruby 1.8, no hacks or workarounds are necessary to work with multiple character sets and
encodings in Ruby 1.9 and above. Ruby 1.9 supports a large number of encodings out of the box (over 100 at
the time of writing), and the interface is seamless. You not only get character encoding support for strings
within your programs, but for your source code itself, too.

 ■ Note Encoding.list returns an array of Encoding objects that represent the different character
encodings that your Ruby interpreter supports.

 Strings
 Strings have encoding support out of the box. To determine the current encoding for a string, you can call its
encoding method:

 "this is a test".encoding

 => #<Encoding:US-ASCII>

 By default, a regular ASCII string will be encoded using the US-ASCII, UTF-8, or CP850 encodings,
depending on how your system is set up, but if you get a bit more elaborate, then UTF-8 (a character
encoding that can be used to represent any Unicode character) will typically be used:

 "ça va?".encoding

 => #<Encoding:UTF-8>

http://www.joelonsoftware.com/articles/Unicode.html
http://unicode.org/

CHAPTER 11 ■ ADVANCED RUBY FEATURES

266

 To convert a string into a different encoding, use its encode method :

 "ça va?".encode("ISO-8859-1")

 Not every character encoding will support being able to represent every type of character that exists in
your text. For example, the cedilla character (ç) in the preceding example cannot be represented in plain
US-ASCII. If we try to do a conversion to US-ASCII, therefore, we get the necessary error:

 "ça va?".encode("US-ASCII")

 Encoding::UndefinedConversionError: "\xC3\xA7" from UTF-8 to US-ASCII

 I would personally suggest that, where possible, you try and use the UTF-8 encoding exclusively in any
apps that are likely to accept input from people typing in many different languages. UTF-8 is an excellent
“global” encoding that can represent any character in the Unicode standard, so using it globally throughout
your projects will ensure that everything works as expected.

 ■ Tip Make sure to refer to Chapter 9 to see how to open files and read data that is in different character
encodings.

 Source Code
 As well as supporting character encodings out of the box for strings and files, Ruby 1.9 and beyond also allow
you to use any of the supported character sets for your actual source code files.

 All you need to do is include a comment on the first or second line (in case you’re using a shebang line)
that contains coding: [format name] . For example:

 # coding: utf-8

 The primary reason for doing this is so that you can use UTF-8 (or whichever encoding you choose to
specify) within literal strings defined with your source files without running into snags with String#length ,
regular expressions, and the like.

 Another fun (but not endorsed by me!) option is to use alternate non-ASCII characters in method
names, variable names, and so forth. The danger of this, of course, is that you reduce the usability of your
code with developers who might prefer to use other encodings.

 Summary
 In this chapter, we looked at an array of advanced Ruby topics, from dynamic code execution to writing high-
performance functions in the C programming language. This is the last chapter that covers general Ruby-
related knowledge that any intermediate Ruby programmer should be familiar with. In Chapter 12 , we’ll be
taking a different approach and will develop an entire Ruby application, much as we did in Chapter 4 .

 Let’s reflect on the main concepts covered in this chapter:

• Binding : A representation of a scope (execution) context as an object.

• Forking : When an instance of a program duplicates itself into two processes, one as a
parent and one as a child, both continuing execution.

http://dx.doi.org/10.1007/978-1-4842-1278-3_9
http://dx.doi.org/10.1007/978-1-4842-1278-3_12
http://dx.doi.org/10.1007/978-1-4842-1278-3_4

CHAPTER 11 ■ ADVANCED RUBY FEATURES

267

• Tainted data : This is data whose source or origin cannot be entirely trusted or is
unknown.

• Safe levels : Different safe levels result in the Ruby interpreter having different
restrictions upon what code it will process and execute.

• Win32API : This is a Ruby library that gives you access to the Windows API, which is a
set of libraries offering functions that provide access to the Windows kernel, graphics
interface, control library, networking services, and user interface.

• Windows Automation (also known as OLE Automation) : This is a system that allows
Windows applications to register servers for themselves that allow other applications
to control them remotely. You can learn more at http://en.wikipedia.org/wiki/
 OLE_Automation .

• Threads: Separate “strands” of execution that run concurrently with each other.
Ruby’s threads in 1.8 were implemented entirely by the Ruby interpreter, but since
Ruby 1.9 use system-based threads, and are a commonly used tool in application
development.

• Fibers : Lightweight cooperative alternatives to threads. They must yield execution in
order to be scheduled. Unlike threads, fibers are not scheduled to run concurrently.

• C : A compiled, high-performance language developed in the 1970s that’s used in
most of the world’s operating systems and low-level software. You can use C code
within Ruby using the RubyInline library.

• RubyInline : A Ruby library created by Ryan Davis and Eric Hodel that makes it easy to
write C code inline with Ruby code, giving Ruby easy access to high-performance C
functions.

• Character encoding : This describes a system and code that pair characters (whether
they’re Roman letters, Chinese symbols, Arabic letters, and so on) to a set of
numbers that a computer can use to represent those characters.

• UTF-8 (Unicode Transformation Format-8): This is a character encoding that
can support any character in the Unicode standard. It supports variable-length
characters, and is designed to support ASCII coding natively, while also providing
the ability to use up to four bytes to represent characters from other character sets.

 Now you can move on to Chapter 12 , where you’ll develop an entire Ruby application using much of the
knowledge obtained in this book so far.

http://en.wikipedia.org/wiki/
http://dx.doi.org/10.1007/978-1-4842-1278-3_12

269© Peter Cooper 2016
P. Cooper, Beginning Ruby, DOI 10.1007/978-1-4842-1278-3_12

 CHAPTER 12

 Tying It Together: Developing a
Larger Ruby Application

 In this chapter, we’re going to step back from focusing on individual facets of Ruby and develop an entire
program using much of the knowledge you’ve gained so far. We’ll focus on the structural concerns of
developing a program and look at how a flexible structure can benefit you and other developers in the long run.

 The important thing to remember while working through this chapter is that the program itself is not
as important as the concepts used while developing it. We’ll be rapidly (and relatively shallowly) covering a
number of areas relevant to most development you’ll do, such as testing and basic refactoring.

 Let’s Build a Bot
 Before we get to any code, we’re going to look at what we’re going to build, why we’re going to build it, and
how we’re going to do it.

 What Is a Bot?
 In this chapter, we’re going to build a robot. Not a sci-fi type of robot, such as that in Lost in Space, but a
computer program that can hold a conversation with us. These types of programs are commonly known as
 bots or chatterbots . Bots are present in a lot of different software and tools these days. You can ask them for
gift ideas and movie times. In short, it’s a little like talking to a customer service agent, except the agent is
entirely automated.

 You might be familiar with bots on your own computer. Microsoft Office used to come with the “Clippy”
bot turned on by default, and many web sites have automated chat bots in an attempt to cut down on
support costs and, supposedly, to improve usability.

 The history of bots goes back to the 1960s, when a computer scientist at MIT named Joseph
Weizenbaum developed a bot called ELIZA. It eventually became so popular that most computer users
throughout the 1980s and 1990s were exposed to it in one form or another through the many “talk to your
computer”–type programs that became popular.

 The conversations you can have with ELIZA-type bots aren’t mind blowing, but can prove entertaining,
as shown in Figure 12-1 . The general mechanism ELIZA bots use is to take whatever you say and twist it
around into a statement or question to you. For example, if you were to say “I am bored,” ELIZA might
respond, “How long have you been bored?” or “Why are you bored?” This form of bouncing back the user’s
input seems crude when described in this way, but people are often fooled into believing they’re talking to
something more intelligent simply because of its reflective nature (this is known as the ELIZA effect).

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

270

 Our bot won’t be exactly like ELIZA—that is, it won’t be an ELIZA clone —but will share some of the
same features and use some similar techniques. We’ll also look at how to extend our bot with other features.

 ■ Note If you want to learn about or play with some Internet-hosted versions of ELIZA, visit
 http://en.wikipedia.org/wiki/ELIZA .

 Why a Bot?
 The good thing about developing a bot is that it can be as simple or as complex as you like. Toward the end of
this chapter, we’ll be looking at ways you can extend the bot, but the initial construction is quite simple.

 You’ll be using most of the techniques covered so far in this book to build your bot. You’ll be doing a
bit of testing and documentation, as well as using classes and complex data structures. You’ll also be using
files to store information the bot uses, and looking at how to make your bot available to the general public
using HTTP servers and CGI scripts. This project also demands you use a lot of string and list-related
functions, along with comparison logic. These are all things you’re likely to use in a larger development
project, and as Ruby is a particularly good language for text processing, this project is perfect for
demonstrating Ruby’s strengths.

 A bot also allows you to have some fun and experiment. Working on a contact information management
tool (for example) isn’t that much fun, even though such a system would use similar techniques to your bot.
You can still implement testing, documentation, classes, and storage systems, but end up with a fun result
that can be extended and improved indefinitely.

 How?
 The primary focus of this chapter is to keep each fragment of functionality in your bot loosely coupled to
the others. This is an important decision when developing certain types of applications if you plan to extend
them in the future. The plan for this bot is to make it as easy to extend, or change, as possible, allowing you
to customize it, add features, and make it your own.

 Figure 12-1. A demonstration of a session with an online ELIZA bot

http://en.wikipedia.org/wiki/ELIZA

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

271

 In terms of the general operation of the chatterbot, your bot will exist within a class, allowing you to
replicate bots easily by creating new instances. When you create a bot, it will be “blank,” except for the
logic contained within the class, and you’ll pass in a special data file to give it a set of knowledge and a
set of responses it can use when conversing with users. User input will be via the keyboard, but the input
mechanism will be kept flexible enough so that the bot could easily be used from a web site or elsewhere.

 Your bot will only have a few public methods to begin with. It needs to be able to load its data file into
memory and accept input given by the user, and then return its responses. Behind the scenes, the bot will
need to parse what the users “say” and be able to build up a coherent reply. Therefore, the first step is to
begin processing language and recognizing words.

 Creating a Simple Text Processing Library
 Several stages are required to accept input such as “I am bored” and turn it into a response such as “Why
are you bored?” The first is to perform some preprocessing —tasks that make the text easier to parse—such
as cleaning up the text, expanding terms such as “I’m” into “I am,” “you’re” into “you are,” and so forth. Next,
you’ll split up the input into sentences and words, choose the best sentence to respond to, and finally look
up responses from your data files that match the input.

 Some of these language tasks are generic enough that they could be useful in other applications, so
you’ll develop a basic library for them. This will make your bot code simpler, and give you a library to use in
other applications if you need. Logic and methods that are specific to bots can go in the bot’s source code,
and generic methods that perform operations on text can go into the library.

 This section covers the development of a simple library, including testing and documentation .

 Building the WordPlay Library
 You’re going to call your text manipulation and processing library WordPlay, so create a file called
 wordplay.rb with a basic class:

 class WordPlay
 end

 Now that you’ve got the library’s main file set up, you’ll move on to implementing some of the text
manipulation and processing features you know your bot will require, but that are reasonably application
agnostic. (I covered the construction of classes in depth in Chapter 6 .)

 Splitting Text into Sentences
 Your bot, like most others, is only interested in single-sentence inputs. Therefore, it’s important to accept
only the first sentence of each line of input. However, rather than specifically tear out the first sentence,
you’ll split the input into sentences and then choose the first one. The reason for this approach is to have a
 generic sentence-splitting method , rather than to create a unique solution for each case.

 You’ll create a sentences method on Ruby’s String class to keep the resulting code clean. You could
create a class method within the WordPlay class, and use it like WordPlay.sentences(our_input), but it
wouldn’t feel as intuitive and as object-oriented as our_input.sentences , where sentences is a method of
the String class .

 class String
 def sentences
 gsub(/\n|\r/, ' ').split(/\.\s*/)
 end
 end

http://dx.doi.org/10.1007/978-1-4842-1278-3_6

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

272

 ■ Note The preceding sentences method only splits text into sentences based on a period followed by
whitespace. A more accurate technique could involve dealing with other punctuation (question marks and
semicolons, for example).

 You can test it easily:

 p %q{Hello. This is a test of
 basic sentence splitting. It
 even works over multiple lines.}.sentences

 ["Hello", "This is a test of basic sentence splitting", "It even works over multiple lines"]

 Splitting Sentences into Words
 You also need your library to be able to split sentences into words. As with the sentences method, add a
 words method to the String class:

 class String
 def words
 scan(/\w[\w\'\-]*/)
 end
 end

 p "This is a test of words' capabilities".words

 ["This", "is", "a", "test", "of", "words'", "capabilities"]

 You can test words in conjunction with sentences :

 p %q{Hello. This is a test of
 basic sentence splitting. It
 even works over multiple lines}.sentences[1].words[3]

 test

 This test picks out the second sentence with sentences[1], and then the fourth word with
 words[3] —remember, arrays are zero-based. (The splitting techniques covered in this section were also
explained in Chapter 3 .)

http://dx.doi.org/10.1007/978-1-4842-1278-3_3

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

273

 Word Matching
 You can use the new methods, along with existing array methods, to extract sentences that match certain
words, as in this example:

 hot_words = %w{test ruby great}
 my_string = "This is a test. Dull sentence here. Ruby is great. So is cake."
 t = my_string.sentences.find_all do |s|
 s.downcase.words.any? { |word| hot_words.include?(word) }
 end

 p t.to_a

 ["This is a test", "Ruby is great"]

 In this example, you define two “hot” words that you want to find within sentences, and you look
through the sentences in my_string for any that contain either of your hot words. The way you do this is by
seeing if, for any of the words in the sentence, it’s true that the hot_words array also contains that word.

 Experienced readers will wonder if regular expressions could be used in this situation. They could, but
the focus here is on clean list logic that’s easy to extend and adjust. You also get the benefit, if you wish, to
use the difference in lengths between the word array, and the word array with hot words removed, to rank
sentences in the order of which match the most hot words. This could be useful if you decided to tweak your
bot (or any other software using WordPlay) to pick out and process the most important sentence, rather than
just the first one. For example:

 class WordPlay
 def self.best_sentence(sentences, desired_words)
 ranked_sentences = sentences.sort_by do |s|
 s.words.length - (s.downcase.words - desired_words).length
 end

 ranked_sentences.last
 end
 end

 puts WordPlay.best_sentence(my_string.sentences, hot_words)

 Ruby is great

 This class method accepts an array of sentences and an array of “desired words” as arguments. Next,
it sorts the sentences by how many words difference each sentence has from the desired words list. If the
difference is high, then there must be many desired words in that sentence. At the end of best_sentence , the
sentence with the biggest number of matching words is returned.

 Switching Subject and Object Pronouns
 Switching pronouns is when you swap “you” and “I,” “I” and “you,” “my” and “your,” and “your” and “my.” This
simple change makes sentences easy to use as a response. Consider what happens if you simply reflect back
whatever the user says by switching the pronouns in his or her input. Some examples are shown in Table 12-1 .

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

274

 Table 12-1. Inputs Coupled with Potential Responses

 Input Response

 My cat is sick. Your cat is sick.

 I hate my car. You hate your car.

 You are an awful bot. I are an awful bot.

 These aren’t elaborate conversations, but the first two responses are valid English and are the sort of
thing your bot can use. The third response highlights that you also need to pay attention to conjugating “am”
to “are” and vice versa when using “I” and “you.”

 You’ll add the basic pronoun-switching feature as a class method on the WordPlay class. As this feature
won’t be chained with other methods and doesn’t need to be particularly concise, you can put it into the
 WordPlay class rather than continue to add more methods to the String class.

 def self.switch_pronouns(text)
 text.gsub(/\b(I am|You are|I|You|Your|My)\b/i) do |pronoun|
 case pronoun.downcase
 when "i"
 "you"
 when "you"
 "I"
 when "i am"
 "you are"
 when "you are"
 "i am"
 when "your"
 "my"
 when "my"
 "your"
 end
 end
 end

 This method accepts any text supplied as a string and performs a substitution on each instance of
“I am,” “you are,” “I,” “you,” “your,” or “my.” Next, a case construction is used to substitute each pronoun with
its opposing pronoun. (You first used the case/when syntax in Chapter 3 , where you can also find a deeper
explanation of how it works.)

 The reason for performing a substitution in this way is so that you only change each pronoun once. If
you’d used four gsubs to change all “I’s” to “you’s,” “you’s” to “I’s,” and so on, changes made by the previous
 gsub would be overwritten by the next. Therefore, it’s important to use one gsub that scans through the input
pronoun by pronoun rather than making several blanket substitutions in succession.

 If you use irb and require in the WordPlay library, you can quickly check the results:

 WordPlay.switch_pronouns("Your cat is fighting with my cat")

 my cat is fighting with your cat

http://dx.doi.org/10.1007/978-1-4842-1278-3_3

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

275

 WordPlay.switch_pronouns("You are my robot")

 i am your robot

 It’s easy to find an exception to these results, though:

 WordPlay.switch_pronouns("I gave you life")

 you gave I life

 When the “you” or “I” is the object of the sentence, rather than the subject , “you” becomes “me” and
“me” becomes “you,” whereas “I” becomes “you” and “you” becomes “I” on the subject of the sentence.

 Without descending into complex processing of sentences to establish which reference is the subject
and which reference is the object, we’ll assume that every reference to “you” that’s not at the start of a
sentence is an object and should become “me,” and that if “you” is at the beginning of a sentence, you
should assume it’s the subject and use “I” instead. This new rule makes your method change slightly:

 def self.switch_pronouns(text)
 text.gsub(/\b(I am|You are|I|You|Me|Your|My)\b/i) do |pronoun|
 case pronoun.downcase
 when "i"
 "you"
 when "you"
 "me"
 when "me"
 "you"
 when "i am"
 "you are"
 when "you are"
 "i am"
 when "your"
 "my"
 when "my"
 "your"
 end
 end.sub(/^me\b/i, 'i')
 end

 What you do in this case seems odd on the surface. You let switch_pronouns process the pronouns and
then correct it when it changes “you” to “me” at the start of a sentence by changing the “me” to “I.” This is
done with the chained sub at the end.

 Let’s try it out:

 WordPlay.switch_pronouns('Your cat is fighting with my cat')

 my cat is fighting with your cat

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

276

 WordPlay.switch_pronouns('My cat is fighting with you')

 your cat is fighting with me

 WordPlay.switch_pronouns('You are my robot')

 i am your robot

 WordPlay.switch_pronouns('I gave you hope')

 you gave me hope

 WordPlay.switch_pronouns('You gave me hope')

 i gave you hope

 Success!
 If you were so cruelly inclined, you could create an extremely annoying bot with this method alone.

Consider this basic example:

 while input = gets
 puts '>> ' + WordPlay.switch_pronouns(input).chomp + '?'
 end

 I am ready to talk
 >> you are ready to talk?
 yes
 >> yes?
 You are a dumb computer
 >> I am a dumb computer?

 We clearly have some work to do!

 Testing the Library
 When building a larger application, or libraries upon which other applications will depend, it’s important to
make sure everything is fully tested. In Chapter 8 , we looked at using Ruby’s unit testing features for simple
testing. You can use the same methods here to test WordPlay.

 You’ll use the same process as in Chapter 8 . Create a file called test_wordplay.rb in the same directory
as wordplay.rb and implement the following basic structure:

 require 'minitest/autorun'
 require_relative 'wordplay'

 class TestWordPlay < Minitest::Test
 end

 Now let's write some tests.

http://dx.doi.org/10.1007/978-1-4842-1278-3_8
http://dx.doi.org/10.1007/978-1-4842-1278-3_8

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

277

 Testing Sentence Separation
 To add groups of test assertions to test_wordplay.rb , you can simply create methods with names starting
with test_ . Creating a simple test method for testing sentence separations is easy:

 def test_sentences
 assert_equal(["a", "b", "c d", "e f g"], "a. b. c d. e f g.".sentences)

 test_text = %q{Hello. This is a test
 of sentence separation. This is the end
 of the test.}
 assert_equal("This is the end of the test", test_text.sentences[2])
 end

 The first assertion tests that the dummy sentence "a. b. c d. e f g." is successfully separated into
the constituent “sentences.” The second assertion uses a longer predefined text string and makes sure that
the third sentence is correctly identified.

 ■ Note Ideally, you’d extend this basic set of assertions with several more to test more complex cases,
such as sentences ending with multiple periods, commas, and other oddities. As these extra tests wouldn’t
demonstrate any further Ruby functionality, they’re not covered here, but feel free to try some out!

 Testing Word Separation
 Testing that the words method works properly is even easier than testing sentences :

 def test_words
 assert_equal(%w{this is a test}, "this is a test".words)
 assert_equal(%w{these are mostly words}, "these are, mostly, words".words)
 end

 These assertions are simple. You split sentences into words and compare them with predefined arrays
of those words. The assertions pass.

 This highlights one reason why test-first development can be a good idea. It’s easy to see how you could
develop these tests first and then use their passing or failure as an indicator that you’ve implemented words
correctly. This is an advanced programming concept, but one worth keeping in mind if writing tests in this
way “clicks” with you.

 Testing Best Sentence Choice
 You also need to test your WordPlay.best_sentence method , as your bot will use it to choose the sentence
with the most interesting keywords from the user’s input:

 def test_sentence_choice
 assert_equal('This is a great test',
 WordPlay.best_sentence(['This is a test',
 'This is another test',
 'This is a great test'],
 %w{test great this}))

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

278

 assert_equal('This is a great test',
 WordPlay.best_sentence(['This is a great test'],
 %w{still the best}))
 end

 This test method performs a simple assertion that the correct sentence is chosen from three options.
Three sentences are provided to WordPlay.best_sentence , along with the desired keywords of “test,” “great,”
and “this.” Therefore, the third sentence should be the best match. The second assertion makes sure that
 WordPlay.best_sentence returns a sentence even if there are no matches, because in this case, any sentence
is a “best” match.

 Testing Pronoun Switches
 When you developed the switch_pronouns method , you used some vague grammatical rules, so testing is
essential to make sure they stand up for at least basic sentences:

 def test_basic_pronouns
 assert_equal("i am a robot", WordPlay.switch_pronouns("you are a robot"))
 assert_equal("you are a person", WordPlay.switch_pronouns("i am a person"))
 assert_equal("i love you", WordPlay.switch_pronouns("you love me"))
 end

 These basic assertions prove that the “you are,” “I am,” “you,” and “me” phrases are switched correctly.
 You can also create a separate test method to perform some more complex assertions:

 def test_mixed_pronouns
 assert_equal("you gave me life", WordPlay.switch_pronouns("i gave you life"))
 assert_equal("i am not what you are", WordPlay.switch_pronouns("you are not what i am"))
 assert_equal("i annoy your dog", WordPlay.switch_pronouns("you annoy my dog"))
 end

 These examples are more complex, but prove that switch_pronouns can handle a few more complex
 situations with multiple pronouns.

 You can construct tests that cause switch_pronouns to fail:

 def test_complex_pronouns
 assert_equal("yes, i rule", WordPlay.switch_pronouns("yes, you rule"))
 assert_equal("why do i cry", WordPlay.switch_pronouns("why do you cry"))
 end

 These tests both fail because they circumvent the trick you used to make sure that “you” is translated to
“me” and “I” in the right situations. In these situations, they should become “I,” but because “I” isn’t at the
start of the sentence, they become “me” instead. It’s important to notice that basic statements tend to work
okay, whereas questions or more elaborate statements can fail. However, for your bot’s purposes, the basic
substitutions suffice and you can remove these tests.

 If you were to focus solely on producing an accurate language processor, you could use tests such as
these to guide your development, and you’ll probably use this technique when developing libraries to deal
with edge cases such as these in your own projects.

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

279

 WordPlay’s Source Code
 Your nascent WordPlay library is complete for now, and in a state that you can use its features to make your
bot’s source code simpler and easier to read. Next, I’ll present the source code for the library as is, as well as
its associated unit test file. As an addition, the code also includes comments prior to each class and method
definition, so that you can use RDoc to produce HTML documentation files, as covered in Chapter 8 .

 ■ Note Remember that source code for this book is available in the Source Code area at
 http:// www.apress.com , so it isn’t necessary to type in code directly from the book.

 wordplay.rb
 Here’s the code for the WordPlay library:

 class String
 def sentences
 self.gsub(/\n|\r/, ' ').split(/\.\s*/)
 end

 def words
 self.scan(/\w[\w\'\-]*/)
 end
 end

 class WordPlay
 def self.switch_pronouns(text)
 text.gsub(/\b(I am|You are|I|You|Me|Your|My)\b/i) do |pronoun|
 case pronoun.downcase
 when "i"
 "you"
 when "you"
 "me"
 when "me"
 "you"
 when "i am"
 "you are"
 when "you are"
 "i am"
 when "your"
 "my"
 when "my"
 "your"
 end
 end.sub(/^me\b/i, 'i')
 end
 def self.best_sentence(sentences, desired_words)
 ranked_sentences = sentences.sort_by do |s|
 s.words.length - (s.downcase.words - desired_words).length
 end

 ranked_sentences.last
 end
 end

http://dx.doi.org/10.1007/978-1-4842-1278-3_8
http://www.apress.com/

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

280

 test_wordplay.rb
 Here’s the test suite associated with the WordPlay library:

 require 'minitest/autorun'
 require_relative 'wordplay'

 # Unit testing class for the WordPlay library
 class TestWordPlay < Minitest::Test

 # Test that multiple sentence blocks are split up into individual
 # words correctly
 def test_sentences
 assert_equal(["a", "b", "c d", "e f g"], "a. b. c d. e f g.".sentences)

 test_text = %q{Hello. This is a test
 of sentence separation. This is the end
 of the test.}
 assert_equal("This is the end of the test", test_text.sentences[2])
 end
 # Test that sentences of words are split up into distinct words correctly
 def test_words
 assert_equal(%w{this is a test}, "this is a test".words)
 assert_equal(%w{these are mostly words}, "these are, mostly, words".words)
 end
 # Test that the correct sentence is chosen, given the input
 def test_sentence_choice
 assert_equal('This is a great test',
 WordPlay.best_sentence(['This is a test',
 'This is another test',
 'This is a great test'],
 %w{test great this}))
 assert_equal('This is a great test',
 WordPlay.best_sentence(['This is a great test'],
 %w{still the best}))
 end

 # Test that basic pronouns are switched by switch_pronouns
 def test_basic_pronouns
 assert_equal("i am a robot", WordPlay.switch_pronouns("you are a robot"))
 assert_equal("you are a person", WordPlay.switch_pronouns("i am a person"))
 assert_equal("i love you", WordPlay.switch_pronouns("you love me"))
 end

 # Test more complex sentence switches using switch_pronouns
 def test_mixed_pronouns
 assert_equal("you gave me life",
 WordPlay.switch_pronouns("i gave you life"))

 assert_equal("i am not what you are",
 WordPlay.switch_pronouns("you are not what i am"))
 end

 end

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

281

 Building the Bot’s Core
 In the previous section, you put together the WordPlay library to provide some features you knew that your
bot would need, such as basic sentence and word separation. Now you can get on with the task of fleshing
out the logic of the bot itself.

 You’ll create the bot within a Bot class, allowing you to create multiple bot instances and assign them
different names and datasets, and work with them separately. This is the cleanest structure, as it allows you
to keep the bot’s logic separated from the logic of interacting with the bot. For example, if your finished Bot
class exists in bot.rb , writing a Ruby program to allow a user to converse with the bot using the keyboard
could be as simple as this:

 require_relative 'bot'

 bot = Bot.new(:name => "Botty", :data_file => "botty.bot")

 puts bot.greeting
 while input = gets and input.chomp != 'goodbye'
 puts ">> " + bot.response_to(input)
 end
 puts bot.farewell

 You’ll use this barebones client program as a yardstick while creating the Bot class. In the previous
example, you created a bot object and passed in some parameters, which enables you to use the bot’s
methods, along with keyboard input, to make the bot converse with the user.

 In certain situations, it’s useful to write an example of the higher-level, more abstracted code that you
expect ultimately to write, and then write the lower-level code to satisfy it. This isn’t the same as test-first
development, although the principle is similar. You write the easiest, most abstract code first, and then work
your way down to the details.

 Next, let’s look at how you expect the bot to operate throughout a normal session, and then begin to
develop the required features one by one.

 The Program’s Lifecycle and Parts
 So far we have focused on verbal descriptions of what we want to do. In Figure 12-2 , however, we take a more
visual look at the more overall lifecycle of a bot, and the client accessing it, that we’ll develop.

 Your entire application will be composed of four parts:

 1. The Bot class, within bot.rb , containing all the bot’s logic and any subclasses.

 2. The WordPlay library, within wordplay.rb , containing the WordPlay class and
extensions to String .

 3. Basic “client” applications that create bots and allows users to interact with
them. You’ll first create a basic keyboard-entry client, but we’ll look at some
alternatives later in the chapter.

 4. A helper program to generate the bot’s data files easily.

 Figure 12-2 demonstrates the basic lifecycle of a sample client application and its associated bot
object. The client program creates a bot instance, and then keeps requesting user input passing it to the bot.
Responses are printed to the screen, and the loop continues until the user decides to quit.

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

282

 You’ll begin putting together the Bot class and then look at how the bot will find and process its data.

 Bot Data
 One of your first concerns is where the bot will get its data. The bot’s data includes information about word
substitutions to perform during preprocessing, as well as myriad keywords and phrases that the bot can use
in its responses.

Client Program

START

Create bot Bot object
created

Load and
process
data file

Return greeting

Find and
construct phrase

to return

Process input

Bot object
deleted

Print bot’s
greeting

Accept
input from

user

Has user said
goodbye? Send input to bot

Print bot’s
response

No

Yes

END

Print bot’s
farewell

Bot Object

 Figure 12-2. A basic flowchart showing a sample lifecycle of the bot client and bot object

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

283

 The Data Structure
 You’ll keep the bot’s data in a hash, somewhat like this:

 bot_data = {
 :presubs => [
 ["dont", "don't"],
 ["youre", "you're"],
 ["love", "like"]
],

 :responses => {
 :default => [
 "I don't understand.",
 "What?",
 "Huh?"
],
 :greeting => ["Hi. I'm [name]. Want to chat?"],
 :farewell => ["Good bye!"],
 'hello' => [
 "How's it going?",
 "How do you do?"
],
 'i like *' => [
 "Why do you like *?",
 "Wow! I like * too!"
]
 }
 }

 The main hash has two parent elements, :presubs and :responses . The :presubs element references
an array of arrays that contain substitutions to be made to the user’s input before the bot forms a response.
In this instance, the bot will expand some contractions, and also change any reference of “love” to “like.” The
reason for this becomes clear when you look at :responses .

 ■ Note The preceding data structure is intentionally lightly populated to save space for discussion of the
practicalities. By the end of this chapter, you’ll have a more complete set of data to use with your bot. This style
of data structure was also covered in Chapter 3 .

 : responses references another hash: one that has elements with the names :default , :greeting ,
 :farewell , 'hello' , and 'i like *' . This hash contains all the different phrases the bot will use as
responses, or templates used to create full phrases. The array assigned to :default contains some phrases
to use at random when the bot cannot figure out what to say based on the input. Those associated with
 :greeting and :farewell contain generic greeting and farewell phrases.

 More interesting are the arrays associated with 'hello' and 'i like *' . These phrases are used when
the input matches the hash key for each array. For example, if a user says “hello computer,” then a match
with 'hello' is made, and a response is chosen from the array at random. If a user says “i like computers,”
then 'i like *' is matched and the asterisk is used to substitute the remainder of the user’s input (after
“i like”) into the bot’s output phrase. This could result in output such as “Wow! I like computers too,” if the
second phrase were to be used.

http://dx.doi.org/10.1007/978-1-4842-1278-3_3

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

284

 Storing the Data Externally
 Using a hash makes data access easy (rather than relying on, say, a database) and fast when it comes to
choosing sentences and performing matches. However, because your bot class needs to be able to deal with
multiple datasets, it’s necessary to store the hash of data for each bot within a file that can be chosen when a
bot is started.

 In Chapter 9 , you learned about the concept of object persistence, where Ruby data structures can be
“frozen” and stored. One library you used was called PStore, which stores Ruby data structures in a non-
human-readable binary format; and the other was YAML, which is human-readable and represented as a
specially formatted text file. For this project you’ll use YAML, as you want to be able to make changes to the
data files on the fly, to change things your bot will say, and to test out new phrases without constructing a
whole new file each time.

 It’s possible to create your data files by hand and then let the Bot class load them, but to make life easier,
you’ll create a small program that can create the initial data file for you, as you did in Chapter 9 . An ideal
name for it would be bot_data_to_yaml.rb :

 require 'yaml'

 bot_data = {
 :presubs => [
 ["dont", "don't"],
 ["youre", "you're"],
 ["love", "like"]
],
 :responses => {
 :default => [
 "I don't understand.",
 "What?",
 "Huh?"
],
 :greeting => ["Hi. I'm [name]. Want to chat?"],
 :farewell => ["Good bye!"],
 'hello' => [
 "How's it going?",
 "How do you do?"
],
 'i like *' => [
 "Why do you like *?",
 "Wow! I like * too!"
]
 }
 }

 # Show the user the YAML data for the bot structure
 puts bot_data.to_yaml

 # Write the YAML data to file
 f = File.open(ARGV.first || 'bot_data', "w")
 f.puts bot_data.to_yaml
 f.close

http://dx.doi.org/10.1007/978-1-4842-1278-3_9
http://dx.doi.org/10.1007/978-1-4842-1278-3_9

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

285

 This short program lets you define the bot data in the bot_data hash, and then shows the YAML
representation on the screen before writing it to file. The filename is specified on the command line, or
defaults to bot_data if none is supplied.

 ruby bot_data_to_yaml.rb

 :presubs:
 - - dont
 - don't
 - - youre
 - you're
 - - love
 - like
 :responses:
 i like *:
 - Why do you like *?
 - Wow! I like * too!
 :default:
 - I don't understand.
 - What?
 - Huh?
 hello:
 - How's it going?
 - How do you do?
 :greeting:
 - Hi. I'm [name]. Want to chat?
 :farewell:
 - Good bye!

 Note that as the YAML data is plain text, you can edit it directly in the file, or just tweak the bot_data
structure and rerun bot_data_to_yaml.rb . From here on out, let’s assume you’ve run this and generated the
preceding YAML file as bot_data in the current directory.

 Now that you have a basic data file, you need to construct the Bot class and get its initialize method
to use it.

 Constructing the Bot Class and Data Loader
 Let’s create bot.rb and the start of the Bot class :

 require 'yaml'
 require_relative 'wordplay'

 class Bot
 attr_reader :name

 def initialize(options)
 @name = options[:name] || "Unnamed Bot"
 begin

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

286

 @data = YAML.load(File.read(options[:data_file]))
 rescue
 raise "Can't load bot data"
 end
 end
 end

 The initialize method sets up each newly created object and uses the options hash to populate two
 class variables, @name and @data . External access to @name is provided courtesy of attr_reader. File.open,
along with the read method, opens the data file and reads in the full contents to be processed by the YAML
library. YAML.load converts the YAML data into the original hash data structure and assigns it to the @data
class variable. If the data file opening or YAML processing fails, an exception is raised, as the bot cannot
function without data.

 Now you can create the greeting and farewell methods that display a random greeting and farewell
message from the bot’s dataset. These methods are used when people first start to use the bot or just before
the bot client exits.

 def greeting
 @data[:responses][:greeting][rand(@data[:responses][:greeting].length)]
 end

 def farewell
 @data[:responses][:farewell][rand(@data[:responses][:farewell].length)]
 end

 Ouch! This isn’t nice at all. You have access to the greetings (and farewells) via @data[:responses] , but
selecting a single random phrase gets ugly fast. This looks like an excellent opportunity to create a private
method that retrieves a random phrase from a selected response group:

 private

 def random_response(key)
 random_index = rand(@data[:responses][key].length)
 @data[:responses][key][random_index].gsub(/\[name\]/, @name)
 end

 This method simplifies the routine of taking a random phrase from a particular phrase set in @data .
The second line of random_response performs a substitution so that any responses that contain [name] have
 [name] substituted for the bot’s name. For example, one of the demo greeting phrases is “Hi. I’m [name].
Want to chat?” However, if you created the bot object and specified a name of “Fred,” the output would
appear as “Hi. I’m Fred. Want to chat?”

 ■ Note Remember that a private method is a method that cannot be called from outside the class itself. As
 random_response is only needed internally to the class, it’s a perfect candidate to be a private method.

 Let’s update greeting and farewell to use random_response :

 def greeting
 random_response :greeting
 end

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

287

 def farewell
 random_response :farewell
 end

 Isn’t separating common functionality into distinct methods great? These methods now look a lot
simpler and make immediate sense compared to the jumble they contained previously.

 ■ Note This technique is also useful in situations where you have “ugly” or complex-looking code and
you simply want to hide it inside a single method you can call from anywhere. Keep complex code in the
background and make the rest of the code look as simple as possible.

 The response_to Method
 The core of the Bot class is the response_to method. It’s used to pass user input to the bot and get the bot’s
response in return. However, the method itself should be simple and have one line per required operation to
call private methods that perform each step.

 response_to must perform several actions:

 1. Accept the user’s input.

 2. Perform preprocessing substitutions, as described in the bot’s data file.

 3. Split the input into sentences and choose the most keyword-rich sentence.

 4. Search for matches against the response phrase set keys.

 5. Perform pronoun switching against the user input.

 6. Pick a random phrase that matches (or a default phrase if there are no matches)
and perform any substitutions of the user input into the result.

 7. Return the completed output phrase.

 Let’s look at each action in turn.

 Accepting Input and Performing Substitutions
 First, you accept the input as a basic argument to the response_to method:

 def response_to(input)
 end

 Then you move on to performing the preprocessing word and phrase substitutions as dictated by
the :presubs array in the bot data file. You’ll recall the :presubs array is an array of arrays that specifies
words and phrases that should be changed to another word or phrase. The reason for this is so that you
can deal with multiple terms with a single phrase. For example, if you substitute all instances of “yeah” for
“yes,” a relevant phrase will be shown whether the user says “yeah” or “yes,” even though the phrase is only
matching on “yes.”

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

288

 As you’re focusing on keeping response_to simple, you’ll use a single method call:

 def response_to(input)
 prepared_input = preprocess(input).downcase
 end

 Now you can implement preprocess as a private method:

 private

 def preprocess(input)
 perform_substitutions input
 end

 Then you can implement the substitution method itself:

 def perform_substitutions(input)
 @data[:presubs].each { |s| input.gsub!(s[0], s[1]) }
 input
 end

 This code loops through each substitution defined in the :presubs array and uses gsub! on the input.
 At this point, it’s worth wondering why you have a string of methods just to get to the perform_

substitutions method. Why not just call it directly from response_to?
 The rationale in this case is that you’re trying to keep logic separated from other logic within this program

as much as possible. This is how larger applications work, as it allows you to extend them more easily. For
example, if you wanted to perform more preprocessing tasks in the future, you could simply create methods
for them and call them from preprocess without having to make any changes to response_to . Although this
looks inefficient, it actually results in code that’s easy to extend and read in the long run. A little verbosity is
the price for a lot of flexibility. You’ll see a lot of similar techniques used in other Ruby programs, which is why
it’s demonstrated so forcefully here.

 Choosing the Best Sentence
 After you have the preprocessed input at your disposal, it’s time to split it up into sentences and choose the
best one. You can add another line to response_to :

 def response_to(input)
 prepared_input = preprocess(input.downcase)
 sentence = best_sentence(prepared_input)
 end

 Then you can implement best_sentence as a private method:

 def best_sentence(input)
 hot_words = @data[:responses].keys.select do |k|
 k.class == String && k =~ /^\w+$/
 end

 WordPlay.best_sentence(input.sentences, hot_words)
 end

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

289

 First, best_sentence collects an array of single words from the keys in the :responses hash. It looks for
all keys that are strings (you don’t want the :default , :greeting , or :farewell symbols getting mixed in) and
only a single word. You then use this list with the WordPlay.best_sentence method you developed earlier in
this chapter to choose the sentence from the user input that matches the most “hot” words (if any).

 You could rewrite this method in any style you wish. If you only ever wanted to choose the first sentence
in the user input, that’s easy to do:

 def best_sentence(input)
 input.sentences.first
 end

 Or how about the longest sentence?

 def best_sentence(input)
 input.sentences.sort_by { |s| s.length }.last
 end

 Again, by having the tiny piece of logic of choosing the best sentence in a separate method, you can
change the way the program works without meddling with larger methods.

 Looking for Matching Phrases
 Now you have the sentence you want to parse and the substitutions have been performed. The next step is to
find the phrases that are suitable as responses to the chosen sentence and to pick one at random.

 Let’s extend response_to again:

 def response_to(input)
 prepared_input = preprocess(input.downcase)
 sentence = best_sentence(prepared_input)
 responses = possible_responses(sentence)
 end

 and implement possible_responses :

 def possible_responses(sentence)
 responses = []

 # Find all patterns to try to match against
 @data[:responses].keys.each do |pattern|
 next unless pattern.is_a?(String)

 # For each pattern, see if the supplied sentence contains
 # a match. Remove substitution symbols (*) before checking.
 # Push all responses to the responses array.
 if sentence.match('\b' + pattern.gsub(/*/, '') + '\b')
 responses << @data[:responses][pattern]
 end
 end

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

290

 # If there were no matches, add the default ones
 responses << @data[:responses][:default] if responses.empty?

 # Flatten the blocks of responses to a flat array
 responses.flatten
 end

 possible_responses accepts a single sentence and then uses the string keys within the :responses
hash to check for matches. Whenever the sentence has a match with a key from :responses , the various
suitable responses are pushed onto the responses array. This array is flattened so that a single array is
returned.

 If no specifically matched responses are found, the default ones (found in :responses with the
 :default key) are used.

 Putting Together the Final Phrase
 You now have all the pieces available in response_to to put together the final response. Let’s choose a
random phrase from responses to use:

 def response_to(input)
 prepared_input = preprocess(input.downcase)
 sentence = best_sentence(prepared_input)
 responses = possible_responses(sentence)
 responses[rand(responses.length)]
 end

 If you weren’t doing any substitutions against the pronoun-switched sentence, this version of
 response_to would be the final one. However, your bot has the capability to use some of the user’s input in
its responses. A section of your dummy bot data looked like this:

 'i like *' => [
 "Why do you like *?",
 "Wow! I like * too!"
]

 This rule matches when the user says “I like.” The first possible response—“Why do you like *?”—contains
an asterisk symbol that you’ll use to substitute in part of the user’s sentence in conjunction with the
pronoun-switching method you developed in WordPlay earlier.

 For example, a user might say, “I like to talk to you.” If the pronouns were switched you’d get “You like to
talk to me.” If the segment following “You like” were substituted into the first possible response, you’d end up
with “Why do you like to talk to me?” This is a great response that compels the user to continue typing and
demonstrates the power of the pronoun-switching technique.

 Therefore, if the chosen response contains an asterisk (the character you’re using as a placeholder in
response phrases), you’ll need to substitute the relevant part of the original sentence into the phrase and
perform pronoun switching on that part.

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

291

 Here’s the new version of possible_responses with the changes in bold:

 def possible_responses(sentence)
 responses = []

 # Find all patterns to try to match against
 @data[:responses].keys.each do |pattern|
 next unless pattern.is_a?(String)

 # For each pattern, see if the supplied sentence contains
 # a match. Remove substitution symbols (*) before checking.
 # Push all responses to the responses array.
 if sentence.match('\b' + pattern.gsub(/*/, '') + '\b')
 # If the pattern contains substitution placeholders,
 # perform the substitutions
 if pattern.include?('*')
 responses << @data[:responses][pattern].collect do |phrase|
 # First, erase everything before the placeholder
 # leaving everything after it
 matching_section = sentence.sub(/^.*#{pattern}\s+/, '')

 # Then substitute the text after the placeholder, with
 # the pronouns switched
 phrase.sub('*', WordPlay.switch_pronouns(matching_section))
 end
 else
 # No placeholders? Just add the phrases to the array
 responses << @data[:responses][pattern]
 end
 end
 end

 # If there were no matches, add the default ones
 responses << @data[:responses][:default] if responses.empty?

 # Flatten the blocks of responses to a flat array
 responses.flatten
 end

 This new version of possible_responses checks to see if the pattern contains an asterisk, and if so,
extracts the correct part of the source sentence to use into matching_section , switches the pronouns on that
section, and then substitutes that into each relevant phrase.

 Playing with the Bot
 You have the basic methods implemented in the Bot class, so let’s play with it asis before looking at
extending it any further. The first step is to prepare a better set of data for the bot to use so that your
conversations can be more engaging than those with the dummy test data shown earlier in this chapter.

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

292

 Fred: Your Bot’s Personality
 In this section, you’re going to tweak the bot_data_to_yaml.rb script you created earlier to generate a YAML
file for your first bot to use. Its name will be Fred, and you’ll generate a bot data file called fred.bot . Here’s
 bot_data_to_yaml.rb extended with a better set of phrases and substitutions:

 require 'yaml'

 bot_data = {
 :presubs => [
 ["dont", "do not"],
 ["don't", "do not"],
 ["youre", "you're"],
 ["love", "like"],
 ["apologize", "are sorry"],
 ["dislike", "hate"],
 ["despise", "hate"],
 ["yeah", "yes"],
 ["mom", "family"]
],
 :responses => {
 :default => [
 "I don't understand.",
 "What?",
 "Huh?",
 "Tell me about something else.",
 "I'm tired of this. Change the subject."
],
 :greeting => [
 "Hi. I'm [name]. Want to chat?",
 "What's on your mind today?",
 "Hi. What would you like to talk about?"
],
 :farewell => ["Good bye!", "Au revoir!"],
 'hello' => [
 "How's it going?",
 "How do you do?",
 "Enough of the pleasantries!"
],
 'sorry' => ["There's no need to apologize."],
 'different' => [
 "How is it different?",
 "What has changed?"
],
 'everyone *' => ["You think everyone *?"],
 'do not know'=> ["Are you always so indecisive?"],
 'yes' => [
 "At least you're positive about something!",
 "Great."
],
 'family' => ["Tell me about your family"],

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

293

 'you are *' => [
 "What makes you think I am *?",
 "Are you so sure I am *?"
],
 'i am *' => [
 "Is it normal for you to be *?",
 "Do you like being *?"
],
 'i do not *' => ["Why don't you *?"],
 'what' => ["Why do you ask?", "Why?", "I don't know. Do you?"],
 'no' => [
 "Really?",
 "Fair enough."
],
 'why does *' => [
 "I don't know why *",
 "Do you already know the answer?"
],
 'why can\'t i *' => ["Do you want to *?"],
 'why can\'t you *' => ["Do you want me to *?"],
 'hates *' => [
 "Why do you think they hate *?"
],
 'hate *' => [
 "Why don't you like *?",
 "Why the dislike of *?"
],
 'i like *' => [
 "Why do you like *?",
 "Wow! I like * too!"
]
 }
 }
 # Show the user the YAML data for the bot structure
 puts bot_data.to_yaml

 # Write the YAML data to file
 f = File.open(ARGV.first || 'bot_data', "w")
 f.puts bot_data.to_yaml
 f.close

 If you run this with ruby bot_data_to_yaml.rb fred.bot , you’ll end up with a bot data file called
 fred.bot that contains the necessary data to converse with a basic bot.

 The First Real Conversation
 Here’s a basic program—we’ll refer to it as basic_client.rb— that can use the Bot class, which reads input
from the keyboard and prints the bot’s responses to the screen:

 require_relative 'bot'

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

294

 bot = Bot.new(:name => 'Fred', :data_file => 'fred.bot')

 puts bot.greeting

 while input = gets and input.chomp != 'end'
 puts '>> ' + bot.response_to(input)
 end

 puts bot.farewell

 ■ Note The full code for bot.rb is provided a little later in the chapter, so if you run into problems, check it
out in case the code you have implemented is missing anything.

 It’s almost the same as the script we thought of before implementing the Bot class. You used the method
names dictated by that program and made it fit. (The completed source for the Bot class is provided in the
next section if you want to refer to it.)

 Without further ado, give it a try and see if you can have a conversation. Here’s a demonstration run:

 Hi. What would you like to talk about?
 I don't know
 >> Are you always so indecisive?
 Yes, usually
 >> Great.
 I'm sorry!
 >> There's no need to apologize.
 So why can't you talk to me properly?
 >> Do you want me to talk to you properly?
 Yes
 >> At least you're positive about something!
 I don't know about that
 >> Are you always so indecisive?
 Woe is me, why can't I make decisions?
 >> Do you want to make decisions?
 Everyone does
 >> You think everyone does?

 The bot works! The conversation might be a little stilted and manipulated to use some of the phrases
and words covered by your dataset, but with this basic mechanism, and a dataset extended even further,
significantly more complex conversations would be possible. Unfortunately, it’s outside the scope of this
book to provide a large dataset.

 In the next section, the final code for the basic bot is presented, and then you’ll see how you can extend
the bot’s functionality further.

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

295

 Main Bot Code Listing
 This section makes available the full source code to the Bot class, bot.rb , including extra documentation
that RDoc can use. Also included is the source to a basic bot client that you can use to converse with a bot on
a one-on-one basis using the keyboard from the command line.

 ■ Note You will also need the WordPlay class we wrote earlier.

 As this code is commented, as opposed to the examples so far in this chapter, I recommend you at least
browse through the following code to get a feel for how the entire program operates as a set of parts.

 ■ Note You can also find these listings available to download in the Source Code/Download area of
 http://www.apress.com/ .

 bot.rb
 Here’s the source code for the main Bot class:

 require 'yaml'
 require_relative 'wordplay'

 # A basic implementation of a chatterbot
 class Bot
 attr_reader :name

 # Initializes the bot object, loads in the external YAML data
 # file and sets the bot's name. Raises an exception if
 # the data loading process fails.
 def initialize(options)
 @name = options[:name] || "Unnamed Bot"
 begin
 @data = YAML.load(File.open(options[:data_file]).read)
 rescue
 raise "Can't load bot data"
 end
 end

 # Returns a random greeting as specified in the bot's data file
 def greeting
 random_response(:greeting)
 end

 # Returns a random farewell message as specified in the bot's
 # data file
 def farewell
 random_response(:farewell)
 end

http://www.apress.com/

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

296

 # Responds to input text as given by a user
 def response_to(input)
 prepared_input = preprocess(input.downcase)
 sentence = best_sentence(prepared_input)
 reversed_sentence = WordPlay.switch_pronouns(sentence)
 responses = possible_responses(sentence)
 responses[rand(responses.length)]
 end

 private

 # Chooses a random response phrase from the :responses hash
 # and substitutes metadata into the phrase
 def random_response(key)
 random_index = rand(@data[:responses][key].length)
 @data[:responses][key][random_index].gsub(/\[name\]/, @name)
 end

 # Performs preprocessing tasks upon all input to the bot
 def preprocess(input)
 perform_substitutions(input)
 end

 # Substitutes words and phrases on supplied input as dictated by
 # the bot's :presubs data
 def perform_substitutions(input)
 @data[:presubs].each { |s| input.gsub!(s[0], s[1]) }
 input
 end

 # Using the single word keys from :responses, we search for the
 # sentence that uses the most of them, as it's likely to be the
 # 'best' sentence to parse
 def best_sentence(input)
 hot_words = @data[:responses].keys.select do |k|
 k.class == String && k =~ /^\w+$/
 end

 WordPlay.best_sentence(input.sentences, hot_words)
 end

 # Using a supplied sentence, go through the bot's :responses
 # data set and collect together all phrases that could be
 # used as responses
 def possible_responses(sentence)
 responses = []

 # Find all patterns to try to match against
 @data[:responses].keys.each do |pattern|
 next unless pattern.is_a?(String)

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

297

 # For each pattern, see if the supplied sentence contains
 # a match. Remove substitution symbols (*) before checking.
 # Push all responses to the responses array.
 if sentence.match('\b' + pattern.gsub(/*/, '') + '\b')
 # If the pattern contains substitution placeholders,
 # perform the substitutions
 if pattern.include?('*')
 responses << @data[:responses][pattern].collect do |phrase|
 # First, erase everything before the placeholder
 # leaving everything after it
 matching_section = sentence.sub(/^.*#{pattern}\s+/, '')

 # Then substitute the text after the placeholder, with
 # the pronouns switched
 phrase.sub('*', WordPlay.switch_pronouns(matching_section))
 end
 else
 # No placeholders? Just add the phrases to the array
 responses << @data[:responses][pattern]
 end
 end
 end

 # If there were no matches, add the default ones
 responses << @data[:responses][:default] if responses.empty?

 # Flatten the blocks of responses to a flat array
 responses.flatten
 end

 end

 basic_client.rb
 This basic client accepts input from the user via the keyboard and prints the bot’s responses back to the
screen. This is the simplest form of client possible.

 require_relative 'bot'

 bot = Bot.new(:name => ARGV[0], :data_file => ARGV[1])

 puts bot.greeting

 while input = $stdin.gets and input.chomp != 'end'
 puts '>> ' + bot.response_to(input)
 end

 puts bot.farewell

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

298

 Use the client like so:

 ruby basic_client.rb < bot name >< data file >

 ■ Note You can find listings for basic web, bot-to-bot, and text file clients in the next section of this chapter,
“Extending the Bot.”

 Extending the Bot
 One significant benefit of keeping all your bot’s functionality well separated within its own class and with
multiple interoperating methods is that you can tweak and add functionality easily. In this section, we’re
going to look at some ways we can easily extend the basic bot’s functionality to handle other input sources
than just the keyboard.

 When you began to create the core Bot class, you looked at a sample client application that accepted
input from the keyboard, passed it on to the bot, and printed the response. This simple structure
demonstrated how abstracting separate sections of an application into loosely coupled classes makes
applications easier to amend and extend. You can use this loose coupling to create clients that work with
other forms of input.

 ■ Note When designing larger applications, it’s useful to keep in mind the usefulness of loosely coupling
the different sections so that if the specifications or requirements change over time, it doesn’t require a major
rewrite of any code to achieve the desired result.

 Using Text Files as a Source of Conversation
 You could create an entire one-sided conversation in a text file and pass it in to a bot to test how different
bots respond to the same conversation. Consider the following example:

 require_relative 'bot'

 bot = Bot.new(:name => ARGV[0], :data_file => ARGV[1])
 user_lines = File.readlines(ARGV[2], 'r')

 puts "#{bot.name} says: " + bot.greeting

 user_lines.each do |line|
 puts "You say: " + line
 puts "#{bot.name} says:" + bot.response_to(line)
 end

 This program accepts the bot’s name, data filename, and conversation filename as command-line
arguments, reads in the user-side conversation into an array, and loops through the array, passing each line
to the bot in turn.

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

299

 Connecting the Bot to the Web
 One common thing to do with many applications is tie them up to the Web so that anyone can use them.
This is a reasonably trivial process using the WEBrick library covered in Chapter 10 .

 require 'webrick'
 require_relative 'bot'

 # Class that responds to HTTP/Web requests and interacts with the bot
 class BotServlet < WEBrick::HTTPServlet::AbstractServlet

 # A basic HTML template consisting of a basic page with a form
 # and text entry box for the user to converse with our bot. It uses
 # some placeholder text (%RESPONSE%) so the bot's responses can be
 # substituted in easily later.
 @@html = %q{
 <html><body>
 <form method="get">
 <h1>Talk To A Bot</h1>
 %RESPONSE%
 <p>
 You say:<input type="text" name="line" size="40" />
 <input type="submit" />
 </p>
 </form>
 </body></html>
 }

 def do_GET(request, response)
 # Mark the request as successful and set MIME type to support HTML
 response.status = 200
 response.content_type = "text/html"

 # If the user supplies some text, respond to it
 if request.query['line'] && request.query['line'].length > 1
 bot_text = $bot.response_to(request.query['line'].chomp)
 else
 bot_text = $bot.greeting
 end

 # Format the text and substitute into the HTML template
 bot_text = %Q{<p>I say: #{bot_text}</p>}
 response.body = @@html.sub(/\%RESPONSE\%/, bot_text)
 end
 end

 # Create an HTTP server on port 1234 of the local machine
 # accessible via http://localhost:1234/ or http://127.0.0.1:1234/
 server = WEBrick::HTTPServer.new(:Port => 1234)
 $bot = Bot.new(:name => "Fred", :data_file => "fred.bot")
 server.mount "/", BotServlet
 trap("INT"){ server.shutdown }
 server.start

http://dx.doi.org/10.1007/978-1-4842-1278-3_10

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

300

 Upon running this script, you can talk to the bot using your web browser by visiting
 http://127.0.0.1:1234/ or http://localhost:1234/ . An example of what this should look like is shown in
Figure 12-3 .

 Figure 12-3. Accessing the bot web client with a web browser

 Alternatively, you could create a CGI script (called bot.cgi , or similar) that could be used with any
web hosting provider that provides Ruby as a supported language:

 #!/usr/bin/env ruby

 require_relative 'bot'
 require 'cgi'

 # A basic HTML template creating a basic page with a forum and text
 # entry box for the user to converse with our bot. It uses some
 # placeholder text (%RESPONSE%) so the bot's responses can be
 # substituted in easily later
 html = %q{
 <html><body>
 <form method="get">
 <h1>Talk To A Bot</h1>
 %RESPONSE%
 <p>
 You say:<input type="text" name="line" size="40" />
 <input type="submit" />
 </p>
 </form>
 </body></html>
 }

http://127.0.0.1:1234/

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

301

 # Set up the CGI environment and make the parameters easy to access
 cgi = CGI.new
 params = cgi.params
 line = params['line'] && params['line'].first

 bot = Bot.new(:name => "Fred", :data_file => "fred.bot")

 # If the user supplies some text, respond to it
 if line && line.length > 1
 bot_text = bot.response_to(line.chomp)
 else
 bot_text = bot.greeting
 end

 # Format the text and substitute into the HTML template
 # as well as sending the MIME header for HTML support
 bot_text = %Q{<p>I say: #{bot_text}</p>}
 puts "Content-type: text/html\n\n"
 puts html.sub(/\%RESPONSE\%/, bot_text)

 ■ Note You also need to make sure you upload the bot.rb , wordplay.rb , and bot data file(s).

 Bot-to-Bot Conversations
 As well as letting users interact with the bot, you can let bots interact with each other ! Because it only takes a
single method on the bot instance to elicit a response, you can pipe responses back and forth between two
bots with just a few lines of code:

 require_relative 'bot'

 fred = Bot.new(:name => 'Fred', :data_file => 'fred.bot')
 chris = Bot.new(:name => 'Chris', :data_file => 'fred.bot')

 r = fred.greeting
 10.times do
 puts "#{fred.name} said: " + r
 r = chris.response_to(r)
 puts "#{chris.name} said: " + r
 r = fred.response_to(r)
 end

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

302

 This could result in the following conversation (it will vary due to the randomness of some of the
multiple responses available in the data files):

 Fred said: Hi. What would you like to talk about?
 Chris said: Why?
 Fred said: What?
 Chris said: I don't know. Do you?
 Fred said: What?
 Chris said: Why do you ask?
 Fred said: I don't understand.
 Chris said: Tell me about something else.
 Fred said: Tell me about something else.
 Chris said: Tell me about something else.
 Fred said: I'm tired of this. Change the subject.
 Chris said: What?
 Fred said: Why?
 Chris said: Tell me about something else.
 Fred said: I don't understand.
 Chris said: What?
 Fred said: Why do you ask?
 Chris said: What?
 Fred said: Why?
 Chris said: Huh?

 It’s not the greatest conversation ever seen, but it’s certainly entertaining to see two ersatz therapists
getting along with each other. Of course, if you manage to develop two bots that actually have an engrossing
conversation, you’ll be on the path to artificial intelligence stardom!

 The key problem with your bot’s data is that none of the default data contains any keywords that can
be picked up by other phrases, so both bots are locked in a loop of throwing default phrases at each other.
That’s why it’s important to extend the basic set of data if you want to use the bot for anything that looks
impressive!

 Summary
 In this chapter, we looked at developing a simple chatterbot, developed a library along the way, produced
tests for the library, worked with storing our bot’s vocabulary in an external file, and looked at a number of
ways to extend our project with databases or by hooking it up to a web site.

 This chapter marks the end of the second part of this book, and you should now have enough Ruby
knowledge to pass as a solid, yet still learning, Ruby developer. You should be able to understand the
majority of Ruby documentation available online and be able to use Ruby productively either professionally
or for fun.

 Part 3 of this book digs a little deeper into Ruby’s libraries and frameworks, from Ruby on Rails and the
Web, to general networking and library use. Chapter 16 , which looks at a plethora of different Ruby libraries
and how to use them, will be particularly useful to refer to as you develop your own programs, so that you
don’t reinvent the wheel too often!

http://dx.doi.org/10.1007/978-1-4842-1278-3_16

303

 PART 3

 Ruby Online

 This part of the book looks primarily at Ruby’s Internet and networking abilities. The knowledge
covered in this part of the book is not essential for developing general Ruby applications, but
because the Internet and the Web are important in the scope of modern software development,
you’re sure to find these chapters useful. This part of the book concludes with a reference-style
chapter that covers a choice selection of Ruby libraries and the features they offer.

305© Peter Cooper 2016
P. Cooper, Beginning Ruby, DOI 10.1007/978-1-4842-1278-3_13

 CHAPTER 13

 Two Web Application Approaches:
Rails and Sinatra

 In this chapter, we’re going look at web application (or web app, for short) frameworks—libraries of code
that provide a easily reusable structure and design patterns for developing web applications. If you want to
develop something useful for the Web, you’ll probably find a web application framework very useful, and
Ruby has a wonderful selection of them, of which we’ll look at two: Rails and Sinatra.

 Background
 Ruby’s most famous web application framework is the Ruby on Rails framework, and the majority of this
chapter will be dedicated to it. We’ll walk through developing a (very) basic Rails application and getting it
running with a database. After I’ve covered Rails, we’ll take a more cursory look at Sinatra, another library
that provides a lightweight approach that is quick and easy to learn.

 The Limitations and Benefits of Our Approach
 It is very important to note at this stage that web application development is a significant branch of
development in general. This book is an introductory Ruby book, rather than a web application development
book, so this chapter is focused on giving you a brief walkthrough of the concepts involved with Rails and
Sinatra, and information on where to go to learn more, rather than exhaustively showing you how to develop
complete applications from scratch. Apress has a selection of books specifically about Ruby on Rails and web
development available if you wish to learn more and progress further down this line of development. Also,
links to further resources and tutorials are provided throughout this chapter.

 As well as limitations of space, a key reason for not focusing too much on the details in this chapter is
that web application frameworks in particular have a history of changing rapidly. Indeed, this chapter has
had to be rewritten twice almost entirely since the first edition of this book in 2006 because the techniques
have become obsolete. To prevent you running into too much obsolete code if you come to this book a year
or two after publication, we’ll focus on the higher-level concepts and look at quick examples of how they
relate to code. Then, when you decide to investigate web application frameworks on your own, you’ll be
informed as to their basic operation, even if the specific techniques have changed.

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

306

 Pros and Cons of the Frameworks Covered
 Rails and Sinatra are easily the two most popular web application frameworks used by Rubyists as of 2016,
and they each have distinct pros and cons:

 Rails is a large, heavy web application framework that has lots of features baked
in. Rails can be used to build applications that are both large and small, but it
tends to use more memory and resources than the other frameworks, and the
performance is not as high. A typical Rails application will be composed of many
tens of files and have a tight structure built of models, views, and controllers
(these are explained later). Rails is popular because it’s powerful, reasonably
standardized, and, admittedly, has the critical mass of community support to
keep its popularity growing.

 Sinatra is almost the direct opposite of Rails in terms of its qualities. It’s fast,
lightweight, and pragmatic, and an application can be built within a single
Ruby file. There’s a lack of any enforced structure (though you could build your
own), and fewer features are available out of the box; you will often need to call
on other Ruby libraries to fill in the basics, like database support. Despite this,
Sinatra is growing in popularity due to its extreme simplicity and its suitability for
small, agile web applications and services.

 Rails: Ruby’s Killer App
 Due to Rails’ significance in making Ruby more popular and its popularity with Rubyists generally, Rails is
often called “ Ruby’s killer app .” It’s the biggest attractor of new developers to Ruby, and many popular Ruby-
related projects online (including Twitter and GitHub) tend to use Rails in some form or another.

 Before you can begin to use Rails, it’s essential first to know what it is and why it’s used, as well as how to
get it running, as its installation process is more involved than that of other Ruby libraries.

 What Is Rails and Why Use It?
 Ruby on Rails is an open source web application development framework. It makes the development of
web applications simple. For some of the nontechnical history behind Rails, including the motivation for its
development, refer to Chapter 5 .

 The goal of Rails (as with other web application frameworks) is to make it possible to develop web
applications in an easy, straightforward manner, and with as few lines of code as necessary. By default, Rails
makes a lot of assumptions and has a default configuration that works for most web applications. It’s easy
to override most of Rails’ default assumptions, but these defaults are in place to keep initial application
development simple. In Rails parlance, this is commonly called “convention over configuration.” That is, there’s
no need to work on lots of complex configuration files to get going, since sensible defaults will be assumed.

http://dx.doi.org/10.1007/978-1-4842-1278-3_5

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

307

 Rails applications operate upon a model-view-controller (MVC) architectural pattern . This means that they’re
primarily split into three sections: models , views , and controllers . These components have the following roles:

• Models : These are used to represent forms of data used by the application
and contain the logic to manipulate and retrieve that data. In Rails, a model is
represented as a class. You can think of models as abstracted, idealized interfaces
between controller code and data. These forms of data are not low-level things like
strings or arrays, but domain-specific things like users, web sites, videos, animals,
or classrooms (which could be represented by classes named User , Website , Video ,
 Animal , and Classroom , respectively).

• Views : These are the templates (typically formed of a mixture of HTML and Ruby
code) that are used to build up the data that users of the web application see in their
browsers or through other clients. Views can be rendered as HTML for web browsers,
XML, RSS, or other formats. While views can contain any combination of HTML
and Ruby code, typically only the minimal Ruby code necessary to produce the view
should be used, as the controller should be handling most of the logic.

• Controllers : Controllers provide the logic that binds together models (and their
associated data) and views. They process input, call methods made available by
models, and deliver data to the views. In Rails, controllers contain methods known
as actions that, generally, represent each action relevant to that controller, such as
“show,” “hide,” “view,” “delete,” and so forth.

 The basic relationship between these components is shown in Figure 13-1 .

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

308

Controllers

Views

Models

Database

 Figure 13-1. The interactions between an application’s users, views, controllers, and models

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

309

 ■ Note You can learn more about the MVC paradigm at http://en.wikipedia.org/wiki/Model-view-
controller .

 The most common motivation to use Rails is that it removes a lot of the groundwork necessary to
develop web applications using other technologies. Features such as database access, dynamic page
elements (using Ajax —Asynchronous JavaScript and XML), templating, and data validation are either
preconfigured or take only a few lines of code to configure.

 Rails also encourages good development practices. All Rails applications come with support for unit
testing (among other forms of testing), and Rails’ guiding principles are “don’t repeat yourself” (known as
DRY) and “convention over configuration.”

 Installing Rails
 The Rails framework is made up of several different libraries, but it’s simple to install because all the parts
are distributed as gems. The following is a list of Rails’ main constituent libraries as of version 5.0.0:

• Rails : The core library of the Ruby on Rails framework that ties the other libraries
together.

• Action Mailer : A library that makes it easy to send e-mail from Rails applications. A
basic overview of ActionMailer, including how to use it to send mail separately from
Rails, is given in Chapter 14 .

• Action Pack : A library providing useful methods used in views and controllers to
generate HTML and dynamic page elements, such as Ajax and JavaScript, or manage
data objects.

• Active Record : An object-relational mapper that ties database tables to classes. If
you have an ActiveRecord object that references a row in a database table, you can
work with that object as you would any other Ruby object (by using attributes and
other methods), and changes will be stored in the relevant database table. A basic
overview of ActiveRecord was given in Chapter 9 .

• Active Support : A library that collects a number of support and utility classes used by
various Rails features. For example, ActiveSupport implements many useful methods
for manipulating times, numbers, arrays, and hashes.

• Active Job: A framework for defining tasks that can take place independently of the
usual request and response cycle of the web app.

 Generally you won’t need to know or care about each of these elements as a discrete library because
you can install them all at once using RubyGems , like so:

 gem install rails

 ■ Note As always, remember to use sudo or run as a superuser on UNIX-like operating systems if you want
to install gems system-wide.

http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/Model-view-controller
http://dx.doi.org/10.1007/978-1-4842-1278-3_14
http://dx.doi.org/10.1007/978-1-4842-1278-3_9

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

310

 Database Considerations
 As Rails is used primarily to develop data-driven web applications, it’s necessary to have a database system
available to use on your computer.

 Database engines are covered in Chapter 9 , and you can use all those covered (MySQL, SQLite and
PostgreSQL) with Ruby on Rails. In production, most developers use MySQL or PostgreSQL, as Rails
supports these database engines best, but SQLite is the “default” with Rails as it’s so easy to set up and is
more than fast enough for development purposes (some sites even use it in production with no troubles).

 For this chapter’s purposes, ensure you have SQLite3 installed and install the SQLite3 gem like so:

 gem install sqlite3

 On Linux, installing the sqlite3-ruby gem might raise errors if the SQLite3 libraries are not installed.
On Ubuntu and Debian, this is easy to resolve:

 apt-get install sqlite3 libsqlite3-dev

 On Red Hat , CentOS , or other Red Hat–derived distributions, you can use the following:

 yum install sqlite sqlite-devel

 If you’re using a different distribution or have standing issues with getting SQLite3 installed, the best
source of help is the many random blog posts you can find on Google by searching for “install sqlite3
[your operating system’s name].”

 Building a Basic Rails Application
 As explained in the previous section, Rails is popular because it makes developing web applications easy.
In this section, I’ll demonstrate that by showing you how to generate a very basic web application, and we’ll
take a look through how certain parts of it work.

 Creating a Blank Rails Application
 As you can use Rails to develop both small and large applications, different types of files are organized into
different directories to keep elements separated for tidiness on large projects. A lot of pre-created files are
also placed within a new, blank Rails project. The quickest way to look at these files and the overall directory
structure is to leap right in and create a new Rails project.

 Your project in this chapter will be to create a simplistic diary app, somewhat similar to a blog
(or weblog). The resulting application will let you view your diary, and add, delete, or edit specific entries.

 The basic feature set of being able to create, read, update, and delete items is known as CRUD , and most
types of web applications feature CRUD mechanisms at one level or another. For example, a photo gallery
site allows you to add, view, edit, and delete photos, which are all CRUD actions. Therefore, the mechanics
of developing a basic diary tool are easily transferable to developing most other types of web applications.

 ■ Note CRUD is just a convenient acronym to refer to the concept of a system that allows the creation,
reading, updating, and deletion of discrete items—it has no particular technical relevance.

http://dx.doi.org/10.1007/978-1-4842-1278-3_9

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

311

 The Rails Command-Line Tool

 When you installed Rails, a script called rails was also installed. You use the rails script to create new
Rails projects, their default files, and their directory structure. To use it, navigate to a place in your filesystem
where you would like to store Rails projects (possibly creating a rails directory in the process) and run
 rails new , specifying an application name as the sole argument:

 rails new mydiary

 create
 create README.md
 create Rakefile
 create config.ru
 create .gitignore
 create Gemfile
 create app
 create app/assets/config/manifest.js
 create app/assets/javascripts/application.js
 create app/assets/javascripts/cable.coffee
 create app/assets/stylesheets/application.css
 create app/channels/application_cable/channel.rb
 create app/channels/application_cable/connection.rb
 create app/controllers/application_controller.rb
 create app/helpers/application_helper.rb
 create app/jobs/application_job.rb
 create app/mailers/application_mailer.rb
 create app/models/application_record.rb
 create app/views/layouts/application.html.erb
 create app/views/layouts/mailer.html.erb
 create app/views/layouts/mailer.text.erb
 create app/assets/images/.keep
 create app/assets/javascripts/channels
 create app/assets/javascripts/channels/.keep
 create app/controllers/concerns/.keep
 create app/models/concerns/.keep
 create bin
 create bin/bundle
 create bin/rails
 create bin/rake
 create bin/setup
 create bin/update
 create config
 create config/routes.rb
 create config/application.rb
 create config/environment.rb
 create config/secrets.yml
 create config/cable.yml
 create config/puma.rb
 create config/environments
 create config/environments/development.rb
 create config/environments/production.rb

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

312

 create config/environments/test.rb
 create config/initializers
 create config/initializers/active_record_belongs_to_required_by_default.rb
 create config/initializers/application_controller_renderer.rb
 create config/initializers/assets.rb
 create config/initializers/backtrace_silencers.rb
 create config/initializers/callback_terminator.rb
 create config/initializers/cookies_serializer.rb
 create config/initializers/cors. rb
 create config/initializers/filter_parameter_logging.rb
 create config/initializers/inflections.rb
 create config/initializers/mime_types.rb
 create config/initializers/per_form_csrf_tokens.rb
 create config/initializers/request_forgery_protection.rb
 create config/initializers/session_store.rb
 create config/initializers/wrap_parameters.rb
 create config/locales
 create config/locales/en.yml
 create config/boot.rb
 create config/database.yml
 create db
 create db/seeds.rb
 create lib
 create lib/tasks
 create lib/tasks/.keep
 create lib/assets
 create lib/assets/.keep
 create log
 create log/.keep
 create public
 create public/404.html
 create public/422. html
 create public/500.html
 create public/apple-touch-icon-precomposed.png
 create public/apple-touch-icon.png
 create public/favicon.ico
 create public/robots.txt
 create test/fixtures
 create test/fixtures/.keep
 create test/fixtures/files
 create test/fixtures/files/.keep
 create test/controllers
 create test/controllers/.keep
 create test/mailers
 create test/mailers/.keep
 create test/models
 create test/models/.keep
 create test/helpers
 create test/helpers/.keep
 create test/integration

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

313

 create test/integration/.keep
 create test/test_helper.rb
 create tmp
 create tmp/. keep
 create tmp/cache
 create tmp/cache/assets
 create vendor/assets/javascripts
 create vendor/assets/javascripts/.keep
 create vendor/assets/stylesheets
 create vendor/assets/stylesheets/.keep
 remove config/initializers/cors.rb
 run bundle install
 [..skipping the installation of numerous gems here..]
 run bundle exec spring binstub --all
 * bin/rake: spring inserted
 * bin/rails: spring inserted

 ■ Tip By default, SQLite will be specified as the database type in the database.yml file generated in the
preceding code. If you’re going to be using MySQL, however, use rails mydiary -d mysql instead. Try rails
-h if you want to see more of the available command-line options.

 A lot of files and directories are produced, but don’t feel overwhelmed! You won’t even use many
of them in this chapter, as they are for more advanced cases that aren’t relevant to the very basic web
application development we’re looking at. In most cases, Rails provides sane defaults anyway, so you don’t
need to change a lot of files unless you’re doing something special. Nonetheless, we’ll take a look at what
these directories are for in the following section.

 ■ Note The exact file and directory structure might vary on your system depending on what version of Rails you’re
running. The preceding structure was generated by Rails 5.0.0, the official production release of Rails in April 2016.

 Files and Directories Within a Rails Application
 In this section, we’re going to go through the directories and files created by rails and look at what they’re
for. Don’t become overwhelmed by this section. If there’s something you don’t understand, keep going, as
most of the new terms and concepts mentioned here are explained as we use them throughout this chapter.

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

314

 rails generates the following main folders:

• app : Contains most of the Ruby source code and output templates directly associated
with the application. It contains several other folders that I’ll cover next.

• app/assets: A place to store JavaScript, image, and CSS files that can be compiled
down to more efficient “packaged” versions later.

• app/controllers : Contains the controller files. In an empty project, only
 application_controller.rb (or application.rb when using Rails 2.2 or earlier)
exists. application_controller.rb (or application.rb) is an application-wide
controller where you can define methods that other controllers will inherit.

• app/helpers : Contains helper files—Ruby source code files that provide methods
that you can use from views.

• app/models : Contains a file for each model in the application. In an empty project,
no models are yet defined, so this directory is empty.

• app/views : Contains the output templates (views) for the application. Typically
each controller has its own folder under app/views , with templates located in those
folders. There’s also a layouts folder that Rails uses to store generic application-wide
templates.

• bin: Contains app-tailored scripts that you run from the terminal, e.g. rails and
 bundle .

• config : An important folder that contains configuration files for the application. For
example, database.yml is a YAML file with information about the database(s) that
the application will use.

• db : A folder to be used for database dumps, backups, and migrations.

• lib : Contains third-party libraries and Rake tasks. You won’t need to use this
directory at all for most Rails application development. Plugins have largely
superseded the features offered by libraries that were once placed into lib .

• log : Contains log files relating to the operation of the application.

• public : Contains non-dynamic files that are accessible under your application’s
URL scheme; for example, JavaScript libraries (in public/javascripts), images
(in public/ images), and CSS style sheets (in public/stylesheets). This folder also
includes several “dispatch” scripts and an .htaccess file that can be used in certain
situations to run your application (such as when/if you choose to use CGI or FastCGI
execution methods—neither of which are recommended).

• test : Contains the test subsystems for a Rails application. This folder is covered in
more detail later in this chapter in the “Testing” section.

• tmp : Temporary storage area for data created and used by your Rails application
(including cache and session files).

 I’ll briefly mention some of these folders again throughout the rest of the chapter as you create files
within them to get your basic application working.

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

315

 Database Configuration
 Earlier I said that Rails applications are generally database dependent. With this in mind, at this stage it’s
necessary to create a database for your application on your database server.

 ■ Note You could develop an app that has no need to permanently store data or operates without a
database, but this would be atypical.

 By default, your Rails application will use an SQLite database, and it will generate this for itself when
you first run your database’s migrations (covered later). If you are using any other database engine, however,
the technique you’ll use to create a database for your application will vary with database type and how you
have your database server installed.

 In the sidebar “Creating a Database with MySQL,” I’ve provided instructions for creating the database
you need using MySQL’s command-line client, but if you’re using a different type of database (PostgreSQL,
say), you must refer to the documentation and programs associated with your database system and look up
how to create a database and a username and password login for that database on your system.

 ■ Tip If you are following the default route of using SQLite 3, you can ignore the “Creating a Database with
MySQL” sidebar.

 CREATING A DATABASE WITH MYSQL

 From the command-line MySQL client, it’s quick and easy to create a database. Here’s an example
session showing you how to create a database and associate it with a username and password for
future access:

 ~/rails/mydiary $ mysql -u root
 Welcome to the MySQL monitor. Commands end with ; or \g.
 Your MySQL connection id is 1
 Server version: 5.7.11

 Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.

 Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

 mysql> CREATE DATABASE mydiary;
 Query OK, 1 row affected (0.08 sec)

 mysql> GRANT ALL PRIVILEGES ON mydiary.* TO mydiary@localhost
 IDENTIFIED BY 'mypassword';
 Query OK, 0 rows affected (0.30 sec)

 mysql> QUIT
 Bye

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

316

 In this session, you create a database called mydiary and then grant all the privileges to use that database
to a user called mydiary with a password of mypassword . You can check that the database and user were
created successfully by using the MySQL command-line client to access the mydiary database:

 ~/rails/mydiary $ mysql -u mydiary -p
 Enter password: <type mypassword at this point>
 Welcome to the MySQL monitor. Commands end with ; or \g.
 Your MySQL connection id is 1
 Server version: 5.7.11

 Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.

 Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

 mysql> QUIT
 Bye

 If MySQL gives no error, generally everything is okay. If you get an error saying that the username
is invalid, then the granting of privileges in the prior section wasn’t successful, so refer to any error
messages that appeared at that point.

 If you’re using a GUI MySQL client or even a client for a totally different database system, make sure
that you’ve created a database called mydiary and made it accessible to a user. Your client should allow
you to test this easily.

 Once the database has been created, you can tell your Rails application of its existence by editing the
 config/database.yml file, covered in the main text in this section.

 Database configuration settings are stored in database.yml . If you’re using SQLite, it’s not necessary to
change these settings at all, but it’s worth looking at them nonetheless. If you’re using MySQL, you’ll definitely
need to take a look in case there are changes to be made, so open config/database.yml in your editor.

 Ignoring the comments, you’ll notice three main sections in database.yml , called “development,”
“test,” and “production.” These sections represent the three different environments your application can
run under. For example, while developing, you want your application to return verbose error messages
and automatically detect changes you make to the code. In production (better thought of as being
a “deployment” environment), you want speed, caching, and non-verbose error messages. The test
environment is provided so that testing can occur on a different database away from your regular data.

 The section you’re interested in right now is the “development” section, as we’ll only be using the
development environment throughout this chapter. You need to edit the details in the development section
to reflect those necessary to connect to the database you created previously. SQLite users need do nothing,
but MySQL users, for example, might need to change the development section to this:

 development:
 adapter: mysql
 encoding: utf8
 database: mydiary
 pool: 5
 username: mydiary
 password: mypassword
 host: localhost

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

317

 database.yml tells Rails how to access the database associated with the application, so it’s essential
that the details are correct. If not, you’ll get error messages when you try to run your eventual application
(though, thankfully, these errors will often tend to give you some great clues as to how to fix the problem).

 Using Scaffolding
 A Rails application without any models is not a working application at all. Any application you build will
need at least one model. In our case, we’re first going to focus on the concept of “entries” in our virtual diary.

 Rails comes with a concept called scaffolding that will generate dummy (but fully working) code that
will do the database and code work necessary to create a model, a controller for that model, and some
default views to interact with that model’s data. It’s possible to do this in gradual steps, or even entirely by
hand, but scaffolding enables you to get up and running a lot more quickly.

 Think of the Rails generator we used earlier to generate all of the files essential for a Rails project.
Scaffolding is the next logical step up from that. Instead of creating the files necessary for a Rails project,
scaffolding creates some of the code (including a database migration to create the database table for the
model) and views necessary to represent a single model within your application.

 You can then build your own extra views and controller methods off of this basic scaffolding. It’s
designed to give you a jump-start without making you code everything from scratch (although you can code
from scratch if you want to, particularly if your ambitions differ wildly from what the scaffolding provides).

 ■ Note In Rails, models and database tables typically have a direct relationship. So if you have a model
called Entry , this will by default be related to the database table called entries . Rails takes care of the
pluralization between model class names and database table names.

 For our diary application, entries will initially solely consist of a title and some content. There are
other attributes (or “columns” in the database sense) that Rails will add by default to the table, such as id
(a unique numeric identifier). A directive is also added into the default migration code to create timestamp
columns: created_at (a timestamp of when the row/associated object was created), and updated_at
(a timestamp of when the row/associated object was amended last). Because of this automation, it is only
necessary to specify the two custom, additional attributes to the scaffold generator to get things going.

 To generate scaffolding for your entries table, use the generate script again:

 rails generate scaffold Entry title:string content:text

 invoke active_record
 create db/migrate/20160427135030_create_entries.rb
 create app/models/entry.rb
 invoke test_unit
 create test/models/entry_test.rb
 create test/fixtures/entries.yml
 invoke resource_route
 route resources :entries
 invoke scaffold_controller
 create app/controllers/entries_controller.rb
 invoke erb
 create app/views/entries
 create app/views/entries/index.html.erb
 create app/views/entries/edit.html.erb
 create app/views/entries/show.html.erb

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

318

 create app/views/entries/new.html.erb
 create app/views/entries/_form.html.erb
 invoke test_unit
 create test/controllers/entries_controller_test.rb
 invoke helper
 create app/helpers/entries_helper.rb
 invoke test_unit
 invoke jbuilder
 create app/views/entries/index.json.jbuilder
 create app/views/entries/show.json.jbuilder
 invoke assets
 invoke coffee
 create app/assets/javascripts/entries.coffee
 invoke scss
 create app/assets/stylesheets/entries.scss
 invoke scss
 create app/assets/stylesheets/scaffolds.scss

 The scaffolding generator has done a lot of work for us! The generator has created some view files
(in app/views/entries) to enable us to see our entries, create new entries, and edit them. It has also
produced an “entries” controller (in app/controllers), some dummy tests (in test/*), and a database
migration (in db/migrate ; note that the migration’s filename starts with a timestamp, so it will vary).

 But what is a database migration, and why does it matter?

 Database Migrations
 I’ve already stressed that in Rails, models and database tables are directly related. It is necessary, therefore,
for the table relating to a Rails model to exist within the database.

 Migrations provide a Ruby-based way to define database tables. Instead of doing the SQL yourself, you
specify what tables, columns, and indexes you want to exist, and run the migration, and Rails’ ActiveRecord
library does the hard work for you. Even better, you can have multiple migrations for the same table, so that
if you decide to add a column to a table later, you just create a new migration and specify that you’d like to
add a new column.

 Migrations are considered desirable because they provide a programmatic way to both upgrade and
downgrade databases. Since migrations are just normal source code, it’s also possible to put them into your
source code management system and share them between multiple developers, if you wish. Migrations provide
abstraction and mechanization to make organizing database changes associated with a Rails application easy.

 The scaffolding generator you ran in the previous section produced a database migration. Let’s take
a look at it to see how it works. You’ll find it in the db/migrate directory—it will have a filename ending in
 "create_entries.rb" because the first part of the filename is timestamped. It should contain the following:

 class CreateEntries < ActiveRecord::Migration[5.0]
 def change
 create_table :entries do |t|
 t.string :title
 t.text :content

 t.timestamps
 end
 end
 end

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

319

 A single migration is defined in a single file as a class that inherits from ActiveRecord::Migration and
it creates the entries table using the create_table method, which is supplied with a symbol representing
the table name (:entries) and a code block within where the attributes/columns can be defined.

 In this case, a string column called title and a text column called content are created. “Timestamp”
columns are also created. At the time of writing, these are created_at and updated_at ; they store the date
and time of when a row was created and when it was last amended, respectively.

 ■ Note The difference between a string column and a text column is that, classically, string columns are for
storing short (often fixed-length) textual strings, whereas text columns can store both short strings and very
long blocks of text.

 Your application has a migration all ready to go to create the entries table. To get it to run, you need
to invoke a rake task (see the following “Rake Tasks” sidebar for more information about these) called
 db:migrate that will then run all migrations that have not yet been processed:

 rake db:migrate

 == 20160427135030 CreateEntries: migrating ====================================
 -- create_table(:entries)
 -> 0.0010s
 == 20160427135030 CreateEntries: migrated (0.0011s) ===========================

 The output verifies that the CreateEntries migration was run, and now the entries table exists (with
the specified columns) within the database associated with your application. In essence, you now have a
Rails application that’s ready to be used!

 ■ Note There’s a lot more to migrations than this section has scope to cover. Luckily, the Rails
documentation team has a great guide specifically about migrations, how they work, and how you can
create and customize your own. You can find the migrations guide at http://guides.rubyonrails.org/
migrations.html .

 RAKE TASKS

 Rake tasks are administrative tasks associated with your application that are managed by the Rake tool.
Rake, meaning “Ruby Make,” is a tool that you can use to process and trigger actions to perform upon
Ruby projects and code, and it’s used commonly within Rails projects to do things such as start unit
tests and perform migrations.

 To perform a Rake task, you simply run rake followed by the name of a task:

 rake <task name>

http://guides.rubyonrails.org/migrations.html
http://guides.rubyonrails.org/migrations.html

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

320

 You can also get a list of all the Rake tasks available, like so:

 rake -- tasks

 With Rails 5.0.0, there are 40 tasks by default. To save space, they aren’t listed here, but it’s worth
looking through the list to get a feel for what tasks are available.

 Running the Basic, Scaffolded App
 You’ve run the scaffold generator, you’ve looked at the database migration for your entries table, and you’ve
used the db:migrate rake task to bring your database up to speed. That’s all you have to do to get a working
application! To try it out, you need to run the server script that provides a basic web server through which to
access the application:

 rails server

 => Booting Puma
 => Rails 5.0.0 application starting in development on http://localhost:3000
 => Run `rails server -h` for more startup options
 => Ctrl-C to shutdown server
 Puma starting in single mode...
 * Version 3.2.0 (ruby 2.3.0-p0), codename: Spring Is A Heliocentric Viewpoint
 * Min threads: 5, max threads: 5
 * Environment: development
 * Listening on tcp://localhost:3000
 Use Ctrl-C to stop

 At this point, the application sits there doing nothing. This is because it’s waiting to serve HTTP requests
(such as from your web browser).

 Go to your web browser of choice and access the application using the URL given by the output
(http://localhost:3000/ in this case, but it might be http://127.0.0.1:3000/ on your machine
depending on your OS and network setup). You should see a page like the one in Figure 13-2 .

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

321

 The page you’re seeing is the index.html file from the public folder. This is because if no action is
found within a Rails application that associates with the URL you’re loading from your web browser, a Rails
application should return a file from the public folder—if any file matches—or an error message. Because
the default page to load on a web server is usually index.html , public/index.html is returned.

 When you generated the scaffolding for the Entry model, a controller called entries was created, as
 app/controllers/entries_controller.rb . By default, you access controller methods in a Rails application
using a URL in the format of http:// [hostname]/[controller]/[action] .

 ■ Note Don’t worry about this too much, but for completeness, even though http://[hostname]/
[controller]/[action] is a default, it can be superseded. As entries has been created as a scaffolded
 resource , you can also use http://[hostname]/entries/[id] as an alternative to http://[hostname]/
entries/show/[id] , since routes have been automatically created to route requests to certain methods based
on the HTTP verb (GET , PUT , POST , or DELETE) used—for example, a DELETE HTTP request can automatically
route to the destroy action where applicable.

 So, with this application, load http://localhost:3000/entries (replace localhost with whatever
hostname is used on your local machine). No action name is specified, but by default an action name of
 index is assumed, and the scaffolding has implemented this. If you’re successful, you’ll see a basic list of
entries, as shown in Figure 13-3 .

 Figure 13-2. The default Rails application index.html page

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

322

 The list of entries in Figure 13-3 is noticeably bare. This is because your entries table has no data in
it. The column headings for your table are obvious, though (Title and Content), and a New Entry link is
available.

 Clicking New Entry takes you to http://localhost:3000/entries/new —the new method within the
 entries controller—and presents you with a page containing a form that allows you to fill out the data for a
single entry. This view is demonstrated in Figure 13-4 .

 From this point, you can create new entries, return to the list, edit those entries (the form looks similar
to that in Figure 13-4), and delete entries. That covers all the CRUD functions!

 With scaffolding, you get a basic but complete data-driven web application with just a few lines at the
command prompt. However, next you need to look at what the scaffolding generator actually generated, and
learn how to customize the models, controllers, and views to create the specific application that you want.
This experience will be particularly valuable if you choose to pursue Rails development further.

 Controllers and Views
 In the last section, you put together a basic web application that allowed you to create, edit, list, and delete
diary entries. You used scaffolding, which let you put a whole working application together with no direct
coding effort required. In this section, you’re going to look at what the scaffolding generated, how it works,
and how you can extend the application a little.

 Controller Actions
 The first URL you accessed in your application was http://localhost/entries/list . This URL takes you to
the entries controller’s list method. Let’s look in app/controllers/entries_controller.rb to find it:

 class EntriesController < ApplicationController
 before_action :set_entry, only: [:show, :edit, :update, :destroy]

 # GET /entries
 # GET /entries.json

 Figure 13-3. The basic list or index view of the entries scaffolding

 Figure 13-4. The new method of the entries controller, used to create new entries

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

323

 def index
 @entries = Entry.all
 end

 # GET /entries/1
 # GET /entries/1.json
 def show
 end

 # GET /entries/new
 def new
 @entry = Entry.new
 end

 # GET /entries/1/edit
 def edit
 end

 # POST /entries
 # POST /entries.json
 def create
 @entry = Entry.new(entry_params)

 respond_to do |format|
 if @entry.save
 format.html { redirect_to @entry, notice: 'Entry was successfully created.' }
 format.json { render :show, status: :created, location: @entry }
 else
 format.html { render :new }
 format.json { render json: @entry.errors, status: :unprocessable_entity }
 end
 end
 end
 # PATCH/PUT /entries/1
 # PATCH/PUT /entries/1.json
 def update
 respond_to do |format|
 if @entry.update(entry_params)
 format.html { redirect_to @entry, notice: 'Entry was successfully updated.' }
 format.json { render :show, status: :ok, location: @entry }
 else
 format.html { render :edit }
 format.json { render json: @entry.errors, status: :unprocessable_entity }
 end
 end
 end

 # DELETE /entries/1
 # DELETE /entries/1.json
 def destroy
 @entry.destroy

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

324

 respond_to do |format|
 format.html { redirect_to entries_url, notice: 'Entry was successfully destroyed.' }
 format.json { head :no_content }
 end
 end

 private
 # Use callbacks to share common setup or constraints between actions.
 def set_entry
 @entry = Entry.find(params[:id])
 end

 # Never trust parameters from the scary internet, only allow the white list through.
 def entry_params
 params.require(:entry).permit(:title, :content)
 end
 end

 This code shows that Ruby controllers are implemented as classes that inherit from
 ApplicationController (found in app/controllers/application_controller.rb), which in turn inherits
from a core Rails class, ActionController::Base .

 When a user tries to access the index method of the entries controller, control is delegated to the index
method (or action) in the EntriesController class, shown on its own here:

 # GET /entries
 # GET /entries.json
 def index
 @entries = Entry.all
 end

 This code is simple for what it does. It collects all of the Entry objects (represented by rows in the
 entries table) within the database using @entries = Entry.all .

 Entry is the model class and models inherit from ActiveRecord::Base , which provides methods
suitable to navigate and find data in the associated table for that model. Therefore, Entry.all returns all
rows (as objects) from the entries table and places them as an array into @entries .

 Following on from that, Rails automatically knows to render the correct template for displaying the
entries. Let's take a look at how that works now.

 Views and Embedded Ruby (ERB)
 Now let’s look at the equivalent view for the index controller action examined in the previous section. The
view template is located in app/views/entries/index.html.erb :

 <p id="notice"><%= notice %></p>

 <h1>Entries</h1>

 <table>
 <thead>
 <tr>
 <th>Title</th>

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

325

 <th>Content</th>
 <th colspan="3"></th>
 </tr>
 </thead>

 <tbody>
 <% @entries.each do |entry| %>
 <tr>
 <td><%= entry.title %></td>
 <td><%= entry.content %></td>
 <td><%= link_to 'Show', entry %></td>
 <td><%= link_to 'Edit', edit_entry_path(entry) %></td>
 <td><%= link_to 'Destroy', entry, method: :delete, data: { confirm: 'Are you sure?'

} %></td>
 </tr>
 <% end %>
 </tbody>
 </table>

)
 <%= link_to 'New Entry', new_entry_path %>

 If you’re familiar with both Ruby and HTML, you’ll note that this view is basically HTML with Ruby
embedded in it (with the Ruby located between <% and %> tags). In Ruby and Rails parlance, this is called an
 ERB template .

 ■ Note The file extension of ERB templates is .erb . Those that are HTML-based typically use the dual
extension of .html.erb in Rails, although just .erb will suffice technically.

 The core part of the list view contains this code:

 <% @entries.each do |entry| %>
 <tr>
 <td><%= entry.title %></td>
 <td><%= entry.content %></td>
 <td><%= link_to 'Show', entry %></td>
 <td><%= link_to 'Edit', edit_entry_path(entry) %></td>
 <td><%= link_to 'Destroy', entry, method: :delete, data: { confirm: 'Are you sure?' }
%></td>
 </tr>
 <% end %>

 This view code results in the main, dynamic part of the page being rendered: the actual list of entries.
I won’t go into this code line by line, but there a few key things to note. This whole section is a loop over each
element of @entries (using @entries ’ each method with a code block). You should recall that your controller
code placed Entry objects from the database into the @entries array, so the view code iterates over each
element (or each entry). Next, two table columns (using the <td> HTML tag) show the current entry’s title and
content, respectively. This is achieved using the <%= entry.title %> and <%= entry.content %> blocks.
Expressions within <%= and %> tags are interpreted and then substituted into the final) HTML output.

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

326

 After the data for the entry has been shown, you reach this:

 <td><%= link_to 'Show', entry %></td>
 <td><%= link_to 'Edit', edit_entry_path(entry) %></td>
 <td><%= link_to 'Destroy', entry, method: :delete, data: { confirm: 'Are you sure?' } %>
</td>

 The important parts to look at are the calls to the link_to method. link_to is a special method
provided by Rails that generates an HTML link to another controller and/or action within the application.
Let’s look at the first line:

 <td><%= link_to 'Show', entry %></td>

 Whereas the general Ruby code in the view is located within <% and %> tags, Ruby code that results in
something to be rendered in the document (that is, shown on the web page) is included within <% = and %>
tags (as in the earlier <%=h entry.title %> column).

 The link_to method accepts the text to use for the link, and then it accepts parameters that specify
where the link should go. Prior to Rails 2.0, this was always in the form of hash, such as :controller =>
"entries", :action => "show", :id => entry.id , where these sections would be used to form a URI
such as /entries/show/1234 . You can still take this approach if you like, but in more recent versions of Rails,
shortcuts have been implemented so that if you’re performing the standard CRUD operations, you can use
shortcut names that will produce the URLs you want without having to write all of those parameters.

 In the <%= link_to 'Show', entry %> case, link_to assumes that since it has been passed an entry
object, you want to link to the page that will show only that entry—specifically /entries/[id of entry] .

 In the second example, <%= link_to 'Edit', edit_entry_path(entry) %>, the edit_entry_path
shortcut method is used (with the entry object as a parameter) to provide the hash of parameters to link to /
entries/[id of entry]/edit .

 The last example, <%= link_to 'Destroy', entry, method: :delete, data: { confirm: 'Are
you sure?' } %> , provides the entry object, as with the “show” version, but the HTTP DELETE method is
specified using the method argument, so link_to is smart enough to realize you want to direct the link to the
 destroy method of the entries controller in this case.

 Separate from these shortcuts, however, let’s look at how the parameters of link_to can be manipulated
directly to get the results you want.

 Let’s build a link_to example in a few steps showing some example view code and what it would
render given those examples (assuming a basic Entry object is present in the entry variable):

 <%= entry.id %>)

 3

 <%= entry.content %>

 This is an example entry.

 <%= link_to 'Show', :action => 'show' %>

 Show

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

327

 <%= link_to entry.title, :action => 'show', :id => entry.id %>

 Example Entry

 <%= link_to 'Show', :action => 'show', :id => entry.id %>

 Show

 It’s important to understand how these examples work, as many elements of views rendered by Rails
will contain patterns such as these, whether for generating links, including images, or creating forms to post
data back to your application.

 At this stage, you might be wondering why you can’t just write the HTML you want directly into views
and then build up the links manually. For example:

 <a href="/entries/show/<%= entry.id %>"><%= entry.title %>

 instead of:

 <%= link_to entry.title, :action => 'show', :id => entry.id %>

 The simple answer is you can ! Stylistically, however, Rails developers prefer to let Rails’ helper methods
(such as link_to) do the work of putting together fragments of HTML that might need to change in the future.
For example, in the future you might choose to change the “entries” part of the URLs to “entry” for some reason
or another, and with Rails you could just make some changes to the application’s routing to do this. The links
generated by helpers such as link_to would then automatically reflect the new conventions, whereas if you
coded them with HTML, as previously, you’d have a lot of searching and replacing to do in your views!)

 Models and Relationships
 So far your application only has a single model, Entry , that relates to diary entries. However, one major benefit
the ActiveRecord library provides is the ability to relate models easily to one another. For example, you could
create another model called User that relates to different people who can post diary entries in your system.

 The full depth of ActiveRecord and model relationships (also known as associations) can and does take
up entire books, so is beyond the scope of this introduction, but in this section we’ll look at a basic example
of how ActiveRecord models can relate to one another.

 In earlier sections of this chapter, you saw how ActiveRecord objects work at a basic level. For example:

 entry = Entry.find(1)
 entry.title = 'Title of the first entry'
 entry.save

 The way ActiveRecord relates data to objects is logical and straightforward. Columns become attributes
that you can get and set on the objects, and you can then save those objects back to the database with the
object’s save method.

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

328

 However, let’s imagine that you have a User model that contains columns including a user’s name,
e-mail address, and other user-related information. Now let’s imagine that you directly relate users and
entries in your application. You might expect to be able to do things like this:

 entry = Entry.find(1)
 entry.user.name = 'Name of whoever posted the entry'
 entry.user.email = 'Their e-mail address'

 This is, indeed, what one-to-many relationships with ActiveRecord enable. Setting up such a
relationship between models is easy. Consider the two models, located in app/models/entry.rb and app/
models/user.rb , respectively:

 class Entry < ActiveRecord::Base
 belongs_to : user
 end

 You would use this code for the User model:

 class User < ActiveRecord::Base
 has_many :entries
 end

 ActiveRecord was designed to allow an almost natural language mechanism of defining model
relationships. In our Entry model, we say that Entry objects “ belong_to ” User objects. In the User model,
we say that a User object “ has_many ” associated Entry objects.

 The only thing you need to set up, other than the relationship itself, is a column in the entries table
that enables the relationship to work. You need to store the id of the associated user with each Entry object,
so you need to add an integer column to entries called user_id . You could do this by creating a new
migration and using a directive such as add_column :entries , :user_id , :integer , or by adding the column
manually with SQL (through another client).

 Once the model relationship has been defined and relationships between data have been made—
which is as easy as, say, entry.user = User.find(1)—you can then access data across the relationship. For
example, in a view showing an entry, you might have some view code such as this:

 <p>Posted by <%= entry.user.name %> at <%= entry.created_at %></p>

 ActiveRecord also supports many-to-many relationships. For example, consider the relationship between
fictional Student and Class models. Students can be associated with more than one class at a time, and each
class can contain many students. With ActiveRecord, you can define these relationships using a join table
and a has_and_belongs_to_many relationship, or through an intermediary model such as Enrollment , which
defines the links between Students and Classes using has_many with a :through parameter.

 ■ Note It’s worth pointing out that a model called Class wouldn’t be allowed in Rails, because there’s
already a class called Class built in to Ruby. Beware of reserved words and using names that are already used
elsewhere!

 The variety of relationships possible are documented in the official Ruby on Rails documentation at
 http://api.rubyonrails.org/classes/ActiveRecord/Associations/ClassMethods.html .

http://api.rubyonrails.org/classes/ActiveRecord/Associations/ClassMethods.html

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

329

 Sessions and Filters
 A useful feature provided by Rails applications out of the box is support for sessions. When a web browser
makes a request to your application, Rails silently sends back a cookie containing a unique identifier for that
browser. Whenever that browser makes further requests, it sends back the cookie with the unique identifier,
so the application always knows when a certain previous visitor is making another request. You can use the
session’s ability to store information that’s specific to a particular visitor for use on future requests.

 Sessions are commonly used on web sites for features such as shopping carts or keeping track of what
pages you’ve visited. For example, if you add an item to your cart at an e-commerce site, the item chosen is
stored in a data store associated with your session’s ID. When you come to check out, your session ID is used to
look up data specific to your session in the session system’s data store and find out what you have in your cart.

 To demonstrate basic session storage in your Rails application, you’ll count and show a user how
many times he or she has accessed actions within your application. To do this, you need to have some way
of performing this logic on each request made to the application. You could add logic to every controller
action, but an easier way is to use a filter method called before_filter .

 before_filter is a method you can use at the controller class level to define that a method (or, indeed,
many methods) should be executed before the method for the controller action of the current request. Filters
make it possible to perform generic activities before every request (or before requests to certain groups of
methods or certain controllers).

 ■ Note A common use for filters within Rails is to make sure visitors are authenticated and authorized to
visit certain controllers and perform certain actions. If you have a controller class called AdminController , you
might want to add a before_filter that ensures a visitor is logged in to the site as an admin user before you
let him or her use the potentially dangerous actions within!

 In this example, you’ll use before_filter to perform some logic before every request to the application.
To do this, you’ll add some code to app/controllers/application_controller.rb so that every controller in
your application (although there is only one in this case, entries) will be subjected to the filter.

 Here’s app/controllers/application_controller.rb before the new code:

 class ApplicationController < ActionController::Base
 # Prevent CSRF attacks by raising an exception.
 # For APIs, you may want to use :null_session instead.
 protect_from_forgery with: :exception
 end

 ■ Tip Pay attention to the comments left in default files, as they are often quite informative, as in the
preceding code.

 Here’s the same file after implementing your request-counting code (and removing the comments):

 class ApplicationController < ActionController::Base
 # Prevent CSRF attacks by raising an exception.
 # For APIs, you may want to use :null_session instead.
 protect_from_forgery with: :exception

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

330

 before_filter :count_requests_in_session

 def count_requests_in_session
 session[:requests] ||= 0
 session[:requests] += 1
 end
 end

 You use before_filter with a symbol as a parameter, where the symbol represents the count_
requests_in_session method.

 ■ Tip Learn more about filters at http://api.rubyonrails.org/classes/ActionController/Filters/
ClassMethods.html .

 Within the count_requests_in_session method, a hash provided by Rails called session is used.
Automatically, session is always a data store associated with the current session, so anything you write to it
or read from it is always associated with the current session.

 In this case, you initialize session[:requests] with 0 if it not already defined, and then you increase
the count on the next line. You can access this information from your views now quite easily. Go to app/
views/entries/view_all.html.erb and add this line to the top of the file:

 <%= session[:requests] %>

 If you now load http://localhost/entries , you’ll see 1 at the top of the page. Reload the page, and the
number increases for each reload. Sessions in action!

 Other Features
 Although you’ve managed to create a basic working Rails application so far, I’ve only covered the bare
essentials. In this section, I’ll quickly cover a few key areas that you’ll want to know about before exploring
Rails further independently.

 Layouts
 In the Rails application developed earlier in this chapter, you let scaffolding do the work of creating views for
you. You then looked through the views created to see how they work. The scaffolding generator also created
a layout , a sort of super-template that can be used to render the generic code around the code specific for a
certain action. For example, most HTML documents would start off something like this:

 <!doctype html>
 <html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Page Title Here</title>
 <link rel="stylesheet" href="styles.css">
 </head>
 <body>

http://api.rubyonrails.org/classes/ActionController/Filters/ClassMethods.html
http://api.rubyonrails.org/classes/ActionController/Filters/ClassMethods.html

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

331

 And, at the very least, a typical HTML document would end somewhat like this:

 </body>
 </html>

 In Rails, layouts are special, generic wrapper templates that multiple views can use. Instead of repeating
the HTML header and footer code within every view, you can simply embed each view’s output into a layout
instead. By default, if there’s a file with the same base name as the current controller in app/views/layouts ,
it’s used as a layout.

 In the scaffolded application’s case, the layout used was app/views/layouts/application.html.erb .
Let’s take a look at it:

 <!DOCTYPE html>
 <html>
 <head>
 <title>Mydiary</title>
 <%= csrf_meta_tags %>
 <%= action_cable_meta_tag %>

 <%= stylesheet_link_tag 'application', media: 'all', 'data-turbolinks-track' =>
'reload' %>
 <%= javascript_include_tag 'application', 'data-turbolinks-track' => 'reload' %>
 </head>

 <body>
 <%= yield %>
 </body>
 </html>

 This layout includes the basic HTML header and footer items, but also uses some special Rails code to
include style sheets (with the stylesheet_link_tag method), JavaScript, and more that the page relies on.

 The <%= yield %> code yields the rendering process to the view for the current action, so the contents
of the current view are rendered at that location.

 If you so choose, you can force a view to be displayed without a layout by adding a line at the point of
render (that is, in the relevant method or action) in the entries controller, like so:

 render :layout => false

 You can also specify a different layout to use in this way by supplying a layout name to render instead:

 render :layout => 'some_other_layout'

 This would then use app/views/layouts/some_other_layout.html.erb for the layout of that action’s view.

 ■ Note You can learn more about layouts at http://api.rubyonrails.org/classes/
ActionController/ Layout/ClassMethods.html .

http://api.rubyonrails.org/classes/ActionController/
http://api.rubyonrails.org/classes/ActionController/

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

332

 Where to Go Next: References, Books, and Example Apps
 Rails has been in popular use since the end of 2004, and it has attracted the interest of thousands of
developers, many of whom blog about the framework or release the source of their own Rails applications
for free. You can also look to some large-scale Rails applications for inspiration.

 The best way to learn Rails, beyond the basics, is to keep up with the new features being added to
the framework as it is being developed, to read the source code of other people’s applications, and to
experiment. Rails isn’t something that you can master quickly.

 This section provides links to several useful references, books, and example applications you can investigate.

 Reference Sites and Tutorials
 Following are some useful reference sites and tutorials to help you get started using Rails:

• Official Ruby on Rails API (http://api.rubyonrails.org/) : The official
documentation for the Ruby on Rails framework. Almost every class and method
provided by Rails is documented.

• Ruby on Rails guides (http://guides.rubyonrails.org/) : A useful set of guides for
Ruby on Rails written by prominent community members. They’re very well written
and kept up to date with the latest version of Rails.

• Getting Started with Rails (http://guides.rubyonrails.org/getting_started.
html) : A beautifully written introduction to Rails that covers much of the same ground
as this chapter. The benefit of this guide, however, is that it will be kept up to date with
the latest version of Rails, which may be useful to you in case there are major changes.

 Rails Books
 There are several books that will walk you through Rails from start to finish, from setting up and looking at
scaffolded apps (as in this chapter) to building complete apps with multiple models and customized views
that are deployed on the Web.

 I recommend investigating the following:

• Agile Web Development with Rails 4, by Sam Ruby, Dave Thomas, and David
Heinemeier Hansson (Pragmatic Bookshelf, 2013): Many Rails developers consider
 Agile Web Development with Rails to be the canonical Rails tutorial book, particularly
as Rails’ creator David Heinemeier Hansson has always been involved in its
development. Its latest edition came out in September 2013, and it covers Rails 4.0
specifically, although much of it will continue to be relevant now.

• The Rails Tutorial, by Michael Hartl: In the past few years this has essentially become
the Rails tutorial. It's a paid for e-book and set of screencasts, but you can also read
the material on the Web for free. It's superb and walks you through the entire process
of building a complete Rails app. I strongly recommend you move onto it after
reading this book. It's available at http://railstutorial.org/ .

http://api.rubyonrails.org/)
http://guides.rubyonrails.org/)
http://guides.rubyonrails.org/getting_started.html)
http://guides.rubyonrails.org/getting_started.html)
http://railstutorial.org/

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

333

 Sinatra: Lightweight, Simple Web Applications
 Sinatra calls itself a “DSL for quickly creating web applications.” It’s not a framework in the typical sense,
and many Sinatra developers prefer to refer to it as a library that offers HTTP deployment functionality.
In essence, however, it’s a very lightweight web application framework that lets you either add HTTP
functionality to existing apps or build new ones from scratch as simply as possible.

 Sinatra was initially developed solely by Blake Mizerany, and first appeared in 2007, but it was not until
early 2009 that its popularity exploded, and now there are many developers responsible for it.

 To install Sinatra, you can just run gem install sinatra or visit the project’s homepage at http://
sinatrarb.com/ .

 The Extreme Simplicity of Sinatra
 Unlike Rails, there’s no enforcement of concepts like MVC or REST in Sinatra. Sinatra is very “at the
bare metal” in terms of its functionality. You can write an entire app in a single Ruby file if you wish, or,
alternatively, you can develop lots of classes, sprawl your app out over hundreds of files, and really go to
town. Sinatra is permissive of almost any development style and offers no Rails-like formula or constraints.

 A great way to see just how simple a Sinatra app can be is, as always, by trying an example application:

 require 'sinatra'

 get '/' do
 "Hello, world!"
 end

 When you run this code (if it’s in a file called sinatra1.rb , say, just use ruby sinatra1.rb as you
usually would), an HTTP server will start on your local machine on port 4567. You can try to access it at
 http://localhost:4567/ , whereupon you should see “Hello, world!” returned.

 Other than the necessities of loading Sinatra, the only command is get , which has a single parameter
referring to the path ("/") on which to serve the result of the attached code block (which merely returns the
string “Hello, world!” in this case).

 ■ Note You can make a Sinatra app run on a different port by specifying a -p [PORT] option on the
command line (for example, ruby sinatra1.rb -p 1234). You can see other command-line functions by using
the -h option.

 When comparing Sinatra with Rails, it’s notable that this app is a single file with only a few lines of code.
There’s no large framework of ancillary code and there’s no database. This has its pros and cons, depending
on what you’re trying to develop. Loading a database library works the same way in a Sinatra app as in a
regular Ruby app, if you choose to do so. You might also choose to use PStore or CSV, as we did in Chapter 9 .
The key point is that it’s entirely up to you. Sinatra is completely flexible!

http://sinatrarb.com/
http://sinatrarb.com/
http://dx.doi.org/10.1007/978-1-4842-1278-3_9

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

334

 General URL Routing and Parameter Matching
 In the previous section, we looked at an app that returned a string on an HTTP GET request for the root path
of a URL. It’s possible, of course, to take it further:

 require 'sinatra'
 get '/' do
 "Hello, world!"
 end

 get '/bye' do
 "Leaving already?"
 end

 get '/time' do
 Time.now.to_s
 end

 In this example, we’re serving up different content for different specified URLs—nothing too complex
about that. But what if we want to dynamically work with content or parameters provided in the URL? That’s
possible, too:

 get '/add/:a/:b' do
 (params[:a].to_i + params[:b].to_i).to_s
 end

 ■ Note For brevity, I’m omitting the requires in the examples from here on.

 This time we’ve used a special format to denote a named parameter in the URL. These parameters are
then made available to the code block in the params hash (parameters work in a similar way in Rails).

 If we ran the last example and made a request for /add/5/6 , then 5 would end up in params[:a] and 6
would end up in params[:b] , which enables us to add them together and return the result to the HTTP client.

 It’s also possible to access named parameters with block parameters. This example is functionally
equivalent to the last:

 get '/add/:a/:b' do |a, b|
 (a.to_i + b.to_i).to_s
 end

 ■ Tip Sinatra also has support for wildcard and regular expression parameters. These are beyond the
scope of this introduction, but basic examples can be found in Sinatra’s README document at http://www.
sinatrarb.com/intro.html .

http://www.sinatrarb.com/intro.html
http://www.sinatrarb.com/intro.html

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

335

 It’s also possible to support other HTTP verbs, such as POST , PUT , and DELETE . You can do this by using
the post , put , and delete methods to define blocks, instead of using get . Here’s an example of using get and
 post together on the same URL to implement a form:

 get '/' do
 %q{<form method="post">
 Enter your name: <input type="text" name="name" />
 <input type="submit" value="Go!" />
 </form>}
 end

 post '/' do
 "Hello #{params[:name]}!"
 end

 If you visit http://localhost:4567/ , fill in the text field, and click the Go! button, your web browser will
issue a POST HTTP request back to the same URL, and the second method in the example will be executed.

 Views, Templates, and Static Files
 As with Rails, views make up the part of web applications that users see and interact with in their browsers.
In the basic examples in the previous section, we simply returned strings containing HTML from the
Sinatra routing methods (get , post , put , and delete). Luckily you’re not consigned to this style, and Sinatra
provides some handy shortcuts for making views a lot easier to work with.

 Inline and In-File Templates
 Sinatra provides easy access to template renderers for ERB, Haml, Builder (used for XML), and Sass (used for
CSS) out of the box, assuming that you have their respective gems installed. For example:

 before do
 @people = [
 { :name => "Beatrice", :age => 20 },
 { :name => "Eugenie", :age => 18 },
 { :name => "Louise", :age => 6 }
]
 end

 get '/' do
 erb %{
 <% @people.each do |person| %>
 <p><%= person[:name] %> is <%= person[:age] %> years old</p>
 <% end %>
 }
 end

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

336

 In this case, we’re using an ERB template (much as Rails views typically use) supplied as a string to the
erb method, which then renders the ERB template into a final string that is returned to the client. This is
commonly referred to as an inline template. In this case, the output would be as follows:

 Beatrice is 20 years old
 Eugenie is 18 years old
 Louise is 6 years old

 ■ Note You can learn more about ERB in Chapter 16 .

 BEFORE FILTERS

 Notice that in the first example in this section, the @people variable is defined within a before code
block. before blocks are designed to be used for code that is to be executed before every request.
Anything that occurs within a before block will be in the same object scope as the processing of the
request (as in the get block). Therefore, the before block was used, in this case, to provide a simple
data structure for the ERB template to use.

 If you were familiar with the Haml, Builder, or Sass templating systems, you could use those in a similar
way to render HTML, XML, and CSS, respectively.

 It is also possible to store templates at the end of the source code file and reference them from the calls
to erb , haml , builder , or sass . For example:

 get '/' do
 erb :index
 end

 __END__

 @@ index
 <% @people.each do |person| %>
 <p><%= person[:name] %> is <%= person[:age] %> years old</p>
 <% end %>

 ■ Note For brevity, the before block is not shown in this example.

http://dx.doi.org/10.1007/978-1-4842-1278-3_16

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

337

 This example works in exactly the same way as the one prior, except that the template has been moved
into a special data area after the main Ruby source code.

 In Ruby, if the _END_ delimiter is used, then any text coming after it is not processed as Ruby code but as
 input to the application if the application so chooses to read it. Sinatra can use this functionality to support
placing named templates into the source code file itself.

 Templates used in this way are prefixed with @@ [name] so that the template can then be referenced
by the template rendering commands (erb in this case) by using the symbol representing the name of the
template (for example, erb :index).

 Layouts
 Similarly to Rails, Sinatra supports layouts for generic templating. For example, complete HTML files tend to
have full <html> and <head> definitions, titles, references to style sheets, JavaScript, and so forth. You don’t want
to code this into every individual template, so instead you can concoct a layout that wraps around your views.

 In Sinatra, a layout is defined in the same way as any other template. If you define a template with the
name of layout , then it will be used by the template rendering methods (such as erb) by default. For example:

 before do
 @people = [
 { :name => "Beatrice", :age => 20 },
 { :name => "Eugenie", :age => 18 },
 { :name => "Louise", :age => 6 }
]
 end

 get '/' do
 erb :index
 end

 __END__
 @@ layout
 <html>
 <head><title>My App</title></head>
 <body>
 <h1>My App</h1>
 <%= yield %>
 </body>
 </html>

 @@ index
 <% @people.each do |person| %>
 <p><%= person[:name] %> is <%= person[:age] %> years old</p>
 <% end %>

 This application has two templates: layout and index . When the index template is rendered, erb will
notice that there’s a template called layout and render that first, only yielding to the index template when
it encounters the yield method. This results in a page that contains all of layout ’s HTML, but with index ’s
specific HTML embedded within.

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

338

 You can, of course, have more than one layout. For example, if you defined a second layout called
 anotherlayout , you could tell erb to render it specifically:

 erb :index, :layout => :anotherlayout

 You could also choose to render no layout at all:

 erb :index, :layout => false

 External Templates and Layouts
 Having templates and layouts within your source code file can result in a very small, easy-to-understand
application, but once your application reaches a certain size, it can become cumbersome—not only to read,
but to maintain!

 Luckily, you can place templates (including layouts) into external files that Sinatra will load when it
comes to render time.

 By default, external template files are expected to be in a directory called views located within that of
your source code file, although you can override this if you wish using a set directive at the start of your app:

 set :views, File.dirname(FILE) + '/templates'

 Once you have your folder ready, you can place views into it using filenames along the lines of
 [template name].[format] . For example, assume this is how we’re rendering our view:

 erb :index, :layout => 'mylayout'

 If no in-file template called index is defined, Sinatra will look for the file index.erb in the views
directory (or whatever directory you set). Similarly, if you were using the sass , haml , or builder methods,
they would be looking for their own extensions.

 The layout situation is very much the same. With the previous line of code, Sinatra would be looking for
the mylayout.erb file.

 Static Files
 Most web applications will rely on static files, often in rendering views. Static files include things like
JavaScript files, images, or style sheets. Rather than define templates for these things or serve them
programmatically, Sinatra can serve them directly for you.

 By default, static files are expected to be in the public subdirectory. As with the external templates
directory, however, you can define where you want static files to be if you wish:

 set :public, File.dirname(FILE) + '/myfiles'

 When a request comes in to the Sinatra app for, say, /images/box.gif , Sinatra will first look to see if
 public/images/box.gif exists before dispatching the request to your application. If the file exists, it will be
served up directly. If not, the request will make its way into your app, where it will either be caught with a
route or generate an error.

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

339

 Request Flow Control
 So far we’ve looked at how to make a Sinatra app return content for requests made to specific URLs, but we
haven’t looked at any flow control.

 What if you wanted to only show a page in a certain situation, or wanted to redirect someone
somewhere else if other conditions are present? What if you needed to raise an error? We’ll look at these
situations in this section.

 Redirection
 Let’s say that you want to build a simple, scrappy web application that only gives out data if someone uses
the right password. You could write it like this:

 require 'sinatra'

 get '/' do
 erb :index, :layout => :layout
 end

 post '/secretdata' do
 erb :secretdata
 end

 __END__
 @@ layout
 <html><head><title>My App</title></head>
 <body><%= yield %></body></html>

 @@ index
 <form method="POST" action="/secretdata">
 Password: <input type="text" name="password" />
 <input type="submit" value="Log in" />
 </form>

 @@ secretdata
 Here's our secret data: <code>30'N 12'W</code>

 Your app is a regular Sinatra app with all of the templates within the source file. The index template
features a form that asks for a password that is then sent to the /secretdata action through an HTTP POST
request. The “secret data” is then rendered.

 In this example, whatever password you type in (or even no password at all) will result in you seeing the
secret data. So what if you want to redirect someone back to the form if they get the password wrong? All you
have to do is change the /secretdata action:

 post '/secretdata' do
 redirect '/' if params[:password] != 'xyzzy'
 erb :secretdata
 end

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

340

 Now you’re using Ruby’s regular if construct to see if the password parameter is not equal to ' xyzzy' ,
and if not, you redirect back to the index URL (/).

 redirect in Sinatra is a lot simpler than redirect_to in Rails. Its parameter is simply the URL you want
to redirect to, whether an absolute URL or a relative one (as used in the prior example). Using an absolute
URL, you could redirect the user anywhere:

 redirect 'http://www.google.com/'

 Halting
 In the last section, we looked at a basic “secret data” app that prevents access to a certain page unless the
correct password is supplied. We’ll use the context of that example again to explore halting and passing in
this section.

 Assume that your app is for another computer program to use, rather than just web browser–equipped
humans. Redirecting to the front page when the password is wrong is not particularly illustrative to an
automated client, and typically you’d return an HTTP error code and message instead. In the case of a wrong
password, you’d typically return a 403 status code and a “Forbidden” message.

 ■ Tip Learn more about HTTP status codes and messages at
 http://en.wikipedia.org/wiki/List_of_HTTP_status_codes .

 When you want a request to cease and return a particular message (rather than a rendered page), you
use Sinatra’s halt method to halt the request. Let’s rewrite the /secretdata method from the app in the last
section to do this:

 post '/secretdata' do
 halt 403 if params[:password] != 'xyzzy'
 erb :secretdata
 end

 In this case, you’ve replaced the redirect with a call to the halt method. If you want to set an HTTP
status code and return a message, you pass it an array with those items respectively. Alternatively you could
just pass an HTTP status code, although it’s better to return a message too in case a human is accessing your
app and doesn’t know what 403 really means!

 Error Handling
 If you try to access a URL on a Sinatra application that isn’t handled by one of the route methods, an error
page will show up. You can control what this error page looks like by defining a not_found block:

 require 'sinatra'
 not_found do
 "<html><body>Sorry, you're lost!</body></html>"
 end

 If you ran this application, every request you made to it would result in the HTML in the not_found block
being returned because no routes are defined to handle requests to any URL. Note that you could define an
external (on internal) view and render it in the typical way with the erb method instead, if you wished.

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

341

 As well as not_found , Sinatra offers a way to define a response that should be used when a fatal error
occurs in the application. For example, let’s build a small application that divides two numbers:

 require 'rubygems'
 require 'sinatra'

 set :show_exceptions, false

 error do
 redirect 'http://en.wikipedia.org/wiki/Division_by_zero'
 end

 get '/divide/:a/:b' do |a, b|
 "#{a.to_i / b.to_i}"
 end

 ■ Note The set :show_exceptions, false directive is included because, when you're in development
mode, Sinatra shows you a helpful “exception” page by default which overrides what you do in error blocks.

 If you ran this application and accessed http://127.0.0.1:4567/divide/40/10 , you’d be given “4”
as a response. Try http://127.0.0.1:4567/divide/10/0 , however, and you’ll be cheekily redirected to a
Wikipedia page all about the perils of dividing a number by zero! This is probably not how you’d want to treat
your real-life users, but the point is made.

 In a way, the error block has worked in a similar way to the rescue block when handling Ruby exceptions.

 ■ Tip Head back to the “Exceptions and Error Handling” section of Chapter 8 if you need a rescue refresher!

 Like rescue , Sinatra’s error blocks can also be defined to only respond to certain types of exceptions,
whether regular Ruby exceptions or ones of your own creation. A single exception’s class or an array of
exception classes can be provided as a parameter before the associated code block.

 Summary
 In this chapter, we looked at how to develop some very basic web applications using Rails and Sinatra. Rails
in particular gives you a lot of power out of the box, and enables you to develop a fully working, database-
driven web application in a short period of time. Sinatra, on the other hand, shows you how simple it can be
to put smaller web apps together.

 We’ve merely scratched the surface in this chapter, as Rails is a large and complex framework (though
simple to use, it has many details that are complex for advanced usage). Entire books larger than this one have
been written about Rails, so this chapter merely provides a taste. You can use the references in the previous
section to learn more about the framework, and you can investigate the selection of Apress books available
about Rails (see http://www.apress.com). Sinatra also goes a lot deeper than we’ve been able to scratch here.

 Larger frameworks like Rails can seem complex initially, but the complexity of the directory structure
and default files created by the rails tool are only there to make your job as a developer easier by providing
a familiar structure and separation of concerns. Once you’re familiar with the layout and the tools Rails
makes available, developing web applications is a simple, organized process.

http://dx.doi.org/10.1007/978-1-4842-1278-3_8
http://www.apress.com/

CHAPTER 13 ■ TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

342

 Let’s reflect on the main concepts introduced in this chapter:

• Ruby on Rails : A Ruby-based web application development framework developed by
David Heinemeier Hansson. See Chapter 5 for the history behind Ruby on Rails.

• Framework : A set of libraries and tools that can be used as a foundation for
developing applications.

• Models : Classes that represent forms of data used by the application and that contain
the logic to manipulate and retrieve that data.

• Views : Templates and HTML code (more accurately, code that includes both HTML
and embedded Ruby code) that produce the pages that users of the web application
will see. Views can output data as HTML for web browsers, XML, RSS, and other
formats.

• Controllers : Classes that process user input and control what data is sent to the views
to output. Controllers contain the logic that binds together models, data, and views.

• Actions : Methods contained within controllers that are accessed when requests for
specific URLs are made on the parent web application.

• CRUD (create, read, update, delete) : The four basic actions you can perform upon
discrete items and that are common to most web applications. In Rails 1.2 and later,
these operations can correspond to the PUT , GET , POST , and DELETE HTTP verbs.

• ActiveRecord : A library that abstracts databases, rows, columns, and SQL into
standard Ruby syntax using classes and objects. It’s a major part of the Ruby on Rails
framework.

• Routing : The process of translating a URL into the desired controller and action by
using routing patterns.

• Session : A process by which a unique ID is given to a new user of an application, and
this unique ID is given back and forth on each further request, thereby making it
possible to track that user.

• Plugins : Libraries for the Ruby on Rails framework that “plug in” to your applications.
Plugins can override Rails’ default behaviors or extend the framework with new
features you can easily use from your application, such as authentication systems.
Plugins are installed on a per-application basis rather than for the Rails framework as
a whole.

• Sinatra : A lightweight framework (or library) for developing web-facing applications
in Ruby without significant amounts of ancillary code. A Sinatra app can be
represented in just a few lines of code. Its official web site is at http://sinatrarb.
com/ .

 In this chapter, we looked at developing web applications under an organized framework, and in the
next chapter we’ll look at using Internet protocols more directly. You can combine the techniques covered in
Chapter 14 with your Rails applications so that they can communicate with other services available online,
such as e-mail, FTP, and data from other web sites.

http://dx.doi.org/10.1007/978-1-4842-1278-3_5
http://sinatrarb.com/
http://sinatrarb.com/
http://dx.doi.org/10.1007/978-1-4842-1278-3_14

343© Peter Cooper 2016
P. Cooper, Beginning Ruby, DOI 10.1007/978-1-4842-1278-3_14

 CHAPTER 14

 Ruby and the Internet

 In this chapter, we’re going to look at how to use Ruby with the Internet and with the various services
available on the Internet, from the Web to e-mail and file transfers.

 The Internet has recently become an inescapable part of software development, and Ruby has a
significant number of libraries available to deal with the plethora of Internet services available. In this
chapter, we’ll focus on a few of the more popular services: the Web, e-mail (POP3 and SMTP), and FTP, along
with how to process the data we retrieve.

 In Chapter 15 , we’ll look at how to develop actual server or daemon code using Ruby along with lower-
level networking features, such as pinging , TCP/IP , and sockets . However, this chapter focuses on accessing
and using data from the Internet, rather than on the details of Ruby’s networking features.

 HTTP and the Web
 HyperText Transfer Protocol (HTTP) is an Internet protocol that defines how web servers and web clients
(such as web browsers) communicate with each other. The basic principle of HTTP, and the Web in general,
is that every resource (such as a web page) available on the Web has a distinct Uniform Resource Locator
(URL), and that web clients can use HTTP verbs such as GET , POST , PUT , and DELETE to retrieve or otherwise
manipulate those resources. For example, when a web browser retrieves a web page, a GET request is made
to the correct web server for that page, which then returns the contents of the web page.

 In Chapter 10 , we looked briefly at HTTP and developed some simple web server applications to
demonstrate how Ruby applications can make their features available on the Internet. In this section, we’re
going to look at how to retrieve data from the Web, parse it, and generate web-compatible content.

 Downloading Web Pages
 One of the most basic actions you can perform on the Web is downloading a single web page or document.
First, we’ll look at how to use the most commonly used Ruby HTTP library, net/http , before moving on to a
few notable alternatives.

 The net/http Library
 The net/http library comes standard with Ruby and is the most commonly used library to access web sites.
Here’s a basic example:

 require 'net/http'

http://dx.doi.org/10.1007/978-1-4842-1278-3_15
http://dx.doi.org/10.1007/978-1-4842-1278-3_10

CHAPTER 14 ■ RUBY AND THE INTERNET

344

 Net::HTTP.start('www.rubyinside.com') do |http|
 req = Net::HTTP::Get.new('/test.txt')
 puts http.request(req).body
 end

 Hello Beginning Ruby reader!

 This example loads the net/http library, connects to the web server www.rubyinside.com (the semi-official
blog associated with this book; take a look!), and performs an HTTP GET request for /test.txt . This file’s
contents are then returned and displayed. The equivalent URL for this request is http://www.rubyinside.
com/test.txt , and if you load that URL in your web browser, you’ll get the same response as Ruby.

 ■ Note http://www.rubyinside.com/test.txt is a live document that you can use in all the HTTP request
tests safely, and has been created specifically for readers of this book.

 As the example demonstrates, the net/http library is a little raw in its operation. Rather than simply
passing it a URL, you have to pass it the web server to connect to and then the local filename upon that web
server. You also have to specify the GET HTTP request type and trigger the request using the request method.
You can make your work easier by using the URI library that comes with Ruby, which provides a number of
methods to turn a URL into the various pieces needed by net/http. Here’s an example:

 require 'net/http'

 url = URI.parse('http://www.rubyinside.com/test.txt')

 Net::HTTP.start(url.host, url.port) do |http|
 req = Net::HTTP::Get.new(url.path)
 puts http.request(req).body
 end

 In this example, you use the URI class (automatically loaded by net/http) to parse the supplied URL. An
object is returned whose methods host , port , and path supply different parts of the URL for Net::HTTP to
use. Note that in this example you provide two parameters to the main Net::HTTP.start method: the URL’s
hostname and the URL’s port number. The port number is optional, but URI.parse is clever enough to return
the default HTTP port number of 80.

 It’s possible to produce an even simpler example:

 require 'net/http'

 url = URI.parse('http://www.rubyinside.com/test.txt')
 response = Net::HTTP.get_response(url)
 puts response.body

 Instead of creating the HTTP connection and issuing the GET explicitly, Net::HTTP. get_response
allows you to perform the request in one stroke. There are situations where this can prove less flexible, but if
you simply want to retrieve documents from the Web, it’s an ideal method to use.

http://www.rubyinside.com/
http://www.rubyinside.com/test.txt
http://www.rubyinside.com/test.txt
http://www.rubyinside.com/test.txt

CHAPTER 14 ■ RUBY AND THE INTERNET

345

 Checking for Errors and Redirects

 Our examples so far have assumed that you’re using valid URLs and are accessing documents that actually
exist. However, Net::HTTP will return different responses based on whether the request is a success or not,
or if the client is being redirected to a different URL, and you can check for these. In the following example,
a method called get_web_document is created that accepts a single URL as a parameter. It parses the URL,
attempts to get the required document, and then subjects the response to a case/when block:

 require 'net/http'

 def get_web_document(url)
 uri = URI.parse(url)
 response = Net::HTTP.get_response(uri)

 case response
 when Net::HTTPSuccess
 return response.body
 when Net::HTTPRedirection
 return get_web_document(response['Location'])
 else
 return nil
 end
 end

 puts get_web_document('http://www.rubyinside.com/test.txt')
 puts get_web_document('http://www.rubyinside.com/non-existent')
 puts get_web_document('http://www.rubyinside.com/redirect-test')

 Hello Beginning Ruby reader!
 Hello Beginning Ruby reader!

 ■ Note http://www.rubyinside.com/redirect-test has been set up as a redirect to
 http://www.rubyinside.com/test.txt . This helps to demonstrate that the redirect is handled correctly.

 If the response is of the Net::HTTPSuccess class, the content of the response will be returned; if the
response is a redirection (represented by a Net::HTTPRedirection object being returned), then get_web_
document will be called again, with the URL specified as the target of the redirection by the remote server. If
the response is neither a success nor a redirection request, an error of some sort has occurred, and nil will
be returned (hence the empty line in the results above).

 If you wish, you can check for errors in a more granular way. For example, the error 404 means “File Not
Found,” and is specifically used when trying to request a file that does not exist on the remote web server.
When this error occurs, Net::HTTP returns a response of class Net::HTTPNotFound . However, when dealing
with error 403, “Forbidden,” Net::HTTP returns a response of class Net::HTTPForbidden .

http://www.rubyinside.com/redirect-test
http://www.rubyinside.com/test.txt

CHAPTER 14 ■ RUBY AND THE INTERNET

346

 ■ Note A list of HTTP errors and their associated Net::HTTP response classes is available at
 http:// www.ruby-doc.org/stdlib/libdoc/net/http/rdoc/classes/Net/HTTP.html .

 Basic Authentication

 As well as basic document retrieval, net/http supports the Basic Authentication scheme used by many
web servers to protect their documents in a password-protected area. This demonstration shows how the
flexibility of performing the entire request with Net::HTTP.start can come in useful:

 require 'net/http'

 url = URI.parse('http://browserspy.dk/password-ok.php')

 Net::HTTP.start(url.host, url.port) do |http|
 req = Net::HTTP::Get.new(url.path)
 req.basic_auth('test', 'test')
 puts http.request(req).body
 end

 ■ Note Authentication is ignored on requests for unprotected URLs, but if you were trying to access a URL
protected by Basic Authentication, basic_auth allows you to specify your credentials.

 Posting Form Data

 In our examples so far, we have only been retrieving data from the Web. Another form of interaction is to
send data to a web server. The most common example of this is when you fill out a form on a web page. You
can perform the same action from Ruby. For example:

 require 'net/http'

 url = URI.parse('http://www.rubyinside.com/test.cgi')

 response = Net::HTTP.post_form(url,{'name' => 'David', 'age' => '24'})
 puts response.body

 You say David is 24 years old.

 In this example, you use Net::HTTP.post_form to perform a POST HTTP request to the specified URL
with the data in the hash parameter to be used as the form data.

 ■ Note test.cgi is a special program that returns a string containing the values provided by the name and
age form fields, resulting in the preceding output. We looked at how to create CGI scripts in Chapter 10 .

http://www.ruby-doc.org/stdlib/libdoc/net/http/rdoc/classes/Net/HTTP.html
http://dx.doi.org/10.1007/978-1-4842-1278-3_10

CHAPTER 14 ■ RUBY AND THE INTERNET

347

 As with the basic document retrieval examples, there’s a more complex, lower-level way to achieve the
same thing by taking control of each step of the form submission process:

 require 'net/http'

 url = URI.parse('http://www.rubyinside.com/test.cgi')

 Net::HTTP.start(url.host, url.port) do |http|
 req = Net::HTTP::Post.new(url.path)
 req.set_form_data({ 'name' => 'David', 'age' => '24' })
 puts http.request(req).body
 end

 This technique also allows you to use the basic_auth method if needed.

 Using HTTP Proxies

 Proxying is when HTTP requests do not go directly between the client and the HTTP server, but through a
third party en route. In some situations, it might be necessary to use an HTTP proxy for your HTTP requests.
This is a common scenario in schools and offices where web access is regulated or filtered.

 net/http supports proxying by creating an HTTP proxy class upon which you can then use and perform
the regular HTTP methods. To create the proxy class, use Net::HTTP::Proxy. For example:

 web_proxy = Net::HTTP::Proxy('your.proxy.hostname.or.ip', 8080)

 This call to Net::HTTP::Proxy generates an HTTP proxy class that uses a proxy with a particular
hostname on port 8080. You would use such a proxy in this fashion:

 require 'net/http'

 web_proxy = Net::HTTP::Proxy('your.proxy.hostname.or.ip', 8080)

 url = URI.parse('http://www.rubyinside.com/test.txt')

 web_proxy.start(url.host, url.port) do |http|
 req = Net::HTTP::Get.new(url.path)
 puts http.request(req).body
 end

 In this example, web_proxy replaces the reference to Net::HTTP when using the start method. You can
use it with the simple get_response technique you used earlier, too:

 require 'net/http'

 web_proxy = Net::HTTP::Proxy('your.proxy.hostname.or.ip', 8080)
 url = URI.parse('http://www.rubyinside.com/test.txt')

 response = web_proxy.get_response(url)
 puts response.body

CHAPTER 14 ■ RUBY AND THE INTERNET

348

 These examples demonstrate that if your programs are likely to need proxy support for HTTP requests,
it might be worth generating a proxy-like system even if a proxy isn’t required in every case. For example:

 require 'net/http'

 http_class = ARGV.first ? Net::HTTP::Proxy(ARGV[0], ARGV[1]) : Net::HTTP
 url = URI.parse('http://www.rubyinside.com/test.txt')

 response = http_class.get_response(url)
 puts response.body

 If this program is run and an HTTP proxy hostname and port are supplied on the command line as
arguments for the program, an HTTP proxy class will be assigned to http_class . If no proxy is specified,
 http_class will simply reference Net::HTTP. This allows http_class to be used in place of Net::HTTP when
requests are made, so that both proxy and nonproxy situations work and are coded in exactly the same way.

 Secure HTTP with HTTPS

 HTTP is a plain text, unencrypted protocol, and this makes it unsuitable for transferring sensitive data such
as credit card information. HTTPS is the solution, as it’s the same as HTTP but routed over Secure Socket
Layer (SSL), which makes it unreadable to any third parties.

 Ruby’s net/https library makes it possible to access HTTPS URLs, and you can make net/http use it
semi-transparently by setting the use_ssl attribute on a Net::HTTP instance to true , like so:

 require 'net/http'
 require 'net/https'

 url = URI.parse('https://example.com/')

 http = Net::HTTP.new(url.host, url.port)
 http.use_ssl = true if url.scheme == 'https'

 request = Net::HTTP::Get.new(url.path)
 puts http.request(request).body

 Note that you use the scheme method of url to detect if the remote URL is in fact one that requires SSL
to be activated.

 It’s trivial to mix in the form-posting code to get a secure way of sending sensitive information to the
remote server:

 require 'net/http'
 require 'net/https'

 url = URI.parse('https://example.com/')

 http = Net::HTTP.new(url.host, url.port)
 http.use_ssl = true if url.scheme == 'https'

 request = Net::HTTP::Post.new(url.path)
 request.set_form_data({ 'credit_card_number' => '1234123412341234' })
 puts http.request(request).body

CHAPTER 14 ■ RUBY AND THE INTERNET

349

 net/https also supports associating your own client certificate and certification directory with your
requests, as well as retrieving the server’s peer certificate. However, these are advanced features only
required in a small number of cases, and are beyond the scope of this section. Refer to Appendix B for links
to further information.

 The Open-Uri Library
 open- uri is a library that wraps up the functionality of net/http, net/https, and net/ftp into a single package.
Although it lacks some of the raw power of using the constituent libraries directly, open-uri makes it a lot
easier to perform all the main functions.

 A key part of open-uri is the way it abstracts common Internet actions and allows file I/O techniques to be
used on them. Retrieving a document from the Web becomes much like opening a text file on the local machine:

 require 'open-uri'

 f = open('http://www.rubyinside.com/test.txt')
 puts f.readlines.join

 Hello Beginning Ruby reader!

 As with File::open , open returns an I/O object (technically a StringIO object), and you can use
methods such as each_line , readlines , and read , as you did in Chapter 9 :

 require 'open-uri'

 f = open('http://www.rubyinside.com/test.txt')

 puts "The document is #{f.size} bytes in length"

 f.each_line do |line|
 puts line
 end

 The document is 29 bytes in length

 Hello Beginning Ruby reader!

 Also, in a similar fashion to the File class, you can use open in a block style:

 require 'open-uri'

 open('http://www.rubyinside.com/test.txt') do |f|
 puts f.readlines.join
 end

 ■ Note HTTPS and FTP URLs are treated transparently. You can use any HTTP, HTTPS, or FTP URL with open .

http://dx.doi.org/10.1007/978-1-4842-1278-3_9

CHAPTER 14 ■ RUBY AND THE INTERNET

350

 As well as providing the open method as a base method that can be used anywhere, you can use it
directly on URI objects:

 require 'open-uri'

 url = URI.parse('http://www.rubyinside.com/test.txt')
 url.open { |f| puts f.read }

 or perhaps:

 require 'open-uri'
 puts URI.parse('http://www.rubyinside.com/test.txt').open.read

 ■ Note Ruby developers commonly use quick hacks, such as in the prior example. However, to catch errors
successfully, it’s recommended to surround such one-liners with the begin/ensure/end structure to catch any
exceptions.

 In addition to acting like an I/O object, open-uri enables you to use methods associated with the object
it returns to find out particulars about the HTTP (or FTP) response itself. For example:

 require 'open-uri'

 f = open('http://www.rubyinside.com/test.txt')

 puts f.content_type
 puts f.charset
 puts f.last_modified

 text/plain

 iso-8859-1

 2006-10-15 01:24:13 UTC

 Last, it’s possible to send extra header fields with an HTTP request by supplying an optional hash
parameter to open :

 require 'open-uri'

 f = open('http://www.rubyinside.com/test.txt',
 {'User-Agent' => 'Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)'})

 puts f.read

 In this example, a “user agent” header is sent with the HTTP request that makes it appear as if you’re
using Internet Explorer to request the remote file. Sending a user agent header can be a useful technique
if you’re dealing with a web site that returns different information to different types of browsers. Ideally,
however, you should use a user agent header that reflects the name of your program.

CHAPTER 14 ■ RUBY AND THE INTERNET

351

 ■ Tip The HTTParty library offers yet another way to fetch data via HTTP, and is particularly well suited to
interacting with APIs.

 Processing Web Content
 As you saw earlier, retrieving data from the Web is a snap with Ruby. Once you’ve retrieved the data, it’s likely
you’ll want to do something with it. Parsing data from the Web using regular expressions and the usual Ruby
string methods is an option, but several libraries exist that make it easier to deal with different forms of web
content specifically. In this section, we’ll look at some of the best ways to process HTML and XML.

 Parsing HTML with Nokogiri
 Nokogiri is a Ruby library designed to make HTML parsing fast, easy, and fun. It’s available as a Rubygem via
 gem install nokogiri .

 Once installed, Nokogiri is easy to use. The following example loads the library, places some basic
HTML in a string, creates a document object, and then searches for H1 tags (using a CSS selector in the css
method call). It then retrieves the first H1 tag (using first , as css returns an array) and looks at the HTML
within it (using inner_html):

 require 'nokogiri'

 html = <<END_OF_HTML
 <html>
 <head>
 <title>This is the page title</title>
 </head>

 <body>
 <h1>Big heading!</h1>
 <p>A paragraph of text.</p>
 Item 1 in a listItem 2<li class="highlighted">Item
 3
 </body>
 </html>
 END_OF_HTML

 doc = Nokogiri::HTML(html)
 puts doc.css("h1").first.inner_html

 Big heading!

 Nokogiri can work directly with open-uri to load HTML from remote files, as in the following example:

 require 'nokogiri'
 require 'open-uri'

CHAPTER 14 ■ RUBY AND THE INTERNET

352

 doc = Nokogiri::HTML(open('http://www.rubyinside.com/test.html'))
 puts doc.css("h1").first.inner_html

 ■ Note http://www.rubyinside.com/test.html contains the same HTML code as used in the prior
example.

 Using a combination of search methods, you can search for the list within the HTML (defined by the
 tags, where the tags denote each item in the list) and then extract each item from the list:

 list = doc.css("ul").first
 list.css("li").each do |item|
 puts item.inner_html
 end

 Item 1 in a list

 Item 2

 Item 3

 As well as searching for elements and returning an array, Nokogiri can also search for the first instance
of an element only, using at :

 list = doc.at("ul")

 However, Nokogiri can search for more than element or tag names. It also supports XPath and CSS
expressions. These querying styles are beyond the scope of this chapter, but here’s a demonstration of using
CSS classes to find certain elements:

 list = doc.at("ul")
 highlighted_item = list.at(".highlighted")
 puts highlighted_item.inner_html

 Item 3

 This example finds the first list in the HTML file, and then looks for a child element that has a class
name of highlighted . The rule .highlighted looks for a class name of highlighted , whereas a rule of
 #highlighted would search for an element with the ID of highlighted .

 Parsing XML with REXML
 Extensible Markup Language (XML) is a simple, flexible, plain text data format that can represent many
 different structures of data. An XML document, at its simplest, looks a little like HTML:

 <people>
 <person>
 <name>Peter Cooper</name>

http://www.rubyinside.com/test.html

CHAPTER 14 ■ RUBY AND THE INTERNET

353

 <gender>Male</gender>
 </person>
 <person>
 <name>Fred Bloggs</name>
 <gender>Male</gender>
 </person>
 </people>

 This extremely simplistic XML document defines a set of people containing two individual persons, each
of whom has a name and gender. In previous chapters, we’ve used YAML in a similar way to how XML is used
here.Although YAML is simpler and easier to use with Ruby, XML is more popular outside the Ruby world.

 XML is prevalent when it comes to sharing data on the Internet in a form that’s easy for machines to
parse, and is especially popular when using APIs and machine-accessible services provided online, such
as Yahoo!’s search APIs and other programming interfaces to online services. Due to XML’s popularity, it’s
worthwhile to see how to parse it with Ruby.

 Ruby’s primary XML library is called REXML , and comes with Ruby by default as part of the standard library.
 REXML supports two different ways of processing XML files: tree parsing and stream parsing. Tree parsing is

where a file is turned into a single data structure that can then be searched, traversed, and otherwise manipulated.
Stream parsing is when a file is processed and parsed on the fly by calling special callback functions whenever
something in the file is found. Stream parsing is less powerful in most cases than tree parsing, although it’s slightly
faster. In this section, we’ll focus on tree parsing, as it makes more sense for most situations.

 Here’s a basic demonstration of parsing an XML file looking for certain elements:

 require 'rexml/document'

 xml = <<END_XML
 <people>
 <person>
 <name>Peter Cooper</name>
 <gender>Male</gender>
 </person>
 <person>
 <name>Fred Bloggs</name>
 <gender>Male</gender>
 </person>
 </people>
 END_XML

 tree = REXML::Document.new(xml)

 tree.elements.each("people/person") do |person|
 puts person.get_elements("name").first
 end

 <name>Peter Cooper</name>
 <name>Fred Bloggs</name>

CHAPTER 14 ■ RUBY AND THE INTERNET

354

 You built the tree of XML elements by creating a new REXML::Document object. Using the elements
method of tree returns an array of every element in the XML file. each accepts an XPath query (a form of
XML search query) and passes matching elements into the associated code block. In this example, you look
for each <person> element within the <people> element.

 Once you have each <person> element in person , you use get_elements to retrieve any <name>
elements into an array, and then pull out the first one. Because there’s only one name per person in your
XML data, the correct name is extracted for each person in the data.

 REXML has support for most o) f the basic XPath specification, so if you become familiar with XPath,
you can search for anything within any XML file that you need.

 ■ Note You can learn more about XPath and its syntax at http://en.wikipedia.org/wiki/XPath . REXML
also has support for XQuery, which you can learn more about at http://en.wikipedia.org/wiki/XQuery .

 ■ Tip You can also parse XML with Nokogiri.

 E-Mail
 E-mail predates the invention of the Internet, and is still one of the most important and popular technologies
used online. In this section, you’ll look at how to retrieve and manage e-mail located on POP3 servers, as
well as how to send e-mail using an SMTP server.

 Receiving Mail with POP3
 Post Office Protocol 3 (POP3) is the most popular protocol used to retrieve e-mail from a mail server. If
you’re using an e-mail program that’s installed on your computer (as opposed to webmail, such as Hotmail
or Yahoo! Mail), it probably uses the POP3 protocol to communicate with the mail server that receives your
mail from the outside world.

 With Ruby, it’s possible to use the net/poplibrary to do the same things that your e-mail client can, such
as preview, retrieve, or delete mail. If you were feeling creative, you could even use net/pop to develop your
own anti-spam tools.

 ■ Note In this section, our examples won’t run without adjustments, as they need to operate on a real mail
account. If you wish to run them, you would need to replace the server name, username, and passwords with
those of a POP3/mail account that you have access to. Ideally, you’ll be able to create a test e-mail account
if you want to play with the examples here, or have a backup of your mail first, in case of unforeseen errors.
That’s because although you cannot delete mail directly from your local e-mail program, you might delete any
new mail waiting on your mail server. Once you’re confident of your code and what you want to achieve, you
can then change your settings to work on a live account.

http://en.wikipedia.org/wiki/XPath
http://en.wikipedia.org/wiki/XQuery

CHAPTER 14 ■ RUBY AND THE INTERNET

355

 The basic operations you can perform with a POP3 server are to connect to it, receive information about
the mail an account contains, view that mail, delete the mail, and disconnect. First, you’ll connect to a POP3
server to see if there are any messages available for download, and if so, how many:

 require 'net/ pop'

 mail_server = Net::POP3.new('mail.mailservernamehere.com')

 begin
 mail_server.start('username','password')
 if mail_server.mails.empty?
 puts "No mails"
 else
 puts "#{mail_server.mails.length} mails waiting"
 end
 rescue
 puts "Mail error"
 end

 This code first creates an object referring to the server and then uses the start method to connect. The entire
section of the program that connects to and works with the mail server is wrapped within a begin/ensure/end
block so that connection errors are picked up without the program crashing out with an obscure error.

 Once start has connected to the POP3 server, mail_server.mails contains an array of Net::POPMail
objects that refer to each message waiting on the server. You use Array ’s empty? method to see if any mail is
available; if so, the size of the array is used to tell how many mails are waiting.

 You can use the Net::POPMail objects’ methods to manipulate and collect the server-based mails.
Downloading all the mails is as simple as using the pop method for each Net::POPMail object:

 mail_server.mails.each do |m|
 mail = m.pop
 puts mail
 end

 As each mail is retrieved (or popped, if you will) from the server, the entire contents of the mail, with
headers and body text, is placed into the mail variable, before being displayed on the screen.

 To delete a mail, you can use the delete method, although mails are only marked for deletion later,
once the session has ended:

 mail_server.mails.each do |m|
 m.delete if m.pop =~ /\bthis is a spam e-mail\b/i
 end

 This code goes through every message in the account and marks it for deletion if it contains the string
 this is a spam e-mail .

 You can also retrieve just the headers. This is useful if you’re looking for a mail with a particular subject
or a mail from a particular e-mail address. Whereas pop returns the entire mail (which could be up to many
megabytes in size), header only returns the mail’s header from the server. The following example deletes
messages if their subject contains the word medicines :

 mail_server.mails.each do |m|
 m.delete if m.header =~ /Subject:.+?medicines\b/i
 end

CHAPTER 14 ■ RUBY AND THE INTERNET

356

 To build a rudimentary anti-spam filter, you could use a combination of the mail retrieval and deletion
techniques to connect to your mail account and delete unwanted mails before your usual mail client ever
sees them. Consider what you could achieve by downloading mail, passing it through several regular
expressions, and then choosing to delete depending on what you match.

 Sending Mail with SMTP
 Whereas POP3 handles the client-side operations of retrieving, deleting, and previewing e-mail, Simple Mail
Transfer Protocol (SMTP) handles sending e-mail and routing e-mail between mail servers. In this section,
you won’t be looking at this latter use, but will use SMTP simply to send mails to an e-mail address.

 The net/smtp library allows you to communicate with SMTP servers directly. On many UNIX machines,
especially servers on the Internet, you can send mail to the SMTP server running on the local machine and it
will be delivered across the Internet. In these situations, sending e-mail is as easy as this:

 require 'net/smtp'

 message = <<MESSAGE_END
 From: Private Person <me@privacy.net>
 To: Author of Beginning Ruby <test@rubyinside.com>
 Subject: SMTP e-mail test

 This is a test e-mail message.
 MESSAGE_END

 Net::SMTP.start('localhost') do |smtp|
 smtp.send_message message, 'me@privacy.net', 'test@rubyinside.com'
 end

 You place a basic e-mail in message , using a here document , taking care to format the headers correctly
(e-mails require From, To, and Subject headers, separated from the body of the e-mail with a blank line,
as in the preceding code). To send the mail, you use Net::SMTP to connect to the SMTP server on the
local machine, and then use the send_message method along with the message, the from address, and the
destination address as parameters (even though the from and to addresses are within the e-mail itself, these
aren’t always used to route mail).

 If you’re not running an SMTP server on your machine, you can use Net::SMTP to communicate with
a remote SMTP server. Unless you’re using a webmail service (such as Hotmail or Yahoo! Mail), your e-mail
provider will have provided you with outgoing mail server details that you can supply to Net::SMTP, as follows:

 Net::SMTP.start('mail.your-domain.com')

 This line of code connects to the SMTP server on port 25 of mail.your-domain.com without using any
username or password. If you need to, though, you can specify port number and other details. For example:

 Net::SMTP.start('mail.your-domain.com', 25, 'localhost', 'username',
 'password', :plain)

 This example connects to the SMTP server at mail.your-domain.com using a username and password
in plain text format. It identifies the client’s hostname as localhost .

CHAPTER 14 ■ RUBY AND THE INTERNET

357

 ■ Note Net::SMTP also supports LOGIN and CRAM-MD5 authentication schemes. To use these, use : login or
: cram_md5 as the sixth parameter passed into start .

 Sending Mail with ActionMailer
 ActionMailer makes sending e-mail higher level than using the SMTP protocol (or net/smtp) directly . Instead
of talking directly with an SMTP server, you create a descendent of ActionMailer::Base , implement a
method that sets your mail’s subject, recipients, and other details, and then call that method to send e-mail.

 ActionMailer is a part of the Ruby on Rails framework (covered in Chapter 13), but can be used
independently of it. If you don’t have Ruby on Rails installed on your computer yet, you can install the
ActionMailer gem with gem install actionmailer .

 Here’s a basic example of using ActionMailer:

 require 'action_mailer'

 class Emailer < ActionMailer::Base
 def test_email(email_address, email_body)
 mail(to: email_address, from: 'me@privacy.net', subject: 'test', body: email_body)
 end
 end

 Emailer.test_email('me@privacy.net', 'This is a test e-mail!').deliver_now

 A class, Emailer , is defined, and descends from ActionMailer::Base . The test_email method calls the
 mail method with the recipient(s), from address, subject, and body of the e-mail. To send the mail, you call a
dynamically made class method for test_email and then issue the resulting mail be delivered straight away
using deliver_now .

 In the preceding example, ActionMailer uses the default settings for mail output, and that is to try
to connect to an SMTP server on the local machine. If you don’t have one installed and running, you can
instruct ActionMailer to look for an SMTP server elsewhere, like so:

 ActionMailer::Base.smtp_settings = {
 :address => "mail.your-domain.com",
 :port => 25,
 :authentication => :login,
 :user_name => "username",
 :password => "password",
 }

 These settings are similar to those you used to set up Net::SMTP and can be changed to match your
configuration.

 ■ Tip You can also check out Pony, a library that makes it easy to send e-mails from Ruby, at
 http://github.com/benprew/pony .

http://dx.doi.org/10.1007/978-1-4842-1278-3_13
http://github.com/benprew/pony

CHAPTER 14 ■ RUBY AND THE INTERNET

358

 File Transfers with FTP
 File Transfer Protocol (FTP) is a basic networking protocol for transferring files on any TCP/IP network.
Although files can be sent back and forth on the Web, FTP is still commonly used for large files, or for access
to large file repositories that have no particular relevance to the Web. One of the benefits of FTP is that
authentication and access control is built in.

 The core part of the FTP system is an FTP server , a program that runs on a file server that allows FTP
clients to download and/or upload files to that machine.

 In a previous section of this chapter, called “The open-uri Library,” we looked at using the open-uri library
to retrieve files easily from the Internet. The open-uri supports HTTP, HTTPS, and FTP URLs, and is an ideal
library to use if you want to download files from FTP servers with as little code as possible. Here’s an example:

 require 'open-uri'

 output = File.new('1.8.2-patch1.gz', 'wb')
 open('ftp://ftp.ruby-lang.org/pub/ruby/1.8/1.8.2-patch1.gz') do |f|
 output.print f.read
 end
 output.close

 This example downloads a file from an FTP server and saves its contents into a local file.

 ■ Note The example might fail for you, as your network connection might not support active FTP and might
require a passive FTP connection. This is covered later in this section.

 However, for more complex operations, the net/ftp library is ideal, as it gives you lowerlevel access to
FTP connections, as net/http does to HTTP requests.

 Connection and Basic FTP Actions
 Connecting to an FTP server with net/ftp using an FTP URL is a simple operation:

 require 'net/ftp'
 require 'uri'

 uri = URI.parse('ftp://ftp.ruby-lang.org/')

 Net::FTP.open(uri.host) do |ftp|
 ftp.login 'anonymous', 'me@privacy.net'
 ftp.passive = true
 ftp.list(uri.path) { |path| puts path }
 end

 drwxrwxr-x 5 106 111 4096 Dec 25 2013 pub

CHAPTER 14 ■ RUBY AND THE INTERNET

359

 You use URI.parse to parse a basic FTP URL and connect to the FTP server with Net::FTP. open . Once
the connection is open, you have to specify login credentials (much like the authentication credentials when
using Net::HTTP) with the ftp object’s login method. Then you set the connection type to be passive (this is
an FTP option that makes an FTP connection more likely to succeed when made from behind a firewall—the
technical details are beyond the scope of this book), and then ask the FTP server to return a list of the files in
the directory referenced in your URL (the root directory of the FTP server in this case).

 Net::FTP provides a login method that you can use against a Net::FTP object, like so:

 require 'net/ftp'

 ftp = Net::FTP.new('ftp.ruby-lang.org')
 ftp.passive = true
 ftp.login
 ftp.list('*') { |file| puts file }
 ftp.close

 ■ Note If you know you’re going to be connecting to an anonymous FTP server (one that is public and
requires only generic credentials to log in), you don’t need to specify any credentials with the login method.
This is what happens in the preceding example.

 This example demonstrates a totally different way of using Net::FTP to connect to an FTP server. As with
 Net::HTTP and File classes, it’s possible to use Net::FTP within a structural block or by manually opening
and closing the connection by using the reference object (ftp in this case).

 As no username and password are supplied, the login method performs an anonymous login to
 ftp.ruby-lang.org . Note that in this example you connect to an FTP server by its hostname rather than
with a URL. However, if a username and password are required, use this code:

 ftp.login(username, password)

 Once connected, you use the list method on the ftp object to get a list of all files in the current
directory. Because you haven’t specified a directory to change to, the current directory is the one that the
FTP server puts you in by default. However, to change directories, you can use the chdir method:

 ftp.chdir('pub')

 It’s also possible to change to any directory in the remote filesystem:

 ftp.chdir('/pub/ruby')

 If you have permission to do so (this depends on your account with the FTP server), you might also be
able to create directories. This is done with mkdir :

 ftp.mkdir('test')

 Performing this operation on an FTP server where you don’t have the correct permissions causes an
exception, so it’s worth wrapping such volatile actions within blocks to trap any exceptions that arise.

 Likewise, you can delete and rename files:

 ftp.rename(filename, new_name)
 ftp.delete(filename)

 These operations will work only if you have the correct permissions.

CHAPTER 14 ■ RUBY AND THE INTERNET

360

 Downloading Files
 Downloading files from an FTP server is easy if you know the filename and what type of file you’re trying to
download. Net::FTP provides two useful methods to download files: getbinaryfile and gettextfile . Plain
text files and binary files (such as images, sounds, or applications) are sent in a different way, so it’s essential
you use the correct method. In most situations, you’ll be aware ahead of time which technique is required.
Here’s an example showing how to download a binary file from the official Ruby FTP server:

 require 'net/ftp'

 ftp = Net::FTP.new('ftp.ruby-lang.org')
 ftp.passive = true
 ftp.login
 ftp.chdir('/pub/ruby/1.8')
 ftp.getbinaryfile('1.8.2-patch1.gz')
 ftp.close

 getbinaryfile accepts several parameters, only one of which is mandatory. The first parameter is the
name of the remote file (1.8.2-patch1.gz in this case), an optional second parameter is the name of the local
file to write to, and the third optional parameter is a block size that specifies in what size chunks (in bytes) the
file is downloaded. If you omit the second parameter, the downloaded file will be written to the same filename
in the local directory, but if you want to write the remote file to a particular local location, you can specify this.

 One problem with using getbinaryfile in this way is that it locks up your program until the download
is complete. However, if you supply getbinaryfile with a code block, the downloaded data will be supplied
into the code block as well as saved to the file:

 ftp.getbinaryfile('ruby-1.8.7.tar.gz', 'local-filename', 102400) do |blk|
 puts "A 100KB block of the file has been downloaded"
 end

 This code prints a string to the screen whenever another 100 kilobytes of the file have been downloaded.
You can use this technique to provide updates to the user, rather than make him or her wonder whether the
file is being downloaded.

 You could also download the file in blocks such as this and process them on the fly in the code block, like so:

 ftp.getbinaryfile('ruby-1.8.7.tar.gz', 'local-filename', 102400) do |blk|
 .. do something with blk here ..
 end

 Each 100KB chunk of the file that’s downloaded is passed into the code block. Unfortunately, the file is
still saved to a local file, but if this isn’t desired, you could use tempfile (as covered in Chapter 9), which is
then immediately deleted.

 Downloading text or ASCII-based files uses the same technique as in the preceding code, but demands
using gettextfile instead. The only difference is that gettextfile doesn’t accept the third block size
parameter, and instead returns data to the code block line by line.

 Uploading Files
 Uploading files to an FTP server is possible only if you have write permissions on the server in the directory
to which you want to upload. Therefore, none of the examples in this section will work unedited, as you can’t
provide an FTP server with write access (for obvious reasons!).

http://dx.doi.org/10.1007/978-1-4842-1278-3_9

CHAPTER 14 ■ RUBY AND THE INTERNET

361

 Uploading is the exact opposite of downloading, and net/ftp provides putbinaryfile and puttextfile
methods that accept the same parameters as getbinaryfile and gettextfile . The first parameter is the
name of the local file you want to upload, the optional second parameter is the name to give the file on the
remote server (defaults to the same as the uploaded file’s name if omitted), and the optional third parameter
for putbinaryfile is the block size to use for the upload. Here’s an upload example:

 require 'net/ftp'

 ftp = Net::FTP.new('ftp.domain.com')
 ftp.passive = true
 ftp.login
 ftp.chdir('/your/folder/name/here')
 ftp.putbinaryfile('local_file')
 ftp.close

 As with getbinaryfile and gettextfile , if you supply a code block, the uploaded chunks of the file are
passed into it, allowing you to keep the user informed of the progress of the upload.

 require 'net/ftp'

 ftp = Net::FTP.new('ftp.domain.com')
 ftp.passive = true
 ftp.login
 ftp.chdir('/your/folder/name/here')

 count = 0

 ftp.putbinaryfile('local_file', 'local_file', 100000) do |block|
 count += 100000
 puts "#{count} bytes uploaded"
 end

 ftp.close

 If you need to upload data that’s just been generated by your Ruby script and isn’t within a file, you need
to create a temporary file with tempfile and upload from that. For example:

 require 'net/ftp'
 require 'tempfile'

 tempfile = Tempfile.new('test')

 my_data = "This is some text data I want to upload via FTP."
 tempfile.puts my_data

 ftp = Net::FTP.new('ftp.domain.com')
 ftp.passive = true
 ftp.login
 ftp.chdir('/your/folder/name/here')

 ftp.puttextfile(tempfile.path, 'my_data')
 ftp.close
 tempfile.close

CHAPTER 14 ■ RUBY AND THE INTERNET

362

 Summary
 In this chapter, we looked at Ruby’s support for using various Internet systems and protocols, how Ruby can
work with the Web, and how to process and manipulate data retrieved from the Internet.

 Let’s reflect on the main concepts covered in this chapter:

• HTTP (HyperText Transfer Protocol) : A protocol that defines the way web browsers
(clients) and web servers talk to each other across a network such as the Internet.

• HTTPS : A secure version of HTTP that ensures data being transferred in either
direction is only readable at each end. Anyone intercepting an HTTPS stream cannot
decipher it. It’s commonly used for e-commerce and for transmitting financial data
on the Web.

• HTML (HyperText Markup Language) : A text formatting and layout language used to
represent web pages.

• Nokogiri : An HTML and XML parser developed to make it easy to process and parse
HTML and XML directly with Ruby. It is noted for its speed, with portions that
demand extra performance written in C.

• POP3 (Post Office Protocol 3) : A mail server protocol commonly used when retrieving
e-mail. You can learn more about the protocol specifically at http://www.ietf.
org/ rfc/rfc1939.txt .

• SMTP (Simple Mail Transfer Protocol) : A mail server protocol commonly used
to transfer mail to a mail server or between mail servers. From a typical user’s
perspective, SMTP is used for sending mail, rather than receiving it. You can learn
more about the protocol specifically at http://www.faqs.org/rfcs/rfc821.html .

• FTP (File Transfer Protocol) : An Internet protocol for providing access to files located
on a server and allowing users to download from it and upload to it.

 This chapter covered a variety of Internet-related functions, but in Chapter 15 we’re going to look more
deeply at networking, servers, and network services. Most of what is covered in Chapter 15 is also applicable
to the Internet, but is at a much lower level than FTP or using the Web.

http://www.ietf.org/
http://www.ietf.org/
http://www.faqs.org/rfcs/rfc821.html
http://dx.doi.org/10.1007/978-1-4842-1278-3_15
http://dx.doi.org/10.1007/978-1-4842-1278-3_15

363© Peter Cooper 2016
P. Cooper, Beginning Ruby, DOI 10.1007/978-1-4842-1278-3_15

 CHAPTER 15

 Networking and Sockets

 In this chapter, we’re going to look at how to use Ruby to perform network-related operations, how to create
servers and network services, and how to create persistent processes (daemons) that can respond to queries
over a network.

 Chapter 14 looked at Ruby’s Internet capabilities from a high level, like making requests to web sites,
processing HTML, working with XML, retrieving e-mail, and managing files over FTP. In contrast, this
chapter looks at networking and network services at a lower level.

 Let’s start with a look at the basic networking concepts we’ll be using in this chapter.

 Networking Concepts
 A network is a group of computers connected in some fashion. If you have several computers at home
all sharing a wired or wireless router, this is called your local area network (LAN). Your computers are
probably also connected to the Internet, another form of network. Networking is the overall concept of
communications between two or more computers or devices, and this chapter looks at how you can use
Ruby to perform operations relating to a network, whether a local or global one.

 ■ Note If you are experienced with networks and TCP, UDP, and IP protocols, you might wish to skip ahead a
little to the “Basic Network Operations” section.

 TCP and UDP
 There are many types of networks, but the type of network we’re most interested in is one that uses TCP/IP .
TCP/IP is the collective name for two protocols: Transmission Control Protocol (TCP) and Internet
Protocol (IP) . TCP defines the concept of computers connecting to one another, and it makes sure packets
of data are transmitted and successfully received by machines, in the correct order. IP, on the other
hand, is the protocol that’s concerned with actually routing the data from one machine to another. IP
is the base of most local networks and the Internet, but TCP is a protocol that sits on top and makes the
connections reliable.

 User Datagram Protocol (UDP) is another protocol like TCP, but unlike TCP, it isn’t considered reliable
and it doesn’t ensure that a remote machine receives the data you sent. When you send data using UDP, you
simply have to hope it reached its destination, as you’ll receive no acknowledgment of failure. Despite this,
UDP is still used for various non–mission-critical tasks, as it’s fast and has a low overhead.

http://dx.doi.org/10.1007/978-1-4842-1278-3_14

CHAPTER 15 ■ NETWORKING AND SOCKETS

364

 Commonly, operations that require a permanent connection (whether over a long period of time
or not) between two machines use TCP and TCP-based protocols. For example, almost all services that
require authentication to work, such as e-mail access, use TCP-based protocols so that the authentication
information can be sent only once—at the start of the connection—and then both ends of the connection
are satisfied that connection has been authenticated.

 Quick operations where a connection is unimportant or easily repeatable, such as converting domain
names and hostnames into IP addresses, and vice versa, can run on UDP. If an answer to a query isn’t
received in sufficient time, another query can simply be issued. UDP is sometimes also used for streaming
video and audio due to its low overhead and latency.

 IP Addresses and DNS
 A machine on an IP-based network has one or many IP addresses . Each IP number used on a network must
be unique, although each computer has local IP addresses that refer to the current machine (e.g., 127.0.0.1,
also known as localhost). When data is sent across the network to a particular IP address, the machine with
that address will receive the data.

 When you use the Web and access a web site such as http://www.apress.com , your computer first asks
a Domain Name Service (DNS) server for the IP address associated with the hostname www.apress.com .
Once it gets the raw address in response (in this case, 207.97.243.208), your web browser makes a connection
to that machine on port 80. Machines can make and receive connections on different TCP (or UDP) ports
(from a range of 0 through 65,535), and different ports are assigned to different types of services. For example,
port 80 is the default port used for web servers operating over the insecure default HTTP port. (HTTPS/SSL, as
used for encrypted Web traffic, uses port 443 by default.)

 Next in this chapter, we’re going to look at how to perform operations over an IP-based network,
such as checking the availability of machines on the network, and we’ll create basic TCP and UDP
clients and servers.

 Basic Network Operations
 Network programming is usually a difficult process. At the lowest levels it involves a lot of arcane
terminology and interfacing with antique libraries. However, Ruby is not usual, and Ruby’s libraries take
away most of the complexities usually associated with network programming.

 In this section, we’re going to look at how to achieve a few basic networking operations, such as
checking whether a server is present on a network, looking at how data is routed across the network between
two points, and how to connect directly to a service offered on a remote machine.

 Checking Machine and Service Availability
 One of the most basic network operations you can perform is a ping , a simple check that another machine is
available on the network or that a service it offers is available.

 One ping library that’s available is net-ping , which is available as a gem with gem install net-ping .
net-ping can interface with your operating system’s ping command to get a reliable response. It can also
connect directly to services offered by a remote machine to gauge whether it’s responding to requests or not.

 require 'net/ping'

 if Net::Ping::External.new('www.google.com').ping
 puts "Pong!"
 else
 puts "No response"
 end

http://www.apress.com/
http://www.apress.com/

CHAPTER 15 ■ NETWORKING AND SOCKETS

365

 Pong!

 However, if you want to check whether a particular service is available, rather than a machine in
general, you can use net-ping to connect to a specific port using TCP or UDP:

 require 'net/ping'

 if Net::Ping::TCP.new('www.google.com', 80).ping
 puts "Pong!"
 else
 puts "No response"
 end

 In this instance, you connect directly to www.google.com ’s HTTP port as if you were a web browser, but
once you get a connection you immediately disconnect again. This allows you to verify that www.google.com
is accepting HTTP connections.

 Performing DNS Queries
 Most Ruby networking libraries allow you to specify domain names and hostnames when you want to
interact with a remote server, and automatically resolve these names into IP addresses. However, this adds a
small overhead, so in some situations you might prefer to resolve IP addresses ahead of time yourself.

 You might also use DNS queries to check for the existence of different hostnames and to check whether
a domain is active or not, even if it’s not pointing to a web server.
 resolv is a library in the Ruby standard library, and it offers several methods that are useful for converting
between hostnames and IP addresses:

 require 'resolv'

 puts Resolv.getaddress("www.google.com")

 209.85.229.99

 This code returns an IP address of 209.85.229.99 for the main Google web site. However, if you run the
same code several times you might get several different responses. The reason for this is that large web sites
such as Google spread their requests over multiple web servers to increase speed.

 You can also turn IP addresses into hostnames using the getname method, which performs a reverse
DNS lookup:

 require 'resolv'

 ip = "192.0.34.166"

 begin
 puts Resolv.getname(ip)
 rescue
 puts "No hostname associated with #{ip}"
 end

 34-166.lax.icann.org

http://www.google.com
http://www.google.com/

CHAPTER 15 ■ NETWORKING AND SOCKETS

366

 It’s important to note that not all IP addresses resolve back into hostnames, as this is an optional
requirement of the DNS system.

 As well as converting between IP addresses and hostnames, resolv can also retrieve other information
from DNS servers, such as the mail server(s) associated with a particular host or domain name. Whereas
the records of which IP addresses are associated with which hostnames are called A records , the records of
which mail servers are associated with a hostname are called MX records .

 In the previous examples, you’ve used special helper methods directly made available by the Resolv
class, but to search for MX records, you have to use the Resolv::DNS class directly so you can pass in the
extra options needed to search for different types of records:

 require 'resolv'

 Resolv::DNS.open do |dns|
 mail_servers = dns.getresources("google.com", Resolv::DNS::Resource::IN::MX)
 mail_servers.each do |server|
 puts "#{server.exchange.to_s} - #{server.preference}"
 end
 end

 alt3.aspmx.l.google.com - 40
 alt1.aspmx.l.google.com - 20
 alt2.aspmx.l.google.com - 30
 aspmx.l.google.com - 10
 alt4.aspmx.l.google.com – 50

 In this example, you’ve performed a DNS request in a more detailed way using Resolv::DNS directly,
rather than the convenient Resolv.getname and Resolv.getaddress helpers, so that you could specify the
 MX request using the Resolv::DNS::Resource::IN::MX option.

 ■ Note Readers who are savvy with DNS terminology might like to try using CNAME, A, SOA, PTR, NS, and
TXT variations of the preceding option, as these are all supported.

 MX records are useful if you want to send e-mail to people but you have no SMTP server you can send
mail through, as you can use Net::SMTP (as shown in Chapter 14) directly against the mail servers for the
domain name of the e-mail address you want to send to. For example, if you wanted to e-mail someone
whose e-mail address ended with @google.com , you could use Net::SMTP to connect directly to
 smtp2.google.com (or any of the other choices) and send the mail directly to that user:

 require 'resolv'
 require 'net/smtp'

 from = "your-email@example.com"
 to = "another-email@example.com"

 message = <<MESSAGE_END
 From: #{from}
 To: #{to}
 Subject: Direct e-mail test

http://dx.doi.org/10.1007/978-1-4842-1278-3_14

CHAPTER 15 ■ NETWORKING AND SOCKETS

367

 This is a test e-mail message.
 MESSAGE_END

 to_domain = to.match(/\@(.+)/)[1]

 Resolv::DNS.open do |dns|
 mail_servers = dns.getresources(to_domain, Resolv::DNS::Resource::IN::MX)
 mail_server = mail_servers[rand(mail_servers.size)].exchange.to_s

 Net::SMTP.start(mail_server) do |smtp|
 smtp.send_message message, from, to
 end
 end

 ■ Note You can learn more about DNS at http://en.wikipedia.org/wiki/Domain_Name_System .

 Connecting to a TCP Server Directly
 One of the most important networking operations is connecting to a service offered by another machine
(or in some cases, even your local machine!) and interacting with it in some way. In Chapter 14 , we looked
at some high-level ways to do this, such as using the Web or FTP through Ruby libraries that made the
operation of these tools easier.

 However, it’s possible to connect directly to remote services at the TCP level and talk to them in
their raw format. This can be useful to investigate how different protocols work (as you’ll need to use and
understand the protocol’s raw data) or to create simple protocols of your own.

 To connect to a TCP port directly, you can use a tool called telnet . telnet is a protocol to
provide a general, bidirectional, 8-bit, byte-oriented communications facility. Its name comes from
“ tel ecommunication net work.” You’re only concerned with its ability to let you easily connect to raw TCP
ports. As you’d expect, Ruby comes with a telnet library in the standard library, net/telnet .

 Let’s use net/telnet to connect to a web site and retrieve a web page using the HTTP protocol directly:

 require 'net/telnet'

 server = Net::Telnet::new('Host' => 'www.rubyinside.com',
 'Port' => 80,
 'Telnetmode' => false)

 server.cmd("GET /test.txt HTTP/1.1\nHost: www.rubyinside.com\n") do |response|
 puts response
 end

 HTTP/1.1 200 OK
 Date: Mon, 06 Apr 2009 04:06:18 GMT
 Server: Apache/2.2.9 (Unix) mod_ssl/2.2.9 OpenSSL/0.9.7a DAV/2
 mod_auth_passthrough/2.1 mod_bwlimited/1.4 FrontPage/5.0.2.2635 PHP/5.2.5
 Phusion_Passenger/2.1.1
 Last-Modified: Sun, 15 Oct 2006 01:24:13 GMT
 ETag: "14ec29a-1d-41fcf61012940"

http://en.wikipedia.org/wiki/Domain_Name_System
http://dx.doi.org/10.1007/978-1-4842-1278-3_14

CHAPTER 15 ■ NETWORKING AND SOCKETS

368

 Accept-Ranges: bytes
 Content-Length: 29
 Content-Type: text/plain
 Hello Beginning Ruby reader!

 Net::Telnet connects to www.rubyinside.com on port 80 (the standard HTTP port) and issues these
commands:

 GET /test.txt HTTP/1.1
 Host: www.rubyinside. com

 These commands are part of the HTTP protocol and tell the remote web server to return you the test.txt
file from www.rubyinside.com . The response is then printed to the screen where the first eight or so lines are
HTTP headers, another part of the HTTP protocol. This is equivalent to visiting http://www.rubyinside.com/
test.txt in a web browser.

 All these technicalities are shielded from you when you use the open-uri and Net::HTTP libraries, as you
did in Chapter 14 , as those libraries create the correct HTTP commands and process the HTTP responses for
you. However, if you need to create a library to deal with a new or currently unsupported protocol in Ruby,
you’ll probably need to use Net::Telnet or a similar library to get access to the raw TCP data.

 Servers and Clients
 Clients and servers are the two major types of software that use networks. Clients connect to servers, and
servers process information and manage connections and data being received from and sent to the clients.
In this section, you’re going to create some servers that you can connect to using net/telnet and other client
libraries covered in both this chapter and Chapter 14 .

 UDP Client and Server
 In the previous section, we looked at creating a basic TCP client using net/telnet. However, to demonstrate a
basic client/server system, UDP is an ideal place to start. Unlike with TCP, UDP has no concept of connections,
so it works on a simple system where messages are passed from one place to another with no guarantee of
them arriving. Whereas TCP is like making a phone call, UDP is like sending a postcard in the mail.

 Creating a UDP server is easy. Let’s create a script named udpserver.rb :

 require 'socket'

 s = UDPSocket.new
 s.bind(nil, 1234)
 5.times do
 text, sender = s.recvfrom(16)
 puts text
 end

 This code uses Ruby’s socket library, a library that provides the lowest-level access to your operating
system’s networking capabilities. socket is well suited for UDP, and in this example, you create a new UDP
socket and bind it to port 1234 on the local machine. You loop five times, accepting data in 16-byte chunks
from the socket and printing it to the screen.

http://www.rubyinside.com/
http://www.rubyinside.com/
http://www.rubyinside.com/test.txt
http://www.rubyinside.com/test.txt
http://dx.doi.org/10.1007/978-1-4842-1278-3_14
http://dx.doi.org/10.1007/978-1-4842-1278-3_14

CHAPTER 15 ■ NETWORKING AND SOCKETS

369

 ■ Note The reason for looping just five times is so that the script can end gracefully after it receives five
short messages. Later, however, we’ll look at ways to keep servers running permanently.

 Now that you have a server, you need a client to send data to it. Let’s create udpclient.rb :

 require 'socket'

 s = UDPSocket.new
 s.send("hello", 0, 'localhost', 1234)

 This code creates a UDP socket, but instead of listening for data, it sends the string "hello" to the UDP
server on localhost at port 1234. If you run udpserver.rb at the same time as udpclient.rb , “hello” should
appear on the screen where udpserver.rb is running. You have successfully sent data across a network
(albeit on the same machine) from a client to a server using UDP.

 It’s possible, of course, to run the client and server on different machines, and if you have multiple
machines at your disposal, all you need to do is change 'localhost' on the send method to the hostname
or IP address of the machine where udpserver.rb is running, and ensure the receiver is using an IP address
that the sender can reach (for example, you could bind to 0.0.0.0 to accept connections from any externally
facing IP address on your machine).

 ■ Note localhost refers to your local loopback network interface, but this can also sometimes be referred
to using the IP address 127.0.0.1 (which will also be picked up through 0.0.0.0), as you will see in the next
example.

 As you’ve seen, UDP is simple, but it’s possible to layer more advanced features on top of it. For
example, because there is no connection involved, you can alternate between client and server modes with a
single program, accomplishing a two-way effect. You can demonstrate this easily by making a single program
send and receive UDP data to and from itself:

 require 'socket'

 host = 'localhost'
 port = 1234
 s = UDPSocket.new
 s.bind(nil, port)
 s.send("1", 0, host, port)

 5.times do
 text, sender = s.recvfrom(16)
 remote_host = sender[3]

 puts "#{remote_host} sent #{text}"

 response = (text.to_i * 2).to_s
 puts "We will respond with #{response}"

CHAPTER 15 ■ NETWORKING AND SOCKETS

370

 s.send(response, 0, host, port)
 end

 127.0.0.1 sent 1
 We will respond with 2
 127.0.0.1 sent 2
 We will respond with 4
 127.0.0.1 sent 4
 We will respond with 8
 127.0.0.1 sent 8
 We will respond with 16
 127.0.0.1 sent 16
 We will respond with 32

 ■ Note In a real-world situation, you would typically have two scripts, each on a different machine and
communicating between each other, but this example demonstrates the logic necessary to achieve that result
on a single machine for ease of testing.

 UDP has some benefits in speed and the amount of resources needed, but because it lacks a state of
connection and reliability in data transfer, TCP is more commonly used. Next, we’ll look at how to create
 some simple TCP servers to which you can connect with net/ telnet and other applications.

 Building a Simple TCP Server
 TCP servers are the foundation of most Internet services. Although lightweight time servers and DNS
servers can survive with UDP, when sending web pages and e-mails around, it’s necessary to build a
connection with a remote server to make the requests and send and receive data. In this section, you’re
going to build a basic TCP server that can respond to requests via telnet before moving on to creating
something more complex.

 Let’s look at a basic server that operates on port 1234, accepts connections, prints any text sent to it from
a client, and sends back an acknowledgment:

 require 'socket'

 server = TCPServer.new(1234)

 while connection = server.accept
 while line = connection.gets
 break if line =~ /quit/
 puts line
 connection.puts "Received!"
 end

 connection.puts "Closing the connection. Bye!"
 connection.close
 end

CHAPTER 15 ■ NETWORKING AND SOCKETS

371

 ■ Note This server will go around the main loop permanently. To exit it, press Ctrl+C.

 As well as being used to create UDP servers and clients, socket can also create TCP servers and clients.
In this example, you create a TCPServer object on port 1234 of the local machine and then enter a loop that
processes whenever a new connection is accepted using the accept method on the TCPServer object. Once
a connection has been made, the server accepts line after line of input, only closing the connection if any
line contains the word quit .

 To test this client, you can use your operating system’s telnet client (built into OS X, Linux, and
Windows, and accessible from the command line as telnet) as follows:

 telnet 127.0.0.1 1234

 Trying 127.0.0.1…
 Connected to localhost.
 Escape character is '^]'.
 Hello!
 Received!
 quit
 Connection closed by foreign host.

 Alternatively, you can create your own basic client using net/telnet:

 require 'net/telnet'

 server = Net::Telnet::new('Host' => '127.0.0.1',
 'Port' => 1234,
 'Telnetmode' => false)
 lines_to_send = ['Hello!', 'This is a test', 'quit']

 lines_to_send.each do |line|
 server.puts(line)

 server.waitfor(/./) do |data|
 puts data
 end
 end

 As with the UDP client and server example, the client and server applications can (and usually would)
be placed on different machines. These test applications would work in exactly the same way if the server
were located on the other side of the world and the client were running from your local machine, as long as
both machines were connected to the Internet.

 However, one downside to your TCP server is that it can only accept one connection at a time. If you
telnet to it once and begin typing, but then another connection is attempted, it might begin to connect, but
no responses will be forthcoming for anything sent. The reason for this is that your TCP server can work with
only one connection at a time in its current state. In the next section, we’re going to look at how to create a
more advanced server that can deal with multiple clients at the same time.

CHAPTER 15 ■ NETWORKING AND SOCKETS

372

 Multi-Client TCP Servers
 Most servers on the Internet are designed to deal with large numbers of clients at any one time. A web server
that can only serve one file at once would quickly result in the world’s slowest web site as users began to
stack up waiting to be served! The TCP server in the previous section operated in this way, and would be
commonly known as a “single-threaded” or “sequential” server.

 Ruby’s Thread class makes it easy to create a multithreaded server—one that accepts requests and
immediately creates a new thread of execution to process the connection while allowing the main program
to await more connections:

 require 'socket'

 server = TCPServer.new(1234)

 loop do
 Thread.start(server.accept) do |connection|
 while line = connection.gets
 break if line =~ /quit/
 puts line
 connection.puts "Received!"
 end

 connection.puts "Closing the connection. Bye!"
 connection.close
 end
 end

 In this example, you have a permanent loop, and when server.accept responds, a new thread is created
and started immediately to handle the connection that has just been accepted, using the connection object
passed into the thread. However, the main program immediately loops back and awaits new connections.

 GServer
 GServer is a Ruby library that used to be part of the standard library but that can now be installed as a Ruby
gem using gem install gserver , which implements a “generic server” system. It features thread pool
management, logging, and tools to manage multiple servers at the same time. GServer is offered as a class,
and you produce server classes that inherit from it.

 Other than simple management, GServer also allows you to run multiple servers at once on different
ports, allowing you to put together an entire suite of services in just a few lines of code. Threading is entirely
handled by GServer, although you can get involved with the process if you like. GServer also implements
logging features, although again, you can provide your own code for these functions if you wish.

 Let’s look at the simplest TCP server possible with GServer:

 require 'gserver'

 class HelloServer < GServer
 def serve(io)
 io.puts("Hello!")
 end
 end

CHAPTER 15 ■ NETWORKING AND SOCKETS

373

 server = HelloServer.new(1234)
 server.start
 server.join

 This code implements a basic server that simply outputs the word “Hello!” to any client connecting to
port 1234. If you telnet to connect to port 1234 (or even a web browser, using http://127.0.0.1:1234/) ,
you’ll see the string “Hello!” returned to you before the connection is closed.

 In this example, you create a server class called HelloServer that descends from GServer. GServer
implements all the thread and connection management, leaving you with only a handful of technicalities to
worry about. In this simple example, you only create a single server process, tell it to use port 1234, and start
it immediately.

 However, even this simple example will work with multiple clients, and if you telnet to it multiple times
in parallel, you’ll find that all requests are processed successfully. However, it’s possible to set a maximum
number of allowed connections by supplying more parameters to new :

 require 'gserver'

 class HelloServer < GServer
 def serve(io)
 io.puts("Say something to me:")
 line = io.gets
 io.puts("You said '#{line.chomp}'")
 end
 end

 server = HelloServer.new(1234, '127.0.0.1', 4)
 server.start
 server.join

 The new method for GServer accepts several parameters. In order, they are the port number to run the
server(s) on, the name of the host or interface to run the server(s) on, the maximum number of connections
 to allow at once (set to 4 in this example), a file handle of where to send logging messages, and a true or
 false flag to turn logging on or off.

 As mentioned earlier, you can create multiple servers at once:

 require 'gserver'

 class HelloServer < GServer
 def serve(io)
 io.puts("Say something to me:")
 line = io.gets
 io.puts("You said '#{line.chomp}'")
 end
 end

 server = HelloServer.new(1234, '127.0.0.1', 4)
 server.start

 server2 = HelloServer.new(1235, '127.0.0.1', 4)
 server2.start
 sleep 10

http://127.0.0.1:1234/)

CHAPTER 15 ■ NETWORKING AND SOCKETS

374

 Creating multiple servers is as easy as creating a new instance of HelloServer (or any GServer
descendent class), assigning it to a variable, and calling its start method.

 Another difference between this example and the last is that at the end you don’t call server.join . With
 GServer objects, join works in the same way as with Thread objects, where calling join waits for that thread
to complete before continuing execution. In the first GServer examples, your programs would wait forever
until you exited them manually (using Ctrl+C, for example). However, in the preceding example, you didn’t
call any join methods, and only slept for 10 seconds using sleep 10 . This means the servers you created are
only available on ports 1234 and 1235 for 10 seconds after running the program, at which point the program
and its child threads all exit at once.

 Because GServer allows multiple servers to run at the same time without impeding the execution of
the main program, you can manage the currently running servers by using several methods GServer makes
available to start, stop, and check servers:

 require 'gserver'

 class HelloServer < GServer
 def serve(io)
 io.puts("To stop this server, type 'shutdown'")
 self.stop if io.gets =~ /shutdown/
 end
 end

 server = HelloServer.new(1234)
 server.start

 loop do
 break if server.stopped?
 end

 puts "Server has been terminated"

 This time you put the main program into a loop waiting for the server to be stopped. The server is
stopped if someone connects and types shutdown , which triggers that server’s stop method, leading to the
whole server program ending.

 You can also check from the process running a GServer whether a GServer is running on a port without
having the object reference available by using the in_service? class method:

 if GServer.in_service?(1234)
 puts "Can't create new server. Already running!"
 else
 server = HelloServer.new(1234)
 end

 A GServer-Based Chat Server
 With the knowledge picked up in the previous section, only a small jump in complexity is required to build
a practical application using GServer. You’ll build a simple chat server that allows a number of clients to
connect and chat among each other.

CHAPTER 15 ■ NETWORKING AND SOCKETS

375

 The first step is to subclass GServer into a new class, ChatServer , and override the new method with
your own so that you can set up variables to store client IDs and the chat log for all the clients to share:

 require 'gserver'

 class ChatServer < GServer
 def initialize(*args)
 super(*args)
 # Keep an overall record of the client IDs allocated
 # and the lines of chat
 @client_id = 0
 @chat = []
 end
 end

 The main part of your program can be like your other GServer-based apps, with a basic initialization
and a loop until the chat server shuts itself down :

 server = ChatServer.new(1234)
 server.start

 loop do
 break if server.stopped?
 end

 ■ Note Remember that you can specify the hostname to serve from as the second parameter to
 ChatServer.new . If you want to use this chat server over the Internet, you will need to specify your remotely
accessible IP address (or 0.0.0.0) as this second parameter; otherwise, your server might only be available to
machines on your local network.

 Now that you have the basics in order, you need to create a serve method that assigns the connection
the next available client ID (by using the variable @client_id), welcomes the user, accepts lines of text from
the user, and shows him or her the latest lines of text entered by other users from time to time.

 As the serve method is particularly long in this case, the complete source code of the chat server is
shown here, including comments:

 require 'gserver'

 class ChatServer < GServer
 def initialize(*args)
 super(*args)

 # Keep an overall record of the client IDs allocated
 # and the lines of chat
 @client_id = 0
 @chat = []
 end

CHAPTER 15 ■ NETWORKING AND SOCKETS

376

 def serve(io)
 # Increment the client ID so each client gets a unique ID
 @client_id += 1
 my_client_id = @client_id
 my_position = @chat.size

 io.puts("Welcome to the chat, client #{@client_id}!")

 # Leave a message on the chat queue to signify this client
 # has joined the chat
 @chat << [my_client_id, "<joins the chat>"]

 loop do
 # Every 2 seconds check to see if we are receiving any data
 if IO.select([io], nil, nil, 2)
 # If so, retrieve the data and process it...
 line = io.gets

 # If the user says 'quit', disconnect them
 if line =~ /quit/
 @chat << [my_client_id, "<leaves the chat>"]
 break
 end

 # Shut down the server if we hear 'shutdown'
 self.stop if line =~ /shutdown/

 # Add the client's text to the chat array along with the
 # client's ID
 @chat << [my_client_id, line]
 else
 # No data, so print any new lines from the chat stream
 @chat[my_position..(@chat.size - 1)].each_with_index do |line, index|
 io.puts("#{line[0]} says: #{line[1]}")
 end

 # Move the position to one past the end of the array
 my_position = @chat.size
 end
 end

 end
 end

 server = ChatServer.new(1234)
 server.start

 loop do
 break if server.stopped?
 end

CHAPTER 15 ■ NETWORKING AND SOCKETS

377

 The chat server operates primarily within a simple loop that constantly checks whether any data is
waiting to be received with the following line:

 if IO.select([io], nil, nil, 2)

 IO.select is a special function that can check to see if an I/O stream has any data in its various buffers
(receive, send, and exceptions/errors, in that order). IO.select([io], nil, nil, 2) returns a value if the
connection with the client has any data received that you haven’t processed, but you ignore whether there
is any data to send or any errors. The final parameter, 2 , specifies that you have a timeout of two seconds, so
you wait for two seconds before either succeeding or failing. This means that every two seconds, the else
block is executed, and any new messages in the chat log are sent to the client.

 If you use telnet to connect to this chat server, a session would look somewhat like this:

 $ telnet 127.0.0.1 1234

 Trying 127.0.0.1...
 Connected to localhost.
 Escape character is '^]'.
 Welcome to the chat, client 1!
 1 says: <joins the chat>
 2 says: <joins the chat>
 Hello 2!
 1 says: Hello 2!
 2 says: Hello 1!
 2 says: I'm going now.. bye!
 2 says: <leaves the chat>
 quit
 Connection closed by foreign host.

 With the basic GServer principles covered in this and the previous sections, you can create servers that
operate to protocols of your own design, or even create server programs that can respond to preexisting
protocols. All it requires is being able to receive data, process it, and send back the data required by the
client. Using these techniques, it’s possible to create a mail server, web server, or any other type of server
necessary online.

 Web/HTTP Servers
 As hinted at in the previous section, web servers are also TCP servers, and use many of the same
techniques covered in the last few sections, such as forking and threading. A web server is a normal TCP
server that talks HTTP.

 However, we’re not going to look at HTTP servers directly here, as I covered them previously in Chapter 10 ,
so if you want to recap how to construct a basic web server in, refer to the latter sections of that chapter.

http://dx.doi.org/10.1007/978-1-4842-1278-3_10

CHAPTER 15 ■ NETWORKING AND SOCKETS

378

 Summary
 In this chapter, we’ve looked at Ruby’s support for building lower-level networking tools and servers, as well
as using Ruby to develop daemons and other persistently running processes.

 Let’s reflect on the main concepts covered in this chapter:

• Network : A collection of computers connected in such a way that they can send and
receive data between one another.

• TCP (Transmission Control Protocol) : A protocol that handles connections between
two machines over an IP-based network and ensures packets are transmitted and
received successfully and in the correct order.

• UDP (User Datagram Protocol) : A protocol that allows two computers to send
and receive messages between each other where no “connection” is made and no
assurances are made whether the data is received by the remote party.

• IP (Internet Protocol) : A packet-based protocol for delivering data across networks.
IP also makes provisions for each machine connected to the network to have one or
many IP addresses.

• DNS (Domain Name Service) : A system of referencing host or machine names
against different IP addresses and converting between the two. For example, a DNS
server will convert apress.com into the IP address 65.19.150.101 .

• Ping : The process of verifying whether a machine with a particular IP is valid and
accepting requests by sending it a small packet of data and waiting for a response.

• Server : A process that runs on a machine and responds to clients connecting to it
from other machines, such as a web server.

• Client : A process that connects to a server, transmits and receives data, and then
disconnects once a task is completed. A web browser is a basic example of a client.

• GServer : A Ruby library that makes developing network servers and services easy. It
handles the thread and connection management and allows servers to be created by
simply subclassing the GServer class.

 This marks the last chapter of narrated, instructional content, with Chapter 16 being a reference-style
guide to a wide collection of Ruby libraries (both in the standard library and those available as gems). With
this in mind, all of us involved in the production of this book would like to thank you for reading so far and
hope you find the following reference chapter and appendixes useful.

 I wish you the best on your continuing journey into the world of Ruby. You have only scratched the surface
so far! Be sure to look at the remaining chapters of this book to flesh out your Ruby knowledge further.

http://dx.doi.org/10.1007/978-1-4842-1278-3_16

379© Peter Cooper 2016
P. Cooper, Beginning Ruby, DOI 10.1007/978-1-4842-1278-3_16

 CHAPTER 16

 Useful Ruby Libraries

 This chapter is a basic reference to a collection of useful Ruby libraries that you might want to use in your
programs. We’re going to look at libraries covering a vast array of functionality, from networking and
Internet access to file parsing and compression. The libraries in this chapter are in alphabetical order, and
each library starts on a new page with the name as the page header for easy browsing. Below each library’s
title, several subsections follow:

• Overview : A brief description of what the library does, its basic functionality, and
why you would want to use it.

• Installation : Information on where the library is found, how to install it, and how to
get it running on most systems.

• Examples : One or more examples of how to use the library that demonstrate its
various elements of functionality. Example results are included, too. This section can
be split into multiple subsections, each containing a single example of how to use a
particular branch of functionality.

• Further Information : Links and pointers to further information about the library,
including online references and tutorials.

 Unlike the other main chapters in this book, this is a reference chapter, one that you might not
necessarily need right away, but that will become useful over time when you want to find out how to perform
a certain function. In any case, make sure at least to scan through the list of libraries to get a feel for the
variety of Ruby libraries available so that you don’t unnecessarily reinvent the wheel when you want to do
something a library already does!

 ■ Note I’ve tried my best to ensure that references made to the Web are to sites that are likely to be running
for many years, but it is possible that some of the references might have moved or been taken offline. In this
case, the best solution is to Google “ruby” and the library’s name!

 abbrev
 The abbrev library offers just a single method that calculates a set of unique abbreviations for each of a
supplied group of strings.

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

380

 Installation
 abbrev is in the standard library, so it comes with Ruby by default. To use it, you only need to place this line
near the start of your program:

 require 'abbrev'

 Examples
 abbrev provides a single method that’s accessible in two ways: either directly through Abbrev::abbrev , or as
an added method to the Array class. Let’s look at the most basic example first:

 require 'abbrev'
 require 'pp'

 pp Abbrev::abbrev(%w{Peter Patricia Petal Petunia})

 {"Peter"=>"Peter",
 "Pete"=>"Peter",
 "Patricia"=>"Patricia",
 "Patrici"=>"Patricia",
 "Patric"=>"Patricia",
 "Patri"=>"Patricia",
 "Patr"=>"Patricia",
 "Pat"=>"Patricia",
 "Pa"=>"Patricia",
 "Petal"=>"Petal",
 "Peta"=>"Petal",
 "Petunia"=>"Petunia",
 "Petuni"=>"Petunia",
 "Petun"=>"Petunia",
 "Petu"=>"Petunia"}

 abbrev can be useful if you have an input requirement with a number of guessable answers, as you can
detect partially entered or erroneous entries more easily. For example:

 require 'abbrev'

 abbrevs = %w{Peter Paul Patricia Petal Pauline}.abbrev
 puts "Please enter your name:"
 name = gets.chomp

 if a = abbrevs.find { |a, n| a.downcase == name.downcase }
 puts "Did you mean #{a.join(' or ')}?"
 name = gets.chomp
 end

 Please enter your name:
 paulin
 Did you mean Paulin or Pauline?
 pauline

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

381

 Because the results given by abbrev are the longest unique abbreviations possible, it’s viable to rely on
them more if the entry data set is smaller.

 Further Information
• Official documentation for abbrev : http://www.ruby-doc.org/stdlib/libdoc/

abbrev/rdoc/Abbrev.html

 base64
 Base64 is a way to encode 8-bit binary data into a format that can be represented in seven bits. It does this by
using only the characters A–Z, a–z, 0–9, +, and / to represent data (= is also used to pad data). Typically, three
8-bit bytes are converted into four 7-bit bytes using this encoding, resulting in data that’s 33 percent longer
in length. The main benefit of the Base64 technique is that it allows binary data to be represented in a way
that looks and acts like plain text, so it can more reliably be sent in e-mails, stored in databases, or used in
text-based formats such as YAML and XML.

 ■ Note The Base64 standard is technically specified in RFC 2045 at https://www.ietf.org/rfc/rfc2045.txt .

 Installation
 The base64 library is a part of the standard library, so it comes with Ruby by default. To use it, you only need
to place this line near the start of your program:

 require 'base64'

 Examples
 The following two examples show how to convert binary data to Base64 notation and back again. Then
we’ll look at a third example showing how to make your use of Base64 notation more efficient through
compression.

 Converting Binary Data to Base64
 The base64 library makes a single module, Base64, available, which provides encode64 and decode64
methods. To convert data into Base64 format, use encode64 :

 require 'base64'
 puts Base64.encode64('testing')

 dGVzdGluZw==

http://www.ruby-doc.org/stdlib/libdoc/abbrev/rdoc/Abbrev.html
http://www.ruby-doc.org/stdlib/libdoc/abbrev/rdoc/Abbrev.html
https://www.ietf.org/rfc/rfc2045.txt

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

382

 In this example, you only encode data that’s already printable (though it’s still technically 8-bit data
internally), but this is acceptable. However, generally you’d encode binary data from files or other sources:

 require 'base64'
 puts Base64.encode64(File.read('/bin/bash'))

 yv66vgAAAAIAAAAHAAAAAwAAEAAAB4xQAAAADAAAABIAAAAAAAegAAAIrywA
 AAAMAA
 AA
 [output continues onwards.. trimmed for brevity..]

 ■ Note This example works on OS X and Linux operating systems. On a Windows machine, you could try
replacing /bin/bash with c:\windows\system\cmd.exe to get a similar result.

 Converting Base64 Data to Binary Data
 To convert Base64-encoded data back to the original data, use decode64 :

 require 'base64'
 puts Base64.decode64(Base64.encode64('testing'))

 testing

 Note that if you attempt to decode data that isn’t in Base64 format, you’ll receive no error in response.
Instead, you’ll just end up with no legitimate data coming back from decode64 .

 Using Compression to Make Base64 Efficient
 Even though Base64 adds 33 percent to the length of a piece of data, it’s possible to overcome this by
compressing the data before converting it to Base64, and then uncompressing it when you want to convert it
back to binary data.

 ■ Note Not all binary data compresses well, although in most cases you’ll achieve a reduction of at least 5
percent, usually more.

 To compress and uncompress, you can use the zliblibrary, which is covered later in this chapter, like so:

 require 'base64'
 require 'zlib'

 module Base64
 def Base64.new_encode64(data)
 encode64(Zlib::Deflate.deflate(data))
 end

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

383

 def Base64.new_decode64(data)
 Zlib::Inflate.inflate(decode64(data))
 end
 end

 test_data = 'this is a test' * 100

 data = Base64.encode64(test_data)
 puts "The uncompressed data is #{data.length} bytes long in Base64"

 data = Base64.new_encode64(test_data)
 puts "The compressed data is #{data.length} bytes long in Base64"

 The uncompressed data is 1900 bytes long in Base64
 The compressed data is 45 bytes long in Base64

 In this example, two new methods have been added to the Base64 module that use zlib to compress the
data before converting it to Base64, and then to uncompress the data after converting it back from Base64.
In this way, you’ve received significant space savings.

 Read the “zlib” section in this chapter for more information about zlib’s operation.

 Further Information
 The following are some links to good information on the base64 library, and on Base64 in general:

• Standard library documentation for base64 : http://www.ruby-doc.org/stdlib/
libdoc/base64/rdoc/index.html

• General information about the Base64 standard : http://en.wikipedia.org/wiki/Base64

• A practical look at how Base64 works : http://email.about.com/cs/standards/
a/base64_encoding.htm

 Benchmark
 The Benchmark module can be used to measure the time it takes to execute blocks of Ruby code. This can be
useful to find which techniques are more efficient than others or to find slow points in your code.

 Installation
 Benchmark is part of the Ruby standard library, so you're all set to go after loading it in with:

 require 'benchmark'

http://www.ruby-doc.org/stdlib/libdoc/base64/rdoc/index.html
http://www.ruby-doc.org/stdlib/libdoc/base64/rdoc/index.html
http://en.wikipedia.org/wiki/Base64
http://email.about.com/cs/standards/a/base64_encoding.htm
http://email.about.com/cs/standards/a/base64_encoding.htm

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

384

 Examples
 The simplest example of benchmarking some code is to simply use Benchmark's measure method, like so:

 require 'benchmark'
 puts Benchmark.measure { 10000000.times { rand } }

 0.660000 0.000000 0.660000 (0.655942)

 The output shows user CPU time, system CPU time, the sum of both times, and the real time that has
elapsed, respectively.

 The bm method can be used for a more complicated benchmarking situation where you want to
compare the results of multiple approaches. For example, let's try three ways to loop 10 million times:

 require 'benchmark'

 TIMES = 10000000
 Benchmark.bm do |b|
 b.report("times") { TIMES.times { rand } }
 b.report("upto") { 1.upto(TIMES) { rand } }
 b.report("loop") {
 i = 0
 loop do
 rand
 i += 1
 break if i == TIMES
 end
 }
 end

 user system total real
 times 0.640000 0.000000 0.640000 (0.648547)
 upto 0.650000 0.000000 0.650000 (0.649027)
 loop 0.830000 0.000000 0.830000 (0.841448)

 This report includes labels for each row and column, and demonstrates that manually creating a loop
and using a variable to track its progress is slightly slower than using the times method.

 Further Information
• Official documentation for Benchmark : http://ruby-doc.org/stdlib-2.3.0/

libdoc/benchmark/rdoc/Benchmark.html

 cgi
 CGI stands for Common Gateway Interface (although it is rarely called such), and is a system for running
scripts from a web server that allows data to be passed to and from a script to produce a response for people
accessing the script via a web browser.

http://ruby-doc.org/stdlib-2.3.0/libdoc/benchmark/rdoc/Benchmark.html
http://ruby-doc.org/stdlib-2.3.0/libdoc/benchmark/rdoc/Benchmark.html

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

385

 Less commonly used than it once was, CGI can still be used in situations where a small script is desired
to perform a simple task, and the overhead of loading Ruby for each request isn’t a significant issue. Ideally,
however, you’d build things as web applications (as we did in Chapter 13), but sometimes CGI can be a good
solution in a pinch.

 The Ruby CGI library not only offers page header and CGI data-management methods, but also tools to
make managing cookies and sessions easy.

 Installation
 The cgilibrary is a part of the standard library, so it comes with Ruby by default. To use it, you only need to
place this line near the start of your program:

 require 'cgi'

 Examples
 In this section, you’ll look at several distinct things the cgi library can do. You’ll create a few simple CGI scripts
that demonstrate how you can use the cgi library to produce Ruby scripts that can respond to web-based
input and perform dynamic operations within the scope of a web page. (CGI execution is also covered
in Chapter 10 .)

 A Basic CGI Script
 Let’s create a basic CGI script that could be uploaded to a web space provided by a Linux-based web hosting
provider (as most are). Here’s an example of a CGI script that generates a trivial web page:

 #!/usr/bin/ruby

 require 'cgi'

 cgi = CGI.new

 puts cgi.header
 puts "<html><body>This is a test</body></html>"

 If this Ruby script were named test.cgi , uploaded to the aforementioned web host, and made
executable (using chmod), it would be possible to access http://www.your-website.com/test.cgi and see
“This is a test” in response.

 You could also run a local Web server if you wanted to test this concept. First, create a cgi folder, place
your CGI script (say, code.cgi) into that folder, chmod that script to be executable (e.g., chmod 777 code.cgi),
then run a Ruby-based HTTP server (using WEBrick) with ruby -run -e httpd -- -p 5000. Finally, visit
 http://localhost:5000/ .

 ■ Note The preceding script uses a shebang line that assumes the Ruby interpreter is located at
 /usr/ bin/ruby . If it isn’t, the script will fail. If this happens, change the pathname to the correct one, and/or
refer to the documentation in Chapter 10 for how to work around it.

http://dx.doi.org/10.1007/978-1-4842-1278-3_13
http://dx.doi.org/10.1007/978-1-4842-1278-3_10
http://www.your-website.com/test.cgi
http://dx.doi.org/10.1007/978-1-4842-1278-3_10

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

386

 The way the prior example works is that the web server provided by the web host recognizes requests
for CGI files and executes them. The first line tells the web server to run the file as a Ruby script. You then
load the cgi library and use it to print out the header to return to the web server, before you send some
HTML of your own creation.

 You can also use the cgi library in a more direct way by feeding in a string of the data you want to return
to the web browser and then letting the cgi library handle the output of the headers and any other data
relevant to the request. Here’s an example:

 #!/usr/bin/ruby

 require 'cgi'
 cgi = CGI.new

 cgi.out do
 "<html><body>This is a test</body></html>"
 end

 A major benefit of using cgi.out to return data to a visiting web browser is that out handles the output
of headers without you having to remember to do it. You’ll use this technique more in the “Cookies” section,
where out will also automatically send other forms of data back through the request.

 ■ Note Learn more about out and what features it supports at http://www.ruby-doc.org/stdlib/libdoc/
cgi/rdoc/classes/CGI.html#M000078 .

 Accepting Passed Data
 A benefit of CGI scripts is that they can process information passed to them from a form on an HTML page
or merely specified within the URL. For example, if you had a web form with an <input> element with a
name of “text” that posted to test.cgi , you could access the data passed to it like this:

 #!/usr/bin/ruby

 require 'cgi'
 cgi = CGI.new

 text = cgi['text']
 puts cgi.header
 puts "<html><body>#{text.reverse}</body></html>"

 In this case, the user would see the text he or she entered on the form reversed. You could also test
this CGI script by passing the text directly within the URL, such as with http://localhost:5000/test.
cgi?text=this+is+a+test .

 Here’s a more complete example:

 #!/usr/bin/ruby

 require 'cgi'
 cgi = CGI.new

http://www.ruby-doc.org/stdlib/libdoc/cgi/rdoc/classes/CGI.html#M000078
http://www.ruby-doc.org/stdlib/libdoc/cgi/rdoc/classes/CGI.html#M000078

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

387

 from = cgi['from'].to_i
 to = cgi['to'].to_i

 number = rand(to - from + 1) + from

 puts cgi.header
 puts "<html><body>#{number}</body></html>"

 This CGI script responds with a random number that’s between the number supplied in the from CGI
variable and the to CGI variable. An associated but basic form that could send the correct data would have
HTML code like so:

 <form method="POST" action="/test.cgi">
 For a number between <input type="text" name="from" value="" /> and
 <input type="text" name="to" value="" /><input type="submit"
 value="Click here!" /></form>

 Cookies
 Cookies are small fragments of data that can be sent to and received from web browsers. If you send a cookie
from your program to a web browser, the cookie will (usually—some people disable their cookie functions)
be stored in the user’s web browser and sent back on any subsequent requests.

 For example, cookies make it possible to store a number on a user’s computer, which is then sent back
on every future request the user makes to the same page (or the same site, in most situations). You could
increment this number by one for each request to show how many times the user has accessed a certain page.

 Creating and manipulating cookies with the cgi library is simple. In this example, you set a cookie on
the user’s computer and then retrieve that cookie if it’s present on future requests:

 #!/usr/bin/ruby

 require 'cgi'
 cgi = CGI.new

 cookie = cgi.cookies['count']
 # If there is no cookie, create a new one
 if cookie.empty?
 count = 1
 cookie = CGI::Cookie.new('count', count.to_s)
 else
 # If there is a cookie, retrieve its value (note that cookie.value results
 # in an Array)
 count = cookie.value.first

 # Now send back an increased amount for the cookie to store
 cookie.value = (count.to_i + 1).to_s
 end

 cgi.out("cookie" => [cookie]) do
 "<html><body>You have loaded this page #{count} times</body></html>"
 end

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

388

 On the first request to this example script, you’d see

 You have loaded this page 1 times

 On subsequent requests, the 1 would increase to 2, and so on for each further request. This is because if
the script detects a cookie called count , the script will retrieve it and adjust its value, and then the cookie will
be sent back out with each request using the parameter to cgi.out .

 Cookies are used for many things beyond simple examples such as this. They’re often used to store
things such as usernames, locations, and other pieces of information that could dictate what is displayed on
a given web page. They’re commonly used to track “sessions,” which we’ll look at next.

 Sessions
 Cookies act like dumb fragments of data going to and from the client and web server on every request.
However, sessions provide a better-managed and more abstracted relationship between a web browser and
web server. Instead of sending actual data back and forth, the client only needs to send a session ID , and
any data associated with that user or session is stored on the web server and managed by the CGI script
itself. Sessions, in effect, make it possible to “maintain state” between requests, where a state can be a large
collection of data rather than the tiny amount a cookie can contain.

 The cgi library makes it easy to add session functionality to your CGI scripts. Rather than use the cookie
features and implement sessions manually with files or a database (though that’s still an option, if you need
that level of control), you can use the CGI::Session class to handle it all for you.

 Here’s an example of using CGI::Session to assign a data store for each unique visitor to the page:

 #!/usr/bin/ruby
 require 'cgi'
 require 'cgi/session'
 require 'cgi/session/pstore'

 cgi = CGI.new
 session = CGI::Session.new(cgi,
 :session_key => 'count_app',
 :database_manager => CGI::Session::PStore,
 :prefix => 'session_id'
)

 if session['count'] && session['count'].to_i > 0
 session['count'] = (session['count'].to_i + 1).to_s
 else
 session['count'] = 1
 end

 cgi.out do
 "<html><body>You have loaded this page #{session['count']} times</body></html>"
 end

 session.close

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

389

 In this example, you perform the same counting operation as with the cookie code, although you could,
effectively, store many kilobytes of data alongside each session, such as shopping cart information, binary
data, or other forms of metadata such as YAML and XML documents.

 Notice that the prior code is similar to that used in Ruby on Rails to work with sessions. The session
variable acts like a special hash that’s created and saved for each unique user. However, unlike in Rails, you
use the close method after you’ve finished using the session so that any new data is written to disk safely.

 ■ Note You can test the prior example’s effectiveness by loading different web browsers (for example, Firefox
and Chrome, not different windows of the same browser).

 You can learn more about CGI::Session at http://www.ruby-doc.org/core/classes/CGI/Session.html ,
including how to make CGI::Session store session data in different ways (such as in memory or in a plain
text format).

 Further Information
• Standard library documentation for cgi : http://www.ruby-doc.org/stdlib/libdoc/

cgi/rdoc/index.html

• Further information about CGI : http://www.w3.org/CGI/

• Further information about HTTP cookies : http://en.wikipedia.org/wiki/HTTP_cookie

 chronic
 The chroniclibrary makes it easy to convert dates and times written in almost any format into dates and
times that Ruby recognizes correctly internally. It accepts strings such as 'tomorrow' and 'last tuesday
5pm' and turns them into valid Time objects.

 Installation
 The chronic library isn’t part of the Ruby standard library, but it is available as a Rubygem. To install it, use
the typical gem installation process (as covered in Chapter 7), like so:

 gem install chronic

 Examples
 chronic is designed to accept dates and times written in a natural language format and to return valid Time
objects. Here are some basic examples:

 require 'chronic'
 puts Chronic.parse('last tuesday 5am')

 2016-03-29 05:00:00 +0100

http://www.ruby-doc.org/core/classes/CGI/Session.html
http://www.ruby-doc.org/stdlib/libdoc/cgi/rdoc/index.html
http://www.ruby-doc.org/stdlib/libdoc/cgi/rdoc/index.html
http://www.w3.org/CGI/
http://en.wikipedia.org/wiki/HTTP_cookie
http://dx.doi.org/10.1007/978-1-4842-1278-3_7

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

390

 puts Chronic.parse('last tuesday 5:33')

 2016-03-29 17:33:00 +0100

 puts Chronic.parse('last tuesday lunchtime')

 2016-03-29 12:00:00 +0100

 puts Chronic.parse('june 29th at 1am')

 2016-06-29 01:00:00 +0100

 puts Chronic.parse('in 3 years')

 2019-04-04 11:30:57 +0100

 puts Chronic.parse('sep 23 2033')

 2033-09-23 12:00:00 +0100

 puts Chronic.parse('2003-11-10 01:02')

 2003-11-10 01:02:00 +0000

 Chronic.parse will return nil if a date or time isn’t recognized.

 ■ Note An extension to the Time class provided by the standard library can also parse times, although at a
more preformatted level. See http://ruby-doc.org/stdlib/libdoc/time/rdoc/Time.html for information.

 Further Information
• Documentation for chronic : http://chronic.rubyforge.org/

 Digest
 A digest (more commonly known as a hash —though not the same type of hash as you’ve used to store data
structures in Ruby)is a number or string of data that’s generated from another collection of data. Digests
are significantly shorter than the original data and act as a form of checksum against the data. Digests are
generated in such a way that it’s unlikely some other valid data would produce the same value, and that it’s
difficult, if not impossible, to create valid data that would result in the same hash value.

http://stdlib.rubyonrails.org/libdoc/time/rdoc/index.html
http://chronic.rubyforge.org/

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

391

 A common use for hashes or digests is to store passwords in a database securely. Rather than store
passwords in plain text where they could potentially be seen, you can create a digest of the password that
you then compare against when you need to validate that the password is correct. You’ll look at an example
of this in the “Examples” section.

 Installation
 The most common libraries to produce digests in Ruby are called digest/sha1 and digest/md5 . Other
algorithms like SHA2 and HMAC are available, however. All aforementioned digest libraries are a part of the
standard library, so they come with Ruby by default. To use them, you only need to place this line near the
start of your program:

 require 'digest/sha1'

 or

 require 'digest/md5'

 Examples
 Let’s look at what a digest of some data can look like:

 require 'digest/sha1'
 puts Digest::SHA1.hexdigest('password')

 5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8

 You can use hexdigest (on both Digest::SHA1 and Digest::MD5 —more about this later in this section)
to produce a digest of any data. The digest is a string of 20 hexadecimal 8-bit numbers (resulting in 40
hexadecimal characters, as each number is formed of two digits). In this case, the digest is significantly
longer than the input data. In real-world use, the input data is generally longer than the resulting digest.
Whatever the case, any digest generated via Digest::SHA1 is exactly the same length. For example, here’s a
digest of a 4,000-character input string:

 require 'digest/sha1'
 puts Digest::SHA1.hexdigest('test' * 1000)

 52fcb8acabb0a5ad7865350249e52bb70666751d

 Digest::SHA1 operates using the SHA-1 hashing algorithm. It results in a 160-bit output (as with the 20
hexadecimal numbers from hexdigest), meaning there are some 1,461,501,637,330, 902,918,203, 684,832,71
6,283,019,655,932,542,976 possible hash values. This almost guarantees there will be no clashing hash values
for legitimate data within a single domain.

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

392

 Another hashing mechanism provided by Ruby is based on the MD5 hashing algorithm. MD5 produces
a 128-bit hash value, giving 340,282,366,920,938,463,463,374,607,431,768,211,456 combinations. MD5 is
considered to be less secure than SHA-1, as it’s possible to generate “hash collisions,” where two sets of valid
data can be engineered to get the same hash value. Hash collisions can be used to break into authentication
systems that rely on MD5 hashing. However, MD5 is still a popular hashing mechanism, so the Ruby support
is useful. You can use Digest::MD5 in exactly the same way as SHA-1:

 require 'digest/md5'
 puts Digest::MD5.hexdigest('test' * 1000)

 b38968b763b8b56c4b703f93f510be5a

 ■ Tip There is also a Digest::SHA2 class available in digest/sha2 that provides for the creation of digests of
other lengths, including 224-, 256-, 384-, and 512-bit digests.

 Using digests in place of passwords is easy:

 require 'digest/sha1'

 puts "Enter the password to use this program:"
 password = gets
 if Digest::SHA1.hexdigest(password) ==
 '24b63c0840ec7e58e5ab50d0d4ca243d1729eb65'
 puts "You've passed!"
 else
 puts "Wrong!"
 exit
 end

 In this case, the password is stored as an SHA-1 hex digest, and you hash any incoming passwords to
establish if they’re equal. Yet without knowing what the password is, there’s no way you could succeed with
the preceding program even by looking at the source code!

 You can also generate the raw digest without it being rendered into a string of hexadecimal characters
by using the digest method, like so:

 Digest::SHA1.digest('test' * 1000)

 As the result is 20 bytes of 8-bit data, it’s unlikely you would be satisfied with the output if you printed it
to the screen as characters, but you can prove the values are there:

 Digest::SHA1.digest('test' * 1000).each_byte do |byte|
 print byte, "-"
 end

 82-252-184-172-171-176-165-173-120-101-53-2-73-229-43-183-6-102-117-29-

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

393

 It’s worth noting that if you want to store digests in text format, but want something that takes up less
space than the 40 hexadecimal characters, the base64 library can help:

 require 'base64'
 require 'digest/sha1'

 puts Digest::SHA1.hexdigest('test')
 puts Base64.encode64(Digest::SHA1.digest('test'))

 a94a8fe5ccb19ba61c4c0873d391e987982fbbd3
 qUqP5cyxm6YcTAhz05Hph5gvu9M=

 Further Information
• Further information about SHA-1 : http://en.wikipedia.org/wiki/SHA-1

• Further information about MD5 : http://en.wikipedia.org/wiki/MD5

 English
 Throughout this book, you’ve often used special variables provided by Ruby for various purposes. For
example, $! contains a string of the last error message raised in the program, $$ returns the process ID of the
current program, and $/ lets you adjust the default line or record separator as used by the gets method. The
 English library allows you to access Ruby’s special variables using names expressed in English, rather than
symbols. This makes the variables easier to remember.

 Installation
 The English library is a part of the standard library, so it comes with Ruby by default. To use it, you only need
to place this line near the start of your program:

 require 'English'

 Examples
 Using require 'English' (note the capitalization of the first letter, as opposed to the standard, all-lowercase
names adopted by the filenames of other libraries) creates English-language aliases to Ruby’s special
variables, some of which are covered in the following list:

• $DEFAULT_OUTPUT (alias for $>) is an alias for the destination of output sent by
commands such as print and puts . By default, it points to $stdout , the standard
output, typically the screen or current terminal (see the sidebar “Standard Input and
Output” in Chapter 9 for more information).

• $DEFAULT_INPUT (alias for $<) is an object that acts somewhat like a File object
for data being sent to the script at the command line, or if the data is missing, the
standard input (usually the keyboard or current terminal). It is read-only.

http://en.wikipedia.org/wiki/SHA-1
http://en.wikipedia.org/wiki/MD5
http://dx.doi.org/10.1007/978-1-4842-1278-3_9

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

394

• $ERROR_INFO (alias for $!) refers to the exception object passed to raise , or, more
pragmatically, can contain the most recent error message. In the initial form, it can
be useful when used within a rescue block.

• $ERROR_POSITION (alias for $@) returns a stack trace as generated by the previous
exception. This is in the same format as the trace provided by Kernel.caller .

• $OFS and $OUTPUT_FIELD_SEPARATOR (aliases for $,) can be set or read, and contain
the default separator as used in output from the print method and Array’s join
method. The default value is nil , as can be confirmed with %w{a b c} .join, which
results in abc .

• $ORS and $OUTPUT_RECORD_SEPARATOR (aliases for $\) can be set or read, and contain
the default separator as used when sending output with methods such as print and
 IO.write . The default value is nil , as typically you use puts instead when you want
to append a newline to data being sent.

• $FS and $FIELD_SEPARATOR (aliases for $;) can be set or read, and contain the default
separator as used by String’s split method. Changing this and then calling split
on a string without a split regex or character can give different results than expected.

• $RS and $INPUT_RECORD_SEPARATOR (aliases for $/) can be set or read, and contain
the default separator as used for input, such as from gets . The default value is a
newline (\n) and results in gets receiving one line at a time. If this value is set to nil ,
then gets would read an entire file or data stream in one go.

• $PID and $PROCESS_ID (alias for $$) return the process ID of the current program.
This ID is unique for every program or instance of a program running on a computer,
which is why tempfile uses it when constructing names for temporary files. It is
read-only.

• $LAST_MATCH_INFO (alias for $~) returns a MatchData object that contains the results
of the last successful pattern match.

• $IGNORECASE (alias for $=) is a flag that you can set or read from that determines
whether regular expressions and pattern matches performed in the program will be
case insensitive by default. This special variable is deprecated and only effective in
Ruby 1.8 (not Ruby 1.9 or later). Typically, if you required this feature, you’d use the
 /i flag on the end of a regular expression instead.

• $MATCH (alias for $&) contains the entire string matched by the last successful regular
expression match in the current scope. If there has been no match, its value is nil .

• $PREMATCH (alias for $`) contains the string preceding the match discovered by the
last successful regular expression match in the current scope. If there has been no
match, its value is nil .

• $POSTMATCH (alias for $') contains the string succeeding the match discovered by the
last successful regular expression match in the current scope. If there has been no
match, its value is nil .

 Further Information
• Standard library documentation for English : http://ruby-doc.org/stdlib/libdoc/

English/rdoc/English.html

http://www.ruby-doc.org/stdlib/libdoc/English/rdoc/English.html
http://www.ruby-doc.org/stdlib/libdoc/English/rdoc/English.html

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

395

 ERB
 ERBis a templating library for Ruby that allows you to mix content and Ruby code. ERB is used as the main
template system in Ruby on Rails when rendering RHTML views (see Chapter 13 for more information).
Mixing Ruby code with other content results in a powerful templating system that’s a little reminiscent of PHP.

 Installation
 The ERB library is a part of the standard library, so it comes with Ruby by default. To use it, you only need to
place this line near the start of your program:

 require 'erb'

 Examples
 ERB works by accepting data written in ERB’s template language, converting it to Ruby code that can
produce the desired output, and then executing that code.

 Basic Templates and Rendering
 A basic ERB script might look like this:

 <% 1.upto(5) do |i| %>
 <p>This is iteration <%= i %></p>
 <% end %>

 In this template, Ruby and HTML code are mixed. Ruby code that’s meant to be executed is placed
within <% and %> tags. Ruby code that’s to be evaluated and “printed” is placed within <% = and %> tags, and
normal content is left as is.

 Running the preceding template through ERB would result in this output:

 <p>This is iteration 1</p>
 <p>This is iteration 2</p>
 <p>This is iteration 3</p>
 <p>This is iteration 4</p>
 <p>This is iteration 5</p>

 ■ Note Due to the spacing in the template, the spacing in the output can look odd. Usually added whitespace
isn’t an issue with HTML or XHTML, but if you’re using ERB to output other forms of data, you might need to
develop your templates with whitespace in mind.

http://dx.doi.org/10.1007/978-1-4842-1278-3_13

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

396

 You use the ERB library to render ERB code from Ruby:

 require 'erb'
 template = <<EOF
 <% 1.upto(5) do |i| %>
 <p>This is iteration <%= i %></p>
 <% end %>
 EOF
 puts ERB.new(template).result

 The result method doesn’t print the data directly, but returns the rendered template to the caller, so
you then print it to the screen with puts . If you’d rather have ERB print the output directly to the screen, you
can use the run method:

 ERB.new(template).run

 Accessing Outside Variables
 ERB templates can also access variables in the current scope. For example:

 require 'erb'

 array_of_stuff = %w{this is a test}

 template = <<EOF
 <% array_of_stuff.each_with_index do |item, index| %>
 <p>Item <%= index %>: <%= item %></p>
 <% end %>
 EOF
 puts ERB.new(template).result(binding)

 <p>Item 0: this</p>
 <p>Item 1: is</p>
 <p>Item 2: a</p>
 <p>Item 3: test</p>

 ■ Note The result and run methods accept a binding as an optional parameter if you want ERB to have
access to variables that are defined in a different (or the current) scope, or if you want to “sandbox” the
variables to which templates have access. If you allow them access to your main binding, as in the preceding
example, remember that code within templates could change the value of the current variables!

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

397

 Safe Levels
 Due to ERB allowing Ruby code to be executed among other content, it’s not wise to allow users you cannot
trust to be able to create or edit ERB templates on systems under your control. That’s because they could
execute arbitrary code that could access the file system, delete data, or otherwise damage your system
(remember that Ruby can use backticks to run any program on the system accessible to the current user).

 In Chapter 11 , you looked at the concept of “safe levels” provided by Ruby, which allow you to restrain
the capabilities of code, particularly in relation to running arbitrary programs or using tainted data with
“dangerous” commands such as eval .

 ERB.new accepts a safe level as an optional second parameter, which goes a long way toward making
your template rendering a safer process:

 require 'erb'

 template = <<EOF
 Let's try to do something crazy like access the filesystem:
 <%= `ls` %>
 EOF

 puts ERB.new(template, 3).result # Using safe level 3!

 /usr/local/lib/ruby/1.8/erb.rb:739:in `eval': Insecure: can't modify
 trusted binding (SecurityError)

 The safe level applies only to the code executed to run the code for the ERB template, whereas when
you’ve previously used safe levels, you’ve been unable to lower them. The way this works is that when a
safe mode is used with ERB, ERB creates a new thread for the processing of the ERB code, which allows a
separate safe level to be set from that of the main code.

 Refer to Chapter 11 for a refresher on what capabilities each safe level provides.

 Further Information
• Standard library documentation for ERB : http://www.ruby-doc.org/stdlib/

libdoc/erb/rdoc/ERB.html

 json
 The json library enables you to parse and create JSON (JavaScript Object Notation) from Ruby objects.
JSON is a popular data interchange format that's commonly used in web-based APIs and within JavaScript
applications nowadays. It's also possible to read JSON easily as it's notated entirely in plain text.

 Installation
 The json library is part of the standard library, so all we need to do is require it in.

http://dx.doi.org/10.1007/978-1-4842-1278-3_11
http://dx.doi.org/10.1007/978-1-4842-1278-3_11
http://www.ruby-doc.org/stdlib/libdoc/erb/rdoc/ERB.html
http://www.ruby-doc.org/stdlib/libdoc/erb/rdoc/ERB.html

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

398

 Examples
 Here's an example of a very simple JSON document:

 {"name":"Maggie Robertson","age":37,"interests":["Golf","Bridge","Food"]}

 This is essentially a hash with numerous keys and values, with the values being a string, number, and an
array of strings respectively.

 To convert this plain text JSON into a hash we can use within a Ruby program, we can do this:

 require 'json'

 json_data = %{
 {"name":"Maggie Robertson","age":37,"interests":["Golf","Bridge","Food"]}
 }

 obj = JSON.load(json_data)
 puts obj.class
 puts obj.keys

 Hash
 name
 age
 interests

 Likewise, you can go from a Ruby hash to JSON by using a to_json method that the json library
introduces to all objects:

 require 'json'

 person = {
 name: 'Maggie Robertson',
 age: 37,
 interests: ['Golf', 'Bridge', 'Food']
 }

 puts person.to_json

 {"name":"Maggie Robertson","age":37,"interests":["Golf","Bridge","Food"]}

 Further Information
• Introducing JSON :http://www.json.org/

• JSON tutorial :http://www.w3schools.com/json/

• Ruby JSON documentation :http://ruby-doc.org/stdlib/libdoc/json/rdoc/
JSON.html

http://www.json.org/
http://www.w3schools.com/json/
http://ruby-doc.org/stdlib/libdoc/json/rdoc/JSON.html
http://ruby-doc.org/stdlib/libdoc/json/rdoc/JSON.html

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

399

 logger
 logger is a library developed by Hiroshi Nakamura and Gavin Sinclair that provides sophisticated logging
features to Ruby applications. It supports automatic log rotation and multiple urgency levels, and can output
to file, to standard output, or to standard error handles. Ruby on Rails uses logger as its main logging system,
but you can use it from any Ruby application.

 Installation
 The logger library is a part of the standard library, so it comes with Ruby by default. To use it, you only need
to place this line near the start of your program:

 require 'logger'

 Examples
 To use logger, you create Logger objects and then use the methods provided by the objects to report events
that occur while your program is running. The first step is to get a Logger object.

 Setting Up a Logger
 Loggers can write to standard output, standard error, or to a file. Just specify a file handle or file name to
 Logger.new . For example, here’s how to write log messages directly to the screen or terminal:

 require 'logger'
 logger = Logger.new(STDERR)

 Use this code to write log messages to file:

 logger = Logger.new('mylogfile.log')
 logger = Logger.new('/tmp/some_log_file.log')

 You can also specify that a log file ages daily, weekly, or monthly (old log files are suffixed with date
indicators):

 logger = Logger.new('mylogfile.log', 'daily')
 logger = Logger.new('mylogfile.log', 'weekly')
 logger = Logger.new('mylogfile.log', 'monthly')

 Last, it’s possible to create a logger that only creates a log file up to a certain size. Once the log file hits
that size, logger copies the existing log file to another filename, and then starts a new log file. This is known
as log rotation :

 logger = Logger.new('mylogfile.log', 10, 100000)

 This logger logs files to mylogfile.log until it reaches 100,000 bytes in length, whereupon the logger
renames the log file (by suffixing it with a number) and creates a new mylogfile.log . It keeps the ten most
recent but unused log files available.

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

400

 Logging Levels
 There are five different logging levels, ranked in order of severity, as follows:

• DEBUG: The lowest severity, used for debugging information for the developer

• INFO: General information about the operation of the program, library, or system

• WARN: A nonfatal warning about the state of the program

• ERROR: An error that can be handled (as with a rescued exception)

• FATAL: An error that is unrecoverable and that forces an immediate end to the program

 Whenever you start a logger, you can specify the level of messages it should track. If a message is of
that level or above, it will be logged. If it’s below that level, it will be ignored. This is useful so that during
development you can log every debug message, whereas when your program is being used for real, you only
log the important messages.

 To set the severity level of a logger, use the logger’s sev_threshold method. This level ensures only
 FATAL messages are logged:

 logger.sev_threshold = Logger::FATAL

 This level ensures every message of all levels is logged:

 logger.sev_threshold = Logger::DEBUG

 Logging Messages
 Each Logger object provides several methods to allow you to send a message to the log. The most commonly
used way is to use the debug, info, warn, error , and fatal methods, which all create log messages of
their respective severity:

 require 'logger'
 logger = Logger.new(STDOUT)

 logger.debug "test"
 logger.info "test"
 logger.fatal "test"

 D, [2016-03-12T11:06:06.805072 #9289] DEBUG -- : test
 I, [2016-03-12T11:06:06.825144 #9289] INFO -- : test
 F, [2016-03-12T11:06:06.825288 #9289] FATAL -- : test

 Log messages are notated by their severity as a single letter, the date and time of their creation,
the process ID of which process created them, and their severity label, followed by the actual message.
Optionally, the program name might be present, if it was specified in the logging method, with the normal
message coming from a block, like so:

 logger.info("myprog") { "test" }

 I, [2016-03-12T11:09:32.284956 #9289] INFO -- myprog: test

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

401

 You can also assign a severity to a log message dynamically, like so:

 logger.add(Logger::FATAL) { "message here" }

 F, [2016-03-12T11:13:06.880818 #9289] FATAL -- : message here

 To use different severities, just pass the severity’s class (Logger::FATAL, Logger::DEBUG, Logger::INFO ,
and so on) as the argument to add .

 Closing a Logger
 You close a logger as you would a file or any other I/O structure:

 logger.close

 Further Information
• Standard library documentation for logger : http://www.ruby-doc.org/stdlib/

libdoc/logger/rdoc/Logger.html

 Nokogiri
 The Nokogiri library is a fast HTML, XML, SAX, and Reader parser with XPath and CSS selector support.

 Installation
 The Nokogiri library isn’t part of the Ruby standard library, but it is available as a Rubygem. To install it, use
the typical gem installation process (as covered in Chapter 7), like so:

 gem install nokogiri

 Alternatively, you can download the source from Nokogiri’s GitHub repository. The link is provided in
the following “Further Information” subsection.

 Examples
 Nokogiri is a fast XML and HTML parser with full CSS3 selector and XPath support.

 A great way to start using it is to see how easy it is to parse an HTML page:

 require 'rubygems'
 require 'nokogiri'
 require 'open-uri'

 doc = Nokogiri::HTML(open('http://www.cnn.com/'))

 doc.css('p').each do |para|
 puts para.inner_text
 end

http://www.ruby-doc.org/stdlib/libdoc/logger/rdoc/Logger.html
http://www.ruby-doc.org/stdlib/libdoc/logger/rdoc/Logger.html
http://dx.doi.org/10.1007/978-1-4842-1278-3_7

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

402

 In this example, we’ve used open-uri to make the retrieval of a web site a lot quicker. Nokogiri will,
however, also accept strings if you want to process local or user-supplied XML or HTML data.

 The document is processed as HTML by Nokogiri, thanks to the use of Nokogiri::HTML
(Nokogiri::XML can be used to process XML). We’ve then used the css method on the document to search
for all paragraphs (the <p> tag in HTML). Any CSS selector can be specified as an argument. For example, if
you wanted to search for all tags under a <div> with an ID of “story,” you’d use the selector #story li .

 The each method is then used to iterate over each paragraph, and the inner_text method is used to
return the plain text contents of the tag.

 Further Information
• Nokogiri homepage : http://www.nokogiri.org/

• Spotlight on Gems: Nokogiri : http://ruby.about.com/od/gems/a/nokogiri.htm

• CSS Selector tutorial : http://www.456bereastreet.com/archive/200509/css_21_
selectors_part_1/

• Nokogiri GitHub repository : http://github.com/sparklemotion/nokogiri

 pp
 ppis a “pretty printer” that provides better formatted output than a simple puts something.inspect or
 p command. It presents a cleaner look at data structures that are properly tabulated and spaced, unlike
 inspect or p ’s output.

 Installation
 The pp library is a part of the standard library, so it comes with Ruby by default. To use it, you only need to
place this line near the start of your program:

 require 'pp'

 Examples
 To use pp, simply use the pp method, followed by the object whose structure you wish to display. Here’s a
basic comparison of inspect and pp :

 person1 = { :name => "Peter", :gender => :male }
 person2 = { :name => "Laura", :gender => :female }
 people = [person1, person2, person1, person1, person1]
 puts people.inspect

 [{:name=>"Peter", :gender=>:male}, {:name=>"Laura", :gender=>:female},
 {:name=>"Peter", :gender=>:male}, {:name=>"Peter", :gender=>:male},
 {:name=>"Peter", :gender=>:male}]

http://nokogiri.rubyforge.org/nokogiri/
http://ruby.about.com/od/gems/a/nokogiri.htm
http://www.456bereastreet.com/archive/200509/css_21_selectors_part_1/
http://www.456bereastreet.com/archive/200509/css_21_selectors_part_1/
http://github.com/tenderlove/nokogiri/tree/master

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

403

 pp people

 [{:name=>"Peter", :gender=>:male},
 {:name=>"Laura", :gender=>:female},
 {:name=>"Peter", :gender=>:male},
 {:name=>"Peter", :gender=>:male},
 {:name=>"Peter", :gender=>:male}]

 As demonstrated, pp is mostly useful when dealing with complex objects whose data cannot fit on a
single line. Here’s a more contrived example:

 require 'pp'

 class TestClass
 def initialize(count)
 @@a = defined?(@@a) ? @@a + 1 : 0
 @c = @@a
 @d = [:a => {:b => count }, :c => :d] * count end
 end

 pp TestClass.new(2), STDOUT, 60
 pp TestClass.new(3), $>, 60
 pp TestClass.new(4), $>, 60

 #<TestClass:0x357000
 @c=0,
 @d=[{:a=>{:b=>2}, :c=>:d}, {:a=>{:b=>2}, :c=>:d}]>
 #<TestClass:0x354364
 @c=1,
 @d=
 [{:a=>{:b=>3}, :c=>:d},
 {:a=>{:b=>3}, :c=>:d},
 {:a=>{:b=>3}, :c=>:d}]>
 #<TestClass:0x3503f4
 @c=2,
 @d=
 [{:a=>{:b=>4}, :c=>:d},
 {:a=>{:b=>4}, :c=>:d},
 {:a=>{:b=>4}, :c=>:d},
 {:a=>{:b=>4}, :c=>:d}]>

 Where it’s practical, pp fits data onto a single line, but when more data is to be shown than could fit on a
single line, pp formats and spaces that data accordingly.

 Note that in the preceding example, the pp calls are in this format:

 pp TestClass.new(4), $>, 60

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

404

 With no parameters, pp assumes a display width of 79 characters. However, pp supports two optional
parameters, which set the destination for its output and the width of the output field. In this case, you output
to the standard output and assume a wrapping width of 60 characters.

 Further Information
• Standard library documentation for pp : http://www.ruby-doc.org/stdlib/

libdoc/pp/rdoc/PP.html

 RedCarpet
 RedCarpet is a library that converts specially formatted text documents (in a formatting known as
 Markdown) into valid HTML. The reasoning behind languages such as Markdown is that most users prefer
to write their documents in a clean format, rather than be forced to use HTML tags everywhere and create
documents that don’t read well as plain text. Markdown allows you to format text in a way that makes
documents look good as plain text, but also allows the text to be converted quickly to HTML for use on
the Web. This makes languages such as Markdown popular for use with posting and commenting systems
online, and many blog authors even first write their posts in languages such as Markdown before converting
them for publication.

 Installation
 RedCarpet isn’t part of the Ruby standard library, but it is available as a Rubygem. To install it, use the typical
gem installation process (as covered in Chapter 7), like so:

 gem install redcarpet

 Examples
 An example Markdown document might look like this:

 This is a title
 ===============

 Here is some _text_ that's formatted according to [Markdown][1]
 specifications. And how about a quote?

 [1]: http://daringfireball.net/projects/markdown/

 > This section is a quote.. a block quote
 > more accurately..

 Lists are also possible:

 * Item 1
 * Item 2
 * Item 3

http://www.ruby-doc.org/stdlib/libdoc/pp/rdoc/PP.html
http://www.ruby-doc.org/stdlib/libdoc/pp/rdoc/PP.html
http://dx.doi.org/10.1007/978-1-4842-1278-3_7

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

405

 In the following example, we’ll assume this document is already assigned to the variable markdown_text
to save space on the page.

 Here’s how to convert Markdown syntax to HTML:

 require 'redcarpet'

 markdown = Redcarpet::Markdown.new(Redcarpet::Render::HTML)
 puts markdown.render(markdown_text)

 <h1>This is a title</h1>

 <p>Here is some text that's formatted according to <a href="http://
daringfireball.net/projects/markdown/">Markdown
 specifications. And how about a quote?</p>

 <blockquote>
 <p>This section is a quote.. a block quote
 more accurately..</p>
 </blockquote>

 <p>Lists are also possible:</p>

 Item 1
 Item 2
 Item 3

 The output HTML correctly resembles the Markdown syntax when viewed with a web browser.
 To learn more about the Markdown format and its syntax, visit the official Markdown homepage, as

linked in the following section.

 Further Information
• Official RedCarpet homepage : https://github.com/vmg/redcarpet

• Official Markdown format homepage : http://daringfireball.net/projects/markdown/

 StringScanner
 StringScanner is a library that lets you “walk through” a string, matching patterns one at a time, while only
applying them to the remainder of the data that you haven’t yet matched. This is in stark contrast to the
standard scan method that automatically returns all matching patterns immediately.

 Installation
 StringScanner is in the standard library, so it comes with Ruby by default. To use it, you only need to place
this line near the start of your program:

 require 'strscan'

https://github.com/vmg/redcarpet
http://daringfireball.net/projects/markdown/

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

406

 ■ Note It’s important to recognize that the filename doesn’t match the name of the library, or class in this
case. Although most library developers tend to keep names consistent, not all do!

 Examples
 The best way to see StringScanner’s feature set is to see it in action:

 require 'strscan'
 string = StringScanner.new "This is a test"
 puts string.scan(/\w+/)
 puts string.scan(/\s+/)
 puts string.scan(/\w+/)
 puts string.scan(/\s+/)
 puts string.rest

 This
 is
 a test

 In this example, you step through the string by first matching a word with scan, then whitespace, then
another word, and then more whitespace, before asking StringScanner to give you the rest of the string with
the rest method.

 However, scan will return content only if the specified pattern matches at the current position in the
string. For example, this doesn’t retrieve each word:

 puts string.scan(/\w+/)
 puts string.scan(/\w+/)
 puts string.scan(/\w+/)
 puts string.scan(/\w+/)

 This
 nil
 nil
 nil

 After the first scan, the pointer for string is waiting at the whitespace after “This,” and scan must match
the whitespace for it to continue. One way to get around this would be like so:

 puts string.scan(/\w+\s*/)
 puts string.scan(/\w+\s*/)
 puts string.scan(/\w+\s*/)
 puts string.scan(/\w+\s*/)

 In the preceding example, you’d retrieve the words and any whitespace located after each word. Of
course, this might not be desirable, so StringScanner also provides other useful methods for scanning
through strings.

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

407

 scan_until scans through the string from the current position until the specified pattern matches.
All the data from the start of the scan, until and including the match, is then returned. In this example, you
perform a normal scan and pick off the first word, but then you use scan_until to scan all text until you
reach a number:

 string = StringScanner.new "I want to live to be 100 years old!"
 puts string.scan(/\w+/)
 puts string.scan_until(/\d+/)

 I
 want to live to be 100

 You can also use scan_until to give a different solution to the previous “scan for each word” problem:

 string = StringScanner.new("This is a test")
 puts string.scan_until(/\w+/)
 puts string.scan_until(/\w+/)
 puts string.scan_until(/\w+/)
 puts string.scan_until(/\w+/)

 Another useful method is unscan , which gives you the opportunity to roll back a single scan:

 string = StringScanner.new "I want to live to be 100 years old!"
 puts string.scan(/\w+/)
 string.unscan
 puts string.scan_until(/\d+/)
 string.unscan
 puts string.scan_until(/live/)

 I
 I want to live to be 100
 I want to live

 You can also retrieve the current position of the scanner in the string:

 string = StringScanner.new "I want to live to be 100 years old!"
 string.scan(/\w+/)
 string.unscan
 puts string.pos
 string.scan_until(/\d+/)
 puts string.pos
 string.unscan string.scan_until(/live/)
 puts string.pos

 0
 24
 14

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

408

 You can use pos to set or override the position of the scanner, too:

 string = StringScanner.new "I want to live to be 100 years old!"
 string.pos = 12
 puts string.scan(/...../)

 ve to

 ■ Note StringScanner isn’t a subclass of String , so typical methods provided by String won’t necessarily
work. However, StringScanner does implement some of them, such as << ,which concatenates data onto the
end of the string.

 Further Information
• Standard library documentation for StringScanner : http://www.ruby-doc.org/

stdlib/libdoc/strscan/rdoc/StringScanner.html

 tempfile
 Temporary files are intended for a single, one-time purpose. They’re ephemeral files that you use to
store information temporarily, but that are quickly erased. In Chapter 9 , you looked at the creation of
temporary files using several techniques, but tempfile provides an easy and standard way to create and
manipulate them.

 Installation
 tempfile is in the standard library, so comes with Ruby by default. To use it, you only need to place this line
near the start of your program:

 require 'tempfile'

 Examples
 tempfile manages the creation and manipulation of temporary files. It creates temporary files in the correct
place for your operating system, and it gives them unique names so that you can concentrate on the main
logic of your application.

 To create a temporary file, use Tempfile.new :

 require 'tempfile'
 f = Tempfile.new('myapp')
 f.puts "Hello"
 puts f.path f.close

 /tmp/myapp1842.0

http://www.ruby-doc.org/stdlib/libdoc/strscan/rdoc/StringScanner.html
http://www.ruby-doc.org/stdlib/libdoc/strscan/rdoc/StringScanner.html
http://dx.doi.org/10.1007/978-1-4842-1278-3_9

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

409

 Tempfile .new creates a temporary file using the given string as a prefix in the format of <supplied
name>-<program's process ID>.<unique number> . The returned object is a Tempfile object that delegates
most of its methods to the usual File and IO classes, allowing you to use the file methods you’re already
familiar with, as with f.puts earlier.

 To use the data in your temporary file, you can close it and reopen it quickly:

 f.close
 f.open

 If you specify no arguments to f.open , it will reopen the temporary file associated with that object.
At that point, you can continue to write to the temporary file or read from it.

 require 'tempfile'
 f = Tempfile.new('myapp')
 f.puts "Hello" f.close
 f.open
 puts f.read
 f.close!

 Hello

 The preceding code creates a temporary file, writes data to it, closes the temporary file (which flushes
the written data out to disk from the memory buffers), and then reopens it for reading.

 The last line uses close ! instead of close , which forces the temporary file to be closed and
permanently deleted.

 Of course, you can flush the buffers manually, so you can use the same temporary file for reading and
writing without having to close it at any point:

 require 'tempfile'

 f = Tempfile.new('myapp')
 f.puts "Hello"
 f.pos = 0
 f.print "Y"
 f.pos = f.size - 1
 f.print "w"
 f.flush f.pos = 0
 puts f.read
 f.close!

 Yellow

 ■ Note By default, temporary files are opened in the w+ mode.

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

410

 In some situations, you might want to use temporary files, but not allow tempfile to put them in a
place that can be seen by other programs or users. Tempfile.new accepts an optional second argument that
specifies where you want temporary files to be created:

 f = Tempfile.new('myapp', '/my/secret/temporary/directory')

 As with other file-related classes, you can use Tempfile in block form:

 require 'tempfile'

 Tempfile.open('myapp') do |f|
 f.puts "Hello" f.pos = 0 f.print "Y"
 f.pos = f.size - 1
 f.print "w"
 f.flush
 f.pos = 0
 puts f.read
 end

 Yellow

 ■ Note You use Tempfile.open instead of Tempfile.new when using a block.

 The benefit of using block form in this case is that the temporary file is removed automatically and no
closing is required. However, if you want to use a temporary file throughout the scope of a whole program,
block form might not be suitable.

 Further Information
• Standard library documentation for tempfile : http://www.ruby-doc.org/stdlib/

libdoc/tempfile/rdoc/Tempfile.html

 uri
 You use the urilibrary to manage Uniform Resource Identifiers (URIs) , which are typically referred to as
Uniform Resource Locators (URLs). A URL is an address such as http://www.rubyinside.com/ , ftp://
your-ftp-site.com/directory/filename , oreven mailto:your-email- address@privacy.net . uri makes it
easy to detect, create, parse, and manipulate these addresses.

 Installation
 uri is in the standard library, so it comes with Ruby by default. To use it, you only need to place this line near
the start of your program:

 require 'uri'

http://www.ruby-doc.org/stdlib/libdoc/tempfile/rdoc/Tempfile.html
http://www.ruby-doc.org/stdlib/libdoc/tempfile/rdoc/Tempfile.html
http://www.rubyinside.com/
ftp://your-ftp-site.com/directory/filename
ftp://your-ftp-site.com/directory/filename

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

411

 Examples
 In this section, you’ll look at a few examples of how to use the uri library to perform basic URL-related functions.

 Extracting URLs from Text
 URI.extract is a class method that extracts URLs from a given string into an array:

 require 'uri'
 puts URI.extract('Check out http://www.rubyinside.com/ or e-mail
 mailto:me@privacy.net').inspect

 ["http://www.rubyinside.com/", "mailto:me@privacy.net"]

 You can also limit the types of URLs that extract should find:

 require 'uri'
 puts URI.extract('http://www.rubyinside.com/ and mailto:me@privacy.net',
 ['http']).inspect

 ["http://www.rubyinside.com/"]

 If you immediately want to use the URLs one by one, you can use extract with a block:

 require 'uri'

 email = %q{Some cool Ruby sites are http://www.ruby-lang.org/ and
 http://www.rubyinside.com/ and http://redhanded.hobix.com/}

 URI.extract(email, ['http', 'https']) do |url|
 puts "Fetching URL #{url}"
 # Do some work here…
 end

 Parsing URLs
 A URL in a string can) be useful, particularly if you want to use that URL with open-uri or net/ http, for
example. However, it can also be useful to split URLs into their constituent sections. Doing this with a regular
expression would give inconsistent results and be prone to failure in uncommon situations, so the URI class
provides the tools necessary to split URLs apart easily.

 URI.parse('http://www.rubyinside.com/')

 => #<URI::HTTP:0x2d071c URL:http://www.rubyinside.com/>

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

412

 URI.parse parses a URL provided in a string and returns a URI-based object for it. URI has specific
subclasses for FTP, HTTP, HTTPS, LDAP, and MailTo URLs, but returns a URI::Generic object for an
unrecognized URL that’s in a URL-type format.

 The URI objects have a number of methods that you can use to access information about the URL:

 require 'uri'
 a = URI.parse('http://www.rubyinside.com/')
 puts a.scheme
 puts a.host
 puts a.port
 puts a.path
 puts a.query

 http www.rubyinside.com
 80
 /
 nil

 Note that URI::HTTP is smart enough to know that if no port is specifically stated in an HTTP URL, the default
port 80 must apply. The other URI classes,) such as URI::FTP and URI::HTTPS , also make similar assumptions.

 With more complex URLs, you can access some extended data:

 require 'uri'
 url = 'http://www.x.com:1234/test/1.html?x=y&y=z#top'
 puts URI.parse(url).port
 puts URI.parse(url).path
 puts URI.parse(url).query
 puts URI.parse(url).fragment

 1234
 /test/1.html
 x=y&y=z
 top

 The uri library also makes a convenience method available to make it even easier to parse URLs:

 u = URI('http://www.test.com/')

 In this case, URI(url) is synonymous with URI.parse .
 As well as URI.parse , you can use URI.split to split a URL into its constituent parts without involving a

 URI object:

 URI.split('http://www.x.com:1234/test/1.html?x=y&y=z#top')

 => ["http", nil, "www.x.com", "1234", nil, "/test/1.html", nil,
 "x=y&y=z", "top"]

 URI.split returns, in order, the scheme, user info, hostname, port number, registry, path, opaque
attribute, query, and fragment. Any elements that are missing are nil .

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

413

 ■ Note The only benefit of URI.split is that no URI object is created, so there can be minimal gains in
memory and processor usage. However, generally it’s more acceptable to use URI() or URI.parse so that you
can address the different elements by name, rather than rely on the order of elements in an array (which could
change between versions of the library).

 Creating URLs
 You can also use uri to create URLs that meet the accepted specifications. At their simplest, you can use the
URI subclasses for each protocol to generate URLs by passing in a hash of the elements you want to make up
the URL:

 require 'uri'
 u = URI::HTTP.build(:host => 'rubyinside.com', :path => '/')
 puts u.to_s
 puts u.request_uri

 http://rubyinside.com/
 /

 Note that to_s returns the entire URL, whereas request_uri returns the portion of the URL that follows
the hostname. This is because libraries such as net/http would use the data from request_uri , whereas
libraries such as open-uri can use the entire URL.

 You could also pass in :port , :query , :fragment , :userinfo , and other elements to the URI subclasses
to generate more complex URLs.

 Here’s an example of creating an FTP URL:

 ftp_url = URI::FTP.build(:userinfo => 'username:password',
 :host => 'ftp.example.com',
 :path => '/pub/folder',
 :typecode => 'a')

 puts ftp_url.to_s

 ftp://username:password@ftp.example.com/pub/folder;type=a

 Also note that uri is good at adjusting URLs in a safe manner, as you can) set the various attributes to
new values, as well as read them:

 require 'uri'
 my_url = "http://www.test.com/something/test.html"
 url = URI.parse(my_url)
 url.host = "www.test2.com"
 url.port = 1234
 puts url.to_s

 http://www.test2.com:1234/something/test.html

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

414

 Further Information
• Standard library documentation for uri : http://www.ruby-doc.org/stdlib/libdoc/

uri/rdoc/URI.html

• Information about URLs and URIs : http://en.wikipedia.org/wiki/URL

 zlib
 zlibis an open source data-compression library. It’s a significant standard in data compression, and you
can manipulate zlib archives on almost every platform. Notably, zlib is often used to compress web pages
between servers and web browsers, is used in the Linux kernel, and forms a key part of many operating
system libraries.

 You can use zlib from Ruby as a mechanism to compress and uncompress data.

 Installation
 zlib is in the standard library, so comes with Ruby by default. To use it, you only need to place this line near
the start of your program:

 require 'zlib'

 Examples
 Under zlib, compression and uncompression are called deflating and inflating . The quickest way to
compress (deflate) data is by using the Zlib::Deflate class directly:

 require 'zlib'

 test_text = 'this is a test string' * 100
 puts "Original string is #{test_text.length} bytes long"
 compressed_text = Zlib::Deflate.deflate(test_text)
 puts "Compressed data is #{compressed_text.length} bytes long"

 Original string is 2100 bytes long
 Compressed data is 46 bytes long

 This test text compresses extremely well, as it’s the same string repeated 100 times over. However, on
normal data, it’s more practical to see compression rates of around 10 to 50 percent.

 Restoring compressed data requires Zlib::Inflate :

 require 'zlib'
 test_text = 'this is a test string' * 100
 puts "Original string is #{test_text.length} bytes long" compressed_text = Zlib::Deflate.
deflate(test_text)
 puts "Compressed data is #{compressed_text.length} bytes long"

http://www.ruby-doc.org/stdlib/libdoc/uri/rdoc/URI.html
http://www.ruby-doc.org/stdlib/libdoc/uri/rdoc/URI.html
http://en.wikipedia.org/wiki/URL

CHAPTER 16 ■ USEFUL RUBY LIBRARIES

415

 uncompressed_text = Zlib::Inflate.inflate(compressed_text)
 puts "Uncompressed data is back to #{uncompressed_text.length} bytes in length"

 Original string is 2100 bytes long
 Compressed data is 46 bytes long
 Uncompressed data is back to 2100 bytes in length

 ■ Note The compressed data returned by zlib is full 8-bit data, so might not be suitable to use in e-mails or
in formats where regular plain text is necessary. To get around this, you can compress your data using zlibas
usual, and then use the base64 library to turn the compressed results into plain text.

 zlib also comes with classes to help you work directly with compressed files. Files compressed with the
zlib algorithm are often known as gzipped files, and Zlib::GzipWriter and Zlib::GzipReader make it easy
to create and read from these files:

 require 'zlib'

 Zlib::GzipWriter.open('my_compressed_file.gz') do |gz|
 gz.write 'This data will be compressed automatically!'
 end

 Zlib::GzipReader.open('my_compressed_file.gz') do |my_file|
 puts my_file.read
 end

 This data will be compressed automatically!

 Further Information
• Standard library documentation for zlib : http://www.ruby-doc.org/stdlib/

libdoc/zlib/rdoc/Zlib.html

http://www.ruby-doc.org/stdlib/libdoc/zlib/rdoc/Zlib.html
http://www.ruby-doc.org/stdlib/libdoc/zlib/rdoc/Zlib.html

417© Peter Cooper 2016
P. Cooper, Beginning Ruby, DOI 10.1007/978-1-4842-1278-3

 APPENDIX A

 Ruby Primer and Review for
Developers

 This appendix is designed to act as both a Ruby primer and review, useful both to developers who want to
brush up rapidly on their Ruby knowledge, and to those who are new to the language but who have existing
programming knowledge and want to get a quick overview.

 If you’re a new programmer, or at least are new to concepts such as object orientation, scripting
languages, and dynamic languages, you’ll want to read through Chapter 2 and continue with the rest of the
book instead of depending on this appendix to teach you about Ruby. This appendix is designed for either
those who have finished reading the rest of this book and want to brush up on the basics, or those who want
to look quickly through some basic elements of Ruby syntax in the flesh.

 With that in mind, this appendix isn’t instructional, as most of the other chapters in this book are. A lot
of concepts will be covered at a quick pace with succinct code examples. References to more explanatory
detail found in this book are given where possible.

 The Basics
 In this section, I’ll give a brief overview of the Ruby programming language, its concepts, and how to use the
Ruby interpreter.

 Definition and Concepts
 Ruby is an open source, object-oriented programming language created and maintained by Yukihiro
Matsumoto (among others). Languages such as Perl, LISP, Smalltalk, and Python have inspired the syntax
and styling of the language. It is cross platform and runs on several different architectures, although its
informal “home” architecture is Linux on x86.

 Among other things, Ruby has automatic garbage collection, is (mostly) portable, supports multitasking
(both native and its own cooperative “green” threads), has a large standard library, and supports most
features associated with dynamic languages (such as closures, iterators, exceptions, overloading, and
reflection).

 Ruby is an interpreted language. This is in opposition to languages that are compiled . Code developed
in languages such as C and C++ has to be compiled into object code that represents instructions supported
by a computer’s processor. Ruby, however, is compiled down into platform-independent bytecode that is
run by a virtual machine. Python, Java, and C# share this characteristic, although they all run on different
virtual machine implementations and have different execution characteristics. Table A-1 highlights some key
differences between several popular programming languages.

http://dx.doi.org/10.1007/978-1-4842-1278-3_2

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS

418

 Ruby has been developed with the “principle of least surprise” in mind, so the way you’d expect things
to work is usually a valid way of doing something. This means Ruby is very much a “there’s more than one
way to do it” type of language, in the same vein as Perl but quite different in philosophy from languages such
as Python, where having one clear process to achieve something is seen as the best way to do things.

 ■ Note A useful resource is the official Ruby site’s “Ruby From Other Languages” section at
 http://www.ruby-lang.org/en/documentation/ruby-from-other-languages/ , where you’ll find in-depth
comparisons of Ruby against C, C++, Java, Perl, PHP, and Python.

 One important concept in Ruby is that almost everything is an object. For example, the following line of
code calls a primitive, internal method called puts with a single argument of 10.puts prints its arguments to
the screen:

 puts 10

 10

 ■ Note You could run this as a complete Ruby program, or perform it in an interactive manner using Ruby’s
irb tool.

 The following line of code calls the class method on the numeric object 10 . Even the literal number 10
is an object in this situation. The result demonstrates that 10 is an object of the Fixnum class.

 puts 10.class

 Fixnum

 Table A-1. Feature Comparison Between Several Popular Programming Languages

 Language Object-Oriented? Reflective? Dynamically Typed? Interpreted?

 Ruby Yes Yes Yes Yes (usually)

 C No No No No

 C++ Yes No No No

 C# Yes Yes Yes Yes, through VM

 Perl Partially Partially Yes Yes

 Java Yes, mostly Not generally No Yes, through VM

 Python Yes Yes Yes Yes

http://www.ruby-lang.org/en/documentation/ruby-from-other-languages/

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS

419

 Ruby’s reflection, overriding, object orientation, and other dynamic features make it possible for
developers to entirely override the behaviors of even built-in classes such as Fixnum . It’s possible to make
 Fixnum objects work in totally different ways. You can override Fixnum to the point that 2 + 2 could well equal
5. Although some developers already experienced with languages such as Java and C see this as a downside,
this level of control over the internals of the language gives Ruby developers a significant amount of power.
The key is to use that power carefully.

 The Ruby Interpreter and Running Ruby Code
 As Ruby is an interpreted language, Ruby code is executed using the Ruby interpreter. On most platforms,
that makes running a Ruby script as easy as this:

 ruby name_of_script.rb

 ■ Note Ruby program files usually end with the extension of .rb , although this isn’t a strict requirement.

 The Ruby interpreter has a number of options. You can ask the Ruby interpreter to print out its version
details using the -v (version) option:

 ruby -v

 ruby 2.2.0p0 (2014-12-25 revision 49005) [x86_64-darwin13]

 You can also execute Ruby commands directly from the command line, using -e :

 ruby -e "puts 2 + 2"

 4

 You can learn more about the Ruby interpreter’s command-line options by typing man ruby (on UNIX-
related platforms) or by visiting a web-based version of the Ruby man page at http://www.linuxcommand.
org/man_pages/ruby1.html .

 ■ Note On Microsoft Windows, you might choose to associate the Ruby interpreter directly with any .rb files
so that you can double-click Ruby files to execute them.

 On UNIX- related platforms, it’s possible to add a “shebang” line as the first line of a Ruby script so that it
can be executed without having to invoke the Ruby interpreter explicitly. For example:

 #!/usr/bin/ruby
 puts "Hello, world!"

http://www.linuxcommand.org/man_pages/ruby1.html
http://www.linuxcommand.org/man_pages/ruby1.html

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS

420

 You can take this script, give it a simple filename such as hello (no .rb extension needed), make the
file executable (using chmod), and run it directly using its filename rather than having to invoke the Ruby
interpreter explicitly. Chapter 10 covers this technique in more depth. More information about the shebang
line specifically is available at http://en.wikipedia.org/wiki/Shebang_(Unix) .

 Interactive Ruby
 With the normal Ruby interpreter also comes an interactive Ruby interpreter called irb . This allows you to
write Ruby code in an immediate, interactive environment where the results of your code are given as soon
as you type it. Here’s an example irb session:

 # irb
 irb(main):001:0> puts "test"
 test
 =>nil
 irb(main):002:0> 10 + 10
 => 20
 irb(main):003:0> 10 == 20
 =>false
 irb(main):004:0> exit

 irb gives you the results of methods and expressions immediately. This makes it an ideal tool for
debugging or putting together quick snippets of code, and for testing concepts.

 Expressions and Flow Control
 Expressions, logic, and flow control make up a significant part of any developer’s tools in any programming
language. This section looks at how Ruby implements them.

 Basic Expressions
 Ruby supports expressions in a style familiar to almost any programmer:

 "a" + "b" + "c"

 abc

 10 + 20 + 30

 60

 ("a" * 5) + ("c" * 6)

 aaaaacccccc

http://dx.doi.org/10.1007/978-1-4842-1278-3_10
http://en.wikipedia.org/wiki/Shebang_(Unix)

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS

421

 a = 10
 b = 20
 a * b

 200

 You can assign the results of expressions to variables, which you can then use in other expressions.
 Method calls, variables, literals, brackets, and operators can all combine so long as subexpressions

always feed values of the correct type into their parent expressions or provide methods that allow them to
be coerced into the right types. The next section covers this topic in more depth. (Expressions are covered in
depth in Chapter 3 .)

 Class Mismatches
 Ruby is a dynamic language, but unlike Perl, objects aren’t converted between different classes
automatically (in this sense Ruby is a strongly typed language). For example, this expression is valid in Perl:

 "20" + 10

 30

 However, in Ruby, you get an error response with the same expression:

 TypeError: no implicit conversion of Fixnum into String
 from (irb):1:in `+'
 from (irb):1

 In Ruby, you can only use objects that are of the same class or that support automatic translation
between classes (coercion) in operations with one another (usually via methods called things like to_s and
 to_h , for conversions to strings and hashes, respectively).

 However, Ruby comes with a set of methods that exist on many types of objects, which make conversion
easy. For example:

 "20" + 10.to_s

 2010

 In this example, the number 10 is converted to a string "10" in situ with the to_s method. Consider
this inverse example, where you convert the string "20" into an integer object using the to_i method before
adding 10 to it:

 "20".to_i + 10

 30

http://dx.doi.org/10.1007/978-1-4842-1278-3_3

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS

422

 ■ Note Methods are covered in depth in Chapters 2 , 3 , and 6 , as well as later in this appendix.

 The to_s method provided by all number classes in Ruby results in a number being converted into a
 String object. C and C++ programmers might recognize this concept as similar to casting .

 Other conversions that can take place are converting integers to floats using to_f , and vice versa with
 to_i . You can convert strings and numbers using to_s , to_i , and to_f . Many other classes support to_s for
converting their structure and other data into a string (the Time class provides a good demonstration of this).
This topic is covered in Chapter 3 in the section “Converting Objects to Other Classes.”

 Comparison Expressions
 Comparison expressions in Ruby, as in most other languages, return true or false , except that in some
situations comparisons might return nil , Ruby’s concept of “null” or nonexistence. For example:

 2 == 1

 false

 2 == 2

 true

 (2 == 2) && (1 == 1)

 true

 x = 12
 x * 2 == x + 1

 false

 x * x == x ** 2

 true

 In each of the preceding examples, you test whether variables, literals, or other expressions are equal
to one another using == (symbolizing “is equal to”). You can check that multiple expressions result in true
(logical “and”—if x and y are true) using && (symbolizing “and”).

 As in other languages, the concept of a logical “or” is symbolized by ||:

 (2 == 5) || (1 == 1)

 true

http://dx.doi.org/10.1007/978-1-4842-1278-3_2
http://dx.doi.org/10.1007/978-1-4842-1278-3_3
http://dx.doi.org/10.1007/978-1-4842-1278-3_6
http://dx.doi.org/10.1007/978-1-4842-1278-3_3

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS

423

 This expression is true because even though 2 is not equal to 5 , the other sub-expression is true ,
meaning that one or another of the expressions is true , so the whole comparison is also true .

 Last, it can be useful to negate expressions. You can do this with the ! operator, as in many other
programming languages. For example, you might want to see if one thing is true but another thing is false .
Here’s an example:

 (2 == 2) && !(1 == 2)

 true

 The expression is true because both sub- expressions are true. 2 is equal to 2 , and 1 is not equal to 2 .
 You can also check that one thing is not equal to another with the inequality operator != :

 (2 == 2) && (1 != 2)

 true

 Flow
 Ruby supports a few different forms of flow control. In this section, you’ll see several techniques you can use
for branching and looping. (All the topics in this section are covered in more depth in Chapter 3 .)

 Branching and Conditional Execution
 The simplest form of conditional execution is with just a single line using if or unless :

 puts "The universe is broken!" if 2 == 1

 This example won’t print anything to the screen because 2 is not equal to 1 . In this case, if performs the
comparison before the rest of the line is executed. This usage will be familiar to Perl programmers (indeed,
that’s where this construction came from), but might appear back-to-front to developers from languages
such as C.

 Rubyalsosupports a multiline construction that’s more familiar to non-Perl or Ruby coders:

 if 2 == 1
 puts "The universe is broken!"
 end

 This multiline construction is less space efficient than the previous, single-line construction, but it
allows you to put multiple lines between the condition and the end of the block, which isn’t possible with
the “end of line” technique. Pascal coders should note the absence of a begin , though otherwise the style is
similar to that in Pascal.

 ■ Note unless is the opposite of if . It executes code if the expression is false (or nil), rather than
 true . Some Rubyists think of it as “if not,” because unless acts like if with the expression negated. Other
developers avoid it entirely due to the potential confusion it can cause.

http://dx.doi.org/10.1007/978-1-4842-1278-3_3

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS

424

 Ruby also supports the else directive, as found in languages such as C, Perl, and Pascal:

 if 2 == 1
 puts "The universe is broken!"
 else
 puts "The universe is okay!"
 end

 The universe is okay!

 If the expression (2 == 1 in this example) is true , the main block of code is executed, else the other
block of code is. There’s also a feature called elsif that lets you chain multiple if s together:

 x = 12
 if x == 1 || x == 3 || x == 5 || x == 7 || x == 9
 puts "x is odd and under 10"
 elsif x == 2 || x == 4 || x == 6 || x == 8
 puts "x is even and under 10"
 else
 puts "x is over 10 or under 1"
 end

 The preceding rather obtuse example demonstrates how you can use if , elsif , and else in tandem.
The only thing to note is that end always finishes an if (or unless) block, whether end is on its own or
features elsif and else blocks, too. In some languages, there’s no need to delimit the end of if blocks if they
contain only a single line. This isn’t true of Ruby.

 ■ Note C coders will be used to else if . Ruby’s variation is based on the Perl standard of elsif .

 Ruby also supports another construction familiar to C, C++, Java, and Pascal coders, called case (known
as switch in C, C++, and Java):

 fruit = "apple"
 color = case fruit
 when "orange"
 "orange"
 when "apple"
 "green"
 when "banana"
 "yellow"
 else
 "unknown"
 end
 puts color

 green

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS

425

 This code is similar to the if block, except that the syntax is a lot cleaner. A case block works by
processing an expression first (supplied after case), and then the case block finds and executes a contained
 when block with an associated value matching the result of that expression. If no matching when block is
found, then the else block within the case block will be executed instead.

 case is, essentially, a substitution for a large, messy clump of if and elsif statements.

 The Ternary Operator (Conditional Expressions)
 Ruby supports a construction called the ternary operator . Its usage is simple:

 x = 10
 puts x > 10 ? "Higher than ten" : "Lower or equal to ten"

 Lower or equal to ten

 The ternary operator works like so:

 expression ? true_expression : false_expression

 It works like an expression, but with built-in flow control. If the initial expression is true , then the first
following expression will be evaluated and returned. If the initial expression is false , then the final following
expression will be evaluated and returned instead.

 Loops
 Ruby supports loops in a similar way to other programming languages. For example, while , loop , until ,
 next , and break features will be familiar (although with possibly different names) to most programmers.

 ■ Note Ruby also supports iteration and code blocks, which can prove a lot more powerful than regular
loops. These are covered later in this appendix and in Chapters 2 , 3 , and 6 .

 Loop techniques are covered in Chapter 3 , but some basic demonstrations follow. Here’s a permanent
loop that you can break out of using break :

 i = 0
 loop do
 i += 1
 puts i
 break if i > 100
 end

 ■ Note It’s worth noting that unlike in C or Perl, you cannot increment variables by 1 with variable++ in
Ruby. variable = variable + 1 or variable += 1 are necessary instead.

http://dx.doi.org/10.1007/978-1-4842-1278-3_2
http://dx.doi.org/10.1007/978-1-4842-1278-3_3
http://dx.doi.org/10.1007/978-1-4842-1278-3_6
http://dx.doi.org/10.1007/978-1-4842-1278-3_3

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS

426

 Here’s a while loop, using next to skip even numbers (using the % modulo operator):

 i = 0
 while (i < 15)
 i += 1
 next if i % 2 == 0
 puts i
 end

 1
 3
 5
 7
 9
 11
 13
 15

 ■ Note until is the opposite of while. until (i >= 15) is equivalent to while (i < 15) .

 Further looping techniques are covered in Chapter 3 and throughout the book.

 Object Orientation
 Ruby is considered a pure object-oriented language, because everything appears to Ruby as an object. An
earlier example in this appendix demonstrated this:

 puts 10.class

 Fixnum

 Even literal data (such as strings or numbers embedded directly in your source code) is considered to
be an object, and you can call the methods made available by those objects (and/or their parent classes).

 ■ Note Object orientation, classes, objects, methods, and their respective techniques are covered in full in
Chapters 2 and 6 . This section presents merely a brief overview.

 Ruby implements object orientation in a simple way (syntax-wise), but offers more dynamic features
than other major languages (see Chapter 6 for many examples of such features).

http://dx.doi.org/10.1007/978-1-4842-1278-3_3
http://dx.doi.org/10.1007/978-1-4842-1278-3_2
http://dx.doi.org/10.1007/978-1-4842-1278-3_6
http://dx.doi.org/10.1007/978-1-4842-1278-3_6

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS

427

 Objects
 Objects in Ruby have no special qualities beyond objects that exist in any other object-oriented
programming language. However, the key difference between Ruby and most other major object-oriented
languages is that in Ruby everything is an object. With this in mind, you can call methods on almost
everything, and even chain methods together.

 In C or Perl, it would be common practice to write code in this form:

 function1(function2(function3(something)))

 However, in Ruby you’d do this:

 something.function3.function2.function1

 Periods are used between an object and the method to call, as in C++ or Java (as opposed to -> used in
Perl). In this example, you call the function3 method on the something object, then the function2 method
on the result of that, and then the function1 method on the result of that. A real-world demonstration can
illustrate:

 "this is a test".reverse

 tset a si siht

 "this is a test".reverse.upcase.split(' ').reverse.join('-')

 SIHT-SI-A-TSET

 This example is deliberately long to demonstrate the power of method chaining in Ruby. The syntax is
a lot cleaner than the equivalent in Perl, C, or C++, and almost reads like English. This example takes your
string "this is a test" , reverses it, converts it to uppercase, splits it into words (splitting on spaces),
reverses the position of the words in an array, and then joins the array back into a string with each element
separated by dashes. (Objects are covered in depth in Chapters 2 , 3 , and 6 .)

 Classes and Methods
 Ruby classes are similar in style to those in Perl, C++, or Java, but keep the benefits of Ruby’s dynamic
features. Let’s look at an example class definition:

 class Person
 def initialize(name, age)
 @name = name
 @age = age
 end

 def name
 return @name
 end

http://dx.doi.org/10.1007/978-1-4842-1278-3_2
http://dx.doi.org/10.1007/978-1-4842-1278-3_3
http://dx.doi.org/10.1007/978-1-4842-1278-3_6

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS

428

 def age
 return @age
 end
 end

 This class features an initialize method that is called automatically when you create a new instance
of that class. Two parameters or arguments are accepted (name and age) and assigned to instance variables.
Instance variables are variables associated with a particular instance of a class and begin with an @ sign (as
in @name). Java developers should recognize @name as being similar to this.name .

 After the initializer come two methods (name and age) that act as basic accessors. They simply return
the value of their respective instance variables.

 ■ Note In Ruby, if no value is explicitly returned from a method, the value of the last expression is returned
instead. Therefore, return @name and just @name as the last line in the name method would be equivalent.

 With the preceding class definition, it’s trivial to create new objects:

 person1 = Person.new('Chris', 25)
 person2 = Person.new('Laura', 23)
 puts person1.name
 puts person2.age

 Chris
 23

 One benefit of Ruby is that you can add features to classes even if they’ve already been defined. Within
the same program as before, you can simply “reopen” the class and add more definitions:

 class Person
 def name=(new_name)
 @name = new_name
 end

 def age=(new_age)
 @age = new_age
 end
 end

 These new methods are added to the Person class and are automatically made available to any existing
instances of that class. These new methods are setter methods, as signified by the equals sign following their
names. They allow you to do this:

 person1.name = "Barney"
 person2.age = 101
 puts person1.name
 puts person2.age

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS

429

 Barney
 101

 Ruby can simplify most of the preceding work for you though, as it provides the attr_accessor helper
method that automatically creates accessors and setter methods within a class for you.

 class Person
 attr_accessor :name, :age
 end

 You can also create class methods : methods that don’t exist within the scope of a single object, but that
are bound directly to the class. For example:

 class Person
 @@count = 0

 def initialize
 @@count += 1
 end

 def self.count
 @@count
 end
 end

 a = Person.new
 b = Person.new
 c = Person.new
 puts Person.count

 3

 This Person class implements a count class method (notice that it is defined as self.count , rather than
just count , making it a class method). The count class method returns the value of a class variable (@@count)
that stores the total number of Person objects created so far. Class variables begin with two @ signs and exist
within the scope of a class and all its objects, but not within the scope of any specific object. Therefore,
 @@count equals 3 and only 3 once you’ve created three Person objects.

 This section has given only a brief overview of classes, objects, and their special variables. For a detailed
look at classes and objects, refer to Chapter 6 .

 Reflection
 Ruby is often called a reflective language , as it supports reflection. Reflection is a process that allows
a computer program to observe and modify its own structure and behavior during execution. This
functionality can seem like a novelty to developers experienced with C, C++, and Perl, but it’s incredibly
important in terms of Ruby’s operation and Ruby’s ability to define domain-specific languages, making other
forms of development easier.

http://dx.doi.org/10.1007/978-1-4842-1278-3_6

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS

430

 A brief demonstration of reflection is the ability to programmatically retrieve a list of all the methods
associated with any object or class in Ruby. For example, here’s how to display a list of all methods of the
 Hash class:

 Hash.methods

 [:[], :try_convert, :allocate, :new, :superclass, :freeze, :===, :==, :<=>, :<, :<=, :>,
:>=, :to_s, :inspect, :included_modules, :include?, :name, :ancestors, :instance_methods,
:public_instance_methods, :protected_instance_methods, :private_instance_methods,
:constants, :const_get, :const_set, :const_defined?, :const_missing, :class_variables,
:remove_class_variable, :class_variable_get, :class_variable_set, :class_variable_
defined?, :public_constant, :private_constant, :singleton_class?, :include, :prepend,
:module_exec, :class_exec, :module_eval, :class_eval, :method_defined?, :public_method_
defined?, :private_method_defined?, :protected_method_defined?, :public_class_method,
:private_class_method, :autoload, :autoload?, :instance_method, :public_instance_method,
:nil?, :=~, :!~, :eql?, :hash, :class, :singleton_class, :clone, :dup, :itself, :taint,
:tainted?, :untaint, :untrust, :untrusted?, :trust, :frozen?, :methods, :singleton_
methods, :protected_methods, :private_methods, :public_methods, :instance_variables,
:instance_variable_get, :instance_variable_set, :instance_variable_defined?, :remove_
instance_variable, :instance_of?, :kind_of?, :is_a?, :tap, :send, :public_send, :respond_
to?, :extend, :display, :method, :public_method, :singleton_method, :define_singleton_
method, :object_id, :to_enum, :enum_for, :equal?, :!, :!=, :instance_eval, :instance_exec,
:__send__, :__id__]

 Similarly, you can retrieve a list of methods available on a String object directly:

 "testing". methods

 [:<=>, :==, :===, :eql?, :hash, :casecmp, :+, :*, :%, :[], :[]=, :insert, :length, :size,
:bytesize, :empty?, :=~, :match, :succ, :succ!, :next, :next!, :upto, :index, :rindex,
:replace, :clear, :chr, :getbyte, :setbyte, :byteslice, :scrub, :scrub!, :freeze, :to_i,
:to_f, :to_s, :to_str, :inspect, :dump, :upcase, :downcase, :capitalize, :swapcase,
:upcase!, :downcase!, :capitalize!, :swapcase!, :hex, :oct, :split, :lines, :bytes,
:chars, :codepoints, :reverse, :reverse!, :concat, :<<, :prepend, :crypt, :intern, :to_
sym, :ord, :include?, :start_with?, :end_with?, :scan, :ljust, :rjust, :center, :sub,
:gsub, :chop, :chomp, :strip, :lstrip, :rstrip, :sub!, :gsub!, :chop!, :chomp!, :strip!,
:lstrip!, :rstrip!, :tr, :tr_s, :delete, :squeeze, :count, :tr!, :tr_s!, :delete!,
:squeeze!, :each_line, :each_byte, :each_char, :each_codepoint, :sum, :slice, :slice!,
:partition, :rpartition, :encoding, :force_encoding, :b, :valid_encoding?, :ascii_only?,
:unpack, :encode, :encode!, :to_r, :to_c, :unicode_normalize, :unicode_normalize!,
:unicode_normalized?, :>, :>=, :<, :<=, :between?, :nil?, :!~, :class, :singleton_class,
:clone, :dup, :itself, :taint, :tainted?, :untaint, :untrust, :untrusted?, :trust,
:frozen?, :methods, :singleton_methods, :protected_methods, :private_methods, :public_
methods, :instance_variables, :instance_variable_get, :instance_variable_set, :instance_
variable_defined?, :remove_instance_variable, :instance_of?, :kind_of?, :is_a?, :tap,
:send, :public_send, :respond_to?, :extend, :display, :method, :public_method, :singleton_
method, :define_singleton_method, :object_id, :to_enum, :enum_for, :equal?, :!, :!=,
:instance_eval, :instance_exec, :__send__, :__id__]

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS

431

 ■ Note The results shown are from Ruby 2.2. Future versions of Ruby may show different results.

 The results given by the methods method might seem overwhelming at first, but over time they become
incredibly useful. Using the methods method on any object allows you to learn about methods that aren’t
necessarily covered in this book (or other books), or that are new to the language. You can also use methods
to retrieve a list of class methods, because classes are also objects in Ruby!

 This section provides only a taste of reflection, but the topic is covered in more detail in Chapter 6 .

 Reopening Classes
 It’s trivial to override already defined methods on classes. Earlier in this appendix, I mentioned that, if you so
wish, you can adjust the Fixnum class so that 2 + 2 would equal 5 . Here’s how you do that:

 class Fixnum
 alias_method :old_plus, :+

 def +(other_number)
 return 5 if self == 2 && other_number == 2
 old_plus other_number
 end
 end

 puts 2 + 2

 5

 The first thing this code does is to enter the Fixnum class, so you can define methods and perform
actions within it. Next, you make an alias from the addition operator/method (+) to a new method called
 old_plus . This is so you can still use the normal addition feature, though with a different name.

 Next, you redefine (or “override”) the + method and return 5 if the current number is 2 and the number
you’re adding to the current number is also 2 . Otherwise, you simply call old_plus (the original addition
function) with the supplied argument. This means that 2 + 2 now equals 5 , but all other addition is
performed correctly.

 You can redefine nearly any method within Ruby. This can make testing essential because you (or
another developer) might incorporate changes that affect classes and objects being used elsewhere within
your program. Testing is covered in Chapters 8 and 12 .

 Method Visibility
 It’s possible to change the visibility of methods within Ruby classes in one of three ways. Methods can be
public (callable by any scope within the program), private (callable only within the scope of the instance
the methods exist upon), and protected (callable by any object of the same class). Full details about method
visibility are available in Chapter 6 .

http://dx.doi.org/10.1007/978-1-4842-1278-3_6
http://dx.doi.org/10.1007/978-1-4842-1278-3_8
http://dx.doi.org/10.1007/978-1-4842-1278-3_12
http://dx.doi.org/10.1007/978-1-4842-1278-3_6

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS

432

 To encapsulate methods as public , private , or protected , you can use two different techniques. Using
the words public , private , and protected within a class definition causes the methods defined thereafter to
be encapsulated in the respective fashion:

 class MyClass
 def public_method
 end

 private
 def private_method1
 end

 def private_method2
 end

 protected
 def protected_method
 end
 end

 You can also explicitly set methods to be encapsulated in one way or another, but only after you’ve first
defined them. For example:

 class MyClass
 def public_method
 end

 def private_method1
 end

 def private_method2
 end

 def protected_method
 end

 public :public_method
 private :private_method1, :private_method2
 protected :protected_method
 end

 Declarations such as this should come after you define the methods, as otherwise Ruby won’t know
what you’re referring to.

 Data
 As everything is an object in Ruby, all forms of data represented within Ruby are also objects, just of varying
classes. Therefore, some Ruby developers will try to correct you if you refer to types rather than classes ,
although this is merely pedantry.

 In this section, we’ll take a quick look at some of the basic data classes in Ruby.

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS

433

 Strings
 Strings in Ruby are generally unexceptional, except for the object-oriented benefits you gain. Previously in
this appendix, we looked at how powerful classes and methods can be when working on strings:

 "this is a test".reverse.upcase.split(' ').reverse.join('-')

 SIHT-SI-A-TSET

 The String class offers a plethora of useful methods for managing text. I’ll cover several of these in the
following “Regular Expressions” section. However, if you want to see what other methods strings offer, it’s
easy: just execute "test".methods .

 Regular Expressions
 In Ruby, regular expressions are implemented in a reasonably standard way, being somewhat aligned with
the Perl style. If you’re familiar with regular expressions, Ruby’s techniques shouldn’t seem alien:

 "this is a test".sub(/[aeiou]/, '*')

 th*s is a test

 "this is a test".gsub(/[aeiou]/, '*')

 th*s *s * t*st

 "THIS IS A TEST".gsub(/[aeiou]/, '*')

 THIS IS A TEST

 "THIS IS A TEST".gsub(/[aeiou]/i, '*')

 TH*S *S * T*ST

 sub performs a single substitution based on a regular expression, whereas gsub performs a global
substitution. As in Perl, you use the /i option to make the regular expression case insensitive.

 Ruby also makes matching easy, with the match method of String returning a special MatchData array
you can query:

 m = "this is a test".match(/\b..\b/)
 m[0]

 is

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS

434

 m = "this is a test".match(/\b(.)(.)\b/)
 m[0]

 is

 m[1]

 i

 m[2]

 s

 The latter example demonstrates how you can parenthesize elements of the regular expression to
separate their contents in the results. m[0] contains the full match, whereas m[1] onward matches each set
of parentheses. This behavior is similar to that of $1, $2, $.. in Perl (note that these special variables also
exist in Ruby, but their use is generally not preferred).

 You can also scan through a string, returning each match for a regular expression:

 "this is a test".scan(/[aeiou]/)

 ['i', 'i', 'a', 'e']

 "this is a test".scan(/\w+/)

 ['this', 'is', 'a', 'test']

 Methods such as split also accept regular expressions (as well as normal strings):

 "this is a test".split(/\s/)

 ['this', 'is', 'a', 'test']

 Regular expressions are covered in more depth in Chapter 3 , and are used throughout the book.

 Numbers
 Integers and floating point numbers are available in Ruby and operate mostly as you’d expect. Numbers
support all common operators such as modulus (%), addition, subtraction, division, multiplication, and
powers (**).

 ■ Note You can produce roots easily by raising a number to the power of 1 divided by the root desired . For
example, you can find the square (2) root of 25 with 25 ** 0.5 .

http://dx.doi.org/10.1007/978-1-4842-1278-3_3

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS

435

 A key consideration with numbers in Ruby is that unless you explicitly define a number as a floating
point number, it won’t be one unless it contains a decimal point. For example:

 10 / 3

 3

 In this situation, 10 and 3 are both considered integers, so integer division is used. If integer division is
what you’re after—and it might be in some cases—then you’re fine. But if you’re after floating point division,
you need to do something to ensure that at least one of the values involved is recognized as a floating point
number. You can generate a floating point value in one of three ways as follows:

• By invoking the to_f method, to convert an integer to its floating point equivalent

• By writing the number with a decimal point, even if you just add “.0” to the end

• By invoking the Float() initializer method to convert an integer to a floating point
value

 Here are some examples:

 10.to_f / 3

 3.33333333333335

 10.0 / 3

 3.33333333333335

 10 / Float(3)

 3.33333333333335

 Which method you choose to make the 10 be recognized as a Float object can be largely influenced by
the situation, so it’s useful to see all your options.

 Another useful feature in Ruby is that even though whole numbers are typically stored as 32-bit integers
internally, Ruby automatically converts integer Fixnum objects into Bignum objects when the 32-bit barrier is
breached. For example:

 (2 ** 24).class

 Fixnum

 (2 ** 30).class

 Bignum

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS

436

 2 ** 100

 1267650600228229401496703205376

 Ruby appears to have no problem in dealing with numbers of tens of thousands of digits in length,
certainly enough to solve any mathematical problems you might face!

 Numbers are covered in depth in Chapter 3 .

 Arrays
 As in other programming languages, arrays act as ordered collections. However, in Ruby specifically,
arrays are ordered collections of objects , because everything in Ruby is an object! Arrays can contain any
combination of objects of any class.

 At first sight, Ruby arrays work much like arrays in any other language, although note that you work on
an array using methods, because an array itself is an object. The following example shows the invocation of
the Array class’s push method:

 a = []
 a.push(10)
 a.push('test')
 a.push(30)
 a<< 40

 [10, 'test', 30, 40]

 Notice the use of a different form of pushing objects to an array with the << operator on the last line of
the preceding example.

 You can then retrieve elements like so:

 puts a[0]
 puts a[1]
 puts a[2]

 10
 test
 30

 ■ Note Although [] defines an empty literal array, you can also use Array.new to generate an empty array if
you prefer to stick to object orientation all the way. Java and C++ developers might prefer this syntax initially.

 Arrays are objects of class Array and support a plethora of useful methods, as covered in full in Chapter 3 .

http://dx.doi.org/10.1007/978-1-4842-1278-3_3
http://dx.doi.org/10.1007/978-1-4842-1278-3_3

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS

437

 Hashes (Associative Arrays)
 Hashes (also known as associative arrays) exist as a concept in many programming languages, such as Perl,
Java, and Python (where they are called dictionaries). Hashes are data structures that let you associate keys
with values.

 Ruby’s implementation of hashes is straightforward and should be familiar to both Perl and Python
developers, despite some minor syntax changes. For example:

 fred = {
 'name' => 'Fred Elliott',
 'age' => 63,
 'gender' => 'male',
 'favorite painters' => ['Monet', 'Constable', 'Da Vinci']
 }

 fred refers to a basic hash that contains four elements that have keys of 'name' , 'age' , 'gender' , and
 'favorite painters' . You can refer back to each of these elements easily:

 puts fred['age']

 63

 puts fred['gender']

 male

 puts fred['favorite painters'].first

 Monet

 Hashes are objects of class Hash and come with a large number of helpful methods to make hashes easy to
navigate and manipulate, much like regular arrays. It’s important to note that both hash element keys and values
can be objects of any class themselves, as long as each element key is distinct. Otherwise, previously existing
values will be overwritten. Hashes and associated methods and techniques are covered in detail in Chapter 3 .

 In Ruby 1.9 and above, an alternative style of defining hashes is available, and you may see it in
production code. It would allow the previous example to be written like so:

 fred = {
 name: 'Fred Elliott',
 age: 63,
 gender: 'male',
 favorite_painters: ['Monet', 'Constable', 'Da Vinci']
 }

 You should note that this style of defining hashes is an alternative shorthand syntax and is still not
considered to be the standard, even in Ruby 1.9 and above.

http://dx.doi.org/10.1007/978-1-4842-1278-3_3

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS

438

 Complex Structures
 Because hashes and arrays can contain other objects, it’s possible to create complex structures of data. Here’s
a basic example of a hash containing other hashes (and another hash containing an array at one point):

 people = {
 'fred' => {
 'name' => 'Fred Elliott',
 'age' => 63,
 'gender' => 'male',
 'favorite painters' => ['Monet', 'Constable', 'Da Vinci']
 },
 'janet' => {
 'name' => 'Janet S Porter',
 'age' => 68,
 'gender' => 'female'
 }
 }

 puts people['fred']['age']
 puts people['janet']['gender']
 puts people['janet'].inspect

 63
 female
 {"name"=>"Janet S Porter", "age"=>68, "gender"=>"female"}

 This example presents a hash called people that contains two entries with keys of 'fred' and 'janet' ,
each of which refers to another hash containing information about each person. These sorts of structures are
common in Ruby (as well as in Perl and C++). They are covered in more depth in Chapter 3 and throughout
this book. Typically, compared to other languages, the syntax is simple, and in Ruby, the simplest answer is
usually the right one.

 Input/Output
 Ruby has powerful input/output (I/O) support , from the ability to create, read, and manipulate files, through
to database support, external devices, and network connectivity. These topics are covered in full in this book
(primarily in Chapters 9 , 14 , and 15), but this section presents a basic overview of the most important forms
of I/O.

 Files
 Ruby’s support for file I/O is powerful compared to that of other languages. Although Ruby supports
traditional techniques for reading and manipulating files, its object-oriented features and tight syntax offer
more exciting possibilities. First, here is the traditional way you’d open and read a file (as when using a more
procedural language):

 lines = []
 file_handle = File.open("/file/name/here", "r")

http://dx.doi.org/10.1007/978-1-4842-1278-3_3
http://dx.doi.org/10.1007/978-1-4842-1278-3_9
http://dx.doi.org/10.1007/978-1-4842-1278-3_14
http://dx.doi.org/10.1007/978-1-4842-1278-3_15

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS

439

 while line = file_handle.gets
 lines<< line
 end

 file_handle.close

 ■ Note You would need to replace /file/name/here with a legitimate path for this to work asis.

 This example opens a file in read-only mode, and then uses the file handle to read the file line by line
before pushing it into an array. This is a reasonably standard technique in, say, C or Pascal. Let’s look at a
Ruby-specific technique:

 lines = File.readlines('/file/name/here')

 Ruby’s file handling and manipulation support is particularly deep and extensive, so it’s out of the scope
of this chapter. However, the preceding examples should have provided a glimpse into what’s possible, and
files are covered in full in Chapter 9 of this book.

 Databases
 There are several ways to connect to database systems such as MySQL, MongoDB, PostgreSQL, Oracle,
SQLite, and Microsoft SQL Server from Ruby. Typically, a “driver” library is available for each of the main
database systems, although these don’t come with Ruby by default. You typically install database driver
libraries using the RubyGems Ruby library packaging system, or you might need to download and install
them manually. Explaining how to use such libraries is beyond the scope of this appendix, but they are
covered in full in Chapter 9 .

 Ruby also has libraries that can provide more standardized interfaces to various driver libraries.
Consider looking at sequel for this.

 Web Access
 Ruby comes with libraries that make accessing data on the Web incredibly easy. At a high level is the open-
uri library, which makes it easy to access data from the Web. This example retrieves a web page and returns
an array containing all the lines on that page:

 require 'open-uri'
 open('http://www.rubyinside.com/').readlines

 open-uri is a convenience library that provides an open method that allows you to load data from URLs.
 open returns a File handle (technically a Tempfile object) that works in the same way as any other File
object, allowing you to use methods such as readlines to read all the lines of the data into an array. (This
topic is covered in significantly more depth in Chapter 14 .)

http://dx.doi.org/10.1007/978-1-4842-1278-3_9
http://dx.doi.org/10.1007/978-1-4842-1278-3_9
http://dx.doi.org/10.1007/978-1-4842-1278-3_14

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS

440

 Ruby also provides lower-level libraries, such as net/http. Here’s an example of retrieving a file from a
web site and displaying it on the screen:

 require 'net/http'

 Net::HTTP.start('www.rubyinside.com') do |http|
 req = Net::HTTP::Get.new('/test.txt')
 puts http.request(req).body
 end

 Hello Beginning Ruby reader!

 This example connects to the web server at www.rubyinside.com and performs an HTTP GET request
for /test.txt . This file’s contents are then returned and displayed. The equivalent URL for this request is
 http://www.rubyinside.com/test.txt , and if you load that URL in your web browser, you’ll get the same
response as this Ruby program.

 net/http also lets you make requests using other HTTP verbs such as POST and DELETE , and it is the most
flexible HTTP library for Ruby. As it’s included with the standard library, it’s usually the first choice for most
Ruby developers. Refer to Chapter 14 for full information.

 Libraries
 This section looks at how you can organize code into multiple files and manage libraries within Ruby.

 File Organization
 Ruby libraries don’t need to be packaged in any special way (unlike, say, Java’s JAR archives). Ruby does
have a library packaging system called RubyGems (covered in the next section), but its use is entirely
optional. The simplest way to create a library is to create a Ruby file containing classes and methods and use
 require to load it. This technique is similarin Perl (using use) or C (using #include) .

 Let’s assume you have a file called mylib.rb containing the following:

 class MyLib
 def self.hello_world
 puts "Hello, world!"
 end
 end

 And then you have another file like so:

 require_relative 'mylib'
 MyLib.hello_world

 This program loads in mylib.rb and includes its classes, methods, and other particulars into the current
runtime environment, meaning that MyLib.hello_world calls the correct routine.

 Ruby searches through its library folders in a specific order (and usually the current directory, too,
as in the previous example), as dictated by the special variable $: . This variable is an array that can be
manipulated like any other array. You can push, pop, and otherwise change the order and directories in
which your program searches for libraries.

http://www.rubyinside.com/
http://www.rubyinside.com/test.txt
http://dx.doi.org/10.1007/978-1-4842-1278-3_14

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS

441

 This topic is covered in depth in Chapter 7 , and demonstrations of several Ruby libraries are offered in
Chapter 16 . A basic Ruby library is also created from scratch in Chapter 12 .

 Packaging
 RubyGems (http://rubygems.org/) is a packaging system for Ruby libraries and applications. Each
package within the RubyGems universe is called a gem or RubyGem (in this book, both terms are used
interchangeably). RubyGems makes it easier to distribute, update, install, and remove libraries and
applications on your system. A further system called Bundler makes it possible to “bundle” together gemsin
the context of a single Ruby project that you might be working on.

 RubyGems has been included by standard with Ruby since Ruby 1.9, but was previously an optional,
third-party technology.

 Before the advent of RubyGems, Ruby libraries and applications were distributed in a basic fashion in
archive files, or even as source code to copy and paste from the Web. RubyGems makes it easier and more
centralized, and also takes care of any prerequisites and dependencies required when installing a library.
For example, here’s how to install the Ruby on Rails framework:

 gem install rails

 ■ Note On some platforms, sudo gem install rails would be required so as to install the libraries as a
superuser.

 This installs the gems that make up Rails along with all their dependencies. The gem application
prompts at each step of the way so you know exactly what’s being installed (you can override this with
command-line options). For example, gem install rails –y installs Rails and its dependencies without
questioning you at all. Bundler provides an alternative whereby gems are defined within a special file and
then the Bundler tool automatically installs the required dependencies for you.

 You can uninstall gems in as simple a fashion:

 gem uninstall rails

 If you have multiple versions of the same gem(s) installed, gem will ask you which version(s) you want
to remove.

 By default, gems are searched for in the default repository, hosted at RubyGems. org . There is
documentation on the official RubyGems site if you want to create your own account to be able to release
your own gems via the site.

 Optionally you can run your own gems repository on your own web site or by using the RubyGems
server software. This is less common and requires users of your gems to specify your server name at the
same time as installing the gem. I would not advise this.

 RubyGems and Bundler are covered in Chapter 7 , and several RubyGems are documented in Chapter 16 .

http://dx.doi.org/10.1007/978-1-4842-1278-3_7
http://dx.doi.org/10.1007/978-1-4842-1278-3_16
http://dx.doi.org/10.1007/978-1-4842-1278-3_12
http://rubygems.org/)
http://dx.doi.org/10.1007/978-1-4842-1278-3_7
http://dx.doi.org/10.1007/978-1-4842-1278-3_16

443© Peter Cooper 2016
P. Cooper, Beginning Ruby, DOI 10.1007/978-1-4842-1278-3

 APPENDIX B

 Useful Resources

 This appendix provides links to useful Ruby resources that are available online, from web sites to chat rooms
and mailing lists.

 As the Internet is ever changing, some resources that were available at the time of writing may no longer
be available to you. When you find that to be the case, it’s worth using a search engine to search for the
keywords involved, as the site you’re looking for might have simply changed URLs.

 Tutorials and Guides
 The Internet is host to a significant number of tutorials and guides on how to use various features of
Ruby and its libraries. Often there are multiple tutorials on how to do the same thing in different ways,
and tutorials can appear quickly after libraries are released. This is why it’s worth subscribing to a few
Ruby-related Twitter feeds and other news sources so that you can learn about the latest action as it happens.

 However, in this section are links to a number of useful tutorials and guides that are more perennially useful.

 General Ruby Tutorials
 Learn Ruby (http://rubylearning.com) : A collection of short tutorials and
e-books on various aspects of Ruby, by Satish Talim. It’s ideal as a quick recap on
various topics. Satish also runs Ruby-related online classes.

 Try Ruby! (http://tryruby.org/) : An online Ruby interpreter with a
built-in tutorial.

 Why’s (Poignant) Guide to Ruby (http://poignant.guide/) : An amazingly
quirky and exciting Ruby tutorial written by “why the lucky stiff,” the author of
this book’s foreword.

 Ruby in Twenty Minutes (http://www.ruby-lang.org/en/documentation/
quickstart/) : A basic primer to the bare essentials of Ruby. This guide won’t
be of any use to readers of this book, but might be useful to forward to others
who are interested in Ruby and want to get a quick look at the language from a
beginner’s point of view.

http://rubylearning.com/
http://tryruby.hobix.com/)
http://poignantguide.net/ruby/)
http://www.ruby-lang.org/en/documentation/quickstart/)
http://www.ruby-lang.org/en/documentation/quickstart/)

APPENDIX B ■ USEFUL RESOURCES

444

 Ruby on Rails
 Getting Started with Rails (http://guides.rubyonrails.org/getting_started.html) :
An excellent walkthrough of how to use Rails from a basic point of view.
Covers creating a very basic application and provides links to further resources.
Well worth reviewing after reading Chapter 13 of this book.

 The Rails Tutorial Book (https://www.railstutorial.org/book) : A book
by Michael Hartl that is available to read in its entirely online. This is what I
recommend if you want to learn Rails from scratch.

 Railscasts (http://railscasts.com/) : A site full of screencasts covering
Rails- and Ruby-related topics. It has been abandoned since 2013 but still has
hundreds of videos you can watch.

 Other
 REXML Tutorial (http://www.germane-software.com/software/rexml/
docs/ tutorial.html) : A tutorial giving lots of quick code snippets showing
how to use the REXML XML–processing library that comes in the Ruby standard
library.

 Using the Rake Build Language (http://www.martinfowler.com/articles/
rake.html) : A comprehensive run through the Rake (Ruby Make) system, written
by Martin Fowler. The Rake system was briefly mentioned in Chapter 13 of this book.

 SQL Tutorial (http://www.w3schools.com/sql/) : A comprehensive SQL tutorial,
expanding on what is covered in Chapter 9 of this book.

 References
 The resources covered in this section are general references to Ruby and Ruby on Rails. For specific tutorials
and guides to doing certain things, you need to refer instead to the “Tutorials and Guides” section later on in
this appendix.

 Ruby
 Official Ruby Homepage (http://www.ruby-lang.org/) : The official Ruby homepage.

 Ruby-Doc.org (http://www.ruby-doc.org/) : A documentation site built by
the Ruby community that features documentation for the core API, standard
libraries, and other miscellaneous Ruby bits and pieces. Its primary maintainer is
James Britt, who has been involved with Ruby documentation for many years.

 Ruby Core Documentation (http://www.ruby-doc.org/core/) : Documentation
for the core elements of Ruby 2.3 (at the time of writing), such as the included
classes (Array , Hash , and so on), as well as most of the standard library. This URL
will redirect to the documentation for the latest production version of Ruby as it
changes over time.

http://guides.rubyonrails.org/getting_started.html)
http://dx.doi.org/10.1007/978-1-4842-1278-3_13
http://wiki.rubyonrails.com/)
http://railscasts.com/)
http://www.germane-software.com/software/rexml/docs/
http://www.germane-software.com/software/rexml/docs/
http://www.martinfowler.com/articles/rake.html)
http://www.martinfowler.com/articles/rake.html)
http://dx.doi.org/10.1007/978-1-4842-1278-3_13
http://www.w3schools.com/sql/)
http://dx.doi.org/10.1007/978-1-4842-1278-3_9
http://www.ruby-lang.org/)
http://www.ruby-doc.org/)
http://www.ruby-doc.org/core/)

APPENDIX B ■ USEFUL RESOURCES

445

 Ruby 2.0.0 Documentation (http://www.ruby-doc.org/core-2.0.0/) : If, for
some reason, you need to access documentation for older versions of Ruby, you
can do by changing the version number in the URL, as in this case.

 Changes in Ruby 2.0 (https://blog.engineyard.com/2013/whats-new-and-
awesome-in-ruby-2) : A useful guide to all of the changes in Ruby 2.0 compared
to Ruby 1.9.

 Ruby Standard Library Documentation (http://www.ruby-doc.org/stdlib/) :
Documentation for the Ruby standard libraries in Ruby 2.3 (at the time of
writing). Each library is presented separately, making it easier to read than the
core documentation.

 Programming Ruby: The Pragmatic Programmer’s Guide, First Edition, by David
Thomas and Andrew Hunt (Addison Wesley Longman, 2001) (http://ruby-doc.com/
docs/ProgrammingRuby/) : A free, online copy of the first edition of a Ruby book,
targeted to an old version of Ruby but that may still be of use as it covers the
basics well.

 Ruby Quickref (http://www.zenspider.com/Languages/Ruby/QuickRef.html) :
A quick-fire set of references and reminders that act as a cheat sheet for Ruby,
listing reserved words, regular expression syntax, language constructions, special
variables, and more.

 Ruby on Rails
 Official Rails Homepage (http://rubyonrails.org/) : The official homepage for
the Ruby on Rails framework. It features screencasts, tutorials, and links to many
useful Rails references.

 Rails API Documentation (http://api.rubyonrails.org/) : API documentation
for the entire Ruby on Rails framework in RDoc format. This is the most useful
reference documentation for Ruby on Rails, as almost all Rails techniques and
methods are covered.

 Ruby on Rails Guides (http://guides.rubyonrails.org/) : Well-written
walkthrough guides for various Rails features, such as how to get started with Rails,
and how to use the internationalization features, routing, and database migrations.

 Ruby-Related Content
 Aggregators and News

 RubyFlow (http://www.rubyflow.com/) : A community-driven link blog for all
things related to Ruby and Rails. It’s very popular and a great way to keep up with
the day-to-day Ruby news and to promote your own blog posts.

 Ruby News (https://www.ruby-lang.org/en/news/) : The official news site for
the main implementation of Ruby. It is only updated sporadically and when
there are key release or security announcements.

http://www.ruby-doc.org/core-1.9/index.html)
http://eigenclass.org/hiki/Changes+in+Ruby+1.9)
http://eigenclass.org/hiki/Changes+in+Ruby+1.9)
http://www.ruby-doc.org/stdlib/)
http://www.rubycentral.com/book/)
http://www.rubycentral.com/book/)
http://www.zenspider.com/Languages/Ruby/QuickRef.html)
http://www.rubyonrails.org/)
http://api.rubyonrails.org/)
http://guides.rubyonrails.org/)
http://www.rubyflow.com/)
http://weblog.rubyonrails.org/)

APPENDIX B ■ USEFUL RESOURCES

446

 /r/ruby on Reddit (http://reddit.com/r/ruby) : An area of the popular Reddit
community discussion and bookmarking site dedicated to Ruby-related items.

 Riding Rails (http://weblog.rubyonrails.org/) : The official blog for Ruby on
Rails, updated by several core Rails developers and activists. The blog focuses on
sporadic announcements of interesting uses or deployments of Rails, as well as
new Rails features.

 Ruby Weekly (http://rubyweekly.com/) : A weekly Ruby and Rails e-mail
newsletter with almost 40,000 subscribers. It’s produced by your humble author
and is highly recommended if you want to stay up to date with Ruby news on a
frequent basis.

 Podcasts
 Ruby on Rails Podcast (http://5by5.tv/rubyonrails) : A weekly podcast
focusing on conversations around Rails and matters that affect Rails developers.

 Ruby Rogues (http://devchat.tv/ruby-rogues/) : A regular podcast oriented
around a regular panel of developers who discuss Ruby and Rails related topics
with a special guest.

 Ruby5 (https://ruby5.codeschool.com/) : A weekly podcast that quickly covers
the latest Ruby news in several minutes each time.

 Forums
 Rails Forum (http://railsforum.com/) : A popular Ruby on Rails help and
discussion forum .

 SitePoint Ruby Forum (https://www.sitepoint.com/community/c/ruby) :
A Ruby forum provided by the SitePoint webmaster resources site. Unlike with
Rails Forum, all posts to the SitePoint Ruby forum are within a single category,
making it easier to scan through.

 Mailing Lists
 Mailing lists are like forums, but based on e-mail. People subscribe to a “list,” and then all messages sent to
that list are received by all the subscribers. There are also archives of e-mail lists available on the Web for
reference or for those who don’t want to sign up for the list.

 Ruby Mailing Lists (http://www.ruby-lang.org/en/community/mailing-lists/) :
The official page on the Ruby site that provides information about the official
Ruby mailing lists.

 Ruby-Talk Mailing List : Ruby-Talk is the most popular Ruby mailing list, where all
aspects of Ruby development are discussed. You can subscribe via the link above.

 Ruby-Talk on the Web (https://www.ruby-forum.com/) : The Ruby-Talk web
gateway mirrors messages from the Ruby-Talk mailing list onto the Web in a
forum-style format.

http://www.planetrubyonrails.com/)
http://weblog.rubyonrails.org/)
http://www.planetrubyonrails.com/)
http://podcast.rubyonrails.com/)
http://podcast.rubyonrails.com/)
http://podcast.rubyonrails.com/)
http://railsforum.com/)
http://www.sitepoint.com/forums/forumdisplay.php?f=227)
http://www.ruby-lang.org/en/community/mailing-lists/)
http://www.ruby-forum.com/forum/4)

APPENDIX B ■ USEFUL RESOURCES

447

 Ruby-Talk Mailing List Archives (http://blade.nagaokaut.ac.jp/ruby/
ruby-talk/index.shtml) : Offers web access to more than 400,000 posts made to
the Ruby-Talk mailing list and includes a search feature.

 ruby-core (http://blade.nagaokaut.ac.jp/ruby/ruby-core/index.shtml) :
A mailing list dedicated to discussing implementation details and the
development of Ruby. Those who are developing the Ruby language use this list.
However, it isn’t a list on which to ask general Ruby questions.

 ■ Note It’s important when using a mailing list that you look at the format and tone of other posts and
don’t offend anyone. If your postings sound too demanding or are of the wrong tone, you might not get any
responses.

 Real-Time Chat
 On the Internet, there are several ways you can discuss topics with other users in real time . For example, web
sites can contain Flash or Java chatrooms. Alternatively, you can use instant messenger or Internet Relay
Chat (IRC) clients. Ruby is the primary focus of discussion in only a few real-time chat systems at present:

 #rubyonrails (irc://irc.freenode.net/%23rubyonrails) : #rubyonrails was
the official Ruby on Rails IRC channel and still exists. You can ask questions
about Ruby on Rails here, and most people are willing to help. The popularity of
this channel has remained high, and it can be very busy much of the time.

 #ruby (irc://irc.freenode.net/%23ruby) : #ruby used to be a quieter, more
generic Ruby channel, but since the #ruby-lang channel went invite only, it
has become the de facto official channel for discussing Ruby generally and has a
significant number of participants.

 You can also take part in these channels by using Freenode’s web-based client at
 https://webchat.freenode.net/ .

 ■ Note If you aren’t familiar with IRC, visit http://en.wikipedia.org/wiki/Internet_Relay_Chat to
learn more.

http://blade.nagaokaut.ac.jp/ruby/ruby-talk/index.shtml)
http://blade.nagaokaut.ac.jp/ruby/ruby-talk/index.shtml)
http://blade.nagaokaut.ac.jp/ruby/ruby-core/index.shtml)
https://webchat.freenode.net/
http://en.wikipedia.org/wiki/Internet_Relay_Chat

449© Peter Cooper 2016
P. Cooper, Beginning Ruby, DOI 10.1007/978-1-4842-1278-3

 A
 ActionMailer , 357
 ActiveRecord and model

relationships , 327–328
 add_accessor method , 246
 attr_accessor method , 246

 B
 Base64

 Binary Data conversion , 381–382
 Compression , 382
 installation , 381

 Benchmarking and Profi ling
 Benchmark.measure do , 181
 bmbm method , 182
 profi ling code , 182

 Benchmarking C vs. Ruby , 264
 Benchmark module , 383–384
 Bots

 basic client , 297–298
 Code Listing , 295–297
 contact information management tool , 270
 data structure , 283
 ELIZA-type , 269
 external data storage , 284–286
 fred.bot , 292–294
 history , 269
 preprocessing—tasks , 271
 processing language , 271
 pronoun-switching feature , 274–275
 sentences method , 271–272
 testing and documentation , 271
 Text Files , 298
 Web connection , 299–300

 Bot-to-Bot conversations , 301–302
 Bundler , 159

 C
 CentOS , 310
 chroniclibrary , 389–390
 class_eval method , 245
 Class methods vs. instance methods , 114–116
 Command line arguments , 230
 Common Gateway Interface (CGI) , 236

 basic CGI script , 385
 cgilibrary , 385
 cookies , 387–388
 Passed Data , 386
 sessions , 388–389

 D
 Debugging

 exceptions and error handling
 Catch and Th row , 172
 commands prompt , 173
 debugtest.rb , 173
 handling exceptions , 170
 raised exceptions , 169
 receive exceptions , 171

 Deleting directory , 203
 Digest , 390–393
 Directory creation , 202
 Documentation, RDoc

 basic formatting , 165
 command-line option , 168
 creation , 163
 nodoc Modifi er , 167
 processing comments , 167
 techniques , 165
 web browser , 164

 Document Object Model (DOM) , 256
 Dynamic eode Execution

 add_accessor method , 246

 Index

■ INDEX

450

 attr_accessor method , 246
 bindings , 244
 class_eval method , 245
 instance_eval method , 246

 E
 E-mail , 354
 encode method , 266
 English library , 393–394
 Environment variables , 228
 ERB library , 395–397
 Extensible Markup Language (XML), REXML , 352–354

 F
 Fibers

 cooperative scheduling , 259
 data passing , 260
 disadvantage , 261
 Fiber.yield method , 260
 implementation , 260
 resume method , 260

 Fiber.yield method , 260
 File I/O

 character encodings , 196
 deleting fi le , 197
 directory , 201
 fi le modes , 195
 Opening and Reading Files , 189
 operations , 197
 pos method , 194
 techniques , 190
 writing to fi les , 194

 Files and databases
 I/O streams

 File I/O. File I/O
 keyboard input , 187

 objects and data structures
 PStore , 207
 YAML , 208

 text fi le
 CSV data , 205
 saving data , 206

 FTP system , 358–359

 G, H
 Generic sentence-splitting method , 271
 getbinaryfi le , 360
 Global interpreter lock (GIL) , 257
 GNOME Editor (gedit) , 74
 Greenwich Mean Time (GMT) , 62
 GServer , 372–374
 GServer-Based Chat Server , 374–377

 I
 initialize method , 286
 instance_eval method , 246
 Interactive Ruby interpreter , 420
 Interactive Ruby (irb) , 12
 Internet

 Basic Authentication scheme , 346
 HTTP , 343
 net/http Library , 343–345
 Proxying , 347–348

 Internet Protocol (IP) , 363
 Internet Relay Chat (IRC) , 100
 IronRuby , 97

 J
 join method , 48
 JRuby , 97
 JavaScript Object Notation (JSON) , 397–398

 K
 KDE Advanced Text Editor (Kate) , 74
 Kernel methods , 22

 L, M
 length method , 80
 Local area network (LAN) , 363
 Logger , 399–401

 N
 Navigating directory , 201
 Networking

 description , 363
 DNS queries , 365–366
 IP Addresses and DNS , 364
 machine and service availability , 364–365
 TCP and UDP , 363
 TCP Server connection , 367–368

 Nokogiri , 351–352, 401–402

 O
 Object orientation

 classes and methods , 110, 427–429
 class variables , 113
 Comparable module , 135–136
 concepts and processes , 107
 constants , 128
 encapsulation , 121, 123–125
 Enumerable module , 132–134
 global variables , 112

Dynamic eode Execution (cont.)

■ INDEX

451

 inheritance , 116–118
 instant variables , 112
 iteration process , 132
 local variables , 111–112
 Mix-Ins, Namespaces and Classes , 137
 modules , 129
 multiple inheritance , 131–132
 namespaces , 129–130
 Nested Classes , 127
 objects , 110, 427
 override existing classes and methods , 118–119
 polymorphism , 109, 125–126
 procedural programmer coding , 107
 procedural style of programming , 107
 Refl ection , 120–121

 Open source culture , 99
 open-uri library , 349–350

 P, Q
 Popen method , 249
 Post Offi ce Protocol 3 (POP3) , 354–356
 ppis , 402–404
 Program’s lifecycle , 281–282

 R
 Rails

 books , 332
 Command-Line Tool , 311–313
 Controller Actions , 322–324
 Controllers , 307
 CRUD mechanisms , 310
 database confi guration , 315, 317
 database considerations , 310
 database migrations , 318–322
 fi les and directories , 313–314
 Getting Started with Rails , 332
 installation , 309
 layouts , 330–331
 models , 307
 model-view-controller (MVC) architectural

pattern , 307
 Offi cial Ruby on Rails API , 332
 open source web application , 306
 Ruby on Rails guides , 332
 Ruby’s killer app , 306
 scaff olding , 317–318
 sessions and fi lters , 329–330
 Views , 307

 readlines method , 80
 RedCarpet , 404–405
 Red Hat , 310
 Refl ective language, Ruby , 429–430
 Relational Databases and SQL

 ActiveRecord , 222
 add data , 213
 concepts , 210
 CREATE TABLE SQL statement , 217
 database connection code , 219
 defi nition , 212
 DELETE command , 216
 gem install sequel , 221
 INSERT command , 214
 install SQLite3 , 212
 MySQL, PostgreSQL and SQLite , 211
 retrieve data , 218
 SELECT command , 214
 Sequel.connect , 221
 SQLiteRuby gem , 217
 UPDATE command , 216

 response_to Method
 best_sentence , 289
 matching phrases , 289–290
 phrase substitutions , 287
 possible_responses , 290–291
 preprocessing word , 287

 resume method , 260
 REXML , 352–354
 Rubinius , 97
 Ruby

 ARGV array , 89–90
 arrays , 436
 coercion , 421
 comparison expressions , 422–423
 complex structures , 438
 conditional execution , 423–424
 defi nition and concepts , 417–419
 exec method , 248
 expressions , 420–421
 File Organization , 440
 forking , 248
 hashes (associative arrays) , 437
 input/output (I/O) support

 database systems , 439
 fi les , 438–439

 integers and fl oating point numbers , 434–435
 Internet (see Internet)
 Interpreter , 419
 method visibility , 431–432
 Popen method , 249
 regular expressions , 433–434
 safe levels , 253
 source code

 creation , 75
 Linux , 76
 Mac OS X , 76
 UNIX-based systems , 76
 windows , 75

 source code fi les , 73

■ INDEX

452

 stop words , 85
 strings , 433
 summarization features , 87
 system method , 248
 tainted method , 250
 ternary operator , 425–426
 test fi le creation

 Linux , 74
 visual studio code , 74

 web access , 439
 Windows users , 227

 RubyGems , 235, 309, 441
 bundler , 234–235
 creation , 231
 distribution , 235
 gem build , 234
 string_extend.gemspec , 232
 structuring , 232

 RubyInline
 benchmarking , 263
 C function , 263
 C language , 262
 defi nition , 262
 factorial method , 262–263
 installation , 262

 Ruby installation
 Atari ST , 9
 BeOS , 9
 defi nition , 3
 Linux

 package managers , 8
 source code , 8

 Mac OS X , 6
 MS-DOS , 9
 Windows , 4

 Ruby libraries
 abbrev library , 379–380
 defi nition , 153
 gems

 bundler , 159
 command list , 156
 installation , 157
 loading , 157
 Uninstallation , 158
 upgrading , 158

 net/http , 154
 OpenStruct , 155
 RubyGems , 156

 RUBY_PLATFORM , 228
 Ruby programming , 225

 attributes , 20
 classes , 16, 19
 experimentation , 14
 instruction , 12

 irb , 12
 Kernel methods , 22
 natural language , 13
 non object oriented , 26
 object-oriented , 15, 18, 21
 parameter passing methods , 23
 String class , 25
 syntax , 12
 testing , 14
 variables , 17

 Ruby, projects
 basic fi le inclusion , 149
 defi nition , 149
 directories , 152
 logic and including code , 152
 nested inclusions , 153

 Ruby resources
 aggregators and news , 445
 forums , 446
 guides , 444
 internet , 443
 mailing lists , 446
 podcasts , 446
 rails , 444–445
 real time chat , 447
 tutorials , 443–444

 Ruby’s building blocks
 array addition and concatenation , 51
 array iteration , 50
 array order reversal , 52
 array subtraction , 51
 comparison operators , 32
 constants , 36
 date/time Attributes , 65
 empty array , 51
 expressions , 29
 fi rst and last methods , 52
 fl oating point numbers , 35
 fl ow control

 code blocks , 61
 else if and case , 58
 if and unless , 56
 ternary operator , 57
 while and until , 60

 hashes
 defi nition , 53
 DELETE method , 54–55
 Fred’s hash , 56
 iteration , 54
 retrieving keys , 54

 include? method , 52
 inspect method , 49
 interpolation , 39
 large numbers , 65
 loop implementation , 33

Ruby (cont.)

■ INDEX

453

 object conversion , 69
 ranges , 67
 regular expression

 iteration , 43
 matching , 46
 substitutions , 42

 split method , 49
 string expressions , 37
 string literal , 36
 string methods , 40
 symbols , 68
 variables , 30

 Ruby’s ecosystem
 code contribution , 102
 community , 102
 documentation , 101
 forums , 101
 history of , 93
 homepage 2000 , 95
 homepage 2015 , 96
 implementations , 97
 IRC , 100
 mailing lists , 100
 open source , 99
 ruby-lang.org , 95
 ruby-talk , 95
 sites and podcasts , 103
 Web 2.0 , 98

 Ruby’s networking
 CGI script , 236
 CGI variables , 237
 HTTP servers , 238

 Ruby threading
 cooperative multitasking , 259
 join method , 258
 run method , 259
 system-based threads , 257
 Th read.list , 258

 S
 scan method , 82
 Secure Socket Layer (SSL) , 348
 SELECT method , 86
 Sentence separations , 277
 Shebang Line , 226
 Simple Mail Transfer Protocol (SMTP) , 356
 Sinatra

 Error Handling , 340–341
 external templates and layouts , 338–339
 Extreme Simplicity , 333
 Halting , 340
 Inline and In-File Templates , 335, 337
 layouts , 337

 URL routing and parameter
matching , 334–335

 Sockets
 GServer , 372–374
 Multi-Client TCP Servers , 372
 TCP servers , 370–371
 UDP Client and Server , 368–370

 split method , 81
 Square.count class method , 116
 StringScanner , 405–407
 switch_pronouns method , 278

 T
 Temporary fi les (tempfi le) , 408–410
 Testing

 assertions types , 180
 behavior-driven development , 176
 test-driven development , 175
 unit testing , 177

 Text adventure/virtual dungeon
 classes , 142
 concepts , 138
 go method , 145
 Initial Classes , 138–139
 show_current_description method , 143–144
 structs , 139–140

 Text analyzer
 analyzer.rb , 90
 average calculations , 84
 basic statistics , 77
 counting characters , 80
 counting lines , 79
 counting paragraphs , 83
 counting sentences , 82
 counting words , 81
 key steps , 78
 loading text fi les , 79
 source code , 84
 test data , 78

 Text editors vs. source code editors , 76
 Transmission Control Protocol (TCP) , 363

 U
 UDP Client and Server , 368–370
 Unicode Transformation Format-8 (UTF-8)

 character encodings , 265
 source code , 266
 strings , 265
 unicode , 265

 Uniform Resource Identifi ers (URIs) , 410–413
 Uploading fi les, FTP , 360–361
 User Datagram Protocol (UDP) , 363

■ INDEX

454

 V
 Views and Embedded Ruby (ERB) , 324–327
 vowels method , 231

 W, X, Y
 Web/HTTP Servers , 377
 WEBrick server , 239
 Windows API , 253
 Windows Automation , 256

 Word Matching , 273
 WordPlay.best_sentence method , 277–278
 WordPlay library

 test_wordplay.rb , 280
 wordplay.rb , 279

 words method , 277

 Z
 zlibis , 414–415

	Contents at a Glance
	Contents
	Foreword
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part 1: Foundations and Scaffolding
	Chapter 1: Let’s Get It Started: Installing Ruby
	Installing Ruby
	Windows
	Mac OS X / macOS
	Testing for a Preinstalled Version of Ruby
	Installing Ruby on OS X
	Installing Ruby from Source on Mac OS X

	Linux
	Checking If Ruby Is Installed on Linux
	Installing Ruby with a Package Manager
	Installing Ruby from Source Code

	Other Platforms

	Summary

	Chapter 2: Programming == Joy: A Whistle-Stop Tour of Ruby and Object Orientation
	Baby Steps
	irb: Interactive Ruby
	Ruby Is “English for Computers”
	Why Ruby Makes a Great Programming Language
	Trails for the Mind

	Turning Ideas into Ruby Code
	How Ruby Understands Concepts with Objects and Classes
	The Making of a Person
	Basic Variables
	From People to Pets
	Structuring Your Pets Logically
	Controlling Your Pets

	Everything Is an Object
	Kernel Methods
	Passing Data to Methods
	Using the Methods of the String Class

	Using Ruby in a Non–Object-Oriented Style
	Summary

	Chapter 3: Ruby’s Building Blocks: Data, Expressions, and Flow Control
	Numbers and Expressions
	Basic Expressions
	Variables
	Comparison Operators and Expressions
	Looping Through Numbers with Blocks and Iterators
	Floating Point Numbers
	Constants

	Text and Strings
	String Literals
	String Expressions
	Interpolation
	String Methods
	Regular Expressions and String Manipulation
	Substitutions
	Iteration with a Regular Expression
	Matching

	Arrays and Lists
	Basic Arrays
	Splitting Strings into Arrays
	Array Iteration
	Other Array Methods
	Array Addition and Concatenation
	Array Subtraction and Difference
	Checking for an Empty Array
	Checking an Array for a Certain Item
	Accessing the First and Last Elements of the Array
	Reversing the Order of the Array’s Elements

	Hashes
	Basic Hash Methods
	Iterating Through Hash Elements
	Retrieving Keys
	Deleting Hash Elements
	Deleting Hash Elements Conditionally

	Hashes Within Hashes

	Flow Control
	if and unless
	?, the Ternary Operator
	elsif and case
	while and until
	Code Blocks

	Other Useful Building Blocks
	Dates and Times
	Large Numbers
	Ranges
	Symbols
	Converting Objects to Other Classes

	Summary

	Chapter 4: Developing Your First Ruby Application
	Working with Source Code Files
	Creating a Test File
	Visual Studio Code
	Alternatives to Linux

	A Simple Source Code File
	Running Your Source Code
	Windows
	Mac OS X / macOS
	Linux and Other UNIX-Based Systems

	Our Application: A Text Analyzer
	Required Basic Features
	Building the Basic Application
	Obtaining Some Dummy Text
	Loading Text Files and Counting Lines
	Counting Characters
	Counting Words
	Counting Sentences and Paragraphs
	Calculating Averages
	The Source Code So Far

	Adding Extra Features
	Percentage of “Useful” Words
	Summarizing by Finding “Interesting” Sentences
	Analyzing Files Other Than text.txt

	The Completed Program
	Summary

	Chapter 5: The Ruby Ecosystem
	Ruby’s History
	The Land of the Rising Sun
	Ruby’s Influences
	Go West
	Alternative Ruby Implementations

	Ruby on Rails
	Why Rails Came into Existence
	How the Web (2.0) Was Won

	The Open Source Culture
	What Is Open Source?

	Where and How to Get Help
	Mailing Lists
	Internet Relay Chat (IRC)
	Documentation
	Forums

	Joining the Community
	Give Help to Others
	Contribute Code
	News Sites and Sources

	Summary

	Part 2: The Core of Ruby
	Chapter 6: Classes, Objects, and Modules
	Why Use Object Orientation?
	Object-Orientation Basics
	Local, Global, Object, and Class Variables
	Local Variables
	Global Variables
	Instance or Object Variables
	Class Variables

	Class Methods versus Instance Methods
	Inheritance
	Overriding Existing Methods
	Reflection and Discovering an Object’s Methods
	Encapsulation
	Polymorphism
	Nested Classes
	The Scope of Constants

	Modules, Namespaces, and Mix-Ins
	Namespaces
	Mix-Ins
	Enumerable
	Comparable
	Using Mix-Ins with Namespaces and Classes

	Building a Dungeon Text Adventure with Objects
	Dungeon Concepts
	Creating the Initial Classes
	Structs: Quick and Easy Data Classes
	Creating Rooms
	Making the Dungeon Work

	Summary

	Chapter 7: Projects and Libraries
	Projects and Using Code from Other Files
	Basic File Inclusion
	Inclusions from Other Directories
	Logic and Including Code
	Nested Inclusions

	Libraries
	The Standard Libraries
	net/http
	OpenStruct

	RubyGems
	Finding Gems
	Installing a Simple Gem
	Using Gems
	Upgrading and Uninstalling Gems
	Creating Your Own Gems

	Bundler

	Summary

	Chapter 8: Documentation, Error Handling, Debugging, and Testing
	Documentation
	Generating Documentation with RDoc
	RDoc Techniques
	Producing Documentation for an Entire Project
	Basic Formatting

	Modifiers and Options
	:nodoc: Modifier
	Turning RDoc Processing On and Off
	Command-Line Options

	Debugging and Errors
	Exceptions and Error Handling
	Raising Exceptions
	Handling Exceptions
	Handling Passed Exceptions

	Catch and Throw
	The Ruby Debugger

	Testing
	The Philosophy of Test-Driven Development
	Unit Testing
	More Minitest Assertions

	Benchmarking and Profiling
	Simple Benchmarking
	Profiling

	Summary

	Chapter 9: Files and Databases
	Input and Output
	Keyboard Input
	File I/O
	Opening and Reading Files
	More File-Reading Techniques
	Your Position Within a File
	Writing to Files
	Character Sets and Encodings
	Renaming and Deleting Files
	File Operations
	Creating Filenames Platform-Independently
	Seeking
	Finding Out When a File Was Last Modified
	Checking Whether a File Exists
	Getting the Size of a File
	How to Know When You’re at the End of a File

	Directories
	Navigating Through Directories
	Creating a Directory
	Deleting a Directory
	Creating Files in the Temporary Directory

	Basic Databases
	Text File Databases
	Reading and Searching CSV Data
	Saving Data Back to the CSV File

	Storing Objects and Data Structures
	PStore
	YAML

	Relational Databases and SQL
	Relational Database Concepts
	MySQL, PostgreSQL, and SQLite
	Installing SQLite
	A Crash Course in Basic Database Operations and SQL
	What Is SQL?
	CREATE TABLE
	INSERT INTO
	SELECT
	DELETE
	UPDATE

	Using SQLite with Ruby
	Connecting to Other Database Systems
	ActiveRecord: A Sneak Peek

	Summary

	Chapter 10: Distributing Ruby Code and Libraries
	Distributing Basic Ruby Programs
	The Shebang Line
	Associated File Types in Windows

	Detecting Ruby’s Runtime Environment
	Easy OS Detection with RUBY_PLATFORM
	Environment Variables
	Accessing Command-Line Arguments

	Distributing Ruby Libraries as Gems
	Creating a Gem
	Structuring Your Files
	Creating a Specification File
	Building the Gem
	Easier Gem Creation

	Distributing a Gem
	RubyGems.org

	Deploying Ruby Applications as Remote Services
	CGI Scripts
	A Basic CGI Script
	Accepting CGI Variables

	Generic HTTP Servers
	WEBrick

	Summary

	Chapter 11: Advanced Ruby Features
	Dynamic Code Execution
	Bindings
	Other Forms of eval
	Creating Your Own Version of attr_accessor

	Running Other Programs from Ruby
	Getting Results from Other Programs
	Transferring Execution to Another Program
	Running Two Programs at the Same Time
	Interacting with Another Program

	Safely Handling Data and Dangerous Methods
	Tainted Data and Objects
	Safe Levels

	Working with Microsoft Windows
	Using the Windows API
	Controlling Windows Programs

	Threads
	Basic Ruby Threads in Action
	Advanced Thread Operations
	Waiting for Threads to Finish Redux
	Getting a List of All Threads
	Thread Operations from Within Threads Themselves

	Fibers
	A Fiber in Action
	Passing Data to a Fiber
	Why Fibers?

	RubyInline
	Why Use C as an Inline Language?
	Creating a Basic Method or Function

	Benchmarking C versus Ruby
	Unicode, Character Encodings, and UTF-8 Support
	Ruby 1.9 and Beyond’s Character Encoding Support
	Strings
	Source Code

	Summary

	Chapter 12: Tying It Together: Developing a Larger Ruby Application
	Let’s Build a Bot
	What Is a Bot?
	Why a Bot?
	How?

	Creating a Simple Text Processing Library
	Building the WordPlay Library
	Splitting Text into Sentences
	Splitting Sentences into Words
	Word Matching
	Switching Subject and Object Pronouns

	Testing the Library
	Testing Sentence Separation
	Testing Word Separation
	Testing Best Sentence Choice
	Testing Pronoun Switches

	WordPlay’s Source Code
	wordplay.rb
	test_wordplay.rb

	Building the Bot’s Core
	The Program’s Lifecycle and Parts
	Bot Data
	The Data Structure
	Storing the Data Externally

	Constructing the Bot Class and Data Loader
	The response_to Method
	Accepting Input and Performing Substitutions
	Choosing the Best Sentence
	Looking for Matching Phrases
	Putting Together the Final Phrase

	Playing with the Bot
	Fred: Your Bot’s Personality
	The First Real Conversation

	Main Bot Code Listing
	bot.rb
	basic_client.rb

	Extending the Bot
	Using Text Files as a Source of Conversation
	Connecting the Bot to the Web
	Bot-to-Bot Conversations

	Summary

	Part 3: Ruby Online
	Chapter 13: Two Web Application Approaches: Rails and Sinatra
	Background
	The Limitations and Benefits of Our Approach
	Pros and Cons of the Frameworks Covered

	Rails: Ruby’s Killer App
	What Is Rails and Why Use It?
	Installing Rails
	Database Considerations

	Building a Basic Rails Application
	Creating a Blank Rails Application
	The Rails Command-Line Tool

	Files and Directories Within a Rails Application
	Database Configuration
	Using Scaffolding
	Database Migrations
	Running the Basic, Scaffolded App

	Controllers and Views
	Controller Actions
	Views and Embedded Ruby (ERB)

	Models and Relationships
	Sessions and Filters
	Other Features
	Layouts

	Where to Go Next: References, Books, and Example Apps
	Reference Sites and Tutorials
	Rails Books

	Sinatra: Lightweight, Simple Web Applications
	The Extreme Simplicity of Sinatra
	General URL Routing and Parameter Matching
	Views, Templates, and Static Files
	Inline and In-File Templates
	Layouts
	External Templates and Layouts
	Static Files

	Request Flow Control
	Redirection
	Halting
	Error Handling

	Summary

	Chapter 14: Ruby and the Internet
	HTTP and the Web
	Downloading Web Pages
	The net/http Library
	Checking for Errors and Redirects
	Basic Authentication
	Posting Form Data
	Using HTTP Proxies
	Secure HTTP with HTTPS

	The Open-Uri Library

	Processing Web Content
	Parsing HTML with Nokogiri
	Parsing XML with REXML

	E-Mail
	Receiving Mail with POP3
	Sending Mail with SMTP
	Sending Mail with ActionMailer

	File Transfers with FTP
	Connection and Basic FTP Actions
	Downloading Files
	Uploading Files

	Summary

	Chapter 15: Networking and Sockets
	Networking Concepts
	TCP and UDP
	IP Addresses and DNS

	Basic Network Operations
	Checking Machine and Service Availability
	Performing DNS Queries
	Connecting to a TCP Server Directly

	Servers and Clients
	UDP Client and Server
	Building a Simple TCP Server
	Multi-Client TCP Servers
	GServer
	A GServer-Based Chat Server
	Web/HTTP Servers

	Summary

	Chapter 16: Useful Ruby Libraries
	abbrev
	Installation
	Examples
	Further Information

	base64
	Installation
	Examples
	Converting Binary Data to Base64
	Converting Base64 Data to Binary Data
	Using Compression to Make Base64 Efficient

	Further Information

	Benchmark
	Installation
	Examples
	Further Information

	cgi
	Installation
	Examples
	A Basic CGI Script
	Accepting Passed Data
	Cookies
	Sessions

	Further Information

	chronic
	Installation
	Examples
	Further Information

	Digest
	Installation
	Examples
	Further Information

	English
	Installation
	Examples
	Further Information

	ERB
	Installation
	Examples
	Basic Templates and Rendering
	Accessing Outside Variables
	Safe Levels

	Further Information

	json
	Installation
	Examples
	Further Information

	logger
	Installation
	Examples
	Setting Up a Logger
	Logging Levels
	Logging Messages
	Closing a Logger

	Further Information

	Nokogiri
	Installation
	Examples
	Further Information

	pp
	Installation
	Examples
	Further Information

	RedCarpet
	Installation
	Examples
	Further Information

	StringScanner
	Installation
	Examples
	Further Information

	tempfile
	Installation
	Examples
	Further Information

	uri
	Installation
	Examples
	Extracting URLs from Text
	Parsing URLs
	Creating URLs

	Further Information

	zlib
	Installation
	Examples
	Further Information

	Appendix A: Ruby Primer and Review for Developers
	The Basics
	Definition and Concepts
	The Ruby Interpreter and Running Ruby Code
	Interactive Ruby

	Expressions and Flow Control
	Basic Expressions
	Class Mismatches
	Comparison Expressions
	Flow
	Branching and Conditional Execution
	The Ternary Operator (Conditional Expressions)
	Loops

	Object Orientation
	Objects
	Classes and Methods
	Reflection
	Reopening Classes
	Method Visibility

	Data
	Strings
	Regular Expressions
	Numbers
	Arrays
	Hashes (Associative Arrays)
	Complex Structures

	Input/Output
	Files
	Databases
	Web Access

	Libraries
	File Organization
	Packaging

	Appendix B: Useful Resources
	Tutorials and Guides
	General Ruby Tutorials
	Ruby on Rails
	Other

	References
	Ruby
	Ruby on Rails

	Ruby-Related Content
	Aggregators and News
	Podcasts
	Forums

	Mailing Lists
	Real-Time Chat

	Index

