
TEAM LinG

PHP &
MySQL

™

Vikram Vaswani

McGraw-Hill/Osborne
New York Chicago San Francisco Lisbon

London Madrid Mexico City Milan New Delhi
San Juan Seoul Singapore Sydney Toronto

HowTo8 (8)

FM.indd 1 2/1/05 4:53:58 PM

TEAM LinG

http://dx.doi.org/10.1036/0071466541

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Front Matter

FM.indd 2 2/1/05 4:53:58 PM

Copyright © 2005 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United
States of America. Except as permitted under the United States Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher.

0-07-146654-1

The material in this eBook also appears in the print version of this title: 0-07-225795-4.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every
occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the
trademark owner, with no intention of infringement of the trademark. Where such designations appear in
this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity
discounts to use as premiums and sales promotions, or for use in corporate training programs. For more
information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212)
904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors
reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under
the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not
decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-
Hill’s prior consent. You may use the work for your own noncommercial and personal use; any other use
of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply
with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO
GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS
OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or
guarantee that the functions contained in the work will meet your requirements or that its operation will
be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else
for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting
therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the
work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect,
incidental, special, punitive, consequential or similar damages that result from the use of or inability to
use the work, even if any of them has been advised of the possibility of such damages. This limitation of
liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort
or otherwise.

DOI: 10.1036/0071466541

TEAM LinG

http://dx.doi.org/10.1036/0071466541

HowTo8 (8)

Dedication

For the baby:
an e’er-fixed mark

that looks on tempests and is ne’er shaken

FM.indd 3 2/1/05 4:53:58 PM

TEAM LinG

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Front Matter HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Front Matter

About the Author
Vikram Vaswani is the founder and CEO of
Melonfire (http://www.melonfire.com/), a company
specializing in software consultancy and content
creation/syndication services. He is a passionate
advocate of the open-source software movement and
frequently contributes articles and tutorials on open-
source technologies, including Perl, Python, PHP,
MySQL, and Linux to the community at large through
his weekly column at http://www.melonfire
.com/community/columns/trog/. His last book was

MySQL: The Complete Reference (http://www.mysql-tcr.com/).
Vikram has over eight years of experience in the IT world, and has spent

six of those years working with PHP and MySQL as user, administrator, and
application developer. He is the author of Zend Technologies’ PHP 101 series for
PHP beginners (http://www.zend.com/php5/abs/), and has extensive experience
deploying PHP and MySQL in a variety of different environments (including
corporate intranets, high-traffic Internet web sites, and mission-critical thin client
applications).

When he’s not plotting to rule the world from a heavily guarded conference
room at Melonfire HQ, Vikram amuses himself by reading crime fiction, watching
old movies, playing squash, fiddling with his ever-growing collection of electronic
gadgets, and keeping an eye out for unfriendly agents. Read more about him,
download sample code, and connect with other open-source enthusiasts online
at http://www.everythingphpmysql.com/.

FM.indd 4 2/11/05 5:26:53 PM

TEAM LinG

HowTo8 (8) HowTo8 (8)

Acknowledgments . xi
Introduction . xiii

PART I Learning the Basics

CHAPTER 1 Introducing PHP and MySQL . 3
Server-Side Applications . 4
… And the Databases That Love Them 5
The PHP Story . 7

History . 8
Features . 9

The MySQL Story . 11
History . 11
Features . 12

PHP and MySQL: The Well-Matched Couple 16
Architecture . 17
Sample Applications . 19

Summary . 20

CHAPTER 2 Setting Up a PHP-MySQL Development Environment 23
Obtaining the Software . 24
Installing and Configuring the Software 26

Installing on UNIX . 26
Installing on Windows . 35

Testing the Software . 50
Testing MySQL . 50
Testing Apache . 51
Testing Apache and PHP . 51

Performing Postinstallation Steps . 53
Setting the MySQL Super-User Password 53
Configuring MySQL and Apache
 to Start Automatically . 54

Summary . 55

 v

Contents

FM.indd 5 2/1/05 4:53:59 PM

For more information about this title, click here

TEAM LinG

http://dx.doi.org/10.1036/0071466541

 vi How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Front Matter HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Front Matter

PART II Learning PHP

CHAPTER 3 Using Variables, Statements, and Operators 59
Embedding PHP in HTML . 60
Writing Statements and Comments . 63
Storing Values in Variables . 63

Assigning and Using Variable Values 65
Saving Form Input in Variables . 65

Understanding Simple Data Types . 66
Detecting the Data Type of a Variable 67

Using Operators to Manipulate and Compare Variables 70
Using Arithmetic Operators . 70
Using String Operators . 72
Using Comparison Operators . 72
Using Logical Operators . 74
Using the Auto-Increment
 and Auto-Decrement Operators 75
Understanding Operator Precedence 75

Summary . 76

CHAPTER 4 Using Conditional Statements and Loops 79
Adding Decision-Making Capabilities
 with Conditional Statements . 80

Using the if() Statement . 81
Using the switch() Statement 84
Nesting Conditional Statements . 86

Merging Forms and Their Result Pages
 with Conditional Statements . 86
Repeating Actions with Loops . 88

Using the while() Loop . 88
Using the do() Loop . 89
Using the for() Loop . 90
Controlling Loop Iteration with break and continue 92

Summary . 93

CHAPTER 5 Using Arrays and Custom Functions 95
Using Arrays to Group Related Values . 96

Creating an Array . 98
Modifying Array Elements . 99
Processing Arrays with Loops . 100
Grouping Form Selections with Arrays 102
Using Array Functions . 104

FM.indd 6 2/1/05 4:53:59 PM

TEAM LinG

HowTo8 (8)

 Contents vii

HowTo8 (8)

Creating User-Defined Functions . 106
Defining and Invoking Functions 107
Using Arguments and Return Values 108
Defining Global and Local Variables 110
Importing Function Definitions . 112

Summary . 113

CHAPTER 6 Using Files, Sessions, Cookies, and External Programs 115
Reading and Writing Files . 116

Reading Data from a File . 116
Writing Data to a File . 119
Testing File Attributes . 120
Obtaining Directory Listings . 122

Managing Sessions and Using Session Variables 123
Creating a Session and Registering Session Variables . . . 124
Destroying a Session . 125

Storing Data in Cookies . 126
Setting Cookies . 127
Retrieving Cookie Data . 128
Deleting Cookies . 128
Dealing with Dates and Times . 129

Executing External Programs . 130
Summary . 131

CHAPTER 7 Sample Application: Session-Based Shopping Cart 133
Understanding Requirements . 134
Retrieving Catalog Data . 134
Creating the Shopping Cart . 136
Calculating Costs . 137
Handling Cart Updates . 138
Putting It All Together . 139
Summary . 144

PART III Learning MySQL

CHAPTER 8 Understanding an RDBMS . 149
Understanding a Relational Database . 150

Understanding Tables, Records, and Fields 151
Understanding Primary and Foreign Keys 151

Understanding SQL and SQL Queries . 154
Understanding Database Normalization . 156
Using the MySQL Command-Line Client 156
Interacting with MySQL Through a Graphical Client 159
Summary . 160

FM.indd 7 2/1/05 4:54:00 PM

TEAM LinG

 viii How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Front Matter HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Front Matter

CHAPTER 9 Working with Databases and Tables 161
Creating Databases . 163
Creating Tables . 163

Specifying Field Data Types . 164
Selecting the Most Appropriate Data Type 168
Adding Field Modifiers and Keys 168
Selecting a Table Type . 170

Altering Tables . 173
Altering Table and Field Names . 173
Altering Field Properties . 173
Adding and Removing Fields and Keys 174
Altering Table Types . 175

Backing Up and Restoring Databases and Tables 175
Backing Up Databases and Tables 175
Restoring Databases and Tables from Backup 176

Dropping Databases and Tables . 177
Viewing Database, Table, and Field Information 178
Summary . 180

CHAPTER 10 Editing Records and Performing Queries 181
Inserting Records . 182
Editing and Deleting Records . 184
Performing Queries . 186

Retrieving Specific Columns . 187
Filtering Records with a WHERE Clause 187
Using Operators . 188
Sorting Records and Eliminating Duplicates 191
Limiting Results . 192
Using Built-In Functions . 193
Grouping Records . 194
Joining Tables . 196
Using Subqueries . 201
Using Table and Column Aliases . 203

Summary . 204

CHAPTER 11 Using the MySQL Security System . 207
Understanding the Need for Access Control 208
Understanding How MySQL Access Control Works 209
Assigning, Revoking, and Viewing User Privileges 210
Working with User Accounts and Password 213

Creating and Removing User Accounts 214
Altering User Passwords . 215

Summary . 217

FM.indd 8 2/1/05 4:54:01 PM

TEAM LinG

HowTo8 (8)

 Contents ix

HowTo8 (8)

CHAPTER 12 Sample Application: Order Tracking System 219
Understanding Requirements . 220
Creating an Optimized Database Design 221

Designing the Customer Tables . 221
Designing the Product Tables . 222
Designing the Order Table . 224

Creating and Populating the Tables . 225
Querying the Database . 228
Summary . 236

PART IV Using PHP with MySQL

CHAPTER 13 Querying a MySQL Database with PHP 239
Using MySQL and PHP Together . 240
Managing Database Connections . 244
Performing Queries . 247
Processing Result Sets . 248

Queries Which Return Data . 248
Queries That Alter Data . 252

Handling Errors . 254
Using Ancillary Functions . 254
Summary . 257

CHAPTER 14 Validating User Input . 259
Setting Input Constraints at the Database Layer 260

Using the NULL Modifier . 260
Using the UNIQUE Modifier . 262
Using Field Data Types . 263

Validating Input at the Application Layer 264
Checking for Required Values . 264
Restricting the Size of Input Data 266
Checking the Type of Input Data . 268
Checking for Illegal Input Values 274
Validating Dates . 277
Validating Multiple-Choice Input 279
Matching Patterns . 281

Summary . 286

CHAPTER 15 Formatting Query Output . 287
Formatting Character Data . 288

Concatenating String Values . 289
Padding String Values . 293
Altering String Case . 297
Dealing with Special Characters . 300

FM.indd 9 2/1/05 4:54:01 PM

TEAM LinG

 x How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Front Matter

Formatting Numeric Data . 306
Using Decimal and Comma Separators 306
Formatting Currency Values . 312

Formatting Dates and Times . 316
Paginating Large Result Sets . 325
Summary . 328

CHAPTER 16 Sample Application: News Publishing System 331
Understanding Requirements . 332
Designing the Database . 333
Listing and Displaying News Items . 334

Listing News Items . 335
Displaying Story Content . 339

Manipulating News Items . 342
Listing News Items . 342
Adding News Items . 344
Deleting News Items . 349
Editing News Items . 351

Protecting the Administration Module . 358
Summary . 361

Index . 363

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Front Matter

FM.indd 10 2/1/05 4:54:02 PM

TEAM LinG

HowTo8 (8)

I wrote this book over a period of eight months, in fits and starts, and with numerous
breaks for travel, research, examinations, college applications, and other equally
stimulating activities. Needless to say, this isn’t the best way to work, and I’m sure
I stressed out a bunch of people along the way. This section is their reward.

First and foremost, I’d like to thank my family, for providing me with a quiet
place to work, and for their forbearance with my odd work hours (and even odder
behavior) while this book was being written.

The editorial and marketing team at McGraw-Hill/Osborne has been fabulous
to work with, as usual. This is my second book with them, and they seem to get
better and better with each one. Acquisitions editor Nancy Maragioglio, acquisitions
coordinators Athena Honore and Alexander McDonald, technical editor Sara
Golemon, project editor Mark Karmendy, copy editor Marcia Baker, and editorial
director Wendy Rinaldi all guided this book through the development process. I’d
like to thank them for their expertise, dedication, and efforts on my behalf.

PHP and MySQL have grown up over the last couple of years, to the point
where they’re barely recognizable from the toddlers they once were. The only
thing that hasn’t changed is how much fun I have playing with them. Special
mention, then, of Zend Technologies and MySQL AB, both of whom have built
two incredibly cool pieces of software. Keep rockin’, guys!

Finally, for making the entire book-writing process less tedious than it usually
is, thanks to: Lawrence Block, Bryan Adams, the Stones, MAD magazine, Scott
Adams, Gary Larson, MTV, Jamelia, Kylie Minogue, Buffy, Farah Malegam,
Stephen King, John le Carre, Subway, Harish Kamath, Barry White, Steph
Fox, Apple, Robert Crais, Robert B. Parker, Baz Luhrmann, Jonathan Stroud,
FHM, Canon, Anna Kournikova, Swatch, Zak Greant, Ling’s Pavilion, Tonka,
HBO, Mark Twain, the cast of The Woman In Black, Tim Burton, Pablo Picasso,
Randy Cosby, the cast of Friends, John Sandford, the London Tube, Jeroo
Dayal, Pixar, Dido, Google.com, Nicole Kidman, The Matrix, Alfred Hitchcock,
Bruno D’Costa, Woody Allen, PalmOne, Susanna Clarke, Saïd Business School,

 xi

Acknowledgments

HowTo8 (8)

FM.indd 11 2/1/05 4:54:02 PM

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

TEAM LinG

 xii How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Front Matter

London Business School, Anahita Marker, Michael Schumacher, Mark Haddon,
Mambo’s and Tito’s, Kalindi Mehta, John Kerry, Humphrey Bogart, the Library
Bar, Bombay Travels, Amazon.com, U2, The Three Stooges, Oscar Wilde, Punch,
Harry Potter, Scott Turow, Slackware Linux, Calvin and Hobbes, Vincent van
Gogh, Fiona D’Silva, Kelley Armstrong, Blizzard Entertainment, Dhara Dusija,
Stanford University, Popeye and Olive, Dennis Lehane, Trattoria, Xerxes Antia,
Dire Straits, Bruce Springsteen, David Mitchell, and all my friends, at home and
elsewhere.

FM.indd 12 2/1/05 4:54:02 PM

TEAM LinG

 xiii

HowTo8 (8)

Introduction
If you’re reading this book, you probably already know what PHP is—one of the
world’s most popular programming languages for web development. Flexible,
scalable, easy to program in, and supported by an international community of
developers and users, PHP is today in use on over fifteen million web sites, an
impressive achievement, especially considering that the language was originally
developed by volunteers who made its source code freely available to anyone who
cared to ask for it!

One of the most important factors driving PHP’s popularity over the last couple
of years has been its support for a variety of databases, including MySQL, mSQL,
Oracle, and Microsoft Access. By simplifying and streamlining database access, PHP
enables developers to build complex data-driven web applications, while enjoying
short development cycles because of the simplicity and flexibility of the language.

One of the most powerful combinations in the open source arena today is the PHP/
MySQL combination. Like PHP, MySQL has open-source roots: it is a fast and
reliable database management system that is rapidly acquiring a worldwide user
base. By using PHP and MySQL together, users can benefit from the cost savings
that accompany community-driven software, and also leverage off the immense
number of freely available PHP/MySQL applications to reduce development and
deployment time.

That’s where How to Do Everything with PHP & MySQL comes in. If you’re
a business professional looking to reduce your software costs by using open-source
tools, a developer interested in creating database-backed applications for the Web,
or simply a hobbyist curious about what the Linux, Apache, PHP, and MySQL
(LAMP) combination can do, the book you’re holding in your hands is all you’ll
need to get started on your journey into the world of PHP and MySQL.

Overview
How to Do Everything with PHP & MySQL has been designed as a comprehensive
tutorial that will teach developers everything they need to know to begin creating
database-backed web applications. It contains information on both the PHP
programming toolkit and the MySQL RDBMS (including coverage of relevant
features in both PHP 5.x and MySQL 4.1.x), and provides one-stop coverage of
software installation, language syntax and data structures, flow control routines,
built-in functions, and best practices.

FM.indd 13 2/1/05 4:54:02 PM

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

TEAM LinG

 xiv How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Front Matter HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Front Matter

Every chapter in How to Do Everything with PHP & MySQL contains code
snippets and examples that you can try out yourself. The concepts taught in each
of the main sections are further illustrated with a sample application at the end
of each section; this sample application is a practical tool, such as a web-based
shopping cart or a news publishing system, which you can immediately use and
modify for your web site.

Audience
How to Do Everything with PHP & MySQL is targeted at novice web developers
interested in server-side scripting and database usage. Such developers are typically
already familiar with HTML, CSS, and client-side scripting, and they are keen to add
server-side programming skills to their repertoire. The PHP-MySQL combination
is one of the most popular for server-side application development, and this book
provides an easy introduction to using it.

A number of other reader segments will also find this book useful: students
looking for a free RDBMS on which to practice their SQL, developers experienced
with other programming languages who now want to translate their skills to the PHP
platform, individuals interested in inexpensively adding bells and whistles (online
polls, discussion forums, and content management tools) to their personal web sites,
and administrators concerned with migrating their data to an open-source platform.
This book contains the theory and practical examples needed to get all these users
up and running with the powerful PHP-MySQL combination.

Unlike many other books, How to Do Everything with PHP & MySQL doesn’t
assume prior knowledge of programming or database fundamentals. Rather, it
teaches by example, using tutorials and real-world examples to explain basic
concepts and, thus, increase your familiarity with both PHP programming and
MySQL usage. Throughout the chapters that follow, you’re encouraged to try out
the various examples on your own LAMP installation. You won’t break anything,
and you’re sure to gain a great deal from the hands-on experience.

Organization
How to Do Everything with PHP & MySQL is structured primarily as a tutorial, so
it’s probably best if you read the chapters sequentially (this is especially true for
users new to both technologies). That said, if you’re already familiar with either
one of the two technologies, feel free to skip ahead to the bits that are new to you.

How to Do Everything with PHP & MySQL is broadly divided into four sections.
Here’s what each section contains:

Part I provides an introduction to PHP and MySQL, and guides you through
the process of installing and configuring a PHP-MySQL development environment
on both UNIX and Windows. Chapter 1, Introducing PHP and MySQL discusses

FM.indd 14 2/1/05 4:54:02 PM

TEAM LinG

HowTo8 (8) HowTo8 (8)

the history and evolution of PHP and MySQL, looks at their individual feature sets,
and explains why the combination of the two is such a compelling value proposition.
Chapter 2, Setting Up a PHP-MySQL Development Environment discusses how
to obtain, install, configure, and test a PHP-MySQL development environment,
for both Windows and UNIX users.

Part II focuses on the basics of PHP programming, introducing you to PHP
syntax and language structures and demonstrating practical PHP applications in
the web context. Chapter 3, Using Variables, Statements, and Operators gets
you started with PHP, by showing you how to embed PHP code inside HTML
documents and use statements, comments, variables and operators. Chapter 4,
Using Conditional Statements and Loops teaches you to use PHP’s comparison
and logical in conditional statements and loops to make your PHP scripts respond
intelligently to different events. Chapter 5, Using Arrays and Custom Functions
shows you how to group related data into PHP arrays and define your own functions
for greater reusability of your PHP code. Chapter 6, Using Files, Sessions,
Cookies, and External Programs contains a grab-bag of common techniques and
tools you will find yourself using frequently in your PHP development. Chapter 7,
Session-Based Shopping Cart builds on everything taught thus far to create
a session-based shopping cart you can plug in to your web site.

Part III introduces the MySQL RDBMS, teaching you the basic commands
and concepts you need to use it efficiently. Chapter 8, Understanding an
RDBMS gives you a crash course in basic RDBMS concepts and introduces you
to the MySQL command-line client. Chapter 9, Working with Databases and
Tables looks at the database and table structures used by MySQL to store its data,
and explains the SQL commands to create, alter, and delete databases, tables,
and indexes. Chapter 10, Editing Records and Performing Queries continues
where the previous chapter left off, explaining how to insert records into a
MySQL database and use the SELECT statement to create filtered subsets of the
records in a database; sort, group, and count records; use session variables; and
import and export data in a variety of different formats. Chapter 11, Using the
MySQL Security System discusses the MySQL security and privilege system,
and the management of user accounts and passwords (including what to do if you
forget the MySQL superuser password). Chapter 12, Order Tracking System
takes you through the process of designing a larger, more challenging database
for a small business’s order tracking system, and also teaches practical database
normalization.

Part IV brings PHP and MySQL together, teaching you the tools and techniques
you will need to retrieve and use the results of MySQL queries in a dynamic web
application. Chapter 13, Querying a MySQL Database with PHP examines
the built-in MySQL support in PHP, and explains how it can be used to perform
and process MySQL queries. Chapter 14, Validating User Input teaches you to

 Introduction xv

FM.indd 15 2/1/05 4:54:03 PM

TEAM LinG

 xvi How to Do Everything with PHP & MySQL

maintain the integrity and passwords of your database by sanitizing and validating
user input before it is saved to the system. Among the items covered: ensuring
required fields are never left empty, validating the length and data type of user input,
and using regular expressions to validate e-mail addresses. Chapter 15, Formatting
Query Output discusses common techniques used by PHP developers to make the
results of MySQL queries more readable and useful. Both PHP and MySQL come
with numerous functions for output manipulation and display, and this chapter
explains how to use them on strings, numbers, and timestamps. Chapter 16, Sample
Application: News Publishing System concludes the tutorial, using everything
you’ve learned to build a real-world application that retrieves data from a MySQL
database with PHP to create a news publishing system for a public web site.

Conventions Used in This Book
This book uses different types of formatting to highlight special advice. Here’s a list:

■ Note Additional insight or information on the topic.

■ Tip A technique or trick to help you do things better.

■ Caution Something to watch out for.

■ How to… Instructions or advice for performing a specific task.

■ Did you know? Information that is tangential to the topic at hand, but
that you should know about.

In the code listings in this book, text highlighted in bold is a command to be
entered at the prompt. For example, in the following listing:

mysql> INSERT INTO movies (mtitle, myear) VALUES ('Rear Window', 1954);

Query OK, 1 row affected (0.06 sec)

the line in bold is a query that you would type in at the command prompt. You can
use this as a guide to try out the commands in the book.

Companion Web Site
The best way to learn PHP and MySQL is through hands-on interaction with . . . yup,
PHP-MySQL applications. To this end, you can find the SQL commands used to
create many of the example databases in this book on the companion web site at
http://www.everythingphpmysql.com/, together with the source code for the
various applications and scripts demonstrated throughout. And, while you’re there,
take a look at the online case studies, connect with other PHP users, and share your
thoughts on PHP and MySQL development with the rest of the community.

FM.indd 16 2/1/05 4:54:03 PM

TEAM LinG

Part IV Learning
the BasicsPart I

HowTo8 (8)

ch01.indd 1 2/2/05 3:04:02 PM

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

TEAM LinG

ch01.indd 2 2/2/05 3:04:02 PM

This page is intentionally left blank.

TEAM LinG

Chapter 1

HowTo8 (8)

Introducing PHP
and MySQL

ch01.indd 3 2/2/05 3:04:02 PM

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

TEAM LinG

 4 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 1HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 1

If you think back a little, you’ll remember how the Web first began, with static
HTML pages on which image maps and animated GIFs were considered cutting-

edge. And you’ll remember how web users clamored for more interactivity on those
static pages, interactivity that became simpler once dynamic HTML and JavaScript
became standard accessories for your Internet browser.

Well, it isn’t your grandmother’s Web any more. . . .
The current generation of web designers thinks nothing of animated GIFs

and pop-up boxes, preferring instead to use brightly colored Flash animation and
live video feeds. And that’s just what they’re doing in your browser. A similar
revolution has been taking place in the backroom, with the current crop of server-
side languages giving web developers a brand new sandbox to play in.

That’s where this introductory chapter comes in. The next few pages give you
a quick overview of how server-side scripting can be combined with a database
system to create some useful and powerful applications. This chapter also introduces
you to the stars of this book—PHP and MySQL—explaining what they are, how
they came into being, and why they make such a good couple.

Server-Side Applications…
Server-side scripting is not new. It’s been around for quite a while, and almost
every major web site uses some amount of server-side scripting. Amazon.com
uses it to find the book you’re looking for, Yahoo! uses it to store your personal
preferences, and eBay uses it to process your credit card number for that gigantic
eight-headed stone eagle you just bought. What has changed, however, is that it’s
no longer the domain of the big guns—as programming languages have matured and
the barriers to entry have lowered, independent web publishers are increasingly
using server-side technologies to deliver a better experience to their users.

If your primary experience with web development has been with JavaScript, the
popularity of server-side languages like Perl and PHP might be hard to understand;
after all, you’ve already seen what a few JavaScripts can do. However, JavaScript
runs within a client application—the browser—and as such can only access
resources, such as the current date and time, on the client machine. JavaScript also
has limited storage capabilities for user data—for example, while a web site can
certainly store user preferences in a cookie on the user’s hard drive with JavaScript,
those preferences can only be retrieved if the user returns to that site from the same
computer (because the cookie will not exist on any computer other than the one that
was originally used).

ch01.indd 4 2/2/05 3:04:03 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 1: Introducing PHP and MySQL 5

HowTo8 (8)

Server-side scripts run on the web server, usually a powerful UNIX or Microsoft
Windows system with oodles of RAM and CPU cycles; they can, therefore, be used
to access server resources, such as databases or external files, and perform more
sophisticated tasks than regular client-side scripting. For example, a server-side
script could store a user’s shopping cart in a database, and retrieve it on the user’s
next visit to save him some time reselecting items for purchase; this translates
into an improved customer experience (and it doesn’t matter which computer the
user logs in from, because the settings are all on the server and, thus, are always
available).

… And the Databases That Love Them
The large majority of server-side scripts are related to either getting information
from the user and saving it somewhere, or retrieving information from somewhere
and presenting it. This “somewhere” is usually an animal called a database, and if
you’re at all serious about building useful web applications, you’re going to need
to make friends with it.

A database, fundamentally, is a collection of data organized and classified
according to some criteria. The traditional analogy is that of a filing cabinet
containing many drawers, with each drawer holding files related to a particular
subject. This organization of information into drawers and files makes it easy to
retrieve specific bits of information quickly—to lay your hands on a particular
piece of information, you pull open the appropriate drawer and select the file(s)
you need.

A Fine Balance
Just because you can do a lot more with server-side scripts doesn’t mean that
you get to bin your copy of the JavaScript manual. Often, client-side scripting
is the most efficient way to perform tasks localized to the user interface. It’s
hard to imagine, for example, how a server-side script could help with an
image rollover or a page transition effect. Similarly, when dealing with user
input in web forms, client-side checks are a necessary first step to verifying the
validity of entered data; performing basic checks on the client alerts the user
to errors faster and reduces the number of round-trips to the server. A judicious
mix of the two is thus essential to creating web applications that are fast and
easy to use, yet robust and error-free.

1

ch01.indd 5 2/2/05 3:04:03 PM

TEAM LinG

 6 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 1HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 1

An electronic database management system (DBMS) helps you organize
information and provides a framework to access it quickly and efficiently. The
drawers that contain the files are referred to in database parlance as tables, while
the files themselves are called records. The act of pulling out information is
referred to as a query, and it’s usually expressed using Structured Query Language
(SQL). The resulting data is referred to as a result set. These terms might seem
foreign to you at the moment, but by the end of this book, you’ll be tossing them
around like a pro.

A relational database management system (RDBMS) takes things one step
further by creating relationships among the tables that make up a database. These
relationships can then be used to combine data from multiple tables, allowing
different perspectives and more useful reports. By creating links among related
pieces of information, an RDBMS not only makes it possible to store information
more efficiently (by removing redundancies and repetition), but it also makes
visible previously undiscovered relationships among disparate segments of data
and permits efficient exploitation of those relationships.

Thus, server-side scripting languages and relational database management
systems possess unique capabilities and advantages in their own right. Put them
together, however, and the world really is your oyster: the combination of the
two makes it possible to create innovative products and services that enhance
the customer experience, simplify and speed business processes, and enable new
Internet applications.

These are among the things you can do with server-side scripts and an RDBMS:

■ Build a search engine that responds to user queries

■ Record user input provided through web forms and save it for future
reference

■ Create web sites that dynamically update themselves with new content

■ Manage a blog (or more than one)

■ Process electronic payments and track customer orders

■ Build customized bar graphs, pie charts, and other statistical reports from
raw numeric data

■ Carry out online surveys and polls, and create reports of the results

ch01.indd 6 2/2/05 3:04:03 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 1: Introducing PHP and MySQL 7

HowTo8 (8)

In recent years, one of the most popular combinations in this context has been
the PHP scripting language and the MySQL RDBMS. The following section
discusses these two products in detail, highlighting the capabilities and features
of each, and illustrating just why they work so well together.

The PHP Story
According to its official web site at http://www.php.net/, PHP is “. . . a widely
used general-purpose scripting language that is especially suited for web
development and can be embedded into HTML . . . the main goal of the language
is to allow web developers to write dynamically generated web pages quickly.”
In English, what this means is that PHP is a programming language that makes
it possible to incorporate sophisticated business logic into otherwise static web
sites. The language is rapidly becoming the popular choice for data-driven web
applications because of its wide support for different database systems.

Typically, PHP code is “embedded” inside a regular HTML document, and
is recognized and executed by the web server when the document is requested
through a browser. Because PHP is a full-featured programming language, you
can code all manner of complex thingummies into your web pages using this
technique; the server will execute your code and return the output to the browser
in the format you specify. Because PHP code is executed on the server and not on
the client, developers don’t have to worry about browser-specific quirks that could
cause the code to break (as commonly happens with JavaScript); PHP code works
independently of the user’s web browser.

Now, while this is fine and dandy, you might be wondering exactly what
makes PHP so popular. After all, web developers have been creating Perl/CGI
scripts to dynamically generate HTML pages for a long time, and the gradual
adoption of W3C standards by modern browser vendors has made JavaScript far
less susceptible to the vagaries of proprietary extensions. So what makes PHP the
preferred web scripting language for developers around the world?

I’ve always thought the reason for PHP’s popularity to be fairly simple: it has
the unique distinction of being the only open-source server-side scripting language
that’s both easy to learn and extremely powerful to use. Unlike most modern
server-side languages, PHP uses clear, simple syntax and delights in nonobfuscated
code; this makes it easy to read and understand, and encourages rapid application
development. And then, of course, there’s cost and availability—PHP is available
free of charge on the Internet, for a variety of platforms and architectures, including
UNIX, Microsoft Windows, and Mac OS, as well as for most web servers.

1

ch01.indd 7 2/2/05 3:04:03 PM

TEAM LinG

 8 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 1HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 1

Geeks will be happy to hear PHP is an interpreted language. Why is this
good? Well, one advantage of an interpreted language is that it enables you to
perform incremental, iterative development and testing without going through
a compile-test-debug cycle each time you change your code. This can speed the
development cycle drastically. A variety of data types, a powerful object-oriented
engine, an extensive library of built-in functions, and support for most current web
technologies and protocols complete the picture.

A bonus, especially for developers building web applications that must
interface with a database, is PHP’s support for the MySQL RDBMS, as well as
other commercial database systems; this support is the primary draw for web
developers dealing with data-heavy web applications, like content portals or
electronic-commerce applications. The close-knit relationship between PHP and
MySQL, both open-source projects, makes possible some powerful synergies.
See the section “Sample Applications” at the end of this chapter for examples.

The sky’s the limit . . . for a list of what you can do with PHP, see the
PHP manual at http://www.php.net/manual/en/intro-whatcando.php.

History
The first version of PHP, PHP/FI, was developed by Rasmus Lerdorf as a means of
monitoring page views for his online resumé and slowly started making a mark in
mid 1995. This version of PHP had support for some basic functions, primarily the
capability to handle form data and support for the mSQL database. PHP/FI 1.0 was
followed by PHP/FI 2.0 and, in turn, quickly supplanted in 1997 by PHP 3.0.

PHP 3.0, developed by Andi Gutmans and Zeev Suraski, was where things
started to get interesting. PHP 3.0 was a complete rewrite of the original PHP/FI
implementation and it included support for a wider range of databases, including
MySQL and Oracle. PHP 3.0’s extensible architecture encouraged independent
developers to begin creating their own language extensions, which served to
increase the language’s popularity in the developer community. Before long,
PHP 3.0 was installed on hundreds of thousands of web servers, and more and
more people were using it to build database-backed web applications.

PHP 4.0, which was released in 2003, used a new engine to deliver better
performance, greater reliability and scalability, support for web servers other
than Apache, and a host of new language features, including built-in session
management and better OOP support. And, as if that wasn’t enough, the current

ch01.indd 8 2/2/05 3:04:04 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 1: Introducing PHP and MySQL 9

HowTo8 (8)

version of PHP, PHP 5.0, offers a completely revamped object model that uses
object handles for more consistent behavior when passing objects around, as well
as abstract classes, destructors, multiple interfaces, and class type hints.

PHP 5.0 also includes better exception handling, a more consistent XML
toolkit, improved MySQL support, and a better memory manager. So far, all these
changes have conspired to make PHP 5.0 the best PHP release in the language’s
ten-year history . . . a fact amply illustrated by the April 2004 Netcraft survey,
which shows PHP in use on over fifteen million web sites.

Features
As a programming language for the Web, PHP is hard to ignore. Clean syntax,
object-oriented fundamentals, an extensible architecture that encourages innovation,
support for both current and upcoming technologies and protocols, and excellent
database integration are just some of the reasons for the popularity it currently
enjoys in the developer community.

Simplicity
Because PHP uses a consistent and logical syntax, and because it comes with
a clearly written manual, even novices find it easy to learn. In fact, the quickest
way to learn PHP is to step through the manual’s introductory tutorial, and then
start looking at code samples off the Web. Within a few hours, you’ll have learned
the basics and will be confident enough to begin writing your own scripts. This
adherence to the KISS (Keep It Simple, Stupid) principle has made PHP popular
as a prototyping and rapid application development tool for web applications. PHP
can even access C libraries and take advantage of program code written for this
language, and the language is renowned for the tremendous flexibility it allows
programmers in accomplishing specific tasks.

Portability
With programming languages, portability—the ease with which a program can
be made to work on different platforms—is an important factor. PHP users have
little to fear here, because cross-platform development has been an important
design goal of PHP since PHP 3.0. Today, PHP is available for a wide variety of
platforms, including UNIX, Microsoft Windows, Mac OS, and OS/2. Additionally,
because PHP code is interpreted and not compiled, PHP scripts written on one
platform usually work as is on any other platform for which an interpreter exists.
This means that developers can code on Windows and deploy on UNIX without
any major difficulties.

1

ch01.indd 9 2/2/05 3:04:04 PM

TEAM LinG

 10 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 1HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 1

Speed
Out of the box, PHP scripts run faster than most other scripting languages, with
numerous independent benchmarks putting the language ahead of competing
alternatives like JSP, ASP.NET, and Perl. When PHP 4.0 was first released, it
raised the performance bar with its completely new parsing engine. PHP 5.0
improves performance even further through the use of an optimized memory
manager, and the use of object handles that reduce memory consumption and
help applications run faster.

Open Source
Possibly the best thing about PHP is that it’s free—its source code is freely
available on the Web, and developers can install and use it without paying licensing
fees or investing in expensive hardware or software. Using PHP can thus significantly
reduce the development costs of a software application, without compromising on
either reliability or performance. The open-source approach also ensures faster bug
fixes and quicker integration of new technologies into the core language, simply
due to the much larger base of involved developers.

Extensible
Keeping future growth in mind, PHP’s creators built an extensible architecture
that enables developers to easily add support for new technologies to the language
through modular extensions. This extensibility keeps PHP fresh and always at
the cutting edge of new technology. To illustrate this, consider what PHP lets you
do through its add-on modules: dynamically create image, PDF, and SWF files;
connect to IMAP and POP3 servers; interface with MySQL, Oracle, PostgreSQL,
and SQLite databases; handle electronic payments; parse XML documents; and
execute Perl, Java, and COM code through a PHP script. And as if all that wasn’t
enough, there’s also an online repository of free PHP classes called PEAR, the
PHP Extension and Application Repository, which provides a source of reusable,
bug-free PHP components.

XML and Database Support
Regardless of whether your web application sources its data from an XML file
or a database, PHP has you covered. PHP 5.0 comes with an improved MySQL
extension that enables you to take advantage of new features in the MySQL
RDBMS (including subqueries, transactions, and referential integrity), and the
language also supports DB2, PostgreSQL, Oracle, mSQL, MS-SQL, Informix,

ch01.indd 10 2/2/05 3:04:04 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 1: Introducing PHP and MySQL 11

HowTo8 (8)

Sybase, and SQLite. Alternatively, if it’s XML you’re after, PHP 5.0 offers
a completely redesigned XML API built around the libxml2 toolkit; this API
supports SAX, DOM, and XSLT, as well as the new SimpleXML and SOAP
extensions.

The SimpleXML extension is particularly note-worthy—it takes all the
pain out of parsing XML by representing an XML file as a PHP object.
This object can then be processed using standard PHP constructs like
loops and indexes.

And speaking of databases. . . .

The MySQL Story
If you’ve had even the slightest bit of experience with relational databases, you’ve
probably heard of MySQL: It’s a high-performance, multiuser relational database
management system that is today the de facto standard for database-driven software
applications, both on and off the Web.

Designed around three fundamental principles—speed, stability, and ease of
use—and freely available under the GNU General Public License, MySQL has been
dubbed “the world’s most popular open-source database” by its parent company,
MySQL AB. And with good reason. Official statistics reveal over five million sites
are creating, using, and deploying MySQL-based applications, with more coming
into the fold on a daily basis. You may even have heard of some of MySQL’s
customers: do the names Yahoo!, Google, Cisco, NASA, and HP sound familiar?

History
The MySQL story hasn’t always been about rocketing growth rates and high
user satisfaction ratings, however. MySQL has an interesting history, with roots
going back to 1979, when Michael “Monty” Widenius created a database system
named UNIREG for the Swedish company TcX. UNIREG didn’t work for TcX on
account of performance issues, and so TcX began a search for alternatives. They
tried mSQL, a competing DBMS created by David Hughes, but when that attempt
also failed, a new approach was called for. Thus, Widenius decided to create a new
database server customized to his specific requirements, but based on the mSQL
API (to simplify porting applications between the two). That system, completed
and released to a small group in May 1996, became MySQL 1.0.

1

ch01.indd 11 2/2/05 3:04:04 PM

TEAM LinG

 12 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 1HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 1

A few months later, MySQL 3.11 saw its first public release as a binary
distribution for Solaris. Linux source and binaries followed shortly; an enthusiastic
developer community and a friendly, GPL-based licensing policy took care of the
rest. As MySQL grew in popularity, TcX became MySQL AB, a private company
that today is the sole owner of the MySQL server source code and trademark.
MySQL AB is responsible for maintenance, marketing, and further development of
the MySQL database server and related products. Today, MySQL is available for
a wide variety of platforms, including Linux, MacOS, and Windows.

Features
MySQL’s development history has always been characterized by a clear-eyed
focus on the most important attributes of a good RDBMS: speed and stability.
This has resulted in a system that outperforms most of its competitors without
sacrificing reliability or ease of use, thereby gaining it a loyal base of developers,
administrators, and users worldwide.

The following sections describe MySQL’s most compelling features.

Speed
In an RDBMS, speed—the time taken to execute a query and return the results
to the caller—is everything. MySQL scores high on this parameter, with better
performance than almost all its competitors, including commercial systems like

The Name Game
Wondering where the names MySQL and PHP came from? Well, the acronym
PHP originally stood for “Personal Home Page Tools.” When PHP 3.0 was
released, it was changed into a recursive acronym meaning “PHP: Hypertext
Preprocessor.” More tidbits from PHP’s history are available from the PHP
web site, at http://www.php.net/manual/en/history.php.

MySQL’s roots are not quite as clear. An entry in the MySQL manual
suggests that even MySQL’s developers don’t know where the name came from:
“The derivation of the name MySQL is not perfectly clear. Our base directory
and a large number of our libraries and tools have had the prefix ‘my’ for well
over ten years. However, Monty’s daughter (some years younger) is also named
My. Which of the two gave its name to MySQL is still a mystery, even for us.”
More MySQL history is available online at http://www.linuxjournal.com/
article.php?sid=3609 and http://dev.mysql.com/doc/mysql/en/History.html.

ch01.indd 12 2/2/05 3:04:05 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 1: Introducing PHP and MySQL 13

HowTo8 (8)

Microsoft SQL Server and IBM DB2. This blazing performance is more the
result of intelligent software design than luck: MySQL uses a fully multithreaded
architecture; special optimizers for complex tasks like joins and indexing; a query
cache, which improves performance without any special programming needed by
the user; and the capability to use different storage engines on a per-table basis,
so that users can mix and match different feature sets to squeeze the maximum
performance out of the system.

Reliability
When it comes to reliability, MySQL’s creds are impeccable. The MySQL
RDBMS has been tested and certified for use in high-volume, mission-critical
applications by some of the world’s largest organizations, including NASA,
HP, and Yahoo! Because MySQL has deep roots in the open-source community,
every new release is typically “battle-tested” by users all over the world, on
different operating systems and in different operating conditions, to ensure that it

What the Experts Say
In a February 2002 benchmark study published by eWEEK (at http://www.eweek
.com/article2/0,3959,293,00.asp):

■ MySQL was found to have the best performance and scalability, along
with Oracle 9i, of the systems under comparison.

■ MySQL was the easiest RDBMS to tune and optimize, along with SQL
Server, of the systems under comparison.

■ MySQL scaled efficiently at loads from 50 to 1,000 simultaneous users,
with performance dropping only marginally once the 600-user limit had
been crossed.

In a December 2003 study by Reasoning (at http://www.reasoning.com/
downloads/mysql.html):

■ MySQL code quality was found to rank higher than comparable
commercial software, with a defect density six times lower.

■ MySQL’s development team was extremely responsive to defect
reports, resolving them rapidly and efficiently.

1

ch01.indd 13 2/2/05 3:04:05 PM

TEAM LinG

 14 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 1HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 1

is completely bug-free before being certified for use. Further, every new release
of MySQL first has to pass MySQL’s in-house test suite, affectionately known as
crash-me because its primary goal is to attempt to crash the system.

Security
Security is an important concern when dealing with multiuser databases, and
MySQL’s developers have taken a great deal of care to ensure that MySQL is as
secure as possible. MySQL comes with a sophisticated access control and privilege
system to prevent unauthorized users from accessing the system. This system,
implemented as a five-tiered privilege hierarchy, enables MySQL administrators
to protect access to sensitive data using a combination of user- and host-based
authentication schemes. Users can be restricted to performing operations only on
specified databases or fields, and MySQL even makes it possible to control which
types of queries a user can run, at database, table, or field level.

Scalability and Portability
MySQL can handle extremely large and complex databases without too much of
a drop in performance. Tables of several gigabytes containing hundreds of thousands
of records are not uncommon, and the MySQL web site itself claims to use databases
containing 50 million records. And once you’ve got your tables filled with data,
you can move them from one platform to another without any difficulty—MySQL
is available for both UNIX and non-UNIX operating systems, including Linux,
Solaris, FreeBSD, OS/2, MacOS, and Windows 95, 98, Me, 2000, XP, and NT. It
runs on a range of architectures, including Intel x86, Alpha, SPARC, PowerPC,
and IA64, and supports many different hardware configurations, from low-end
386s to high-end Pentium machines.

Ease of Use
Most commercial RDBMSs are intimidating, with cryptic command-line interfaces
and hundreds of tunable parameters. Not this one, though—well aware that
a complex interface adds to the total cost of ownership of an RDBMS, the MySQL

The Tale of Sakila
The official MySQL logo is a dolphin named Sakila. According to the MySQL
manual at http://dev.mysql.com/doc/mysql/en/The_Original_MySQL_
logo.html, the dolphin was chosen because it is “. . . a smart, fast, and lean
animal, effortlessly navigating oceans of data.” Whoever said programmers
didn’t have a sense of humor?

ch01.indd 14 2/2/05 3:04:05 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 1: Introducing PHP and MySQL 15

HowTo8 (8)

development team has taken pains to make MySQL easy to use, administer, and
optimize. A simple SQL command-line interface (SQL commands are covered
in Chapters 9 to 11) is the primary user interface to the server; users with a more
visual bent can, instead, use MySQL Control Center or MySQL Administrator,
two GUI clients developed by MySQL AB for MySQL usage and administration.
A number of other browser-based tools are also available, and the application is
well supported by a detailed manual, a knowledgeable developer community, and
some excellent books and tutorials.

Compliance with Existing Standards
MySQL 4.0 supports most of the important features of the ANSI SQL-99 standard,
with support for missing features slated to be added in future versions. MySQL
also extends the ANSI standard with its own custom functions and data types
designed to improve portability and provide users with enhanced functionality.
On the internationalization front, MySQL 4.0 supports a number of important
character sets (including Latin, Big5, and European character sets), with full
Unicode support scheduled for future versions.

Wide Application Support
MySQL exposes APIs to many different programming languages, thereby making
it possible to write database-driven applications in the language of your choice.
This book focuses specifically on using PHP with MySQL, but readers working
with other programming languages will be pleased to hear that MySQL AB also
provides native ODBC and JDBC drivers for the Microsoft Windows and Java
platforms. Additionally, hooks to MySQL are available in C, C++, Perl, Python,
and Tcl, to offer developers maximum freedom in designing MySQL-backed
applications.

Easy Licensing Policy
The MySQL RDBMS is licensed under the GPL, and users are free to download
and modify the source code of the application to their needs, and to use it to
power their applications free of cost. This licensing policy has only fuelled MySQL’s
popularity, creating an active and enthusiastic global community of MySQL
developers and users. This community plays an active role in keeping MySQL
ahead of its competition, both by crash-testing the software for reliability on
millions of installations worldwide and by extending the core engine to stay
abreast of the latest technologies and newest developments.

1

ch01.indd 15 2/2/05 3:04:05 PM

TEAM LinG

 16 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 1HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 1

PHP and MySQL: The Well-Matched Couple
As noted previously, one of the most important factors driving PHP’s popularity
over the last couple of years has been its support for a variety of databases,
including MySQL, mSQL, Oracle, and Microsoft Access. By simplifying and
streamlining database access, PHP enables developers to build complex data-
driven web applications while enjoying short development cycles.

Support for MySQL has been available in PHP since version 3.x, and has
gradually improved over subsequent releases. PHP 5.0 promises even better
integration with the latest version of MySQL: the new MySQL extension in
PHP 5.0 provides developers with both function- and object-oriented APIs to
common MySQL functions, and includes support for new and upcoming MySQL
features like transactions, stored procedures, and prepared statements.

The PHP 4.x release included a bundled version of the MySQL client
libraries, which made it possible to access a MySQL server out-of-
the-box. With PHP 5.0, this practice has been stopped and the MySQL
client libraries are no longer bundled with the PHP release archive due
to incompatibilities between the licensing terms for PHP and MySQL.
PHP 5.0 users, therefore, need to download the MySQL client libraries
separately and manually link them into PHP before they can begin using
PHP’s MySQL functions. The process is far less cumbersome than it
sounds; see Chapter 2 for details.

To GPL or Not to GPL . . .
While the MySQL server and associated drivers are licensed under the GPL,
you need to be aware of some caveats. You are permitted to use MySQL in
your own software applications, free of charge, provided that you agree to
license those applications also under the GPL, or any other MySQL AB-
approved open-source license. MySQL may also be used without purchasing
a license in a non-GPL application provided that the application is neither used
for commercial purposes nor released for others to use. This enables end users
to use MySQL for hobby sites without releasing their script source.

However, if your MySQL-powered application is not licensed under the GPL
or equivalent licensing scheme, and you do intend to redistribute it (whether
internally or externally), you are required to purchase a commercial license
for MySQL.

A clear explanation of this “dual-licensing” model is available on the MySQL
web site, at http://www.mysql.com/products/licensing/.

ch01.indd 16 2/2/05 3:04:05 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 1: Introducing PHP and MySQL 17

HowTo8 (8)

PHP’s ease of use in the web arena, together with its tight integration with
MySQL, has thus made it the preferred programming language for web-based,
data-driven applications. Additionally, because both tools are available under
open-source licenses, developers using PHP and MySQL can provide customers
with huge savings on the licensing costs of other commercially licensed software,
and also benefit from the tremendous amount of thought that PHP and MySQL
developers have put into making sure that the two packages work together seamlessly
and smoothly.

The applications that the PHP-MySQL combination have been used for
range from the small to the large: content management systems for web portals,
search engines, time- and resource-tracking tools, reporting and graphing tools,
web-based personal information managers . . . the list goes on. In essence, if you
can think of an application that uses (1) a database for storage of user data and
(2) a browser as the primary user interface, it’s a good chance the PHP-MySQL
combination will work for you.

Architecture
It’s interesting, at this point, to see what the typical PHP and MySQL application
development framework looks like. Usually, such applications are developed on
the so-called “LAMP” (Linux, Apache, MySQL, and PHP) platform, wherein each
component plays a specific and important role:

■ Linux provides the base operating system (OS) and server environment.

■ The Apache web server intercepts HTTP requests and either serves them
directly or passes them on to the PHP interpreter for execution.

■ The PHP interpreter parses and executes PHP code, and returns the results
to the web server.

■ The MySQL RDBMS serves as the data storage engine, accepting connections
from the PHP layer and inserting, modifying, or retrieving data.

Figure 1-1 illustrates these components in action.

An Open Invitation
The interesting thing about the LAMP platform, in case you haven’t already
noticed, is this: all the components are open-source!

1

ch01.indd 17 2/2/05 3:04:05 PM

TEAM LinG

 18 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 1HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 1

Notice I said the development platform is “usually” LAMP. It’s also
possible to develop command-line PHP-MySQL applications, which
run at the shell prompt and don’t require a web server. Take a look
at http://www.php.net/manual/en/features.commandline.php
for more.

Here’s what’s happening in Figure 1-1:

 1. Joe pops open his web browser at home and types in the URL for his online
Webmail client. After looking up the domain, Joe’s browser (the client)
sends an HTTP request to the corresponding server IP address.

 2. The Apache web server handling HTTP requests for the domain receives
the request and notes that the URI ends with a .php suffix. Because the
server is programmed to automatically redirect all such requests to the PHP
layer, it simply invokes the PHP interpreter and passes it the contents of the
named file.

 FIGURE 1-1 The LAMP development framework

ch01.indd 18 2/2/05 3:04:06 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 1: Introducing PHP and MySQL 19

HowTo8 (8)

 3. The PHP interpreter parses the file, executing the code in the special PHP
tags. If the code includes database queries, the PHP interpreter opens
a client connection to the MySQL RDBMS and executes them. Once the
script interpreter has completed executing the script, it returns the result to
the browser, cleans up after itself, and goes back into hibernation.

 4. The results returned by the interpreter are transmitted to Joe’s browser by
the Apache server.

From the previous explanation, it should be clear that to get started building
PHP and MySQL applications, your development environment must contain
a web server (this doesn’t always have to be Apache, although that’s the most
common) and working installations of PHP and MySQL. Chapter 2 discusses how
to go about setting up this development environment, using both the Linux and
Windows operating systems.

Sample Applications
Here’s a small sample of the types of applications that developers have used PHP
and MySQL for:

■ phpMyAdmin (http://www.phpmyadmin.net/) is a browser-based
GUI to administer one or more MySQL database servers. One of the
most popular applications on the SourceForge (http://www.sourceforge
.net/) network, phpMyAdmin provides users with an HTML interface
to insert, edit, and delete records; execute queries; view real-time
MySQL performance statistics; import and export data; and manage
user privileges.

■ phpAdsNew (http://www.phpadsnew.com/) is a banner rotation and
tracking system for web sites that enables site administrators to manage
advertisers, display banners in rotation, and generate reports on views
and clickthroughs.

■ Horde (http://www.horde.org/) is a PHP-based application development
framework that provides the foundation for a suite of web-based applications,
including a Webmail client, a contact manager, a file manager, and a news client.

1

ch01.indd 19 2/2/05 3:04:06 PM

TEAM LinG

 20 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 1HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 1

■ Midgard (http://www.midgard-project.org/) is a template-based
content management system (CMS) that provides a WYSIWYG interface
for building web sites. It includes a web-based administrative interface to
easily add and delete content, as well as support for content in multiple
languages.

■ phpBB (http://www.phpbb.com/) is a PHP/MySQL-based bulletin
board package that enables web site administrators to quickly add unlimited
discussion forums to their web site. phpBB includes a multitier privilege
system, a powerful search engine support for multiple languages, private
messaging, and public and private discussion rooms.

■ phpNuke (http://www.phpnuke.org/) is an open-source portal-in-
a-box solution that uses MySQL for data storage. phpNuke provides
all the features most commonly found in a web portal, including user
personalization, polls, bulletin boards, downloads, banner management,
FAQs, a search engine, and more.

■ Drupal (http://www.drupal.org/) is a content management system
that enables users to publish and manage many different types of content.
It supports news articles and content, polls, discussion forums, weblogs
and download archives, and comes in handy if you need to jump-start
a community-based web site or personal weblog.

■ phpGroupware (http://www.phpgroupware.org/) is a PHP-based
multiuser, multilanguage application suite. Usable through a web browser,
it provides a calendar, to-do list, e-mail client, file manager, and address book.

■ Gallery (http://gallery.menalto.org) uses PHP and MySQL to create
a highly configurable digital photo archive, complete with automatic
thumbnail creation, image captioning and editing, keyword search, and
gallery-level authentication.

Summary
This chapter provided a gentle introduction to the world of data-driven web
applications, setting the stage with a description of how server-side scripting
and databases work, and then proceeding to an overview of PHP and MySQL.
It offered insight into the history and evolution of both tools, identified the core

ch01.indd 20 2/2/05 3:04:07 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 1: Introducing PHP and MySQL 21

HowTo8 (8)

features that have made them so popular with developers all over the world, and
discussed some of their most common applications. Finally, it wrapped things
up by identifying the essential components needed to build a PHP-MySQL
development environment, together with an explanation of how the various
components interact with each other.

The next chapter expands on this last section, guiding you through the process
of obtaining, installing, and configuring the components of this application
development environment—a necessary first step before you can begin building
your own PHP and MySQL applications.

1

ch01.indd 21 2/2/05 3:04:07 PM

TEAM LinG

ch01.indd 22 2/2/05 3:04:07 PM

This page is intentionally left blank.

TEAM LinG

Chapter 2

HowTo8 (8)

Setting Up
a PHP-MySQL
Development
Environment

ch02.indd 23 2/2/05 3:06:27 PM

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

TEAM LinG

 24 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 2HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 2

In the previous chapter, you learned about the components of a typical
PHP-MySQL development platform and how they work together to provide

a framework for database-backed application development. As a necessary first
step to exploiting this framework, you must install these components on your
workstation, and then create a development environment that can be used to run
the code examples in subsequent chapters.

That’s where this chapter comes in. Over the next few pages, I will guide you
through the process of obtaining, installing, configuring, and testing a PHP-MySQL
development environment on your Windows or UNIX workstation.

How to. . .

■ Obtain MySQL, PHP, and Apache software from the Internet

■ Install these components, compiling them from source code, where
necessary

■ Perform basic testing to ensure that your development platform is working
as it should

■ Automatically activate all required components on system startup

■ Take basic steps to safeguard the security of your MySQL installation

This chapter is designed merely to provide an overview and a general
guide to the process of installing and configuring MySQL, PHP, and
Apache on UNIX and Windows. It is not intended as a replacement for
the installation documentation that ships with each software package.
If you encounter difficulties installing or configuring the various programs
described here, visit the respective program’s web site or search the Web
for detailed troubleshooting information and advice (some links are
provided at the end of this chapter).

Obtaining the Software
The first step is to make sure that you have all the software you need. Here’s your
shopping list:

ch02.indd 24 2/2/05 3:06:28 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 2: Setting Up a PHP-MySQL Development Environment 25

HowTo8 (8)

■ MySQL The MySQL database server provides robust and scalable data
storage/retrieval. It is available in both source and binary versions from
http://www.mysql.com/. Binary distributions are available for Linux,
Solaris, FreeBSD, Mac OS X, Windows 95/98/Me/2000/XP/NT, HP-UX,
IBM AIX, SCO OpenUNIX, and SGI Irix, and source distributions are
available for both Windows and UNIX platforms. The binary version is
recommended for two reasons: it is easier to install, and it is optimized for
use on different platforms by the MySQL development team. At press time,
the most current version of the MySQL database server is MySQL 4.0.21.

■ PHP PHP provides an application-development framework for both web
and console applications. It can be downloaded from http://www.php.net/.
Here, too, both source and binary versions are available for Windows,
UNIX, and Mac OS X platforms. UNIX users should download the latest
source archive, while Windows users should download the latest binary
release. At press time, the most current version of PHP is PHP 5.0.1.

■ Apache Apache is a feature-rich web server that works well with PHP.
It can be downloaded free of charge from http://httpd.apache.org/ in
both source and binary form for a variety of platforms. UNIX users should
download the latest source archive, while Windows users should download
a binary installer appropriate for their version of Windows. At press time,
the most current version of the Apache server is Apache 1.3.31.

PHP and Apache 2.0.x are not completely stable when used together. It is,
therefore, recommended that you use Apache 1.3.x to avoid compatibility
issues.

In addition to these three basic components, UNIX users may also require some
supporting libraries. Choose from:

■ The libxml2 library, available from http://www.xmlsoft.org/

■ The zlib library, available from http://www.gzip.org/zlib/

Finally, users on both platforms need a decompression tool capable of dealing
with TAR (Tape Archive) and GZ (GNU Zip) files. On UNIX, the tar and gzip
utilities are appropriate, and are usually included with the operating system. On
Windows, a good decompression tool is WinZip, available from http://www
.winzip.com/.

2

ch02.indd 25 2/2/05 3:06:28 PM

TEAM LinG

 26 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 2HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 2

Installing and Configuring the Software
Once the required software has been obtained, the next step is to install the various
pieces and get them talking to each other. The following sections outline the steps
for both Windows and UNIX platforms.

If you use an Apple workstation, you can find instructions for installing
PHP on Mac OS X in the PHP manual, at http://www.php.net/manual/en/
install.macosx.php.

Installing on UNIX
The installation process for UNIX involves a number of distinct steps: installing
MySQL from a binary distribution, using the supplied MySQL client libraries to
compile PHP from a source distribution, and compiling and configuring Apache to
properly handle requests for PHP web pages. These steps are described in greater
detail in the following subsections.

Installing Supporting Libraries
If you’re using PHP 5.x, you might need to install some supporting libraries first:
libxml2 2.6.0 (or better), which is used by the new XML API in PHP 5.x, and
zlib 1.0.9 (or better), which provides compression services to many PHP 5.x
extensions. If you already have these libraries installed, skip to the next section.
If not, use the following steps to install them.

 1. Log in as the system’s root user.

[user@host]# su - root

 2. Extract the contents of the libxml2 archive to the system’s temporary
directory.

Behind the Scenes

The examples in this book have been developed and tested on MySQL 4.0.21
and MySQL 4.1.3, with Apache 1.3.31 and PHP 5.0.1.

ch02.indd 26 2/2/05 3:06:29 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 2: Setting Up a PHP-MySQL Development Environment 27

HowTo8 (8)

[root@host]# cd /tmp

[root@host]# tar -xzvf /tmp/libxml2-2.6.11.tar.gz

 3. Next, change into the newly created directory and set variables for the
compile process via the included configure script (note my use of the
--prefix argument to configure, which sets the default installation
path for the compiled libraries).

[root@host]# cd /tmp/libxml2-2.6.11

[root@host]# ./configure --prefix=/usr/local/

You should see a few screens of output as configure configures and sets up
the variables needed for the compilation process.

 4. Now, compile the library using make, and install it to the system using
make install.

[root@host]# make

[root@host]# make install

At the end of this process, the libxml2 library should be installed to
/usr/local/.

In a similar manner, compile and install the zlib library as well.

Bundle of Joy

The UNIX version of PHP 4.x included a set of MySQL client libraries, which
were used by default to communicate with the MySQL server. Because of
licensing issues involved with bundling these libraries, and because these
included libraries often conflicted with previously installed MySQL client
libraries and led to unexpected run-time behavior, the PHP Group decided not
to bundle MySQL libraries with the UNIX version of PHP 5.x.

The result of this apparently minor shift in policy has significant implications
for you, the end user. If you’re using PHP 5.x in your UNIX-based development
environment, it is now mandatory for you to first obtain the MySQL client
libraries on your own (usually by installing MySQL from a binary distribution
or RPM, or by compiling it from the source code), and then point the PHP
installer to these libraries to activate MySQL support in PHP. The procedure to
accomplish this is explained in detail in this chapter.

2

ch02.indd 27 2/2/05 3:06:29 PM

TEAM LinG

 28 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 2HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 2

Installing MySQL
Once the libraries are installed, proceed to install MySQL from a binary distribution,
using the following steps:

 1. Ensure that you are logged in as the system’s root user.

[user@host]# su - root

 2. Extract the content of the MySQL binary archive to an appropriate
directory on your system, for example, /usr/local/.

[root@host]# cd /usr/local

[root@host]# tar -xzvf ↵
/tmp/mysql-standard-4.0.21-pc-linux-i686.tar.gz

The MySQL files should get extracted into a directory named according
to the format mysql-version-os-architecture, for example, mysql-standard-
4.0.21-pc-linux-i686.

 3. For ease of use, set a shorter name for the directory created in the previous
step by creating a soft link named mysql pointing to this directory in the
same location.

[root@host]# ln -s mysql-standard-4.0.21-pc-linux-i686 mysql

Change into this directory and look at how the files are arranged. You
should see something like Figure 2-1.

 4. For security reasons, the MySQL database server process should never
run as the system superuser. Therefore, it is necessary to create a special
mysql user and group for this purpose. Do this with the groupadd and
useradd commands.

[root@host]# groupadd mysql

[root@host]# useradd –g mysql mysql

 5. Initialize the MySQL tables with the mysql_install_db initialization script,
included in the distribution.

[root@host]# /usr/local/mysql/scripts/mysql_install_db

Figure 2-2 demonstrates what you should see when you do this.

As the previous output suggests, this initialization script prepares and
installs the various MySQL base tables, and it also sets up default access
permissions for MySQL.

ch02.indd 28 2/2/05 3:06:30 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 2: Setting Up a PHP-MySQL Development Environment 29

HowTo8 (8)

 FIGURE 2-1 The directory structure created after unpacking a MySQL binary tarball

 FIGURE 2-2 The output of the mysql_install_db script

2

ch02.indd 29 2/2/05 3:06:30 PM

TEAM LinG

 30 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 2HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 2

 6. Alter the ownership of the MySQL binaries so they are owned by root

[root@host]# chown -R root /usr/local/mysql

and ensure that the mysql user created in step 4 has read/write privileges
to the MySQL data directory.

[root@host]# chown -R mysql /usr/local/mysql/data

[root@host]# chgrp -R mysql /usr/local/mysql

 7. Start the MySQL server by manually running the mysqld_safe script.

[root@host]# /usr/local/mysql/bin/mysqld_safe --user=mysql &

MySQL should now start up normally. Figure 2-3 demonstrates what you will
see as the server starts up.

Once installation is successfully completed and the server has started up, move
down to the section entitled “Testing MySQL” to verify it is functioning as it should.

 FIGURE 2-3 MySQL server startup messages

ch02.indd 30 2/2/05 3:06:30 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 2: Setting Up a PHP-MySQL Development Environment 31

HowTo8 (8)

Installing Apache and PHP
PHP can be integrated with the Apache Web server in one of two ways: as a dynamic
module loaded into the web server at run time, or as a static module integrated
into the Apache source tree at build time. Each alternative has advantages and
disadvantages:

■ Installing PHP as a dynamic module makes it easier to upgrade your PHP
build at a later date, as you only need to recompile the PHP module and
not the rest of the Apache Web server. On the flip side, with a dynamically
loaded module, performance tends to be lower than with a static module,
which is more closely integrated with the server.

■ Installing PHP as a static module improves performance because the
module is compiled directly into the Apache source tree. However, this
close integration has an important drawback: if you ever decide to upgrade
your PHP build, you will need to reintegrate the newer PHP module into
the Apache source tree and recompile the Apache Web server.

This section shows you how to compile PHP as a dynamic module that is
loaded into the Apache server at run time.

 1. Ensure that you are logged in as the system’s root user.

[user@host]# su - root

 2. Extract the contents of the Apache source archive to your system’s
temporary directory.

[root@host]# cd /tmp

[root@host]# tar -xzvf /tmp/apache_1.3.31.tar.gz

 3. To enable PHP to be loaded dynamically, the Apache server must be
compiled with Dynamic Shared Object (DSO) support. This support is
enabled by passing the --enable-module=so option to the Apache
configure script, as shown here:

[root@host]# cd /tmp/apache_1.3.31

[root@host]# ./configure --prefix=/usr/local/apache ↵
--enable-module=so

You should see a few screens of output (Figure 2-4 has a sample) as configure
configures and sets up the variables needed for the compilation process.

2

ch02.indd 31 2/2/05 3:06:30 PM

TEAM LinG

 32 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 2HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 2

 4. Now, compile the server using make and install it to the system using
make install.

[root@host]# make

[root@host]# make install

Figure 2-5 illustrates what you might see during the compilation process.

Apache should now be installed to /usr/local/apache/.

 5. Next, proceed to compile and install PHP. Begin by extracting the contents
of the PHP source archive to your system’s temporary directory.

[root@host]# cd /tmp

[root@host]# tar -xzvf /tmp/php-5.0.1.tar.gz

 6. This step is the most important in the PHP installation process. It involves
sending arguments to the PHP configure script to control the final capabilities
of the PHP module. These command-line parameters specify which PHP
extensions should be activated, and they also tell PHP where to find the
supporting libraries needed by those extensions.

[root@host]# cd /tmp/php-5.0.1

[root@host]# ./configure --prefix=/usr/local/php5 ↵
--with-apxs=/usr/local/apache/bin/apxs --with-libxml- ↵

 FIGURE 2-4 Configuring the Apache source tree

ch02.indd 32 2/2/05 3:06:31 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 2: Setting Up a PHP-MySQL Development Environment 33

HowTo8 (8)

dir=/usr/local/lib --with-zlib --with-zlib-dir=/usr/local/lib ↵
--with-mysql=/usr/local/mysql

Here is a brief explanation of what each of the previous arguments does.

■ The --with-apxs argument tells PHP where to find the Apache’s
APXS (APache eXtenSion) script. This script simplifies the task of
building and installing loadable modules for Apache.

■ The --with-libxml-dir and --with-zlib-dir arguments
tell PHP where to find the libxml2 and zlib libraries (the installation
procedure for these libraries is discussed in the section entitled “Installing
Supporting Libraries”).

■ The --with-mysql argument activates PHP’s MySQL extension and
tells PHP where to find the local MySQL installation. The configure
script uses this information to find the system’s MySQL client libraries
and to add MySQL support to PHP.

■ The --with-zlib argument activates the ZLIB library in the final
PHP build, making data compression services available to all extensions.

Figure 2-6 illustrates what you will see during the configuration process.

 FIGURE 2-5 Compiling Apache

2

ch02.indd 33 2/2/05 3:06:31 PM

TEAM LinG

 34 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 2HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 2

The PHP configuration process is extremely sophisticated, enabling you
to control many aspects of PHP’s behavior. To see a complete list of
available options, use the command ./configure --help, and visit
http://www.php.net/manual/en/configure.php for detailed explanations
of what each option does.

 7. Next, compile and install PHP using make and make install:

[root@host]# make

[root@host]# make install

Figure 2-7 illustrates what you might see during the compilation process.

PHP should now be installed to /usr/local/php5/.

 8. The next step in the installation process consists of configuring Apache
to correctly recognize requests for PHP pages. This is accomplished by
opening the Apache configuration file, httpd.conf (which is found in the
conf/ subdirectory of the Apache installation directory), in a text editor
and adding the following line to it.

AddType application/x-httpd-php .php

 FIGURE 2-6 Configuring the PHP source tree

ch02.indd 34 2/2/05 3:06:32 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 2: Setting Up a PHP-MySQL Development Environment 35

HowTo8 (8)

 9. Save the changes to the file. Also, check to make sure this line appears
somewhere in the file:

LoadModule php5_module libexec/libphp5.so

The PHP installation process should automatically add this line to the file,
but it has been known to fail. If you don’t see it, add it yourself.

 10. Start the Apache server by manually running the apachectl script.

[root@host]# /usr/local/apache/bin/apachectl start

Apache should start up normally. Figure 2-8 demonstrates what you will see as
the server starts up.

Once installation is successfully completed and the server has started, move down
to the section entitled “Testing Apache and PHP” to verify that all is functioning as
it should.

Installing on Windows
Compiling applications on Windows is a challenging process, especially for novice
developers. With this in mind, it is advisable for Windows users to focus instead
on installing and configuring prebuilt binary releases of MySQL, PHP, and Apache,

 FIGURE 2-7 Compiling PHP

2

ch02.indd 35 2/2/05 3:06:32 PM

TEAM LinG

 36 How to Do Everything with PHP & MySQL

 / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 2 / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 2

instead of attempting to compile them from source code. These releases can be
downloaded from the web sites listed in the previous section. They are to be
installed one after another, as outlined in the following subsections.

Installing MySQL
The binary distribution of MySQL for Windows comes with an automated
installer, which enables you to get MySQL up and running on your Windows
system in just a few minutes.

 1. Log in as an administrator (if you’re using Windows NT or Windows 2000)
and unzip the distribution archive to a temporary directory on your system.
After extraction, your directory should look something like Figure 2-9.

 2. Double-click the setup.exe file to begin the installation process. You should
see a welcome screen (Figure 2-10).

 3. Select the directory in which MySQL is to be installed, for example,
c:\program files\mysql\ (Figure 2-11).

 FIGURE 2-8 Apache server startup messages

ch02.indd 36 2/2/05 3:06:32 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 2: Setting Up a PHP-MySQL Development Environment 37

HowTo8 (8)

 FIGURE 2-9 The directory structure created on unpackaging a MySQL binary distribution
for Windows

 FIGURE 2-10 Beginning MySQL installation on Windows

2

ch02.indd 37 2/2/05 3:06:32 PM

TEAM LinG

 38 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 2HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 2

 FIGURE 2-11 Selecting the MySQL installation directory

 4. Select the type of installation required (Figure 2-12).

 Most often, a Typical Installation will do. If you’re the kind who likes
tweaking default settings, however, or if you’re short of disk space, select
the Custom Installation option, and decide which components of the
package should be installed (Figure 2-13).

 5. MySQL should now begin installing to your system (Figure 2-14).

 6. Once installation is complete, you should see a screen like Figure 2-15.

You should now be able to start the MySQL server by diving into the bin\
subdirectory of your MySQL installation and launching the WinMySQLadmin
tool (winmysqladmin.exe). This tool provides a graphical user interface to MySQL
configuration, and is by far the simplest way to configure MySQL on Windows
systems.

The first time you start WinMySQLadmin, you will be asked for the name and
password of the user the server should run as (Figure 2-16).

Once this information is entered, WinMySQLadmin will automatically create
the MySQL configuration file (named my.ini) and populate it with appropriate
values for your system. You can edit these values at any time using the my.ini
Setup section of the WinMySQLadmin application (see Figure 2-17).

ch02.indd 38 2/2/05 3:06:33 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 2: Setting Up a PHP-MySQL Development Environment 39

HowTo8 (8)

 FIGURE 2-12 Selecting the MySQL installation type

 FIGURE 2-13 Selecting components for a custom MySQL installation

2

ch02.indd 39 2/2/05 3:06:33 PM

TEAM LinG

 40 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 2HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 2

You can also start the MySQL server by directly launching the mysqld.
exe or mysqld-nt.exe binaries from the bin\ subdirectory of your MySQL
installation.

 FIGURE 2-14 MySQL installation in progress

 FIGURE 2-15 MySQL installation successfully completed

ch02.indd 40 2/2/05 3:06:33 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 2: Setting Up a PHP-MySQL Development Environment 41

HowTo8 (8)

 FIGURE 2-16 Setting the WinMySQLadmin username and password

 FIGURE 2-17 Editing MySQL configuration on Windows via WinMySQLadmin

2

ch02.indd 41 2/2/05 3:06:34 PM

TEAM LinG

 42 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 2HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 2

Once the server has started, WinMySQLadmin will minimize to a green icon in
your Windows taskbar notification area. You can now proceed to test the server, as
described in the section “Testing MySQL,” to ensure that everything is working as
it should.

You can bring the WinMySQLadmin application back to the foreground
at any time by right-clicking its taskbar icon and selecting the Show Me
option from the menu that pops up (see Figure 2-18).

Installing Apache
Once MySQL is installed, the next step is to install the Apache Web server. On
Windows, this is a point-and-click process, similar to that used when installing
MySQL.

 1. Begin by double-clicking the Apache installer to begin the installation
process. You should see a welcome screen (Figure 2-19).

 2. Read the license agreement and accept the terms to proceed (Figure 2-20).

 3. Read the descriptive information and proceed to enter basic server information
and the e-mail address to be displayed on error pages (Figure 2-21).

 4. Select the type of installation required (Figure 2-22).

 If you like, select the Custom Installation option to decide which
components of the package should be installed (Figure 2-23).

 5. Select the location to which Apache should be installed, for example,
c:\program files\apache group\ (Figure 2-24).

 FIGURE 2-18 Using the WinMySQLadmin system tray icon

ch02.indd 42 2/2/05 3:06:34 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 2: Setting Up a PHP-MySQL Development Environment 43

HowTo8 (8)

 FIGURE 2-19 Beginning Apache installation on Windows

 FIGURE 2-20 Apache licensing terms

2

ch02.indd 43 2/2/05 3:06:34 PM

TEAM LinG

 44 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 2HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 2

 FIGURE 2-21 Entering Apache server information

 FIGURE 2-22 Selecting the Apache installation type

ch02.indd 44 2/2/05 3:06:35 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 2: Setting Up a PHP-MySQL Development Environment 45

HowTo8 (8)

 FIGURE 2-23 Selecting components for a custom Apache installation

 FIGURE 2-24 Selecting the Apache installation directory

2

ch02.indd 45 2/2/05 3:06:35 PM

TEAM LinG

 46 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 2HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 2

 6. Apache should now begin installing to the specified location (Figure 2-25).
The installation process takes a few minutes to complete, so this is a good
time to get yourself a cup of coffee.

 7. Once installation is complete, you should see a screen like Figure 2-26.

The Apache installer also takes care of starting the Apache Web server, as the
final step of the automated installation process. You can now proceed to test the
server as described in the section “Testing Apache,” to ensure that the server is
correctly handling HTTP requests.

Installing PHP
The PHP binary release for Windows has two versions—a ZIP archive that contains
all the bundled PHP extensions and requires manual installation, and an automated
Windows Installer-version that contains only the basic PHP binary with no extra
extensions. This section outlines the installation process for the PHP 5.0.1 ZIP archive.

 FIGURE 2-25 Apache installation in progress

ch02.indd 46 2/2/05 3:06:35 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 2: Setting Up a PHP-MySQL Development Environment 47

HowTo8 (8)

PHP 4.3.0 and better can only be used with Windows 98/Me/NT/2000/
XP/2003. Windows 95 is not supported as of PHP 4.3.0.

 1. Log in as an administrator (if you’re using Windows NT or Windows 2000)
and unzip the distribution archive to a directory on your system, for
example, c:\php\. After extraction, this directory should look something
like Figure 2-27.

 2. Next, copy the file php.ini-recommended from your PHP installation
directory to your Windows directory—either c:\windows\ or c:\winnt\—
and rename it to php.ini. This file contains configuration settings for PHP,
which can be used to alter the way it works. Read the comments within the
file to learn more about the available settings.

 3. Copy the file libmysql.dll from your PHP installation directory to your
Windows system directory, usually c:\windows\system32\ or c:\winnt\
system32\.

 FIGURE 2-26 Apache installation successfully completed

2

ch02.indd 47 2/2/05 3:06:36 PM

TEAM LinG

 48 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 2HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 2

 4. Within the php.ini file, locate the line,

extension_dir = "./"

and alter it to read

extension_dir = "c:\php\ext\"

This tells PHP where to locate the extensions supplied with the package.
Remember to replace the path “c:\php\” with the actual location of your
PHP installation.

Next, look for the line,

;extension=php_mysql.dll

and remove the semicolon at the beginning, so it reads like this:

extension=php_mysql.dll

This takes care of activating PHP’s MySQL extension.

 FIGURE 2-27 The directory structure created on unpackaging a PHP binary distribution
for Windows

ch02.indd 48 2/2/05 3:06:36 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 2: Setting Up a PHP-MySQL Development Environment 49

HowTo8 (8)

 5. Open the Apache configuration file, httpd.conf (which can be found in the
Apache/conf/ subdirectory of the Apache installation directory), in a text
editor, and add the following lines to it.

AddType application/x-httpd-php .php

LoadModule php5_module "c:\php\php5apache.dll"

SetEnv PHPRC C:\windows

These lines tell Apache how to deal with PHP scripts and where to find the
php.ini configuration file. Remember to replace the path c:\php\ with the
actual location of your PHP installation and the path C:\windows with
C:\winnt if you’re using Windows NT or Windows 2000.

 6. When the Apache server is installed, it adds itself to the Start menu. Use
this Start menu group to stop and restart the server, as in Figure 2-28.

PHP is now installed and configured to work with Apache. To test it, skip down
to the section entitled “Testing Apache and PHP.”

 FIGURE 2-28 Apache server controls on Windows

2

ch02.indd 49 2/2/05 3:06:36 PM

TEAM LinG

 50 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 2HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 2

Testing the Software
After you’ve successfully completed the installation procedure, it is necessary
to test the various components to ensure that they’re functioning correctly, both
individually and with each other. This section shows you how.

Testing MySQL
Once MySQL is successfully installed, the base tables are initialized and the server
is started, you can verify that all is working as it should via some simple tests.

First, start up the MySQL command-line client, by changing to the bin/ sub-
directory of your MySQL installation directory and typing

prompt# mysql -u root

You should be rewarded with a

mysql>

prompt.
At this point, you are connected to the MySQL server and can begin executing

SQL commands or queries to test whether the server is working as it should. Here
are a few examples, with their output:

mysql> SHOW DATABASES;

+----------+

| Database |

+----------+

| mysql |

| test |

+----------+

2 rows in set (0.13 sec)

mysql> USE mysql;

Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

Database changed

mysql> SHOW TABLES;

+-----------------+

| Tables_in_mysql |

+-----------------+

ch02.indd 50 2/2/05 3:06:36 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 2: Setting Up a PHP-MySQL Development Environment 51

HowTo8 (8)

| columns_priv |

| db |

| func |

| host |

| tables_priv |

| user |

+-----------------+

6 rows in set (0.00 sec)

mysql> SELECT COUNT(*) FROM user;

+----------+

| count(*) |

+----------+

| 4 |

+----------+

1 row in set (0.00 sec)

If you see output similar to the previous, your MySQL installation is working
as it should. Exit the command-line client by typing

mysql> exit

and you’ll be returned to your command prompt.
If you don’t see output like that previously shown, or if MySQL throws

warnings and errors at you, review the installation procedure in the previous
section, as well as the documents that shipped with your version of MySQL, to
see what went wrong.

The commands sent to the MySQL client in the previous examples are SQL
commands. Read more about them in Chapter 8.

Testing Apache
Once you successfully install Apache, test it by popping open your web browser
and pointing it to http://localhost/. You should see Apache’s default It Worked!
page, as shown in Figure 2-29.

Testing Apache and PHP
Once you successfully install PHP as an Apache module, you should test it to
ensure that the web server can recognize PHP scripts and handle them correctly.

2

ch02.indd 51 2/2/05 3:06:37 PM

TEAM LinG

 52 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 2HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 2

To perform this test, create a PHP script in any text editor containing the
following lines:

<?php

phpinfo();

?>

Save this file as test.php in your web server document root (the htdocs/ sub-
directory of your Apache installation directory) and point your browser to http://
localhost/test.php. You should see a page containing information on the PHP build,
as in Figure 2-30.

Eyeball the list of extensions to make sure that the MySQL extension is active.
If it isn’t, review the previous installation procedure, as well as the installation
documents that shipped with the software, to see what went wrong.

 FIGURE 2-29 Testing Apache

ch02.indd 52 2/2/05 3:06:37 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 2: Setting Up a PHP-MySQL Development Environment 53

HowTo8 (8)

Performing Postinstallation Steps
Once testing is complete, you should perform two more tasks to complete your
MySQL installation.

Setting the MySQL Super-User Password
When MySQL is first installed, access to the database server is restricted to the
MySQL administrator, aka root. By default, this user is initialized with a null
password, which is generally considered a Bad Thing. You should, therefore,
rectify this as soon as possible by setting a password for this user via the included
mysqladmin utility, using the following syntax in UNIX:

[root@host]# /usr/local/mysql/bin/mysqladmin ↵
-u root password 'new-password'

 FIGURE 2-30 Viewing the output of the phpinfo() command

2

ch02.indd 53 2/2/05 3:06:37 PM

TEAM LinG

 54 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 2HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 2

In Windows, you can use the following equivalent syntax from an MS-DOS
prompt:

C:\> c:\program files\mysql\bin\mysqladmin ↵
-u root password 'new-password'

This password change goes into effect immediately, with no requirement to restart
the server.

The MySQL root user is not the same as the system root user on UNIX.
So, altering the system root user’s password does not affect the MySQL
root user’s password, and vice versa.

Configuring MySQL and Apache to Start Automatically
If you’re going to be doing a lot of development (and if you bought this book,
that’s a given!), then you should consider configuring the Apache and MySQL
servers to start automatically when your system boots up. The following sections
outline the process to accomplish this.

On UNIX
On UNIX, both MySQL and Apache servers come with startup/shutdown scripts,
which can be used to start and stop them. These scripts are located within the
installation hierarchy for each program. Here’s an example of how to use the
MySQL server control script:

[root@host]# /usr/local/mysql/support-files/mysql.server start

[root@host]# /usr/local/mysql/support-files/mysql.server stop

And here’s an example of how to use the Apache control script:

[root@host]# /usr/local/apache/bin/apachectl start

[root@host]# /usr/local/apache/bin/apachectl stop

To have MySQL and Apache start automatically at boot time on UNIX, simply
invoke their respective control scripts with appropriate parameters from your
system’s bootup and shutdown scripts in the /etc/rc.d/* hierarchy.

ch02.indd 54 2/2/05 3:06:37 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 2: Setting Up a PHP-MySQL Development Environment 55

HowTo8 (8)

On Windows
On Windows, you can use the WinMySQLadmin utility to start and shut down
MySQL, and the server controls installed by Apache on the Start menu to control
the Apache server. To start MySQL and Apache automatically on Windows, simply
add a link to the mysqld.exe and apache.exe server binaries to your Startup group.

Summary
As popular open-source applications, MySQL, Apache, and PHP are available
for a wide variety of platforms and architectures, in both binary and source form.
This chapter demonstrated the process of installing and configuring these software
components to create a PHP-MySQL development environment on the two most
common platforms: UNIX and Windows. It also showed you how to configure
your system to launch these components automatically every time the system starts
up, and offered some tips on basic MySQL security.

To read more about the installation processes outlined in this chapter, or for
detailed troubleshooting advice and assistance, consider visiting the following
pages:

■ MySQL installation notes, at http://dev.mysql.com/doc/mysql/en/
Quick_Standard_Installation.html

■ General guidelines for compiling Apache on UNIX, at http://httpd
.apache.org/docs/install.html

■ Windows-specific notes for Apache binary installations, at http://httpd
.apache.org/docs/windows.html

■ Installation instructions for PHP on Windows, at http://www.php.net/
manual/en/install.windows.php

■ Installation instructions for PHP on UNIX, at http://www.php.net/manual/
en/install.unix.php

■ Installation instructions for PHP on Mac OS X, at http://www.php.net/
manual/en/install.macosx.php

You are now ready to begin working with PHP and MySQL. Turn to the next
chapter for an introduction to PHP scripting.

2

ch02.indd 55 2/2/05 3:06:37 PM

TEAM LinG

ch02.indd 56 2/2/05 3:06:38 PM

This page is intentionally left blank.

TEAM LinG

Part II

HowTo8 (8)

Learning PHP

ch03.indd 57 2/2/05 3:07:48 PM

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

TEAM LinG

ch03.indd 58 2/2/05 3:07:48 PM

This page is intentionally left blank.

TEAM LinG

Chapter 3

HowTo8 (8)

Using Variables,
Statements, and
Operators

ch03.indd 59 2/2/05 3:07:48 PM

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

TEAM LinG

 60 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 3HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 3

Extremely robust and scalable, PHP can be used for the most demanding of
applications, and delivers excellent performance even at high loads. A MySQL

extension makes it easy to hook it up to a database, XML support makes it suitable
for the new generation of XML-enabled applications, and extensible architecture
makes it easy for developers to build their own custom PHP modules. Toss in a great
manual, a knowledgeable developer community, and a zero-cost licensing policy,
and it’s no wonder that more and more web developers are migrating to it.

If you followed the instructions in the last chapter, your development environment
should now be installed and ready for use. In this chapter, you’ll begin doing
something with it.

How to…

■ Write and execute a simple PHP script

■ Create statements and comments, and name variables

■ Use variables to store values

■ Choose between PHP’s data types

■ Understand the special NULL data type

■ Read GET and POST form input, and store it in variables

■ Perform calculations and comparisons using operators

■ Use and override operator precedence rules

Embedding PHP in HTML
One of the nicer things about PHP is that, unlike CGI scripts, which require you to
write server-side code to output HTML, PHP lets you embed commands in regular
HTML pages. These embedded PHP commands are enclosed within special start
and end tags, which are read by the PHP interpreter when it parses the page. Here
is an example of what these tags looks like:

<?php

... PHP code ...

?>

ch03.indd 60 2/2/05 3:07:48 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 3: Using Variables, Statements, and Operators 61

HowTo8 (8)

You can also use the short version of the previous, which looks like this:

<?

... PHP code

?>

To see how this works, create this simple test script, which demonstrates how
PHP and HTML can be combined:

<html>

<head><basefont face="Arial"></head>

<body>

<h2>Q: This creature can change color to blend in with its surroundings.

What is its name?</h2>

<?php

// print output

echo '<h2><i>A: Chameleon</i></h2>';

?>

</body>

</html>

Save the previous script to a location under your web server root as question.php,
and browse to it. You’ll see a page like Figure 3-1.

And here is what the HTML source of the rendered page looks like:

<html>

<head><basefont face="Arial"></head>

<body>

<h2>Q: This creature can change color to blend in with ↵
its surroundings. What is its name?</h2>

<h2><i>A: Chameleon</i></h2>

</body>

</html>

When you requested the previous script through your browser, the web
server intercepted your request and handed it off to PHP. PHP then parsed the
script, executing the code between the <?php...?> marks and replacing it
with the resulting output. The result was then handed back to the web server and
transmitted to the client. Because the output contained valid HTML, the browser
was able to render it for display to the user.

3

ch03.indd 61 2/2/05 3:07:49 PM

TEAM LinG

 62 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 3HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 3

 FIGURE 3-1 The HTML page generated by a PHP script

How to Compile or Interpret

PHP is an interpreted language (like Perl) and not a compiled one (like Java).
In case you haven’t heard those terms before, they’re pretty simple: if you use
a compiled language, you need to convert (“compile”) your ASCII program
code into binary form before you can run it. If, on the other hand, you use
an interpreted language, you can run your code as is, without converting it
first; the language interpreter reads it and executes it. Thus, with an interpreted

ch03.indd 62 2/2/05 3:07:49 PM

TEAM LinG

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 3

 CHAPTER 3: Using Variables, Statements, and Operators 63

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 3

Writing Statements and Comments
As you can see from the previous example, a PHP script consists of one or more
statements, with each statement ending in a semicolon. Blank lines within the
script are ignored by the parser. Everything outside the tags is also ignored by the
parser, and returned as is; only the code between the tags is read and executed.

If you’re in a hurry, you can omit the semicolon on the last line of a PHP
block, because the closing ?> includes an implicit semicolon. Therefore,
the line <?php echo 'Hello' ?> is perfectly valid PHP code.
This is the only time a PHP statement not ending in a semicolon is still
considered valid.

For greater readability, you should add comments to your PHP code, as I did in
the previous example. To do this, simply use one of the comment styles listed here:

<?php

// this is a single-line comment

so is this

/* and this is a

multiline

comment */

?>

Storing Values in Variables
Variables are the building blocks of any programming language. A variable can be
thought of as a programming construct used to store both numeric and nonnumeric
data. The contents of a variable can be altered during program execution, and
variables can be compared and manipulated using operators.

language, you don’t need to recompile your scripts every time you make a small
change, and this can save you some development time. On the other hand,
compiled code tends to run faster than interpreted code, because it doesn’t
have the extra overhead of an interpreter; this can produce better performance.

3

ch03.indd 63 2/2/05 3:07:50 PM

TEAM LinG

 64 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 3HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 3

PHP supports a number of different variable types—Booleans, integers,
floating point numbers, strings, arrays, objects, resources, and NULLs—and the
language can automatically determine variable type by the context in which it is
being used. Every variable has a name, which is preceded by a dollar ($) symbol,
and it must begin with a letter or underscore character, optionally followed by
more letters, numbers, and underscores. For example, $popeye, $one_day,
and $INCOME are all valid PHP variable names, while $123 and $48hrs are
invalid variable names.

Variable names in PHP are case-sensitive; $count is different from
$Count or $COUNT.

To see PHP’s variables in action, try out the following script:

<html>

<head><basefont face="Arial"></head>

<body>

<h2>Q: This creature has tusks made of ivory. ↵
What is its name?</h2>

<?php

// define variable

$answer = 'Elephant';

// print output

echo "<h2><i>$answer</i></h2>";

?>

</body>

</html>

Here, the variable $answer is first defined with a string value, and then
substituted in the echo() function call. The echo() function, along with the
print() function, is commonly used to print data to the standard output device
(here, the browser). Notice that I’ve included HTML tags within the call to echo(),
and they have been rendered by the browser in its output.

ch03.indd 64 2/2/05 3:07:50 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 3: Using Variables, Statements, and Operators 65

HowTo8 (8)

Assigning and Using Variable Values
To assign a value to a variable, use the assignment operator, the equality (=) symbol.
This operator assigns a value (the right side of the equation) to a variable (the left
side). The value being assigned need not always be fixed; it could also be another
variable, an expression, or even an expression involving other variables, as here:

<?php

$age = $dob + 15;

?>

To use a variable value in your script, simply call the variable by name, and
PHP will substitute its value at run time. For example:

<?php

$today = "Jan 05 2004";

echo "Today is $today";

?>

Saving Form Input in Variables
Forms have always been one of the quickest and easiest ways to add interactivity
to your web site. A form enables you to ask customers if they like your products
and casual visitors for comments. PHP can simplify the task of processing web-
based forms substantially, by providing a simple mechanism to read user data
submitted through a form into PHP variables. Consider the following sample form:

<html>

<head></head>

<body>

<form action="message.php" method="post">

Enter your message: <input type="text" name="msg" size="30">

<input type="submit" value="Send">

</form>

</body>

</html>

3

ch03.indd 65 2/2/05 3:07:50 PM

TEAM LinG

 66 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 3HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 3

The most critical line in this entire page is the <form> tag:

<form method="post" action="message.php">

...

</form>

As you probably already know, the method attribute of the <form> tag specifies
the manner in which form data will be submitted (POST), while the action attribute
specifies the name of the server-side script (message.php) that will process the
information entered into the form. Here is what message.php looks like:

<?php

// retrieve form data in a variable

$input = $_POST['msg'];

// print it

echo "You said: <i>$input</i>";

?>

To see how this works, enter some data into the form (“boo”) and submit it.
The form processor should read it and display it back to you (“you said: boo”).

Thus, whenever a form is POST-ed to a PHP script, all variable-value pairs within
that form automatically become available for use within the script through a special
PHP container variable, $_POST. To then access the value of the form variable, use
its name inside the $_POST container, as in the previous script. If the form uses
GET instead of POST, simply retrieve values from $_GET instead of $_POST.

The $_GET and $_POST variables are a special type of animal called an
array. Refer to Chapter 5 and to the online manual at http://www.php
.net/manual/en/language.variables.external.php for more information
on arrays.

Understanding Simple Data Types
Every language has different types of variables—and PHP has no shortage of choices.
The language supports a wide variety of data types, including simple numeric,
character, string, and Boolean types, and more complex arrays and objects. Table 3-1
lists the four basic types, with examples:

ch03.indd 66 2/2/05 3:07:50 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 3: Using Variables, Statements, and Operators 67

HowTo8 (8)

Data Type Description Example

Boolean The simplest variable type
in PHP, a Boolean variable
simply specifies a true or
false value.

$auth = true;

Integer An integer is a plain-vanilla
number like 75, -95, 2000,
or 1.

$age = 99;

Floating-point A floating-point number
is typically a fractional
number such as 12.5
or 3.149391239129.
Floating point numbers may
be specified using either
decimal or scientific notation.

$temperature = 56.89;

String A string is a sequence of
characters, like 'hello' or
'abracadabra'. String
values may be enclosed in
either double quotes ("") or
single quotes ('').

$name = 'Harry';

 TABLE 3-1 Simple Data Types in PHP

In many languages, it’s essential to specify the variable type before using it; for
example, a variable may need to be specified as type integer or type array.
Give PHP credit for a little intelligence, though—the language can automagically
determine variable type by the context in which it is being used.

Detecting the Data Type of a Variable
To find out what type a particular variable is, PHP offers the gettype() function,
which accepts a variable or value as argument. The following example illustrates this:

<?php

// define variables

$auth = true;

$age = 27;

$name = 'Bobby';

$temp = 98.6;

3

ch03.indd 67 2/2/05 3:07:51 PM

TEAM LinG

 68 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 3HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 3

// returns "string"

echo gettype($name);

// returns "boolean"

echo gettype($auth);

// returns "integer"

echo gettype($age);

// returns "double"

echo gettype($temp);

?>

PHP also supports a number of specialized functions to check if a variable or
value belongs to a specific type. Table 3-2 has a list.

Function What It Does

is_bool() Checks if a variable or value is Boolean

is_string() Checks if a variable or value is a string

is_numeric() Checks if a variable or value is a numeric string

is_float() Checks if a variable or value is a floating point number

is_int() Checks if a variable or value is an integer

is_null() Checks if a variable or value is NULL

is_array() Checks if a variable is an array

is_object() Checks if a variable is an object

 TABLE 3-2 Functions to Detect Variable Type in PHP

Explicitly Set the Type
of a Variable

To explicitly mark a variable as numeric or string, use the settype()
function. Read more about this at http://www.php.net/manual/en/function
.settype.php.

ch03.indd 68 2/2/05 3:07:51 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 3: Using Variables, Statements, and Operators 69

HowTo8 (8)

A Note on String Values
String values enclosed in double quotes are automatically parsed for variable names;
if variable names are found, they are automatically replaced with the appropriate
variable value. See the following code snippet for an example:

<?php

$identity = 'James Bond';

$car = 'BMW';

// this would contain the string "James Bond drives a BMW"

$sentence = "$identity drives a $car";

// this would contain the string "$identity drives a $car"

$sentence = '$identity drives a $car';

?>

Note that if your string contains quotes, carriage returns, or backslashes, it’s
necessary to escape these special characters with a backslash. The following
example illustrates this:

<?php

// will cause an error due to mismatched quotes

$statement = 'It's hot outside';

// will be fine

$statement = 'It\'s hot outside';

?>

A Note on NULL Values
PHP 4.x introduced a new data type for empty variables, called NULL. The NULL
data type is “special”: it means that a variable has no value. A NULL is typically
seen when a variable is initialized but not yet assigned a value, or when a variable
has been de-initialized with the unset() function.

To see an example of NULL in action, consider the following script:

<?php

// check type of uninitialized variable

// returns NULL

echo gettype($me);

3

ch03.indd 69 2/2/05 3:07:51 PM

TEAM LinG

 70 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 3HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 3

// assign a value

$me = 'David';

// check type again

// returns STRING

echo gettype($me);

// deinitialize variable

unset($me);

// check type again

// returns NULL

echo gettype($me);

?>

Using Operators to Manipulate
and Compare Variables

If variables are the building blocks of a programming language, operators are
the glue that let you do something useful with them. PHP comes with over
15 operators, including operators for assignment, arithmetic, string, comparison,
and logical operations. Table 3-3 has a list.

Using Arithmetic Operators
To perform mathematical operations on variables, use the standard arithmetic
operators, as illustrated in the following example:

<?php

// define variables

$num1 = 101;

$num2 = 5;

// add

$sum = $num1 + $num2;

// subtract

$diff = $num1 - $num2;

// multiply

$product = $num1 * $num2;

ch03.indd 70 2/2/05 3:07:52 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 3: Using Variables, Statements, and Operators 71

HowTo8 (8)

// divide

$quotient = $num1 / $num2;

// modulus

$remainder = $num1 % $num2;

?>

To perform an arithmetic operation simultaneously with an assignment, use the
two operators together. The following two code snippets are equivalent:

<?php

$a = $a + 10;

?>

<?php

$a += 10;

?>

Operator What It Does

= Assignment

+ Addition

- Subtraction

* Multiplication

/ Division; returns quotient

% Division; returns modulus

. String concatenation

== Equal to

=== Equal to and of the same type

!== Not equal to or not of the same type

<> aka != Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

&& Logical AND

|| Logical OR

xor Logical XOR

! Logical NOT

++ Addition by 1

-- Subtraction by 1

 TABLE 3-3 Operators in PHP

3

ch03.indd 71 2/2/05 3:07:52 PM

TEAM LinG

 72 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 3HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 3

Using String Operators
To add strings together, use the string concatenation operator, represented by
a period (.). The following example illustrates this:

<?php

$username = 'john';

$domain = 'example.com';

// combine them using the concatenation operator

$email = $username . '@' . $domain;

?>

You can concatenate and assign simultaneously, as in the following:

<?php

// define string

$str = 'the';

// add and assign

$str .= 'n';

// $str now contains "then"

?>

Using Comparison Operators
To test whether two variables are different, use any one of PHP’s many comparison
operators. The following listing demonstrates most of the important ones:

<?php

// define some variables

$mean = 29;

$median = 40;

$mode = 29;

// less-than operator

// returns true if left side is less than right

// returns true here

$result = ($mean < $median);

ch03.indd 72 2/2/05 3:07:52 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 3: Using Variables, Statements, and Operators 73

HowTo8 (8)

// greater-than operator

// returns true if left side is greater than right

// returns false here

$result = ($mean > $median);

// less-than-or-equal-to operator

// returns true if left side is less than or equal to right

// returns false here

$result = ($median <= $mode);

// greater-than-or-equal-to operator

// returns true if left side is greater than or equal to right

// returns true here

$result = ($median >= $mode);

// equality operator

// returns true if left side is equal to right

// returns true here

$result = ($mean == $mode);

// not-equal-to operator

// returns true if left side is not equal to right

// returns false here

$result = ($mean != $mode);

// inequality operator

// returns true if left side is not equal to right

// returns false here

$result = ($mean <> $mode);

?>

The result of a comparison test is always a Boolean value (either true or false).
This makes comparison operators a critical part of your toolkit, as you can use
them in combination with a conditional statement to send a script down any of its
multiple action paths.

The === Operator
An important comparison operator in PHP 4.0 is the === operator, which enables
you to test both for equality and type. The following listing demonstrates this:

<?php

// define two variables

3

ch03.indd 73 2/2/05 3:07:52 PM

TEAM LinG

 74 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 3HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 3

$str = '14';

$int = 14;

// returns true

// since both variables contain the same value

$result = ($str == $int);

// returns false

// since the variables are not of the same type

// even though they have the same value

$result = ($str === $int);

?>

Using Logical Operators
To link together related conditions in a simple and elegant manner, use one of PHP’s
four logical operators—logical AND, logical OR, logical XOR, and logical NOT—as
illustrated in the following listing:

<?php

// define some variables

$user = 'joe';

$pass = 'trym3';

$saveCookie = 1;

$status = 1;

// logical AND

// returns true if all conditions are true

// returns true here

$result = (($user == 'joe') && ($pass == 'trym3'));

// logical OR

// returns true if any condition is true

// returns false here

$result = (($status < 1) || ($saveCookie == 0));

// logical NOT

// returns true if the condition is false and vice-versa

// returns false

$result = !($saveCookie == 1);

ch03.indd 74 2/2/05 3:07:52 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 3: Using Variables, Statements, and Operators 75

HowTo8 (8)

// logical XOR

// returns true if any of the two conditions are true

// returns false if both conditions are true

// returns false here

$result = (($status == 1) xor ($saveCookie == 1));

?>

Using the Auto-Increment and Auto-Decrement Operators
The auto-increment operator is a PHP operator designed to automatically increment
the value of the variable it is attached to by 1. It is represented by a double addition
symbol (++). To see it in action, run the following script:

<?php

// define $total as 10

$total = 10;

// increment it

$total++;

// $total is now 11

?>

Thus, <?php $total++; ?> is functionally equivalent to <?php
$total = $total + 1; ?>.

There’s also a corresponding auto-decrement operator (--), which does exactly
the opposite:

<?php

// define $total as 10

$total = 10;

// decrement it

$total--;

// $total is now 9

?>

These operators are frequently used in loops to update the value of the loop
counter. See Chapter 4 for examples of these operators in action.

Understanding Operator Precedence
When it comes to evaluating operators, PHP does not necessarily process them in
the order in which they appear; rather, the language has its own set of rules about

3

ch03.indd 75 2/2/05 3:07:53 PM

TEAM LinG

 76 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 3HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 3

which operators have precedence over others. The following list illustrates the
important PHP precedence rules. (Operators on the same line have the same level
of precedence.)

■ '!' '++' '--'

■ '*' '/' '%'

■ '+' '−' '.'

■ '<' '<=' '>' '>='

■ '==' '!=' '===' '!=='

■ '&&'

■ '||'

■ '?' ':'

If in doubt, remember that you can—in fact, should—override these rules with
parentheses, as some of the examples in this chapter do. This reduces ambiguity
and ensures that operators are evaluated in the order that you specify. For example,
the expression 10 * 10 + 1 would return 101, while the expression 10 *
(10 + 1) would return 110. The difference lies in the fact that the second version
uses parentheses to clearly indicate the order in which operations are to be performed.

Summary
This chapter focused on getting you started with PHP, by teaching you the basic
things you need to know about PHP scripting. It showed you how to embed PHP
code inside HTML documents using the special <?php...?> PHP tags, and
taught you the basic syntactical rules for statements, comments, and variables.
It showed you how to assign values to variables and use PHP to easily store user
input from an HTML form in one or more PHP variables. It introduced you to
some of PHP’s data types and operators, illustrating how operators can be used
to perform calculations, comparisons, and string manipulation operations. And,
finally, it wrapped things up with a brief look at PHP’s precedence rules, which
define the order in which operators are evaluated, and showed you how to use
parentheses to override the default order.

ch03.indd 76 2/2/05 3:07:53 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 3: Using Variables, Statements, and Operators 77

HowTo8 (8)

If you’re interested in learning more about the topics in this chapter, these web
links have more information:

■ The official PHP.net tutorial, at http://www.php.net/manual/en/
tutorial.php

■ Basic language syntax, at http://www.php.net/manual/en/language.basic-
syntax.php

■ Variables in PHP, at http://www.php.net/manual/en/language
.variables.php

■ The PHP string manipulation API, at http://www.melonfire.com/
community/columns/trog/article.php?id=88

■ Form variables and PHP, at http://www.php.net/manual/en/tutorial
.forms.php

■ Simple and complex data types in PHP, at http://www.php.net/manual/en/
language.types.php

■ The special NULL type, at http://www.php.net/manual/en/language
.types.null.php

■ PHP operators, at http://www.php.net/manual/en/language
.operators.php

■ The PHP 101 series, at http://www.everythingphpmysql.com/

3

ch03.indd 77 2/2/05 3:07:53 PM

TEAM LinG

ch03.indd 78 2/2/05 3:07:53 PM

This page is intentionally left blank.

TEAM LinG

Chapter 4

HowTo8 (8)

Using Conditional
Statements
and Loops

ch04.indd 79 2/2/05 3:19:59 PM

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

TEAM LinG

 80 How to Do Everything with PHP & MySQL CHAPTER 4: Using Conditional Statements and Loops 81

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 4

 80 How to Do Everything with PHP & MySQL CHAPTER 4: Using Conditional Statements and Loops 81

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 4

The previous chapter introduced you to the basics of PHP scripting, showing
you how to create and execute PHP scripts, capture form input, assign values

to variables, and use operators to manipulate variables. This chapter introduces you
to conditional statements, which make your scripts respond intelligently to different
situations, and loops, which enable you to repeatedly perform a series of actions.

How to…

■ Use conditional tests to control program flow

■ Perform “either-or” actions with the ternary operator

■ Nest conditional statements inside each other for more sophisticated
flow control

■ Combine a form and its result page into a single script with a conditional
statement

■ Repeatedly execute a set of statements a fixed or variable number of times

■ Use the increment and decrement operators, and the break and continue
keywords, to control loop iteration

Adding Decision-Making Capabilities
with Conditional Statements

One of the more interesting things you can do with a programming language like
PHP involves adding decision-making routines to your scripts. These decision-
making routines can be used to add intelligence to your PHP scripts, allowing it
to perform different tasks on the basis of user-defined conditions. In the previous
chapter, you’ve already seen how PHP allows you to perform comparisons using
its comparison and logical operators; in this section, you will learn to use this
capability to perform conditional tests and make your scripts perform different
actions depending on the results of those tests.

A conditional statement enables you to test whether a specific condition is true
or false, and to perform different actions on the basis of the test result. PHP comes
with two basic types of conditional statements, both of which are discussed in the
following sections.

ch04.indd 80 2/2/05 3:19:59 PM

TEAM LinG

 80 How to Do Everything with PHP & MySQL CHAPTER 4: Using Conditional Statements and Loops 81

HowTo8 (8)

 80 How to Do Everything with PHP & MySQL CHAPTER 4: Using Conditional Statements and Loops 81

HowTo8 (8)

Using the if() Statement
In PHP, the simplest form of conditional statement is the if() statement, which
looks like this:

<?php

if (conditional test)

{

 do this;

}

?>

Here’s an example:

<?php

if ($temp >= 100)

{

 echo 'Very hot!';

}

?>

The argument to if() here is a conditional expression, which evaluates to
either true or false. If the statement evaluates to true, all PHP code within the curly
braces is executed; if not, the code within the curly braces is skipped and the lines
following the if() construct are executed.

In addition to the if() statement, PHP also offers the if-else() construct,
used to define an alternate block of code that gets executed when the conditional
expression in the if() statement evaluates as false. This is good for “either-or”
situations, as illustrated in the following:

<?php

if (conditional test)

{

 do this;

}

else

{

 do this;

}

?>

4

ch04.indd 81 2/2/05 3:20:00 PM

TEAM LinG

 82 How to Do Everything with PHP & MySQL CHAPTER 4: Using Conditional Statements and Loops 83

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 4

 82 How to Do Everything with PHP & MySQL CHAPTER 4: Using Conditional Statements and Loops 83

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 4

Here is an example:

<?php

if ($temp >= 100)

{

 echo 'Very hot!';

}

else

{

 echo 'Within tolerable limits';

}

?>

Finally, PHP also provides you with a way of handling multiple possibilities—
the if-elseif-else() construct. This construct consists of listing a number
of possible results, one after another, and specifying the action to be taken for each.
It looks like this:

More Than One Way to Skin a Cat

PHP also supports an alternative syntax for the various control structures discussed
so far. For example, the following two snippets are equivalent:

<?php

if ($elvis == 0) {

 echo 'Elvis has left the building!';

} else {

 echo 'Elvis is still backstage!';

}

?>

<?php

if ($elvis == 0):

 echo 'Elvis has left the building!';

else:

 echo 'Elvis is still backstage!';

endif;

?>

The second alternative is equivalent to the first, and simply involves replacing
the first curly brace of every pair with a colon (:), removing the second curly
brace, and ending the block with endif.

ch04.indd 82 2/2/05 3:20:00 PM

TEAM LinG

 82 How to Do Everything with PHP & MySQL CHAPTER 4: Using Conditional Statements and Loops 83

HowTo8 (8)

 82 How to Do Everything with PHP & MySQL CHAPTER 4: Using Conditional Statements and Loops 83

HowTo8 (8)

<?php

if (conditional test #1)

{

 do this;

}

elseif (conditional test #2)

{

 do this;

}

...

elseif (conditional test #n)

{

 do this;

}

else

{

 do this;

}

?>

Here is an example:

<?php

if ($country == 'UK')

{

 $capital = 'London';

}

elseif ($country == 'US')

{

 $capital = 'Washington';

}

elseif ($country == 'FR')

{

 $capital = 'Paris';

}

else

{

 $capital = 'Unknown';

}

?>

4

ch04.indd 83 2/2/05 3:20:01 PM

TEAM LinG

 84 How to Do Everything with PHP & MySQL CHAPTER 4: Using Conditional Statements and Loops 85

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 4

 84 How to Do Everything with PHP & MySQL CHAPTER 4: Using Conditional Statements and Loops 85

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 4

Here, the if-elseif-else() control structure assigns a different value
to the $capital variable, depending on the country code. As soon as one of
the if() branches within the block is found to be true, PHP will execute the
corresponding code, skip the remaining if() statements in the block, and jump
immediately to the lines following the entire if-elseif-else() block.

Using the switch() Statement
An alternative to the if-else() family of control structures is PHP’s switch-
case() statement, which does almost the same thing. Here, a switch() statement
evaluates a conditional expression or decision variable; depending on the result
of the evaluation, an appropriate case() block is executed. If no matches can be
found, a default block is executed instead.

Here is what the syntax of this construct looks like:

<?php

switch (condition variable)

{

 case possible result #1:

 do this;

 case possible result #2:

 do this;

 ...

 case possible result #n:

 do this;

 case default;

 do this;

}

?>

Here’s a rewrite of the last example using switch-case():

<?php

switch ($country)

{

 case 'UK':

 $capital = 'London';

 break;

 case 'US':

 $capital = 'Washington';

 break;

ch04.indd 84 2/2/05 3:20:01 PM

TEAM LinG

 84 How to Do Everything with PHP & MySQL CHAPTER 4: Using Conditional Statements and Loops 85

HowTo8 (8)

 84 How to Do Everything with PHP & MySQL CHAPTER 4: Using Conditional Statements and Loops 85

HowTo8 (8)

 case 'FR':

 $capital = 'Paris';

 break;

 default:

 $capital = 'Unknown';

 break;

}

?>

A couple of important keywords are here: the break keyword is used to
break out of the switch() statement block and move immediately to the lines
following it, while the default keyword is used to execute a default set of
statements when the variable passed to switch() does not satisfy any of the
conditions listed within the block. Read more about the break keyword in the
section entitled “Controlling Loop Iteration with break and continue” later in
this chapter.

If you forget to break out of a case() block, PHP will continue executing
the code in each subsequent case() block until it reaches the end of the
switch() block.

The Ternary Operator
PHP’s ternary operator, represented by a question mark (?), is aptly named:
the first time you see it, you’re sure to wonder what exactly it’s for. The ternary
operator provides shortcut syntax for creating a single-statement if-else()
block. The following two code snippets, which are equivalent, illustrate how it
works:

<?php

if ($dialCount > 10)

{

 $msg = 'Cannot connect after ↵
10 attempts';

}

else

{

 $msg = 'Dialing....';

}

?>

<?php

$msg = $dialCount > 10 ? 'Cannot connect after ↵
10 attempts' : 'Dialing...';

?>

4

ch04.indd 85 2/2/05 3:20:01 PM

TEAM LinG

 86 How to Do Everything with PHP & MySQL CHAPTER 4: Using Conditional Statements and Loops 87

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 4

 86 How to Do Everything with PHP & MySQL CHAPTER 4: Using Conditional Statements and Loops 87

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 4

Nesting Conditional Statements
To handle multiple conditions, you can “nest” conditional statements inside each
other. For example, this is perfectly valid PHP code:

<?php

if ($country == 'India')

{

 if ($state == 'Maharashtra')

 {

 if ($city == 'Bombay')

 {

 $home = true;

 }

 }

}

?>

However, a better idea (and also more elegant) is to use logical operators
wherever possible, instead of a series of nested conditional statements. This next
snippet illustrates by rewriting the previous example in terms of logical operators:

<?php
if ($country == 'India' && $state == 'Maharashtra' && $city == 'Bombay')
{
 $home = true;
}
?>

Merging Forms and Their Result Pages
with Conditional Statements

Normally, when creating and processing forms in PHP, you would place the HTML
form in one file, and handle form processing through a separate PHP script. That’s
the way all the examples you’ve seen so far have worked. However, with the power
of conditional statements at your disposal, you can combine both pages into one.

To do this, assign a name to the form’s submit control, and then check whether
the special $_POST container variable contains that name when the script first
loads up. If it does, it means that the form has already been submitted, and you can
process the data. If it does not, it means that the user has not submitted the form
and you, therefore, need to generate the initial, unfilled form. Thus, by testing for

ch04.indd 86 2/2/05 3:20:01 PM

TEAM LinG

 86 How to Do Everything with PHP & MySQL CHAPTER 4: Using Conditional Statements and Loops 87

HowTo8 (8)

 86 How to Do Everything with PHP & MySQL CHAPTER 4: Using Conditional Statements and Loops 87

HowTo8 (8)

the presence or absence of this submit variable, you can use a single PHP script
to generate both the initial form and the postsubmission output.

To see how this technique works in the real world, consider the following
example:

<html>

<head></head>

<body>

<?php

// if the "submit" variable does not exist

// form has not been submitted

// display initial page

if (!$_POST['submit'])

{

?>

 <form action="<?=$_SERVER['PHP_SELF']?>" method="post">

 Enter a number: <input name="number" size="2">

 <input type="submit" name="submit" value="Go">

 </form>

<?php

}

else

{

 // if the "submit" variable exists

 // the form has been submitted

 // look for and process form data

 // display result

 $number = $_POST['number'];

 if ($number > 0)

 {

 echo 'You entered a positive number';

 }

 elseif ($number < 0)

 {

 echo 'You entered a negative number';

 }

 else

 {

 echo 'You entered 0';

 }

}

?>

</body>

</html>

4

ch04.indd 87 2/2/05 3:20:02 PM

TEAM LinG

 88 How to Do Everything with PHP & MySQL CHAPTER 4: Using Conditional Statements and Loops 89

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 4

 88 How to Do Everything with PHP & MySQL CHAPTER 4: Using Conditional Statements and Loops 89

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 4

As you can see, the script contains two pages: the initial, empty form and the result
page generated after pressing the submit button. When the script is first called, it tests
for the presence of the $_POST['submit'] key. Because the form has not been
submitted, the key does not exist and so an empty form is displayed. Once the form has
been submitted, the same script is called again; this time, the $_POST['submit']
key will exist, and so PHP will process the form data and display the result.

The $_SERVER array is a special PHP array that holds the values of important
server variables: the server version number, the path to the currently executing
script, the server port and IP address, and the document root. For more on arrays,
see the section entitled “Using Arrays to Group Related Values,” in Chapter 5.

Repeating Actions with Loops
A loop is a control structure that enables you to repeat the same set of statements or
commands over and over again; the actual number of repetitions may be dependent on
a number you specify, or on the fulfillment of a certain condition or set of conditions.

Using the while() Loop
The first—and simplest—loop to learn in PHP is the so-called while() loop.
With this loop type, so long as the conditional expression specified evaluates to
true, the loop will continue to execute. When the condition becomes false, the loop
will be broken and the statements following it will be executed.

Here is the syntax of the while() loop:

<?php

while (condition is true)

{

 do this;

}

?>

Taking a Shortcut

The <?=$variable?> syntax is a shortcut for quickly displaying the value of
a variable in a PHP script. It is equivalent to <?php echo $variable; ?>.

ch04.indd 88 2/2/05 3:20:02 PM

TEAM LinG

 88 How to Do Everything with PHP & MySQL CHAPTER 4: Using Conditional Statements and Loops 89

HowTo8 (8)

 88 How to Do Everything with PHP & MySQL CHAPTER 4: Using Conditional Statements and Loops 89

HowTo8 (8)

Here is a simple example that illustrates how a while() loop works by
creating a multiplication table for a specified number:

<?php

// define number and limits for multiplication tables

$num = 11;

$upperLimit = 10;

$lowerLimit = 1;

// loop and multiply to create table

while ($lowerLimit <= $upperLimit)

{

 echo "$num x $lowerLimit = " . ($num * $lowerLimit);

 $lowerLimit++;

}

?>

This script uses a while() loop to count forwards from 1 until the values of
$lowerLimit and $upperLimit are equal.

Using the do() Loop
A while() loop executes a set of statements while a specified condition is true.
If the condition evaluates as false on the first iteration of the loop, the loop will
never be executed. In the previous example, if the lower limit is set to a value
greater than the upper limit, the loop will not execute even once.

However, sometimes you might need to execute a set of statements at least
once, regardless of how the conditional expression evaluates. For such situations,
PHP offers the do-while() loop. The construction of the do-while() loop is
such that the statements within the loop are executed first, and the condition to be
tested is checked after. This implies that the statements within the loop block will
be executed at least once.

<?php

do

{

 do this;

} while (condition is true)

?>

4

ch04.indd 89 2/2/05 3:20:02 PM

TEAM LinG

 90 How to Do Everything with PHP & MySQL CHAPTER 4: Using Conditional Statements and Loops 91

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 4

 90 How to Do Everything with PHP & MySQL CHAPTER 4: Using Conditional Statements and Loops 91

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 4

Thus, the construction of the do-while() loop is such that the statements
within the loop are executed first, and the condition to be tested is checked after.

Let’s now revise the previous PHP script so that it runs at least once, regardless
of how the conditional expression evaluates the first time:

<?php

// define number and limits for multiplication tables

$num = 11;

$upperLimit = 10;

$lowerLimit = 12;

// loop and multiply to create table

do

{

 echo "$num x $lowerLimit = " . ($num * $lowerLimit);

 $lowerLimit++;

} while ($lowerLimit <= $upperLimit)

?>

Using the for() Loop
Both the while() and do-while() loops continue to iterate for so long as
the specified conditional expression remains true. But there often arises a need to
execute a certain set of statements a fixed number of times, for example, printing
a series of ten sequential numbers, or displaying a particular set of values five times.
For such nails, the for() loop is the most appropriate hammer.

Here is what the for() loop looks like:

<?php

for (initialize counter; conditional test; update counter)

{

 do this;

}

?>

PHP’s for() loop uses a counter that is initialized to a numeric value, and
keeps track of the number of times the loop is executed. Before each execution
of the loop, a conditional statement is tested. If it evaluates to true, the loop will
execute once more and the counter will be incremented by 1 (or more) positions.
If it evaluates to false, the loop will be broken and the lines following it will be
executed instead.

ch04.indd 90 2/2/05 3:20:02 PM

TEAM LinG

 90 How to Do Everything with PHP & MySQL CHAPTER 4: Using Conditional Statements and Loops 91

HowTo8 (8)

 90 How to Do Everything with PHP & MySQL CHAPTER 4: Using Conditional Statements and Loops 91

HowTo8 (8)

To see how this loop can be used, create the following script, which lists all the
numbers between 2 and 100:

<?php

for ($x = 2; $x <= 100; $x++)

{

 echo "$x ";

}

?>

To perform this task, the script uses a for() loop with $x as the counter
variable, initializes it to 2, and specifies that the loop should run until the counter
hits 100. The auto-increment operator (discussed in Chapter 3) automatically
increments the counter by 1 every time the loop is executed. Within the loop, the
value of the counter is displayed each time the loop runs.

For a more realistic example of how a for() loop can save you coding time,
consider the following example, which accepts user input to construct an HTML
table using a double for() loop:

<html>

<head></head>

<body>

<?php

if (!$_POST['submit'])

{

?>

 <form method="post" action="<?=$_SERVER['PHP_SELF']?>">

 Enter number of rows ↵
 <input name="rows" type="text" size="4"> ↵
 and columns ↵
 <input name="columns" type="text" size="4"> ↵
 <input type="submit" name="submit" value="Draw Table">

 </form>

<?php

}

else

{

?>

 <table border="1" cellspacing="5" cellpadding="0">

<?php

4

ch04.indd 91 2/2/05 3:20:03 PM

TEAM LinG

 92 How to Do Everything with PHP & MySQL CHAPTER 4: Using Conditional Statements and Loops 93

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 4

 92 How to Do Everything with PHP & MySQL CHAPTER 4: Using Conditional Statements and Loops 93

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 4

 // set variables from form input

 $rows = $_POST['rows'];

 $columns = $_POST['columns'];

 // loop to create rows

 for ($r = 1; $r <= $rows; $r++)

 {

 echo "<tr>";

 // loop to create columns

 for ($c = 1; $c <= $columns; $c++)

 {

 echo "<td> </td>\n";

 }

 echo "</tr>\n";

 }

?>

 </table>

<?php

}

?>

</body>

</html>

As you’ll see if you try coding the same thing by hand, PHP’s for() loop just
saved you a whole lot of work!

Controlling Loop Iteration with break and continue
The break keyword is used to exit a loop when it encounters an unexpected
situation. A good example of this is the dreaded “division by zero” error—when
dividing one number by another one (which keeps decreasing), it is advisable
to check the divisor and use the break statement to exit the loop as soon as it
becomes equal to zero. Here’s an example:

<?php

for ($x=-10; $x<=10; $x++)

{

 if ($x == 0) { break; }

 echo '100 / ' . $x . ' = ' . (100/$x);

}

?>

ch04.indd 92 2/2/05 3:20:03 PM

TEAM LinG

 92 How to Do Everything with PHP & MySQL CHAPTER 4: Using Conditional Statements and Loops 93

HowTo8 (8)

 92 How to Do Everything with PHP & MySQL CHAPTER 4: Using Conditional Statements and Loops 93

HowTo8 (8)

The continue keyword is used to skip a particular iteration of the loop and
move to the next iteration immediately. This statement can be used to make the
execution of the code within the loop block dependent on particular circumstances.
The following example demonstrates by printing a list of only those numbers
between 10 and 100 that are divisible by 12:

<?php

for ($x=10; $x<=100; $x++)

{

 if (($x % 12) == 0)

 {

 echo "$x ";

 }

 else

 {

 continue;

 }

}

?>

Summary
This chapter built on the basic constructs taught earlier to increase your knowledge
of PHP scripting and language constructs. In this chapter, you learned how to
use PHP’s comparison and logical operators to build conditional statements, and
use those conditional statements to control the flow of a PHP program. Because
conditional statements are also frequently used in loops, to perform a certain set
of actions while the condition remains true, this chapter discussed the loop types
available in PHP, together with examples of how and when to use them

If you’re interested in learning more about the topics in this chapter, these web
links have more information:

■ Control structures in PHP, at http://www.php.net/manual/en/language
.control-structures.php

■ The break and continue statements, at http://www.php.net/manual/en/
control-structures.break.php and http://www.php.net/manual/en/
control-structures.continue.php

4

ch04.indd 93 2/2/05 3:20:03 PM

TEAM LinG

Loops are frequently used in combination with one of PHP’s complex data
types: the array. Because that’s a whole topic in itself, I’m going to discuss it in
detail in the next chapter. And, once you know how it works, I’m going to show
you how arrays, loops, and forms all work together to make creating complex web
forms as easy as pie.

 94 How to Do Everything with PHP & MySQL

ch04.indd 94 2/2/05 3:20:03 PM

TEAM LinG

Chapter 5

HowTo8 (8)

Using Arrays and
Custom Functions

ch05.indd 95 2/2/05 3:10:01 PM

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

TEAM LinG

 96 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 5HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 5

Now that you know the basics of variables, operators, conditional statements,
and loops, and you can read and understand simple PHP scripts, it’s time to

move into murkier territory. As your familiarity with PHP increases, and your
scripts become more and more complex, you’ll soon find yourself wishing for
more sophisticated variables and data types. You’ll also wish for a way to simplify
common tasks, so as to reduce code duplication and make your scripts more efficient
and reusable.

How to…

■ Use a complex PHP data type—the array—to group and manipulate multiple
values at once

■ Create and access array values by number or name

■ Process the values in an array with the foreach() loop

■ Use arrays to group related form values

■ Split, combine, extract, remove, and add array elements with PHP’s built-in
functions

■ Define your own functions to create reusable code fragments

■ Pass arguments to your functions and accept return values

■ Understand the difference between global and local variables in a function

■ Store function definitions in a separate file and import them as needed

Using Arrays to Group Related Values
Thus far, the variables you’ve used contain only a single value—for example,

<?php

$i = 5;

?>

Often, however, this is not enough. Sometimes, what you need is a way to store
multiple related values in a single variable, and act on them together. With the
simple data types discussed thus far, the only way to do this is by creating a group

ch05.indd 96 2/2/05 3:10:02 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 5: Using Arrays and Custom Functions 97

HowTo8 (8)

of variables sharing similar nomenclature and acting on them together, or perhaps
by storing multiple values as a comma-separated string in a single string variable
and splitting the string into its constituents when required. Both these approaches
are inefficient, prone to errors and—most important to a programmer—lack elegance.

That’s where arrays come in. An array is a complex variable that enables
you to store multiple values in a single variable; it comes in handy when you
need to store and represent related information. An array variable can best be
thought of as a “container” variable, which can contain one or more values. Here
is an example:

<?php

// define an array

$flavors = array('strawberry', 'grape', ↵
'vanilla', 'caramel', 'chocolate');

?>

Here, $flavors is an array variable, which contains the values strawberry,
grape, vanilla, caramel, and chocolate.

The various elements of the array are accessed via an index number, with
the first element starting at zero. So, to access the value grape, use the notation
$flavors[1], while chocolate would be $flavors[4]—basically, the array
variable name followed by the index number in square braces.

PHP also enables you to replace indices with user-defined “keys” to create
a slightly different type of array. Each key is unique, and corresponds to a single
value within the array. Keys may be made up of any string of characters, including
control characters.

<?php

// define associative array

$fruits = array('red' => 'apple', 'yellow' => 'banana', ↵
'purple' => 'plum', 'green' => 'grape');

?>

In this case, $fruits is an array variable containing four key-value pairs.
The => symbol is used to indicate the association between a key and its value.
To access the value banana, use the notation $fruits['yellow'], while the
value grape would be accessible via the notation $fruits['green']. This
type of array is sometimes referred to as a hash or associative array.

5

ch05.indd 97 2/2/05 3:10:02 PM

TEAM LinG

 98 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 5HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 5

If you want to look inside an array, head straight for the print_r()
function, which X-rays the contents of any PHP variable or structure. Try
running it on any of the arrays in this tutorial, and you’ll see exactly what
I mean!

Creating an Array
To define an array variable, name it using standard PHP variable naming rules
and populate it with elements using the array() function, as illustrated in the
following:

<?php

// define an array

$flavors = array('strawberry', 'grape', ↵
'vanilla', 'caramel', 'chocolate');

?>

An alternative way to define an array is by specifying values for each element
using index notation, like this:

<?php

// define an array

$flavors[0] = 'strawberry';

$flavors[1] = 'grape';

$flavors[2] = 'vanilla';

$flavors[3] = 'caramel';

$flavors[4] = 'chocolate';

?>

True Colors

Remember the $_POST and $_GET container variables I introduced in the
section “Saving Form Input In Variables” in Chapter 3? If you go back and
look at them again, you’ll see that they’re associative arrays, with each form
variable and its input value represented as a key-value pair inside the array.

ch05.indd 98 2/2/05 3:10:03 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 5: Using Arrays and Custom Functions 99

HowTo8 (8)

To create an associative array, use keys instead of numeric indices:

<?php

// define an associative array

$fruits['red'] = 'apple';

$fruits['yellow'] = 'banana';

$fruits['purple'] = 'plum';

$fruits['green'] = 'grape';

?>

Modifying Array Elements
To add an element to an array, assign a value using the next available index
number or key:

<?php

// add an element to a numeric array

$flavors[5] = 'mango';

// if you don't know the next available index

// this will also work

$flavors[] = 'mango';

// add an element to an associative array

$fruits['pink'] = 'peach';

?>

To modify an element of an array, assign a new value to the corresponding
scalar variable. If you wanted to replace the flavor “strawberry” with “blueberry”
in the $flavors array created previously, you’d use the following:

<?php

// modify an array

$flavors[0] = 'blueberry';

?>

To remove an array element, use the array_pop() or array_push()
function, discussed in the section entitled “Using Array Functions.”

Some unique features of arrays are in the context of both loops and forms.
The following sections discuss these unique features in greater detail.

5

ch05.indd 99 2/2/05 3:10:03 PM

TEAM LinG

 100 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 5HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 5

Processing Arrays with Loops
To iteratively process the data in a PHP array, loop over it using any of the loop
constructs discussed in Chapter 4. To better understand this, create and run the
following script:

<html>

<head></head>

<body>

Today's shopping list:

<?php

// define array

$shoppingList = array('eye of newt', ↵
'wing of bat', 'tail of frog');

// loop over it

// print array elements

for ($x = 0; $x < sizeof($shoppingList); $x++)

{

 echo "$shoppingList[$x]";

}

?>

</body>

</html>

Here, the for() loop is used to iterate through the array, extract the elements
from it using index notation, and display them one after the other in an unordered list.

Note the sizeof() function used in the previous script. This function is
one of the most important and commonly used array functions, and it returns the
size of (number of elements within) the array. The sizeof() function is mostly
used in loop counters to ensure that the loop iterates as many times as there are
elements in the array.

The foreach() Loop
While on the topic of arrays and loops, it is worthwhile to spend a few minutes
discussing the new loop type introduced in PHP 4.0 for the purpose of iterating
over an array: the foreach() loop. This loop runs once for each element of

ch05.indd 100 2/2/05 3:10:03 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 5: Using Arrays and Custom Functions 101

HowTo8 (8)

the array, moving forward through the array on each iteration. On each run, the
statements within the curly braces are executed, and the currently selected array
element is made available through a temporary loop variable. Unlike a for()
loop, a foreach() loop doesn’t need a counter or a call to sizeof(); it keeps
track of its position in the array automatically.

To better understand how this works, rewrite the previous example using the
foreach() loop:

<html>

<head></head>

<body>

Today's shopping list:

<?php

// define array

$shoppingList = array('eye of newt', 'wing of bat', ↵
'tail of frog');

// loop over it

foreach ($shoppingList as $item)

{

 echo "$item";

}

?>

</body>

</html>

You can process an associative array with a foreach() loop as well,
although the manner in which the temporary variable is constructed is a little
different to accommodate the key-value pairs. Try the following script to see
how this works:

<html>

<head></head>

<body>

I can see:

<?php

5

ch05.indd 101 2/2/05 3:10:03 PM

TEAM LinG

 102 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 5HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 5

// define associative array

$animals = array ('dog' => 'Tipsy', 'cat' => 'Tabitha', ↵
'parrot' => 'Polly');

// iterate over it

foreach ($animals as $key => $value)

{

 echo "a $key named $value";

}

?>

</body>

</html>

Grouping Form Selections with Arrays
In addition to their obvious uses, arrays and loops also come in handy when
processing forms in PHP. For example, if you have a group of related checkboxes
or a multiselect list, you can use an array to capture all the selected form values in
a single variable for greater ease in processing. To see how this works, create and
run the following script:

<html>

<head></head>

<body>

<?php

// check if form has been submitted

if (!$_POST['submit'])

{

 // if not, display form

?>

 Select from the items below:

 <form action="<?=$_SERVER['PHP_SELF']?>" method="POST">

 <select name="options[]" multiple>

 <option value="power steering">Power steering</option>

 <option value="rear wiper">Rear windshield wiper</option>

 <option value="cd changer">6 CD changer</option>

 <option value="fog lamps">Fog lamps</option>

 <option value="central locking">Central locking</option>

 <option value="onboard navigation"> ↵

ch05.indd 102 2/2/05 3:10:03 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 5: Using Arrays and Custom Functions 103

HowTo8 (8)

Computer-based navigation</option>

 </select>

 <input type="submit" name="submit" value="Select">

 </form>

<?php

}

else

{

 // form has been submitted

 // check if any items were selected

 // if so, display them

 if (is_array($_POST['options']))

 {

 echo 'Here is your selection:
';

 // use a foreach() loop to read and display array elements
 foreach ($_POST['options'] as $o)

 {

 echo "<i>$o</i>
";

 }

 }

 else

 {

 echo 'Nothing selected';

 }

}

?>

</body>

</html>

Notice in this script that the name of the <select> control contains the
square braces used when defining a PHP array. The result is this: when the form
is submitted, PHP will automatically create an array variable to hold the selected
items. This array can then be processed with a foreach() loop, and the selected
items retrieved from it.

You can do this with checkboxes also, simply by using array notation in
the checkbox’s name. For example, <input type=”checkbox”
name=”ingredients[]” value=”tomatoes”>.

5

ch05.indd 103 2/2/05 3:10:04 PM

TEAM LinG

 104 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 5HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 5

Using Array Functions
If you’re using an associative array, the array_keys() and array_values()
functions come in handy to get a list of all the keys and values within the array.
The following example illustrates this:

<?php

// define an array

$menu = array('breakfast' => 'bacon and eggs', ↵
'lunch' => 'roast beef', 'dinner' => 'lasagna');

// returns the array ('breakfast', 'lunch', 'dinner')

$result = array_keys($menu);

// returns the array ('bacon and eggs', 'roast beef', 'lasagna')

$result = array_values($menu);

?>

To check if a variable is an array, use the is_array() function, as in the
following:

<?php

// create array

$desserts = array('chocolate mousse', 'tiramisu');

// returns 1 (true)

echo is_array($desserts);

?>

You can convert array elements into regular PHP variables with the list()
and extract() functions. The list() function assigns array elements to
variables, as in the following example:

<?php

// define an array

$flavors = array('strawberry', 'grape', 'vanilla');

// extract values into variables

list ($flavor1, $flavor2, $flavor3) = $flavors;

// returns "strawberry"

echo $flavor1;

?>

ch05.indd 104 2/2/05 3:10:04 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 5: Using Arrays and Custom Functions 105

HowTo8 (8)

The extract() function iterates through a hash, converting the key-value
pairs into corresponding variable-value pairs. Here’s how:

<?php

// define associative array

$fruits = array('red' => 'apple', 'yellow' => 'banana', ↵
'purple' => 'plum', 'green' => 'grape');

// extract values into variables

extract ($fruits);

// returns "banana"

echo $yellow;

?>

You can add an element to the end of an existing array with the array_push()
function, and remove an element from the end with the interestingly named
array_pop() function. If you need to pop an element off the top of the array,
you can use the array_shift() function, while the array_unshift()
function takes care of adding elements to the beginning of the array. The following
example demonstrates all these functions:

<?php

// define array

$students = array('Tom', 'Jill', 'Harry');

// remove an element from the beginning

array_shift($students);

// remove an element from the end

array_pop($students);

// add an element to the end

array_push($students, 'John');

// add an element to the beginning

array_unshift($students, 'Ronald');

// array now looks like ('Ronald', 'Jill', 'John')

print_r($students);

?>

5

ch05.indd 105 2/2/05 3:10:04 PM

TEAM LinG

 106 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 5HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 5

The explode() function splits a string into smaller components on the
basis of a user-specified pattern, and then returns these elements as an array. This
function is particularly handy if you need to take a string containing a list of items
(for example, a comma-delimited list) and separate each element of the list for
further processing. Here’s an example:

<?php

// define string

$string = 'English Latin Greek Spanish';

// split on whitespace

$languages = explode(' ', $string);

// $languages now contains ('English', 'Latin', 'Greek', 'Spanish')

?>

Obviously, you can also do the reverse: the implode() function creates
a single string from all the elements of an array, joining them together with a user-
defined separator. Revising the previous example, you have the following:

<?php

// define string

$string = 'English Latin Greek Spanish';

// split on whitespace

$languages = explode(' ', $string);

// create new string

// returns "English and Latin and Greek and Spanish"

$newString = implode(" and ", $languages);

?>

Creating User-Defined Functions
A function is simply a set of program statements that perform a specific task,
and that can be called, or executed, from anywhere in your program. Every
programming language comes with its own functions, and typically also enables
developers to define their own. For example, if you had a series of numbers,
and you wanted to reduce each of them by 20 percent, you could pull out your
calculator and do it manually . . . or you could write a simple PHP function called
cheatTheTaxman(), send it the numbers one by one, and have it do the heavy
lifting for you.

ch05.indd 106 2/2/05 3:10:04 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 5: Using Arrays and Custom Functions 107

HowTo8 (8)

Functions are a Good Thing for three important reasons:

■ User-defined functions enable developers to extract commonly used
pieces of code into separate packages, thereby reducing unnecessary code
repetition and redundancies. This separation of code into independent
subsections also makes the code easier to understand and debug.

■ Because functions are defined once (but used many times), they are easy
to maintain. A change to the function code need only be implemented in
a single place—the function definition—with no changes needed anywhere
else. Contrast this with the nonabstracted approach, where implementing
a change means tracking down and manually changing every occurrence of
the earlier version of the code.

■ Because functions force developers to think in abstract terms (define input
and output values, set global and local scope, and turn specific tasks into
generic components), they encourage better software design and help in
creating extensible applications.

While PHP has always offered developers a well-thought-out framework
for basic software abstractions like functions and classes, PHP 5.0
improves this framework significantly with a redesigned object framework.
Read more about these improvements at http://www.zend.com/manual/
migration5.oop.php.

The following sections discuss how to create and use functions, arguments, and
return values in a PHP script.

Defining and Invoking Functions
To understand how custom functions work, examine the following script:

<?php

// define a function

function displayShakespeareQuote()

{

 echo 'Some are born great, some achieve greatness, ↵
and some have greatness thrust upon them';

}

// invoke a function

displayShakespeareQuote();

?>

5

ch05.indd 107 2/2/05 3:10:05 PM

TEAM LinG

 108 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 5HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 5

In PHP, functions are defined using the special function keyword. This
keyword is followed by the name of the function (which must conform to the
standard naming rules for variables in PHP), a list of arguments (optional) in
parentheses, and the function code itself, enclosed in curly braces. This function
code can be any legal PHP code—it can contain loops, conditional statements,
or calls to other functions. In the previous example, the function is named
displayShakespeareQuote() and only contains a call to PHP’s echo()
function.

Calling a user-defined function is identical to calling a built-in PHP function
like sizeof() or die()—simply invoke it by using its name. If the function is
designed to accept input values, the values can be passed to it during invocation
in parentheses. In PHP 3.x, functions could only be invoked after they had been
defined. In PHP 4.x and PHP 5.0, functions can be invoked even if their definitions
appear further down in the program.

Using Arguments and Return Values
Because functions are supposed to be reusable code fragments (remember my
discussion at the beginning of this section about why they are Good Things?), it
doesn’t make sense for them to always return the same value. Thus, it is possible
to create functions that accept different values from the main program and operate
on those values to return different, more pertinent results on each invocation.
These values are called arguments, and they add a whole new level of power and
flexibility to your code.

Typically, you tell your function which arguments it can accept through an
argument list (one or more variables) in the function definition. When a function
is invoked with arguments, the variables in the argument list are replaced with the
actual values passed to the function and manipulated by the statements inside the
function block to obtain the desired result.

The Name Game

Function invocations are case-insensitive—PHP will find and execute the named
function even if the case of the function invocation doesn’t match that of the
definition—but to avoid confusion and add to the readability of your scripts,
a good idea is to invoke functions as they are defined.

ch05.indd 108 2/2/05 3:10:05 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 5: Using Arrays and Custom Functions 109

HowTo8 (8)

To illustrate, consider the next example, which uses a function with a single-
argument list. Depending on the value passed to the function, conversion is
performed between two different measurement scales:

<?php

// define a function

// with a single-argument list

function convertMilesToKilometres($miles)

{

 echo "$miles miles = " . $miles * 1.60 . " km";

}

// invoke a function

// pass it a single argument

convertMilesToKilometres(50);

?>

Usually, when a function is invoked, it generates a return value. This return
value is explicitly set within the function with the return statement. To see how
this works, consider the following example:

<?php

// define a function

function getTriangleArea($base, $height)

{

 $area = $base * $height * 0.5;

 return $area;

}

// invoke a function

echo 'The area of a triangle with base 10 and height 50 ↵
is ' . getTriangleArea(10, 50);

?>

Here, when the getTriangleArea() function is invoked with two
arguments, it performs a calculation and assigns the result to the $area variable.
This result is then returned to the main program through the return statement.
It is important to note that when PHP encounters a return statement within
a function, it stops processing the function and returns control to the statement that
invoked the function.

5

ch05.indd 109 2/2/05 3:10:05 PM

TEAM LinG

 110 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 5HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 5

If you invoke a function with an incorrect number of arguments, PHP will
generate a warning, but still attempt to process the function. To avoid
this, either make arguments optional by setting default values for them or
define your function with support for variable-length argument lists.

Using Arrays with Argument Lists and Return Values
PHP fully supports passing arrays to functions in the argument list and returning
arrays from functions with the return statement. To see how this works, try the
following script:

<?php

// define a function

// with a single-argument list

function addDomainToUsername($u, $d)

{

 // create empty result array

 $resultArray = array();

 // process input array

 // add domain to username and place in result array

 foreach ($u as $element)

 {

 $resultArray[] = $element . '@' . $d;

 }

 // return result array

 return $resultArray;

}

// define variables

$users = array('john', 'jim', 'harry');

// send array as argument to function

// receive result array

$newUsers = addDomainToUsername($users, 'guess.me.domain');

?>

Defining Global and Local Variables
Unless you specify otherwise, the variables used within a function are local—that is,
the values assigned, and the changes made to them, are restricted to the function

ch05.indd 110 2/2/05 3:10:05 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 5: Using Arrays and Custom Functions 111

HowTo8 (8)

space alone. This insulates function variables from the main program space, reducing
the risk of variable clashes and corruption of data. To use a variable from the main
program inside a function (or vice versa), use the global keyword before the
variable name inside the function definition.

The following example explains this clearly:

<?php

// define two variables

$itemCount = 65;

$employeeCount = 125;

// write a function

// that alters the global $itemCount variable

function addItems()

{

 global $itemCount;

 $itemCount = $itemCount + 100;

}

// write a function that alters a local variable

// with the same name as a global variable

// note that the global keyword is not used

function addEmployees()

{

 $employeeCount = 2000;

}

// returns 65

echo "Initial number of items: $itemCount";

addItems();

// returns 165

echo "Items after addItems(): $itemCount";

// returns 125

echo "Initial number of employees: $employeeCount";

addEmployees();

// returns 125

echo "Employees after addEmployees(): $employeeCount";

?>

5

ch05.indd 111 2/2/05 3:10:05 PM

TEAM LinG

 112 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 5HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 5

Importing Function Definitions
Thus far, all the examples you’ve seen have had the function definitions embedded
in the same script as their invocation. This goes against the original raison d’être of
functions, as expounded upon in great length in the introduction to this section. In
the real world, it’s more common to store function definitions in an external file,
and to import it into your script when required.

PHP also offers two useful functions to import files into a PHP script: the
include() and require() functions. These functions can be used to suck
external files lock, stock, and barrel into a PHP script, so they come in handy if
you have a modular application with functions placed in a separate file from the
main program code.

Here’s an example of how to use the include() function:

<?php

// import file

include("/path/to/user/defined/functions.php");

// invoke functions here

?>

The include() function generates a warning if the file cannot be found,
although script processing continues. However, the require() function forces
a file to be included in the script and generates a fatal error that stops script
processing if the file cannot be found.

Super-Duper Variables

The $_SERVER, $_POST, $_GET, $_REQUEST, $GLOBALS, $_FILE,
$_SESSION, and $_COOKIE arrays are what the PHP manual calls superglobal
variables, because you can access them from anywhere in a PHP program.
Regardless of whether you’re inside a function or outside it in the main program,
these arrays (together with a few others) are always available to you.

ch05.indd 112 2/2/05 3:10:06 PM

TEAM LinG

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 5

 CHAPTER 5: Using Arrays and Custom Functions 113

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 5

Classify your custom functions into different categories (example categories
might be authentication, input validation, error handling, and math/
scientific calculations), and keep functions related to each category in
a separate file. This enables you to import specific types of functions into
your applications on an “as-needed” basis, is neater than dumping all
definitions in a single file, and also reduces overhead, because PHP only
has to read a subset instead of all the functions you’ve ever created.

Summary
This chapter moved your PHP skills up a notch, by introducing you to two of
the language’s more sophisticated constructs: arrays and user-defined functions.
Arrays are extremely useful to group-related data values, and PHP comes with
a wide range of functions to define them, create and manipulate array elements,
and process them with loops. User-defined functions make it possible for you to
package your code into reusable blocks, to make your scripts more efficient and
maintainable.

This chapter also introduced you to the applications of these new language
constructs, showing you how to use arrays to group-related form controls together,
and how to create custom functions and abstract them into separate files that can
be imported into your scripts on an as-needed basis. If you’re interested in learning
more about these topics, these web links have additional information:

■ Creating and using arrays, at http://www.php.net/manual/en/language
.types.array.php

■ Array manipulation functions, at http://www.melonfire.com/community/
columns/trog/article.php?id=95 and http://www.php.net/manual/en/ref
.array.php

■ PHP’s special built-in arrays, at http://www.php.net/manual/en/language
.variables.predefined.php

■ Creating and using user-defined functions, at http://www.php.net/manual/
en/language.functions.php

■ References, at http://www.php.net/manual/en/language.references.php

5

ch05.indd 113 2/2/05 3:10:06 PM

TEAM LinG

ch05.indd 114 2/2/05 3:10:06 PM

This page is intentionally left blank.

TEAM LinG

Chapter 6

HowTo8 (8)

Using Files,
Sessions, Cookies,
and External
Programs

ch06.indd 115 2/2/05 3:11:30 PM

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

TEAM LinG

 116 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 6HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 6

Now that you know the basics of variables, operators, conditional statements,
loops, and arrays, you should be able to read, understand. and create

relatively complex PHP scripts. It’s time to begin using everything you’ve learned
for real-world programming. This chapter builds on the previous one to teach you
common techniques and functions you’ll find yourself using regularly in your PHP
development.

How to…

■ Read and write files, and check file permissions

■ Obtain and parse a directory listing in PHP

■ Use sessions to maintain client state

■ Store information in cookies

■ Retrieve the current date and time, and create UNIX timestamps

■ Execute external programs from your PHP script

Reading and Writing Files
PHP comes with a powerful and flexible file manipulation API, which enables
developers to view and modify file attributes, read and list directory contents, alter
file permissions, retrieve file contents into a variety of native data structures, and
search for files based on specific patterns. The following sections discuss reading
and writing files, and retrieving file information.

Reading Data from a File
To begin with, let’s consider the process of opening a file and reading its contents.
Create and run the following PHP script (remember to alter the value of the $file
variable to an actual file on your system that is readable by the web server):

<?php

// set file to read

$file = '/home/web/projects.txt';

ch06.indd 116 2/2/05 3:11:31 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 6: Using Files, Sessions, Cookies, and External Programs 117

HowTo8 (8)

// open file

$fh = fopen($file, 'r') or die('Could not open file!');

// read file contents

$data = fread($fh, filesize($file)) or die('Could not read file!');

// close file

fclose($fh);

// print file contents

echo $data;

?>

A review of the previous script will reveal the three basic steps to reading data
from a file:

 1. Open the file and assign it a file handle: PHP needs a file handle to read
data from a file. This file handle can be created with the fopen() function,
which accepts two arguments: the name and path to the file, and a string
indicating the mode in which the file is to be opened ('r' for read).

 2. Interact with the file via its handle and extract its contents into a PHP
variable. If the fopen() function is successful, it returns a file handle—
$fh—which can be used for further interaction with the file. This file
handle is used by the fread() function, which reads the file and places
its contents into a variable.

 The second argument to fread() is the number of bytes to be read. You
can usually obtain this information through the filesize() function,
which returns the size of the file in bytes.

 3. Close the file. Once you’re done with the file, it’s a good idea to close it
with fclose(), to avoid using up memory. This last step is not strictly
necessary, but it’s a good habit to develop.

An alternative method of reading data from a file is the file() function,
which reads the entire file into an array with a single function call. Each element
of the array then contains one line from the file. To display the contents of the file,
simply iterate over the array in a foreach() loop and print each element (line).

6

ch06.indd 117 2/2/05 3:11:31 PM

TEAM LinG

 118 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 6HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 6

The following example demonstrates this:

<?php

// set file to read

$file = '/home/web/projects.txt';

// read file into array

$data = file($file) or die('Could not read file!');

// loop through array and print each line

foreach ($data as $line)

{

 echo $line;

}

?>

Create a Primitive Error Handler

PHP’s die() function is mostly used as a primitive error-handling mechanism.
In the event of a fatal error, die() can be used to terminate script processing
with an explanatory user-specified error message indicating the reason why.

Read or Write?

You can use any one of three different modes with the fopen() function:
'r' (opens a file in read mode), 'w' (opens a file in write mode, destroying
existing file contents) and 'a' (opens a file in append mode, preserving existing
file contents). You can also add the 'b' modifier to force the file to open in
binary mode, and the 't' modifier to control how the line-ending character
is handled on different platforms. Read http://www.php.net/manual/en/
function.fopen.php for more information.

ch06.indd 118 2/2/05 3:11:32 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 6: Using Files, Sessions, Cookies, and External Programs 119

HowTo8 (8)

Another way to do this is with the file_get_contents() function, new
in PHP 4.3.0 and PHP 5.0, which reads the entire file into a string. Here’s an
example:

<?php

// set file to read

$file = '/home/web/projects.txt';

// read file into string

$data = file_get_contents($file) or die('Could not read file!');

// print contents

echo $data;

?>

Writing Data to a File
The steps involved in writing data to a file are almost identical to those involved in
reading it: open the file and obtain a file handle, use the file handle to write data to it,
and close the file. There are two differences:

 1. You must fopen() the file in write mode ('w' for write).

 2. Instead of using the fread() function to read from the file handle, use the
fwrite() function to write to it.

No Pain, No Gain

The fopen(), fwrite(), and fread() functions are all binary-safe,
which means you can use them on binary files without worrying about damage
to the file contents. Read more about many of the issues related to binary-safe
file manipulation on different platforms at http://www.php.net/manual/en/
function.fopen.php.

6

ch06.indd 119 2/2/05 3:11:32 PM

TEAM LinG

 120 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 6HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 6

To try this out yourself, create and run the following script:

<?php

// set file to write

$file = '/tmp/dummy.txt';

// open file

$fh = fopen($file, 'w') or die('Could not open file!');

// write to file

fwrite($fh, 'Hello, file!') or die('Could not write to file');

// close file

fclose($fh);

?>

An alternative here is the file_put_contents() function, new in
PHP 5.0, which takes a string and writes it to a file in a single line of code. The
next example illustrates this:

<?php

// set file to write

$file = '/tmp/dump.txt';

// write to file

file_put_contents($file, 'Hello, file!') ↵
or die('Could not write to file');

?>

Bear in mind that the directory in which you’re trying to create the file
must exist before you can write to it. Forgetting this important step is
a common cause of script errors.

Testing File Attributes
PHP also comes with a bunch of functions that enable you to test the status of
a file—for example, find out whether it exists, whether it’s empty, whether it’s
readable or writable, and whether it’s a binary or a text file. Table 6-1 has a list
of the more interesting functions in this category.

ch06.indd 120 2/2/05 3:11:33 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 6: Using Files, Sessions, Cookies, and External Programs 121

HowTo8 (8)

Function What It Does

file_exists() Returns a Boolean indicating whether the file exists

is_dir() Returns a Boolean indicating whether the specified path is
a directory

is_file() Returns a Boolean indicating whether the specified file is
a regular file

is_link() Returns a Boolean indicating whether the specified file is
a symbolic link

is_executable() Returns a Boolean indicating whether the specified file
is executable

is_readable() Returns a Boolean indicating whether the specified file
is readable

is_writable() Returns a Boolean indicating whether the specified file
is writable

filesize() Gets file size, in bytes

filemtime() Gets last modification time of file

fileatime() Gets last access time of file

fileowner() Gets file owner

filegroup() Gets file group

fileperms() Gets file permissions

filetype() Gets file type

 TABLE 6-1 Useful PHP File Functions

And here is an example that demonstrates some of these functions:

<?php

// set file

$file = $_GET['file'];

// check if file exists

echo file_exists($file) ? 'File exists' : 'File does not exist';

// check if file is executable

echo is_executable($file) ? 'File is executable' :

'File is not executable';

6

ch06.indd 121 2/2/05 3:11:33 PM

TEAM LinG

 122 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 6HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 6

// check if file is readable

echo is_readable($file) ? 'File is readable' : ↵
'File is not readable';

// check if file is writable

echo is_writable($file) ? 'File is writable' : ↵
'File is not writable';

// print file size

echo 'File size is ' . filesize($file) . ' bytes';

// print file owner

echo 'File owner is ' . fileowner($file);

// print file type

echo 'File type is ' . filetype($file);

?>

Obtaining Directory Listings
Thus far, most of the examples you’ve seen have dealt with individual files.
However, you often find yourself faced with the task of iterating over one or more
directories and processing the file list within each. To meet this requirement, PHP
offers a comprehensive set of directory manipulation functions, which enable
developers to read and parse an entire directory listing.

To demonstrate, consider the following simple example, which lists all the files
in the directory /bin:

<?php

// initialize counter

$count = 0;

// set directory name

$dir = "/bin";

// open directory and parse file list

if (is_dir($dir))

{

 if ($dh = opendir($dir))

 {

 // iterate over file list

ch06.indd 122 2/2/05 3:11:33 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 6: Using Files, Sessions, Cookies, and External Programs 123

HowTo8 (8)

 // print filenames

 while (($filename = readdir($dh)) !== false)

 {

 if (($filename != ".") && ($filename != ".."))

 {

 $count++;

 echo $dir . "/" . $filename . "\n";

 }

 }

 // close directory

 closedir($dh);

 }

}

echo "-- $count FILES FOUND --";

?>

Here, the opendir() function first retrieves a handle to the named directory;
this handle serves as the primary point of contact for all subsequent operations.
The readdir() function then uses the file handle to read the contents of the
directory, and return a list of file names one after another. Once the complete
contents of the directory have been retrieved, readdir() returns a false value,
and the closedir() function is used to destroy the directory handle.

Notice the manner in which entries for the current (.) and parent directory (..)
are excluded from the list—with an if() conditional statement.

Managing Sessions and Using Session Variables
You may have heard that HTTP, the protocol on which the Web runs, is a “stateless”
protocol and, therefore, treats each request for a web page as a unique and independent
transaction, with no relationship whatsoever to the transactions that preceded it.
While this doesn’t present a problem for most web users, it throws a massive wrench
in the works of transaction-based sites, which need to track the activities of each user.

Consider, for example, the common shopping cart used in web storefronts:
in a “stateless” environment, it is impossible to keep track of the items each user
has short listed for purchase, as the stateless nature of the HTTP protocol makes it
impossible to identify which transactions belong to which client or user.

Consequently, what is required is a method that makes it possible to “maintain
state,” something that allows client connections to be tracked and connection-specific
data to be maintained. A common solution to the problem is to use sessions to store

6

ch06.indd 123 2/2/05 3:11:33 PM

TEAM LinG

 124 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 6HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 6

information about each client and track its activities. This session data is preserved
for the duration of the visit, and is usually destroyed on its conclusion.

PHP has included built-in session support since PHP 4.0. Client transactions
are identified through unique numbers; these identifiers are used to re-create each
client’s prior session environment whenever required. The session identifier may be
stored on the client in a cookie or it may be passed from page to page in the URL.

The following sections discuss the PHP functions to create sessions, register
and use session variables, and destroy sessions.

Creating a Session and Registering Session Variables
In PHP, the session_start() function is used to create a client session and
generate a session ID. Once a session has been created, it becomes possible to
register any number of session variables; these are regular variables which can
store textual or numeric information and can be manipulated by standard PHP
functions, but are unique to each client. In a PHP script, session variables may
be registered as key-value pairs in the special $_SESSION associative array.

When cookies are used to store session data—the most common case—
the session_start() function must be called before any output is
generated by the script (and that includes the starting <html> tag). This
is because of restrictions in the HTTP protocol that require cookies and
other headers to be sent before any script output.

To see how sessions and session variables work, examine the following script,
which creates a new client session and registers two session variables:

<?php

// first page

// create a session

session_start();

// register some session variables

$_SESSION['username'] = 'deathsbane';

$_SESSION['role'] = 'admin';

?>

On subsequent pages, calls to the session_start() function re-create the
prior session environment by restoring the values of the $_SESSION associative

ch06.indd 124 2/2/05 3:11:34 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 6: Using Files, Sessions, Cookies, and External Programs 125

HowTo8 (8)

array. This can be tested by attempting to access the values of the session variables
registered in the previous example:

<?php

// second page

// re-create the previous session

session_start();

// print the value of the session variable

// returns 'deathsbane'

echo $_SESSION['username'];

?>

On Windows, you typically need to edit the PHP configuration file,
php.ini, and edit the session.save_path variable to reflect your
system’s temporary directory. The default value for this variable is /tmp,
a directory that does not exist on Windows. Using this default value as is
will cause your sessions to fail.

Destroying a Session
To destroy an extant session—for example, on user logout—reset the $_SESSION
array, and then use the session_destroy() function to erase session data.

<?php

// re-create session

session_start();

// reset session array

$_SESSION = array();

// destroy session

session_destroy();

?>

Before you can destroy a session with session_destroy(), you need
to first re-create the session environment (so there is something to destroy)
with session_start(). This probably seems counterintuitive, and it
is, but there isn’t much you can do except grin and bear it.

6

ch06.indd 125 2/2/05 3:11:34 PM

TEAM LinG

 126 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 6HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 6

Storing Data in Cookies
Cookies allow web sites to store client-specific information in a file on the client
system, and retrieve this information on an as-needed basis. Cookies are typically
used to bypass the stateless nature of the HTTP protocol, by using the client’s
disk as a storage area for persistent data; however, they’re dependent on the client
browser being configured to accept cookies.

PHP has included support for cookie generation and retrieval since PHP 3.x.
Using PHP’s built-in functions, you can create client-side cookies, store values in
them, and delete them after a specified period has passed.

When dealing with cookies, you should be aware of some ground rules:

 1. Because cookies are used to record information about your activities on
a particular site, they can only be read by the site that created them.

 2. A single domain cannot set more than 20 cookies, and each cookie is
limited to a maximum size of 4KB.

 3. A cookie usually possesses five types of attributes. Table 6-2 lists them.

 4. Of all the five attributes, only the first is not optional.

Because cookies are stored on the user’s hard drive, you as the developer
have little control over them. If a user decides to turn off cookie support in
his or her browser, your cookies will simply not be saved. Therefore, if data
persistence is an important feature of your web site, have a backup plan
(such as server-side cookies or sessions) ready as well.

Attribute What It Does

Name Sets the name and value of the cookie

Expires Sets the date and time at which the cookie expires

path Sets the top-level directory on the domain from
which cookie data can be accessed

domain Sets the domain for which the cookie is valid

secure Sets a Boolean flag indicating that the cookie
should be transmitted only over a secure HTTP
connection

 TABLE 6-2 Cookie Attributes

ch06.indd 126 2/2/05 3:11:34 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 6: Using Files, Sessions, Cookies, and External Programs 127

HowTo8 (8)

The following sections discuss the PHP functions for setting cookies, using
cookie data, and deleting cookies.

Setting Cookies
In PHP, cookies are set with the setcookie() function, which accepts six
arguments: the cookie name, its value, its expiry date (in UNIX timestamp format),
its path and domain, and a Boolean flag indicating its security status. Only the first
argument is required, all the rest are optional. To better understand this, try out the
following example script:

<?php

// set a cookie called 'username' with value 'admin'

// expiring after 1 day

setcookie('username', 'admin', mktime()+86400, '/');

?>

The setcookie() function returns true if successful. By checking for this,
you can verify if the cookie was sent to the browser or not.

<?php

// set a cookie called 'username' with value 'admin'

// expiring after 1 day

$ret = setcookie('username', 'admin', mktime()+86400, '/');

// check if cookie was set

// display error if not

if (!$ret)

{

 echo "Unable to set cookie";

}

?>

You can set multiple cookies, simply by calling setcookie() once for each
cookie. Consider the following example, which sets three cookies for the same
domain, each with different expiry dates:

<?php

setcookie('username', 'admin', mktime()+86400, '/');

setcookie('role', '2', mktime()+1800, '/secure/web/');

setcookie('country', 'UK', 0, '/');

?>

6

ch06.indd 127 2/2/05 3:11:34 PM

TEAM LinG

 128 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 6HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 6

Retrieving Cookie Data
Once a cookie has been set for a domain, it becomes available in the special
$_COOKIE associative array, and its value may be accessed using standard array
notation. Here’s an example:

<?php

// if cookie present, use it

// else display generic message

if ($_COOKIE['username'])

{

 echo "Welcome back, " . $_COOKIE['username'];

}

else

{

 echo "Is this your first time here? Take our guided tour!";

}

?>

To check whether your cookies are working correctly, use the statement
<?php print_r($_COOKIE); ?> to look inside PHP’s special
$_COOKIE array.

Deleting Cookies
To delete a cookie, simply use setcookie() with its name to set the cookie’s
expiry date to a value in the past.

<?php

setcookie('username', ''NULL, mktime()-10000, '/');

?>

2 PM by Any Other Name…

The mktime() function accepts a series of date and time parameters, and
converts them into a UNIX timestamp.

ch06.indd 128 2/2/05 3:11:35 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 6: Using Files, Sessions, Cookies, and External Programs 129

HowTo8 (8)

Dealing with Dates and Times
Calculating and formatting date and time values is par for the course when creating
web applications. And PHP comes with some fairly powerful functions to create
and format time- and date-stamps. The following sections discuss some of the more
common tasks in this context.

Retrieving the Current Date and Time
The most basic thing you can do with PHP’s date and time functions is retrieve
the current date and time. And the easiest way to do this is with the getdate()
function, which returns an associative array containing the current date and time.
To try it out, create and run the following script:

<?php

// get current date and time

$current = getdate();

// turn it into a string

$current_time = $current['hours'] . ':' . $current['minutes']

. ':' . $current['seconds'];

$current_date = $current['mday'] . '.' . $current['mon'] . '.'

 . $current['year'];

// print it

// this would generate output of the form

// "It is now 13:22:45 on 19.6.2004"

echo "It is now $current_time on $current_date";

?>

As should be clear from the script above, the getdate() function returns an
associative array containing keys for the current hour, minute, second, day, date,
month, and year. These values can be accessed using standard array notation.

Obtaining Timestamps for Arbitrary Dates and Times
Most of PHP’s date functions work on the basis of timestamps. This timestamp is
a unique numeric representation of a particular date, calculated as the number of
seconds between January 1, 1970 and the date and time specified. In PHP, UNIX

6

ch06.indd 129 2/2/05 3:11:35 PM

TEAM LinG

 130 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 6HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 6

timestamps are created via the mktime() function, which accepts a series of date
and time parameters and converts them into a timestamp. Here’s an example:

<?php

// get a timestamp for 08:45:00 June 17 2004

// returns a long integer like 1150485300

echo mktime(08, 45, 00, 6, 17, 2006);

?>

To obtain a timestamp for an arbitrary date or time, pass the mktime()
function six parameters: the hour, minute, second, month, day, and year. To obtain
a timestamp for the current moment in time, call mktime() without any arguments.

Executing External Programs
To run an external program from your PHP script, place the program command
line within backticks (``). The output of the command can also be assigned to
a variable for further use within the script. Try the following example, which runs
the UNIX du command (to calculate disk usage) and places the resulting output in
a PHP variable:

<?php

$output = `/bin/du -s /tmp/`;

echo $output;

?>

If user input is required for the command you’re executing, it is recommended
that you “defang” that input by removing or escaping illegal characters from it before
running it. PHP can do this for you automatically with its escapeshellarg()
and escapeshellcmd() functions. To illustrate, consider the following script,
which asks the user for a directory path, and then uses the system’s du command
to return the total space occupied by that directory on disk:

<html>

<head></head>

<body>

ch06.indd 130 2/2/05 3:11:35 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 6: Using Files, Sessions, Cookies, and External Programs 131

HowTo8 (8)

<?php

if (!$_POST['submit'])

{

?>

 <form action="<?=$_SERVER['PHP_SELF']?>" method="post">

 Enter path: <input type="text" name="path">

 <input type="submit" name="submit" value="Go!">

 </form>

<?php

}

else

{

 // escape user input

 $path = escapeshellarg($_POST['path']);

 // run external command

 $output = `/bin/du -s $path`;

 // extract size from output and print

 $outputArray = explode("\t", $output);

 $size = $outputArray[0];

 echo "$path occupies $size bytes";

}

?>

</body>

</html>

In this example, the escapeshellarg() command escapes the user’s input
with quotes to nullify harmful code that may be embedded within it.

Using external programs from within a PHP script, especially if those
programs require privileges greater than those normally possessed by the
web server, is a risky proposition. You should only attempt such an exercise
after you’re comfortable with the security issues surrounding such external
program execution.

Summary
This chapter offered a grab-bag of different techniques, using the concepts taught
in previous techniques in practical usage examples. Among the items covered were
reading files into an array and processing them, writing new files or appending

6

ch06.indd 131 2/2/05 3:11:35 PM

TEAM LinG

 132 How to Do Everything with PHP & MySQL

data to existing files, testing file attributes, using sessions and cookies for persistent
storage on a client, and executing external programs from inside a PHP script.

If you’re interested in learning more about these topics, these web links have
more information:

■ File manipulation in PHP, at http://www.melonfire.com/community/
columns/trog/article.php?id=208 and http://www.php.net/manual/en/
ref.filesystem.php

■ Reading directory entries with PHP, at http://www.php.net/manual/en/
ref.dir.php

■ Sessions and PHP, at http://www.melonfire.com/community/columns/
trog/article.php?id=3 and http://www.php.net/manual/en/ref
.session.php

■ The Netscape cookie specification, at http://www.netscape.com/newsref/
std/cookie_spec.html

■ Cookies and PHP, at http://www.php.net/manual/en/features
.cookies.php

■ Program execution functions in PHP, at http://www.php.net/manual/en/
ref.exec.php

ch06.indd 132 2/2/05 3:11:36 PM

TEAM LinG

Chapter 7

HowTo8 (8)

Sample
Application:
Session-Based
Shopping Cart

ch07.indd 133 2/2/05 3:12:34 PM

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

TEAM LinG

 134 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 7HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 7

Now that you can find your way around a PHP script, it’s time to start writing
your own. This chapter brings the basic PHP course taught over the last few

chapters to a logical conclusion, by attempting to use as many of the constructs
and techniques taught over the previous pages to create a working application. This
example is, of necessity, somewhat contrived, but I hope you find it interesting.

How to…

■ Create a web-based shopping cart

■ Read and display a product catalog from a text file

■ Store item quantities in a session, and perform calculations on them

Understanding Requirements
The application here is a web-based shopping cart that uses PHP’s built-in session-
management support to track the items selected for purchase by a user. Items are
listed in a product catalog, and the user has the ability to select custom quantities
of each item using an HTML form. The selected items then appear in the user’s
“cart,” with item subtotals automatically calculated from the quantity and unit
price. Users can clear their carts of all selected items, or selectively update the
quantities to be purchased of each item; the totals are recalculated automatically.
The catalog itself is read from a text file; this file contains a list of product IDs,
descriptions, and unit prices.

If all this seems somewhat daunting, fear not—it’s pretty simple, once you
break it down.

Retrieving Catalog Data
Let’s begin with the catalog file itself and examine the format in which catalog data
is stored:

101:AA batteries (pack of 2):2.99

102:AA batteries (pack of 4):5.49

103:Backpack (black): 69.99

104:Money belt with 6 compartments (black):13.49

105:Haversack (red):199.99

106:Swiss Army knife (6 blades including can opener and scissors):24.99

107:Duffel bag (steel gray):28.50

ch07.indd 134 2/2/05 3:12:34 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 7: Sample Application: Session-Based Shopping Cart 135

HowTo8 (8)

This is fairly easy to understand: each product is listed on a separate line, with
colons used to demarcate the product code or SKU, its description, and its price. It’s
easy to parse this file and store its contents in a PHP array using the file() and
explode() functions. And this next snippet of code does exactly that:

<?php

// look for catalog file

$catalogFile = "catalog.dat";

// file is available, extract data from it

// place into $CATALOG array, with SKU as key

if (file_exists($catalogFile))

{

 $data = file($catalogFile);

 foreach ($data as $line)

 {

 $lineArray = explode(':', $line);

 $sku = trim($lineArray[0]);

 $CATALOG[$sku]['desc'] = trim($lineArray[1]);

 $CATALOG[$sku]['price'] = trim($lineArray[2]);

 }

}

else

{

 die("Could not find catalog file");

}

?>

The end result of this is an associative array called $CATALOG, which uses the
product codes as keys. Each key further points to a nested associative array with two
keys—desc and price—which the product’s description and price, respectively.
This $CATALOG array, once created, becomes available for use by other components
within the script. Obviously, in the event that the catalog file cannot be found, the user
must be notified with an error message, hence, the if(file_exists(...)) test
and subsequent call to die() if the test proves false.

Once the catalog data is successfully imported into a PHP variable, the next
step is to print it. Because the data is in an array, it’s logical to reach for the
foreach() loop to process it. Here’s the code:

<table border="0" cellspacing="10">

<?php

// print items from the catalog for selection

7

ch07.indd 135 2/2/05 3:12:35 PM

TEAM LinG

 136 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 7HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 7

foreach ($CATALOG as $k => $v)

{

 echo "<tr><td colspan=2>";

 echo "" . $v['desc'] . "";

 echo "</td></tr>\n";

 echo "<tr><td>";

 echo "Price per unit: " . $CATALOG[$k]['price'];

 echo "</td><td>Quantity: ";

 echo "<input size=4 type=text name=\"a_qty[" . $k . "]\">";

 echo "</td></tr>\n";

}

?>

<tr>

<td colspan="2">

<input type="submit" name="add" value="Add items to cart">

</td>

</tr>

</table>

Notice that each item in the product catalog contains an empty text field next
to it, which can be used to input quantities. The data entered into these fields is
submitted back to the same script, by means of a POST-ed array called $a_qty.
The keys of this array are the product codes, and its values are the corresponding
quantities selected.

Creating the Shopping Cart
On submission, the items and quantities selected need to find their way into
the “shopping cart”—essentially, a session variable that remains available
throughout the user’s session. This shopping cart is an associative array called
$_SESSION['cart']. Its keys are the product codes of the selected items,
and its values are the corresponding quantities entered by the user.

<?php
session_start();
if ($_POST['add'])
{
 foreach ($_POST['a_qty'] as $k => $v)
 {
 $_SESSION['cart'][$k] = $_SESSION['cart'][$k] + $v;
 }
}
?>

ch07.indd 136 2/2/05 3:12:35 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 7: Sample Application: Session-Based Shopping Cart 137

HowTo8 (8)

Note that for items already in the cart, submitting the form with new numbers
adds to the existing quantities, instead of replacing them.

Calculating Costs
Once items have been stored in the shopping cart, it’s a simple matter to display
them. All you need to do is iterate over the $_SESSION['cart'] array and
print its values. Because $_SESSION['cart'] only stores product codes with
quantities, it’s necessary to cross-reference the product codes with the data in the
$CATALOG array to retrieve the human-readable descriptions and prices (these
prices are also used to calculate subtotals and the grand total).

<table width="100%" border="0" cellspacing="10">

<?php

// initialize a variable to hold total cost

$total = 0;

// check the shopping cart

// if it contains values

// look up the SKUs in the $CATALOG array

// get the cost and calculate subtotals and totals

if (is_array($_SESSION['cart']))

{

 foreach ($_SESSION['cart'] as $k => $v)

 {

 if ($v > 0)

 {

 $subtotal = $v * $CATALOG[$k]['price'];

 $total += $subtotal;

 echo "<tr><td>";

 echo "$v unit(s) of " . $CATALOG[$k]['desc'] ↵
. "";

 echo "</td><td>";

 echo "New quantity: <input size=4 type=text ↵
name=\"u_qty[" . $k . "]\">";

 echo "</td></tr>\n";

 echo "<tr><td>";

 echo "Price per unit: " . $CATALOG[$k]['price'];

 echo "</td><td>";

 echo "Sub-total: " . sprintf("%0.2f", $subtotal);

 echo "</td></tr>\n";

 }

 }

}

7

ch07.indd 137 2/2/05 3:12:35 PM

TEAM LinG

 138 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 7HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 7

?>

<tr>

<td>TOTAL</td>

<td><?=sprintf("%0.2f", $total)?></td>

</tr>

<tr>

<td><input type="submit" name="update" value="Update Cart"></td>

<td><input type="submit" name="clear" value="Clear Cart"></td>

</tr>

</table>

Handling Cart Updates
This display contains a text field next to each item, for the user to update the
quantities of each item in the cart. Values are submitted to the form processor
through the $u_qty array (similar in structure to the $a_qty array explained
earlier). This update operation differs from the add operation in that submitting
the form with new values replaces the existing quantities (instead of adding to
them). The user also has the option of “emptying” the cart with a single click;
essentially, this destroys the session data and presents the user with an empty
$_SESSION['cart'] array.

Here’s the code to perform the previous logic:

<?php

if ($_POST['update'])

Sprinting Ahead

In case you were wondering, the sprintf() function is used to massage
numbers into user-defined formats. It enables you to format the padding,
alignment, and precision of a number using predefined format specifiers, in
a manner similar to the date() function. Read more about it at http://www
.php.net/manual/en/function.sprintf.php.

ch07.indd 138 2/2/05 3:12:36 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 7: Sample Application: Session-Based Shopping Cart 139

HowTo8 (8)

 foreach ($_POST['u_qty'] as $k => $v)

 {

 $_SESSION['cart'][$k] = $v;

 }

}

// if this is a clear operation

// reset the session and the cart

// destroy all session data

if ($_POST['clear'])

{

 $_SESSION = array();

 session_destroy();

}

?>

Putting It All Together
And now that you’ve seen how the various pieces interact with each other, here’s
the complete script:

<?php

// start session

session_start();

// initialize session shopping cart

if (!isset($_SESSION['cart']))

{

 $_SESSION['cart'] = array();

}

// look for catalog file

$catalogFile = "catalog.dat";

// file is available, extract data from it

// place into $CATALOG array, with SKU as key

if (file_exists($catalogFile))

{

 $data = file($catalogFile);

 foreach ($data as $line)

 {

 $lineArray = explode(':', $line);

 $sku = trim($lineArray[0]);

7

ch07.indd 139 2/2/05 3:12:36 PM

TEAM LinG

 140 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 7HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 7

 $CATALOG[$sku]['desc'] = trim($lineArray[1]);

 $CATALOG[$sku]['price'] = trim($lineArray[2]);

 }

}

// file is not available

// stop immediately with an error

else

{

 die("Could not find catalog file");

}

// check to see if the form has been submitted

// and which submit button was clicked

// if this is an add operation

// add to already existing quantities in shopping cart

if ($_POST['add'])

{

 foreach ($_POST['a_qty'] as $k => $v)

 {

 // if the value is 0 or negative

 // don't bother changing the cart

 if ($v > 0)

 {

 $_SESSION['cart'][$k] = $_SESSION['cart'][$k] + $v;

 }

 }

}

// if this is an update operation

// replace quantities in shopping cart with values entered

else if ($_POST['update'])

{

 foreach ($_POST['u_qty'] as $k => $v)

 {

 // if the value is empty, 0 or negative

 // don't bother changing the cart

 if ($v != "" && $v >= 0)

 {

 $_SESSION['cart'][$k] = $v;

 }

 }

}

ch07.indd 140 2/2/05 3:12:36 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 7: Sample Application: Session-Based Shopping Cart 141

HowTo8 (8)

// if this is a clear operation

// reset the session and the cart

// destroy all session data

else if ($_POST['clear'])

{

 $_SESSION = array();

 session_destroy();

}

?>

<html>

<head></head>

<body>

<h2>Catalog</h2>

Please add items from the list below to your shopping cart.

<form action="<?=$_SERVER['PHP_SELF']?>" method="post">

<table border="0" cellspacing="10">

<?php

// print items from the catalog for selection

foreach ($CATALOG as $k => $v)

{

 echo "<tr><td colspan=2>";

 echo "" . $v['desc'] . "";

 echo "</td></tr>\n";

 echo "<tr><td>";

 echo "Price per unit: " . $CATALOG[$k]['price'];

 echo "</td><td>Quantity: ";

 echo "<input size=4 type=text name=\"a_qty[" . $k . "]\">";

 echo "</td></tr>\n";

}

?>

<tr>

<td colspan="2">

<input type="submit" name="add" value="Add items to cart">

</td>

</tr>

</table>

<hr />

<hr />

7

ch07.indd 141 2/2/05 3:12:36 PM

TEAM LinG

 142 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 7HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 7

<h2>Shopping cart</h2>

<table width="100%" border="0" cellspacing="10">

<?php

// initialize a variable to hold total cost

$total = 0;

// check the shopping cart

// if it contains values

// look up the SKUs in the $CATALOG array

// get the cost and calculate subtotals and totals

if (is_array($_SESSION['cart']))

{

 foreach ($_SESSION['cart'] as $k => $v)

 {

 // only display items that have been selected

 // that is, quantities > 0

 if ($v > 0)

 {

 $subtotal = $v * $CATALOG[$k]['price'];

 $total += $subtotal;

 echo "<tr><td>";

 echo "$v unit(s) of " . $CATALOG[$k]['desc'] ↵
. "";

 echo "</td><td>";

 echo "New quantity: <input size=4 type=text ↵
name=\"u_qty[" . $k . "]\">";

 echo "</td></tr>\n";

 echo "<tr><td>";

 echo "Price per unit: " . $CATALOG[$k]['price'];

 echo "</td><td>";

 echo "Sub-total: " . sprintf("%0.2f", $subtotal);

 echo "</td></tr>\n";

 }

 }

}

?>

<tr>

<td>TOTAL</td>

<td><?=sprintf("%0.2f", $total)?></td>

</tr>

ch07.indd 142 2/2/05 3:12:36 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 7: Sample Application: Session-Based Shopping Cart 143

HowTo8 (8)

<tr>

<td><input type="submit" name="update" value="Update Cart"></td>

<td><input type="submit" name="clear" value="Clear Cart"></td>

</tr>

</table>

</form>

</body>

</html>

Pop it into your browser, and see how it works. When you first load it up,
you’ll see a list of items, like in Figure 7-1.

Select a few items by attaching quantities to them, and submit the form. The
page will refresh and display those items to you in your shopping cart, together
with unit and total costs. Figure 7-2 shows what this might look like.

 FIGURE 7-1 Selection list

7

ch07.indd 143 2/2/05 3:12:37 PM

TEAM LinG

 144 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 7HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 7

Because the shopping cart is maintained in a session, your selection will be
“remembered” even if you visit another site, and then come back to the page.
The session will only be destroyed if you close your browser window, or if you
explicitly empty your cart by calling the session_destroy() function.

Summary
This chapter was designed to demonstrate a practical application of PHP: creating
a simple session-based shopping-cart application. This application used many of
the structures and techniques—arithmetic operators, conditional statements, loops,
arrays, sessions, file manipulation, and form processing—taught in earlier sections
of the chapter, and if you were able to understand it, you’re all set to start creating
your own PHP scripts.

 FIGURE 7-2 Your shopping cart

ch07.indd 144 2/2/05 3:12:37 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 7: Sample Application: Session-Based Shopping Cart 145

HowTo8 (8)

Two great ways of improving your knowledge of PHP scripting are by reading
case studies and analyzing the code of your peers. To this end, consider visiting the
following links, all of which contain case studies and sample PHP code from real-
world applications:

■ A polling system, at http://www.melonfire.com/community/columns/
trog/article.php?id=59

■ Web-based file management systems, at http://www.melonfire.com/
community/columns/trog/article.php?id=64 and http://www.horde.org/
gollem/

■ A web-based e-mail client, at http://www.melonfire.com/community/
columns/trog/article.php?id=100

■ An advertiser/banner management system for web sites, at http://www
.phpadsnew.com/

■ A threaded discussion forum, at http://www.sporum.org/

■ A content management and personalization system for web sites, at http://
www.php-nuke.org/

■ Articles and tutorials on PHP, at http://www.melonfire.com/community/
columns/trog/archives.php?category=PHP

The next few chapters look at the other half of the PHP-MySQL combo,
teaching you what MySQL is, and how to use it for data storage and retrieval.

7

ch07.indd 145 2/2/05 3:12:37 PM

TEAM LinG

ch07.indd 146 2/2/05 3:12:37 PM

This page is intentionally left blank.

TEAM LinG

Part III

HowTo8 (8)

Learning
MySQL

ch08.indd 147 2/2/05 3:13:53 PM

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

TEAM LinG

ch08.indd 148 2/2/05 3:13:53 PM

This page is intentionally left blank.

TEAM LinG

Chapter 8

HowTo8 (8)

Understanding
an RDBMS

ch08.indd 149 2/2/05 3:13:54 PM

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

TEAM LinG

 150 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 8HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 8

According to its official web site, MySQL is “the world’s most popular open-source
database.” That’s no small claim, but the numbers seem to back it up: today,

over five million sites are creating, using, and deploying MySQL or MySQL-based
applications. There are numerous reasons for this popularity: the server is fast and
scalable, offers all the features and reliability of commercial-grade competitors,
comes with a customer-friendly licensing policy, and is simple to learn and use.
It’s also well suited for development—the PHP programming language has supported
MySQL since its early days, and the PHP-MySQL combination has become
extremely popular for building database-driven web applications.

The previous chapters showed you the basics of PHP scripting, with discussions
of PHP syntax and examples of common techniques you’ll use when building
PHP-based applications. This chapter focuses on the other half of the PHP-MySQL
combo, giving you a crash course in basic RDBMS concepts and introducing you
to the MySQL command-line client. In case you’ve never used a database before
or the thought of learning another language scares you, don’t worry, because
MySQL is quite friendly and you should have no trouble learning how to use it.

How to…

■ Organize data into fields, records, and tables

■ Identify records uniquely with primary keys

■ Connect records in different tables through common fields

■ Understand the three components of Structured Query Language (SQL)

■ Write simple SQL statements

■ Gain the benefits of normalized databases

■ Send commands to, and receive responses from, MySQL with the
command-line MySQL client

Understanding a Relational Database
You may remember from the introductory notes in Chapter 1 that an electronic
database management system (DBMS) is a tool that helps you organize information
efficiently, so it becomes easier to find exactly what you need. A relational database

ch08.indd 150 2/2/05 3:13:54 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 8: Understanding an RDBMS 151

HowTo8 (8)

management system (RDBMS) like MySQL takes things a step further, by enabling
you to create links between the various pieces of data in a database, and then use
the relationships to analyze the data in different ways.

Now, while this is wonderful theory, it is still just that: theory. To truly understand
how a database works, you need to move from abstract theoretical concepts to
practical real-world examples. This section does just that, by creating a sample
database and using it to explain some of the basic concepts you must know before
proceeding further.

Understanding Tables, Records, and Fields
Every database is composed of one or more tables. These tables, which structure
data into rows and columns, are what lend organization to the data.

Here’s an example of what a typical table looks like:

+-----+---------------------+-------+

| mid | mtitle | myear |

+-----+---------------------+-------+

| 1 | Rear Window | 1954 |

| 2 | To Catch A Thief | 1955 |

| 3 | The Maltese Falcon | 1941 |

| 4 | The Birds | 1963 |

| 5 | North By Northwest | 1959 |

| 6 | Casablanca | 1942 |

| 7 | Anatomy Of A Murder | 1959 |

+-----+---------------------+-------+

As you can see, a table divides data into rows, with a new entry (or record) on
every row. The data in each row is further broken down into columns (or fields),
each of which contains a value for a particular attribute of that data. For example,
if you consider the record for the movie Rear Window, you’ll see that the record
is clearly divided into separate fields for the row number, the movie title, and the
year in which it was released.

Think of a table as a drawer containing files. A record is the electronic
representation of a file in the drawer.

Understanding Primary and Foreign Keys
Records within a table are not arranged in any particular order—they can be
sorted alphabetically, by ID, by member name, or by any other criteria you choose

8

ch08.indd 151 2/2/05 3:13:55 PM

TEAM LinG

 152 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 8HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 8

to specify. Therefore, it becomes necessary to have some method of identifying
a specific record in a table. In the previous example, each record is identified by
a unique number and this unique field is referred to as the primary key for that
table. Primary keys don’t appear automatically; you have to explicitly mark a field
as a primary key when you create a table.

Think of a primary key as a label on each file, which tells you what it
contains. In the absence of this label, the files would all look the same
and it would be difficult for you to identify the one(s) you need.

With a relational database system like MySQL, it’s also possible to link
information in one table to information in another. When you begin to do this,
the true power of an RDBMS becomes evident. So let’s add two more tables, one
listing important actors and directors, and the other linking them to movies.

+-----+--------------------+------+------------+

| pid | pname | psex | pdob |

+-----+--------------------+------+------------+

| 1 | Alfred Hitchcock | M | 1899-08-13 |

| 2 | Cary Grant | M | 1904-01-18 |

| 3 | Grace Kelly | F | 1929-11-12 |

| 4 | Humphrey Bogart | M | 1899-12-25 |

| 5 | Sydney Greenstreet | M | 1879-12-27 |

| 6 | James Stewart | M | 1908-05-20 |

+-----+--------------------+------+------------+

+-----+-----+------+

| mid | pid | role |

+-----+-----+------+

| 1 | 1 | D |

| 1 | 3 | A |

| 1 | 6 | A |

| 2 | 1 | D |

| 2 | 2 | A |

| 2 | 3 | A |

| 3 | 4 | A |

| 3 | 5 | A |

| 4 | 1 | D |

| 5 | 1 | D |

| 5 | 2 | A |

| 6 | 4 | A |

+-----+-----+------+

ch08.indd 152 2/2/05 3:13:55 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 8: Understanding an RDBMS 153

HowTo8 (8)

If you take a close look at the third table, you’ll see that it links each movie with
the people who participated in it, and it also indicates if they were actors (A) or
directors (D). Thus, you can see that Rear Window (movie #1) was directed by
Alfred Hitchcock (person #1), with Grace Kelly (person #3) and James Stewart
(person #6) as actors. Similarly, you can see that Cary Grant (person #2) acted
in two movies in the list, To Catch A Thief (movie #2) and North By Northwest
(movie #5).

To understand these relationships visually, look at Figure 8-1.
The third table sets up a relationship between the first and second table, by linking

them together using common fields. Such relationships form the foundation of
a relational database system. The common fields used to link the tables together

Invasion of the Foreign Keys

Referential integrity is a basic concept with an RDBMS, and one that becomes
important when designing a database with more than one table. When foreign
keys are used to link one table to another, referential integrity, by its nature,
imposes constraints on inserting new records and updating existing records. For
example, if a table only accepts certain types of values for a particular field,
and other tables use that field as their foreign key, this automatically imposes
certain constraints on the dependent tables. Similarly, referential integrity
demands that a change in the field used as a foreign key—a deletion or new
insertion—must immediately be reflected in all dependent tables.

Many of today’s databases take care of this automatically—if you’ve worked
with Microsoft Access, for example, you’ll have seen this in action—but some
don’t. In the case of the latter, the task of maintaining referential integrity becomes
a manual one, in which the values in all dependent tables have to be manually
updated whenever the value in the primary table changes. Because using
foreign keys can degrade the performance of your RDBMS, MySQL leaves
the choice of activating such automatic updates (and losing some measure of
performance) or deactivating foreign keys (and gaining the benefits of greater
speed) to the developer, by making it possible to choose a different type for
each table.

8

ch08.indd 153 2/2/05 3:13:55 PM

TEAM LinG

 154 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 8HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 8

are called foreign keys, and when every foreign key value is related to a field
in another table, this relationship being unique, the system is said to be in a state of
referential integrity. In other words, if the mid field is present once and only once
in each table that uses it, and if a change to the mid field in any single table is
reflected in all other tables, referential integrity is said to exist.

Once one or more relationships are set up between tables, it is possible to
extract a subset of the data (a data slice) to answer specific questions. The act of
pulling out this data is referred to as a query, and the resulting data is referred to
as a result set. And it’s in creating these queries, as well as in manipulating the
database itself, that SQL truly comes into its own.

Understanding SQL and SQL Queries
Putting data into a database is only half the battle—the other half involves using
it effectively. This section tells you a little bit about SQL, which is the primary
means of communicating with a database and extracting the data you require.

SQL began life as SEQUEL, the Structured English Query Language; the name
was later changed to SQL for legal reasons. SEQUEL was a part of System/R,
a prototype of the first relational database system created by IBM in 1974. In the late
1970s, SQL was selected as the query language for the Oracle RDBMS. This put it
on the map and, by the 1980s, SQL was used in almost all commercial RDBMS. In
1989, SQL became an ANSI standard. The latest version of this standard, referred
to as SQL92 or SQL2, is currently used on most of today’s commercial RDBMSs
(including MySQL).

 FIGURE 8-1 The interrelationships among movies, actors, and directors

ch08.indd 154 2/2/05 3:13:56 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 8: Understanding an RDBMS 155

HowTo8 (8)

SQL statements resemble spoken English and can broadly be classified into
three categories:

■ Data Definition Language (DDL) DDL consists of statements that
define the structure and relationships of a database and its tables. Typically,
these statements are used to create, delete, and modify databases and tables;
specify field names and types; set indexes; and establish relationships
between tables.

■ Data Manipulation Language (DML) DML statements are related to
altering and extracting data from a database. These statements are used
to add records to, and delete records from, a database; perform queries;
retrieve table records matching one or more user-specified criteria; and join
tables together using their common fields.

■ Data Control Language (DCL) DCL statements are used to define
access levels and security privileges for a database. You would use these
statements to grant or deny user privileges, assign roles, change passwords,
view permissions, and create rulesets to protect access to data.

When creating applications with PHP and MySQL, you’ll mostly be using
DML statements.

Here are a few examples of valid SQL statements:

CREATE DATABASE addressbook;

DESCRIBE catalog;

SELECT title FROM books WHERE targetAge > 3;

DELETE FROM houses WHERE area < 100;

As the previous examples demonstrate, SQL syntax is close to spoken English,
which is why most novice programmers find it easy to learn and use. Every SQL
statement begins with an “action word” and ends with a semicolon. White space,
tabs, and carriage returns are ignored. This makes the following two commands
equivalent:

DELETE FROM houses WHERE monthlyRent > 25000;

DELETE FROM

 houses

WHERE monthlyRent >

25000;

8

ch08.indd 155 2/2/05 3:13:56 PM

TEAM LinG

 156 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 8HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 8

Understanding Database Normalization
An important part of designing a database is a process known as normalization.
Normalization refers to the activity of streamlining a database design by eliminating
redundancies and repeated values. Most often, redundancies are eliminated by
placing repeating groups of values into separate tables and linking them through
foreign keys. This not only makes the database more compact and reduces the disk space
it occupies, but it also simplifies the task of making changes. In nonnormalized
databases, because values are usually repeated in different tables, altering them
is a manual (and error-prone) find-and-replace process. In a normalized database,
because values appear only once, making changes is a simple one-step UPDATE.

The normalization process also includes validating the database relationships to
ensure that there aren’t any crossed wires and to eliminate incorrect dependencies.
This is a worthy goal, because when you create convoluted table relationships,
you add greater complexity to your database design … and greater complexity
translates into slower query time as the optimizer tries to figure out how best to
handle your table joins.

A number of so-called normal forms are defined to help you correctly normalize
a database. A normal form is simply a set of rules that a database must conform
to. Five such normal forms exist, ranging from the completely nonnormalized
database to the fully normalized one.

To see an example of how to go about turning a badly designed database
into a well-designed one, visit Chapter 12, or look online at http://dev
.mysql.com/tech-resources/articles/intro-to-normalization.html for
a primer on the topic.

Using the MySQL Command-Line Client
The MySQL RDBMS consists of two primary components: the MySQL database
server itself, and a suite of client-side programs, including an interactive client and
utilities to manage MySQL user permissions, view and copy databases, and import
and export data. If you installed and tested MySQL according to the procedure
outlined in Chapter 2 of this book, you’ve already met the MySQL command-line
client. This client is your primary means of interacting with the MySQL server and,
in this section, I’ll be using it to demonstrate how to communicate with the server.

ch08.indd 156 2/2/05 3:13:56 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 8: Understanding an RDBMS 157

HowTo8 (8)

To begin, ensure that your MySQL server is running, and then connect to it
with the mysql command-line client. Remember to send a valid password with
your username, or else MySQL will reject your connection attempt. (Throughout
this section and the ones that follow, boldface type is used to indicate commands
that you should enter at the prompt.)

[user@host]# mysql -u root -p

Password: ******

If all went well, you’ll see a prompt like this:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 134 to server version: 4.0.12

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

The mysql> you see is an interactive prompt, where you enter SQL statements.
Statements entered here are transmitted to the MySQL server using a proprietary
client-server protocol, and the results are transmitted back using the same manner.

Try this out by sending the server a simple statement:

mysql> SELECT 5+5;

+-----+

| 5+5 |

+-----+

| 10 |

+-----+

1 row in set (0.06 sec)

Here, the SELECT statement is used to perform an arithmetic operation on the
server and return the results to the client (you can do a lot more with the SELECT
statement, and it’s all covered in Chapter 10). Statements entered at the prompt
must be terminated with either a semicolon or a \g signal, followed by a carriage
return to send the statement to the server. Statements can be entered in either uppercase
or lowercase type.

The response returned by the server is displayed in tabular form, as rows and
columns. The number of rows returned, as well as the time taken to execute the
command, are also printed. If you’re dealing with extremely large databases, this
information can come in handy to analyze the speed of your queries.

8

ch08.indd 157 2/2/05 3:13:56 PM

TEAM LinG

 158 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 8HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 8

As noted previously, white space, tabs, and carriage returns in SQL statements
are ignored. In the MySQL command-line client, typing a carriage return without
ending the statement correctly simply causes the client to jump to a new line and
wait for further input. The continuation character -> is displayed in such situations
to indicate that the statement is not yet complete. This is illustrated in the next
example, which splits a single statement over three lines:

mysql> SELECT 100

 -> *

 -> 9 + (7*2);

+-----------------+

| 100

*

9 + (7*2) |

+-----------------+

| 914 |

+-----------------+

1 row in set (0.00 sec)

Notice that the SQL statement in the previous example is only transmitted
to the server once the terminating semicolon is entered.

Most of the time, you’ll be using SQL to retrieve records from one or more
MySQL tables. Consider, for example, the following simple SQL query, which

Version Control

Different MySQL server versions support different functions. MySQL 3.x
included support for joins; MySQL 4.x added support for transactions;
MySQL 4.1.x introduced subqueries, prepared statements and multiple
character sets; and the upcoming MySQL 5.x promises to support views,
stored procedures, and triggers. To find out which version of the MySQL
server you’re running, look in the message text displayed by the client when
it first connects, or use the SELECT VERSION() command.

ch08.indd 158 2/2/05 3:13:57 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 8: Understanding an RDBMS 159

HowTo8 (8)

counts all the records in the user table from the mysql database (this database
comes preinstalled with MySQL):

mysql> SELECT COUNT(*) FROM mysql.user;

+----------+

| COUNT(*) |

+----------+

| 4 |

+----------+

1 row in set (0.11 sec)

To obtain help on using the MySQL client, type help at the mysql> prompt.

mysql> help

List of all MySQL commands:

 (Commands must appear first on line and end with ';')

help (\h) Display this help.

? (\?) Synonym for `help'.

clear (\c) Clear command.

connect (\r) Reconnect to the server. Optional arguments are db and host.

ego (\G) Send command to mysql server, display result vertically.

exit (\q) Exit mysql. Same as quit.

go (\g) Send command to mysql server.

...

To close the connection to the server and exit the client, type quit at the
mysql> prompt.

mysql> quit

Bye

Interacting with MySQL Through a Graphical Client
If using the command line isn’t your style, don’t lose heart—a number of good
graphical clients also exist for MySQL. Here’s a list of the better ones:

■ MySQL Control Center (http://www.mysql.com/products/mysqlcc/
index.html) is an excellent front-end query and database management tool
for MySQL. Currently, Windows, UNIX, and Linux versions are available,
with a Mac OS X version under development.

8

ch08.indd 159 2/2/05 3:13:57 PM

TEAM LinG

 160 How to Do Everything with PHP & MySQL

■ SQLyog (http://www.webyog.com/sqlyog/) is a Windows-based front-
end for MySQL administration. It offers a graphical interface that supports
copying and pasting query results, syntax highlighting, and datagrid display,
and it includes a synchronization tool to synchronize databases on different
servers.

■ phpMyAdmin (http://www.phpmyadmin.net/) is a web-based tool to
manage MySQL databases and tables, input records, and execute queries.
It is written entirely in PHP, is licensed under the GNU GPL, and is currently
available in 47(!) languages.

Summary
This chapter focused on getting you started with MySQL, by teaching you the
basic concepts you need to know to use MySQL efficiently. It showed you how
a database structures data into tables, records, and fields; how it identifies records
with primary keys; and how it connects records in different tables with each other
through foreign keys. This chapter also introduced you to SQL, giving you a brief
look at some SQL commands—these commands will be discussed in greater detail
over the next few chapters. Finally, an introduction to database normalization and
a few examples of using the MySQL command-line client wrapped things up.

If you’re interested in learning more about the topics in this chapter, these web
links have more information:

■ The official MySQL tutorial, at http://dev.mysql.com/doc/mysql/en/
Tutorial.html

■ The origins of MySQL, at http://dev.mysql.com/doc/mysql/en/
History.html

■ A detailed discussion of basic RDBMS concepts, at http://www.melonfire
.com/community/columns/trog/article.php?id=52

■ The normal forms of a database design, at http://en.wikipedia.org/wiki/
Database_normalization

■ The MySQL command-line client, at http://dev.mysql.com/doc/mysql/en/
Client-Side_Scripts.html

ch08.indd 160 2/2/05 3:13:57 PM

TEAM LinG

Chapter 9

HowTo8 (8)

Working
with Databases
and Tables

ch09.indd 161 2/2/05 3:14:50 PM

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

TEAM LinG

 162 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 9HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 9

Now that you know the big-picture view of how an RDBMS works, it’s time
to get into the details. This chapter focuses on the first component of SQL,

the Data Definition Languages (DDL), by discussing the SQL commands to create
(and delete) databases and tables, and view database, table, and field information.

A large part of this chapter is focused on a single command: the CREATE
TABLE command. When designing a database, this is one of the most important
commands you must know, because it enables you to decide the fundamental
structure of your database. With the CREATE TABLE command, you can control,
for example, how many fields each record must contain, which of those fields are
optional, and what type of data can be entered into each field. MySQL lets you use
different types of tables depending on your storage and data retrieval requirements.
The CREATE TABLE command enables you to specify this information as well.

How to…

■ Name and create a MySQL database

■ Add tables to a database

■ Decide the names and default values for the fields in a table

■ Select the appropriate data type for a field

■ Use enumerations to limit field input to a predefined list of values

■ Specify which fields are optional and which are mandatory

■ Select the table’s primary and foreign key(s)

■ Index frequently used fields for better performance

■ Choose between MySQL’s different table types (and select the one best
suited for your needs)

■ Alter a table definition after it’s been created

■ Back up and restore a table or a database

■ View the structure and contents of a database or table

■ Empty a table of its records

■ Delete a database or table

ch09.indd 162 2/2/05 3:14:50 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 9: Working with Databases and Tables 163

HowTo8 (8)

Creating Databases
Because all tables are stored in a database, the first command you need to know is
the CREATE DATABASE command, which initializes an empty database. Try it
out by creating a database called db2:

mysql> CREATE DATABASE db2;

Query OK, 1 row affected (0.05 sec)

Databases in MySQL are represented as directories on the disk, and tables are
represented as files within those directories. Therefore, database names must comply
with the operating system’s (OS) restrictions on which characters are permissible
within directory names. Database names cannot exceed 64 characters and names
that contain special characters or consist entirely of digits or reserved words must
be quoted with the backtick (`) operator.

Generally, it’s considered good practice to start database names with an
alphabetic character and to ensure they consist of only alphanumeric and
underscore characters. Try to avoid using reserved MySQL keywords as
database names.

You can select a particular database for use with the USE command. Select the
db2 database you just created to try this:

mysql> USE db2;

Database changed

Once you select a database with the USE command, it becomes the default
database for all operations.

Creating Tables
Because this is a new database, no tables are in it yet. To create a table, use the
CREATE TABLE command, as in the following:

mysql> CREATE TABLE movies (

 -> mid int(10) UNSIGNED NOT NULL AUTO_INCREMENT,

 -> mtitle varchar(255) NOT NULL default '',

 -> myear year(4) NOT NULL default '0000',

 -> PRIMARY KEY (mid)

 ->) TYPE=MyISAM;

Query OK, 0 rows affected (0.10 sec)

9

ch09.indd 163 2/2/05 3:14:51 PM

TEAM LinG

 164 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 9HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 9

The CREATE TABLE statement begins with the table name, followed by a set
of parentheses. These parentheses enclose one or more field definitions, separated
by commas. Each field definition contains the field name, its data type, and any
special modifiers or constraints that apply. Following the closing parenthesis is an
optional table type specifier, which tells MySQL which storage engine to use for
this table.

Table and field names must conform to the same rules that apply to database
names. MySQL tables are stored as files within the database directory and, as such,
are subject to the host operating system’s rules on file names.

To simplify moving your databases and tables between different operating
systems, lowercase all your table names, and use underscores instead of
spaces.

Specifying Field Data Types
When creating a MySQL table, specifying a data type for every field is necessary.
This data type plays an important role in enforcing the integrity of the data in a MySQL
database, and in making this data easier to use and manipulate. MySQL offers a
number of different data types, which are summarized in Table 9-1.

The following sections examine each of these types in greater detail.

Numeric Types
For integer values, MySQL offers you a choice of the TINYINT, SMALLINT,
MEDIUMINT, INT, and BIGINT types, which differ from each other only in the
size of values they can store. Use the TINYINT and SMALLINT type for small
integer values, the INT type for larger integer values, and the BIGINT type for
extremely large values. For floating-point values, use the FLOAT and DOUBLE
types for single-precision and double-precision floating point values, respectively.
And, finally, for decimal values, use the DECIMAL data type.

When defining an integer field, you can include a width specifier in parentheses.
This width specifier controls the padding MySQL applies to the field when retrieving
it from the database. For a field defined as BIGINT (20), MySQL will automatically
pad the value to 20 characters before displaying it.

When defining floating-point and decimal fields, MySQL enables you to include
both a width specifier and a precision specifier. For example, the declaration
FLOAT (7,4) specifies that displayed values will not contain more than seven
digits, with four digits after the decimal point.

ch09.indd 164 2/2/05 3:14:51 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 9: Working with Databases and Tables 165

HowTo8 (8)

If you try to use a value that’s too big for the field you’re placing it in,
MySQL will automatically truncate or round the value down to the maximum
allowed value for that field.

Type Used For

TINYINT, SMALLINT, MEDIUMINT,
INT, BIGINT

Integer values

FLOAT Single-precision floating-point values

DOUBLE Double-precision floating-point values

DECIMAL Decimal values

CHAR Fixed-length strings up to 255 characters

VARCHAR Variable-length strings up to 255 characters

TINYBLOB, BLOB, MEDIUMBLOB,
LONGBLOB

Large blocks of binary data

TINYTEXT, TEXT, MEDIUMTEXT,
LONGTEXT

Longer blocks of text data

DATE Date values

TIME Time values or durations

YEAR Year values

DATETIME Combined date and time values

TIMESTAMP Timestamps

ENUM Fields that must contain one of a set of predefined
mutually exclusive values

SET Fields that can contain zero, one, or more of a set of
predefined values

 TABLE 9-1 MySQL Data Types

Zero-ing In

You can add two optional attributes to numeric type definitions: the ZEROFILL
attribute, which pads a value with leading zeroes, and the UNSIGNED attribute,
which forces a field to only accept positive values.

9

ch09.indd 165 2/2/05 3:14:52 PM

TEAM LinG

 166 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 9HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 9

Character and String Types
MySQL lets you store strings up to 255 characters in length as either CHAR or
VARCHAR types. The difference between these two types is simple: CHAR fields
are fixed to the length specified at the time of definition, while VARCHAR fields
can grow and shrink dynamically, based on the data entered into them. This makes
VARCHAR fields more suitable for fields that accept variable-length data, and
CHAR fields better for fields that always contain values of the same length.

Both CHAR and VARCHAR type definitions must include a width specifier in
parentheses, as with numeric type definitions. Thus, the definition CHAR (10)
creates a field whose length remains exactly 10 characters regardless of what is
entered into it, while the definition VARCHAR (10) creates a field whose length
can range anywhere between 0 and 10 characters depending on what is entered
into it.

Text and Binary Types
MySQL enables you to store strings greater than 255 characters in length as either
TEXT or BLOB types. The difference between TEXT and BLOB types is minimal
at best: TEXT types are compared in a case-insensitive manner, while BLOB types
are compared in a case-sensitive manner. For this reason, BLOBs are usually used
to store binary data, while TEXT fields are used to store ASCII data.

Depending on the size of the string you’re trying to store, MySQL offers you
a choice of the TINYTEXT, TEXT, MEDIUMTEXT, and LONGTEXT types (for
ASCII text blocks) and the TINYBLOB, BLOB, MEDIUMBLOB, and LONGBLOB
types (for binary data).

Date and Time Types
For simple date and time values, MySQL offers the intelligently named DATE
and TIME data types. The DATE type is used to store date values consisting of
year, month, and day components, while the TIME type is used for time values or
durations consisting of house, minute, and second components. Both DATE and
TIME types can be used for values in either numeric (YYYYMMDD and HHMMSS)
or string ('YYYY-MM-DD' and 'HH:MM:SS') format.

If what you need is a combination of the two, consider using the DATETIME
or TIMESTAMP types, both of which let you specify both date and time values in
a single field. The difference between the two lies in how the values are stored:
DATETIME fields are stored in the form 'YYYY-MM-DD HH:MM:SS', and
TIMESTAMP fields are stored in the form YYYYMMDDHHMMSS.

ch09.indd 166 2/2/05 3:14:52 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 9: Working with Databases and Tables 167

HowTo8 (8)

Finally, for simple applications that only need to store the year, MySQL offers
the special YEAR type, which accepts a 4-digit year value. It’s worthwhile to use
this value if your application deals mostly with the year component of a date
value, because a field marked as YEAR occupies 1 byte on disk (as compared
to a DATETIME or DATE field, which can occupy up to 8 bytes). MySQL is
completely Y2K-compliant, and YEAR fields can accept any value in the range
1901 to 2155.

Enumerations
For situations where a field value must be selected from a predefined list of values,
MySQL offers the ENUM and SET data types. For both these types, a list of
predefined values must be included as part of the type definition. An ENUM field
definition can contain up to 65,536 elements, while a SET field definition can hold
up to 64 elements.

For a field marked as an ENUM field, only one of the predefined values may
be selected, whereas for a field marked as a SET field, zero, one, or more than
one of the predefined values may be selected. So, ENUM fields are best suited for
mutually exclusive values, while SET fields are best suited for independent values.
As an example, the definition ENUM ('red', 'green', 'yellow')
forces entry of any one of the three values, while the definition SET ('sugar',
'salt', 'pepper', 'mustard') allows entry of none, one, or all of the
four values.

With both ENUM and SET types, attempting to insert a value that does not
exist in the predefined list of values will cause MySQL to insert either an
empty string or a zero.

Time Out!

When inserting records into a table containing a TIMESTAMP field, MySQL
automatically fills that field with the current date and time (assuming no other
value was specified, of course). To accomplish the same thing with DATETIME
fields, manually specify a value for the field with the NOW() function, which
returns the current date and time.

9

ch09.indd 167 2/2/05 3:14:52 PM

TEAM LinG

 168 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 9HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 9

Selecting the Most Appropriate Data Type
Choosing the data type best suited to the values you expect to enter into the
corresponding field is extremely important. When making this decision, take into
account the following factors:

■ The range and type of values that the field will hold

■ The types of calculations you expect to perform on those values

■ The manner in which the data is to be formatted for display purposes

■ The manner in which the data is to be sorted and compared against other fields

■ The available subtypes for each field and their storage efficiencies

By taking all these factors into consideration at the time of designing your database,
you reduce the chance of incompatibilities and storage inefficiencies later.

Using the wrong data type can affect both the performance of your RDBMS
and the types of operations you can perform on that field. For example, using
a VARCHAR type on a field that is meant for numeric or date values could result
in unexpected behavior when you perform calculations on it, just as using a large
TEXT field for small string values could lead to a waste of space and inefficient
indexing.

Adding Field Modifiers and Keys
You can apply a number of additional constraints, or modifiers, to a field to increase
the consistency of the data that will be entered into it, and to mark it as “special” in
some way. These modifiers can either appear as part of the field definition if they
apply only to that specific field (for example, a default value for a field) or after
all the field definitions if they relate to multiple fields (for example, a multicolumn
primary key).

■ You can specify whether the field is allowed to be empty or if it must
necessarily be filled with data by placing the NULL and NOT NULL
modifiers after each field definition.

■ You can specify a default value for a field with the DEFAULT modifier. This
default value is used if no value is specified for that field when inserting
a record. In the absence of a DEFAULT modifier for NOT NULL fields,
MySQL automatically inserts a nonthreatening default value into the field.

ch09.indd 168 2/2/05 3:14:53 PM

TEAM LinG

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 9

 CHAPTER 9: Working with Databases and Tables 169

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 9

■ You can have MySQL automatically generate a number for a field (by
incrementing the previous value by 1) with the AUTO_INCREMENT
modifier. This is particularly useful when you need to generate row
numbers for each record in the table. However, the AUTO_INCREMENT
modifier can only be applied to numeric fields that are both NOT NULL
and belong to the PRIMARY KEY. A table may only contain one AUTO_
INCREMENT field.

■ For fields that accept string values, you can specify the character set for
these values with the CHARACTER SET modifier (new in MySQL 4.1.1).
However, this feature is only supported in MySQL’s MyISAM, MERGE,
and InnoDB table types (see the section entitled “Selecting a Table Type”
for more on MySQL’s table types).

■ You can index a field with the INDEX modifier. When a field is indexed
in this manner, MySQL no longer needs to scan each row of the table for
a match when performing queries; instead, it can simply look up the index.
This speeds up searches and reduces query response time. Indexing is
recommended for fields that frequently appear in the WHERE, ORDER BY,
and GROUP BY clauses of SELECT queries, and for fields used to join
tables together.

■ You can specify that values entered into a field must be either unique—that is,
not duplicated—or NULL with the UNIQUE modifier.

The UNIQUE modifier is actually a special type of index.

Create a Primary Key Consisting
of Multiple Fields

In some tables, it is the combination of two or more fields, rather than a single
field, that uniquely identifies a row. This is called a composite primary key; to
create it, simply use a comma-separated field list instead of a single field in the
PRIMARY KEY modifier.

9

ch09.indd 169 2/2/05 3:14:53 PM

TEAM LinG

 170 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 9HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 9

■ You can specify a primary key for the table with the PRIMARY KEY
modifier. The PRIMARY KEY constraint can best be thought of as
a combination of the NOT NULL and UNIQUE constraints because it
requires values in the specified field to be neither NULL nor repeated in
any other row. It thus serves as a unique identifier for each record in the
table, and it should be selected only after careful thought has been given to
the inter-relationships between tables.

■ You can specify a foreign key for a table with the FOREIGN KEY modifier.
The FOREIGN KEY modifier links a field in one table to a field (usually
a primary key) in another table, setting up a base for relationships. However,
foreign keys are only supported in MySQL’s InnoDB table type; the FOREIGN
KEY modifier is simply ignored in all other table types (see the section entitled
“Selecting a Table Type” for more on MySQL’s table types).

Selecting a Table Type
Following the field definitions and modifiers come one or more table modifiers,
which specify table-level attributes. Of these, the most frequently used one is the
TYPE modifier, which tells MySQL which table type to use. A number of such
types are available, each with different advantages. Here is a list:

■ MyISAM The MyISAM format is optimized for speed and reliability, it
supports tables in excess of 4GB in size, and it can be compressed to save
space. This is MySQL’s default table type and, as such, contains numerous
MySQL-specific optimizations and features.

Select this table type by adding TYPE = MYISAM to your CREATE
TABLE statement.

What’s in a Name?

In MySQL, the terms key and index are synonymous. PRIMARY KEY fields
are automatically indexed by MySQL, while FOREIGN KEY fields must be
explicitly indexed by the user.

ch09.indd 170 2/2/05 3:14:54 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 9: Working with Databases and Tables 171

HowTo8 (8)

■ InnoDB The successor to the MyISAM format, the InnoDB format, is the
most sophisticated table type available in MySQL. It supports transactions
and foreign keys (the only MySQL table type to do both), and allows multiple
simultaneous users to execute SELECT statements; this improves performance
and query response times. InnoDB tables are fully portable between different
operating systems, and include crash recovery features to avoid data corruption
or loss.

Select this table type by adding TYPE = INNODB to your CREATE
TABLE statement.

■ HEAP A HEAP table is stored in memory, making it extremely fast.
This format is optimized for temporary tables and it is rarely used for other
purposes. This is because the data in a HEAP table is available only while
the server is running, and is automatically erased when the server shuts
down and the memory is flushed.

Select this table type by adding TYPE = HEAP to your CREATE TABLE
statement.

■ BerkeleyDB The BerkeleyDB format is one of the more advanced
table formats supported by MySQL. It supports transactions, checkpoints,
crash recovery, and page-level locking. However, it also has certain
disadvantages: BerkeleyDB tables are not easily portable between different
operating systems and they lack many of the optimizations of the MyISAM
format, making them slower and less memory efficient.

Select this table type by adding TYPE = BDB to your CREATE TABLE
statement.

■ MERGE The MERGE table format makes it possible for a collection
of MyISAM tables to be treated as one, by combining them into a single
“virtual” table. This table format makes improving performance or increasing
query efficiency possible in certain situations; however, it can only be used
for tables that are completely identical in their internal structure.

Select this table type by adding TYPE = MERGE to your CREATE
TABLE statement.

■ ISAM The forerunner of the newer MyISAM format, the ISAM format is
primarily offered for compatibility with older MySQL tables. It lacks many
of the features of the MyISAM format, cannot handle large tables, and is
more prone to fragmentation (which degrades performance).

Select this table type by adding TYPE = ISAM to your CREATE TABLE
statement.

9

ch09.indd 171 2/2/05 3:14:54 PM

TEAM LinG

 172 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 9HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 9

Most of the time, you won’t need to look further than the default MyISAM
table type. Use the InnoDB table type only if you want to use advanced features
like transactions and foreign keys, use the MERGE table type if you need to query
multiple similar tables simultaneously, and use the HEAP table type if you need
a temporary data storage area.

Now that you know what the various components of a CREATE TABLE
statement are, try it out for yourself by revisiting the tables in Chapter 8 and
writing the corresponding CREATE TABLE statement for each. Here’s how:

mysql> CREATE TABLE persons (

 -> pid int(11) NOT NULL auto_increment,

 -> pname varchar(255) NOT NULL default '',

 -> PRIMARY KEY (pid)

 ->) TYPE=MyISAM;

Query OK, 0 rows affected (0.09 sec)

mysql> CREATE TABLE roles (

 -> mid int(11) NOT NULL default '0',

 -> pid int(11) NOT NULL default '0',

 -> role enum('A','D') NOT NULL default 'A',

 -> PRIMARY KEY mid (mid,pid,role)

 ->) TYPE=MyISAM;

Query OK, 0 rows affected (0.11 sec)

The CREATE TABLE statement can be one of the most complex statements in
the SQL lexicon. Because you’ll use it frequently when designing a database, you
should spend some time reading about it in detail in the MySQL manual, at http://
dev.mysql.com/doc/mysql/en/CREATE_TABLE.html.

It Was Here Just a Second Ago…

MySQL also lets you create temporary tables in memory with the CREATE
TEMPORARY TABLE command. These tables remain in existence only for the
duration of a single MySQL session and are automatically deleted when the
client that created them closes its connection with the MySQL server. Temporary
tables come in handy for transient, session-based data or calculations. And,
because they’re session-dependant, two different sessions can use the same table
name without conflicting.

ch09.indd 172 2/2/05 3:14:54 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 9: Working with Databases and Tables 173

HowTo8 (8)

Altering Tables
Table definitions created with the CREATE TABLE command are not set in stone—
you’re free to alter them at a later date as well. The SQL command to do this is the
ALTER TABLE command. It lets you add or delete fields; alter field types; add,
remove, or modify keys; alter the table type; and change the table name (among
other things). The following sections discuss these capabilities in greater detail.

Altering Table and Field Names
To alter a table name, use an ALTER TABLE command with a supplementary
RENAME clause. The following example demonstrates, by renaming table bills to
invoices:

mysql> ALTER TABLE bills RENAME TO invoices;

Query OK, 0 rows affected (0.11 sec)

An alternative is to use the RENAME TABLE command, which does the same
thing:

mysql> RENAME TABLE bills TO invoices;

Query OK, 0 rows affected (0.06 sec)

You can just as easily alter a field name. Here’s an example, which uses the
ALTER TABLE command with a CHANGE clause to modify the name of field
address to address1:

mysql> ALTER TABLE users CHANGE address address1 VARCHAR(255);

Query OK, 0 rows affected (0.17 sec)

Notice that you must include the column definition when changing a field
name in this manner, or else MySQL will generate an error and disallow the
operation.

Altering Field Properties
You can use the CHANGE clause discussed in the previous section to alter a field’s
type and properties as well, simply by using a new column definition instead of the

9

ch09.indd 173 2/2/05 3:14:54 PM

TEAM LinG

 174 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 9HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 9

original one. Here’s an example, which changes the field named tel defined as
VARCHAR(30) to a field named age with definition TINYINT(2):

mysql> ALTER TABLE users CHANGE tel age TINYINT(2);

Query OK, 0 rows affected (0.05 sec)

When you CHANGE a field from one type to another, MySQL will automatically
attempt to convert the data in that field to the new type. If the data in the field
is inconsistent with the new field definition—for example, a field defined as NOT
NULL contains NULL values, or a field marked as UNIQUE contains duplicate
values—MySQL will generate an error. You can alter this default behavior by
adding an IGNORE clause to the ALTER TABLE command that tells MySQL to
ignore such inconsistencies.

Adding and Removing Fields and Keys
You can add a new field to a table by including an ADD clause in your ALTER
TABLE command. The following example demonstrates, by adding a field named
salary to the employees table:

mysql> ALTER TABLE employees ADD salary INT(7) NOT NULL;

Query OK, 0 rows affected (0.06 sec)

You can also do the reverse—delete an existing field from a table—by using
a DROP clause instead of an ADD clause. The following example removes the field
added in the previous operation (together with any data it might have contained):

mysql> ALTER TABLE employees DROP salary;

Query OK, 0 rows affected (0.05 sec)

You can delete a table’s primary key with the DROP PRIMARY KEY clause,
as illustrated here:

mysql> ALTER TABLE users DROP PRIMARY KEY;

Query OK, 0 rows affected (0.06 sec)

and add a new primary key with the ADD PRIMARY KEY clause, as illustrated here:

mysql> ALTER TABLE users ADD PRIMARY KEY (id);

Query OK, 0 rows affected (0.05 sec)

ch09.indd 174 2/2/05 3:14:55 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 9: Working with Databases and Tables 175

HowTo8 (8)

A table’s primary key must always be NOT NULL.

Altering Table Types
You can alter the table type by adding a TYPE clause to the ALTER TABLE
command, as in the following example:

mysql> ALTER TABLE data TYPE = INNODB;

Query OK, 6 rows affected (0.11 sec)

Backing Up and Restoring Databases and Tables
The MySQL distribution comes with a powerful tool for backing up and restoring
databases and tables: the mysqldump utility. When run on a database (or table),
this command-line utility creates a text file containing all the SQL commands
needed to re-create that database (or table) from scratch. The text file created by
mysqldump can contain table definitions, table contents, or both, and it comes in
handy both to create backups of your MySQL databases and to copy tables from
one database or platform to another.

Backing Up Databases and Tables
To use the mysqldump utility to back up a database, invoke it from your command
prompt and pass it a valid username, password, and database name. The following
example illustrates, by using mysqldump on the db2 database:

$ /usr/local/mysql/bin/mysqldump -u root -p hidden db2

The Need for Speed

When you issue an ALTER TABLE command, MySQL first creates a copy of
the original table, changes it, and then deletes the original table and replaces
it with the changed copy. For this reason, ALTER TABLE operations on large
tables may take a fair amount of time.

9

ch09.indd 175 2/2/05 3:14:55 PM

TEAM LinG

 176 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 9HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 9

When mysqldump is invoked in this manner, it will connect to the MySQL
server and retrieve the contents of the named database. The output of mysqldump
is a series of SQL statements, which can be used to re-create the contents of the
database. Because mysqldump sends everything to the screen by default, redirect
the output to a file with the standard > redirection operator:

$ /usr/local/mysql/bin/mysqldump -u root ↵
-p hidden db2 > db2backup.sql

To back up only a specific table from the database, add the table name after the
database name in the mysqldump command line. The following command backs
up only the movies table from the db2 database:

$ /usr/local/mysql/bin/mysqldump -u root ↵
-p hidden db2 movies > movies.sql

By default, mysqldump backs up both the table definitions and their contents.
To only back up table definitions—useful if, for example, you’re attempting to re-
create the empty tables in another database or platform—append the --no-data
option to the mysqldump command line, as follows:

$ /usr/local/mysql/bin/mysqldump -u root -p hidden ↵
--no-data db2 movies > movies.sql

With the --no-data option, mysqldump stores the CREATE TABLE
statement for the table, but none of its records.

Restoring Databases and Tables from Backup
Restoring a database or table from the text file created by mysqldump is extremely
simple. All you need to do is pipe the file to the mysql command-line client, so
that the SQL commands inside it are read and executed by the server. For example,
to re-create the table previously backed up to the file movies.sql in the database
newdb, use the following command:

$ mysql -u root -p secret -D newdb < movies.sql

ch09.indd 176 2/2/05 3:14:55 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 9: Working with Databases and Tables 177

HowTo8 (8)

Notice that the database into which the table is restored must already exist
and must be named on the mysql command line with the -D option. If you now
inspect the newdb database with the SHOW TABLES command (as discussed in
the section “Viewing Database, Table, and Field Information”), you will see the
table in it.

Dropping Databases and Tables
To delete a database, use the DROP DATABASE command, which deletes the
named database and all its tables permanently. Try this out by creating and
dropping a database:

mysql> CREATE DATABASE music;

Query OK, 1 row affected (0.05 sec)

mysql> DROP DATABASE music;

Query OK, 0 rows affected (0.49 sec)

Similarly, you can delete a table with the DROP TABLE command. Try this
out by creating and dropping a table:

mysql> CREATE TABLE members (memberId INT NOT NULL);

Query OK, 0 rows affected (0.00 sec)

mysql> DROP TABLE members;

Query OK, 0 rows affected (0.00 sec)

More Than One Way…

In MySQL 4.1, you can create an empty copy of a table by using the new
LIKE clause in a CREATE TABLE command. Here is an example, which
creates a new, empty copy of the grades table and the names it marks:

mysql> CREATE TABLE grades LIKE marks;

Query OK, 0 rows affected (0.01 sec)

9

ch09.indd 177 2/2/05 3:14:55 PM

TEAM LinG

 178 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 9HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 9

The DROP TABLE command will immediately wipe out the specified table,
together with all the data it contains—so use it with care!

If what you wanted was to empty the table of all records, use the TRUNCATE
TABLE command instead, which internally DROP-s the table, and then re-creates it.
The AUTO_INCREMENT counter, if one exists, is automatically reset in TRUNCATE
TABLE operations (this does not happen if you simply delete all the records in the table
with a DELETE command).

Here is an example:

mysql> TRUNCATE TABLE movies;

Query OK, 0 rows affected (0.01 sec)

Viewing Database, Table, and Field Information
You can view all available databases with the SHOW DATABASES command:

mysql> SHOW DATABASES;

+----------+

| Database |

+----------+

| db2 |

| mysql |

| test |

+----------+

3 rows in set (0.00 sec)

You can view available tables in a database with the SHOW TABLES
command, as in the following:

mysql> SHOW TABLES FROM db2;

+---------------+

| Tables_in_db2 |

+---------------+

| movies |

| persons |

| roles |

+---------------+

3 rows in set (0.06 sec)

ch09.indd 178 2/2/05 3:14:55 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 9: Working with Databases and Tables 179

HowTo8 (8)

You can omit the FROM clause in the SHOW TABLES command if you’ve
already selected the database with the USE command.

To see the structure of a particular table, use the DESCRIBE command, as in
the following:

mysql> DESCRIBE movies;

+--------+------------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+--------+------------------+------+-----+---------+----------------+

| mid | int(10) unsigned | | PRI | NULL | auto_increment |

| mtitle | varchar(255) | | | | |

| myear | year(4) | | | 0000 | |

+--------+------------------+------+-----+---------+----------------+

3 rows in set (0.05 sec)

You can also

■ Retrieve the SQL commands originally used to create the table with the
SHOW CREATE TABLE command

■ View a list of table indexes with the SHOW INDEX command

■ Retrieve a list of table types supported by the server with the SHOW
ENGINES command (in MySQL 4.1.2 and better)

■ View a list of active connections to the server, as well as what each one is
doing, with the SHOW PROCESSLIST command

■ View a list of errors and warnings generated by the server with the SHOW
ERRORS and SHOW WARNINGS commands (in MySQL 4.1.0 and better)

■ Obtain server status (including information on server uptime, number of
queries processed, and number of connections) with the SHOW STATUS
command

■ Obtain detailed information on the tables in a database (including
information on the table type, the number of rows, the date and time of
the last table update, and the lengths of indexes and rows) with the SHOW
TABLE STATUS command, and

■ View a list of available character sets (in MySQL 4.1.1 and better) with the
SHOW CHARACTER SET command

9

ch09.indd 179 2/2/05 3:14:56 PM

TEAM LinG

 180 How to Do Everything with PHP & MySQL

The output of these commands cannot be reproduced here due to page-width
considerations. Try them out for yourself to see how they work.

Summary
You should now have a clear understanding of how to work with MySQL’s
databases and tables. This chapter discussed most of the important aspects of the
DDL, including how to create and delete databases, define table structures, work
with field data types and modifiers, choose a MySQL table type, and use primary
and foreign keys. It also showed you how to alter a table after it’s been created,
and how to back up and restore an existing table structure and/or its contents.

With your database(s) and table(s) defined, the next step is to begin adding data
to them. That’s what the next chapter is all about, but before you begin reading,
take some time to learn more about the topics covered in this chapter by visiting
the following links:

■ A complete list of options to the CREATE TABLE statement, at http://dev
.mysql.com/doc/mysql/en/CREATE_TABLE.html

■ Detailed descriptions of MySQL’s numerous data types, at http://dev
.mysql.com/doc/mysql/en/Column_types.html

■ Detailed descriptions of MySQL’s table types and guidelines on how to
choose among them, at http://dev.mysql.com/doc/mysql/en/Table_
types.html

■ More information on altering tables, at http://dev.mysql.com/doc/mysql/
en/ALTER_TABLE.html

■ More information on the mysqldump utility, at http://dev.mysql.com/
doc/mysql/en/mysqldump.html

■ A complete list of SHOW... commands, with output samples, at http://
dev.mysql.com/doc/mysql/en/SHOW.html

ch09.indd 180 2/2/05 3:14:56 PM

TEAM LinG

Chapter 10

HowTo8 (8)

Editing Records
and Performing
Queries

ch10.indd 181 2/2/05 3:21:28 PM

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

TEAM LinG

 182 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 10HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 10

Once you have your databases and tables defined, the next step is to begin
using them, by populating them with records and performing queries on the

data stored inside them. To do this, you need to master the Data Manipulation
Languages (DML) component of SQL. That’s why this chapter discusses the
SQL commands to add, edit, and delete records to a table, and then perform
different types of queries on that data to retrieve a result set of records that
satisfy the query.

How to…

■ Use the INSERT command to add records to a table

■ Edit and delete records with the UPDATE and DELETE commands

■ Retrieve table records with the SELECT command

■ Use the WHERE clause to restrict the scope of your actions to a subset
of records

■ Use functions and operators to manipulate and compare field values

■ Sort result sets and eliminate duplicate values

■ Set a limit on the number of records in a result set

■ Group records in a result set using common attributes (and then perform
operations on these groups)

■ Join tables together using foreign keys

■ Use the results of one query inside another

Inserting Records
Once you’ve created a table, it’s time to begin entering data into it-and the SQL
command to accomplish this is the INSERT command. The syntax of the INSERT
command is illustrated in the following example:

mysql> INSERT INTO movies (mtitle, myear) VALUES ('Rear Window', 1954);

Query OK, 1 row affected (0.06 sec)

ch10.indd 182 2/2/05 3:21:28 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 10: Editing Records and Performing Queries 183

HowTo8 (8)

The INSERT command is followed by the optional keyword INTO, a table
name, and a field list, in parentheses, which indicates which fields the values are
to be inserted into. A VALUES clause completes the command, by specifying the
values to be inserted into the previously named fields.

You can also use an abbreviated form of the INSERT command, in which the
field list is left unspecified. The following example, which is equivalent to the
previous one illustrates the following:

mysql> INSERT INTO movies VALUES (NULL, 'Rear Window', 1954);

Query OK, 1 row affected (0.06 sec)

When using this shorter format, the order in which values are inserted must
correspond to the sequence of fields in the table (you can determine the field order
with a quick call to the DESCRIBE command, described in Chapter 9).

Normally, the first version of the INSERT command is preferable, because it
offers you the flexibility of inserting values in any order you please and protects
you from structural changes in the table. Because of this, the following statements
are equivalent:

mysql> INSERT INTO movies (mtitle, myear) VALUES ('Rear Window', 1954);

Query OK, 1 row affected (0.06 sec)

mysql> INSERT INTO movies (myear, mtitle) VALUES (1954, 'Rear Window');

Query OK, 1 row affected (0.06 sec)

In MySQL, you can insert multiple records into a table at once, by using
multiple VALUES() clauses within the same INSERT statement. To see how this
works, try running the following command:

mysql> INSERT INTO movies (mtitle, myear) VALUES ('Rear Window', 1954), ↵
('To Catch A Thief', 1955), ('The Maltese Falcon', 1941);

Query OK, 3 rows affected (0.12 sec)

Records: 3 Duplicates: 0 Warnings: 0

Fields that are not specified in the INSERT command will either be set to
NULL or to their default values, depending on how they have been defined.
MySQL comes with built-in intelligence to automatically deal with conflicts

10

ch10.indd 183 2/2/05 3:21:29 PM

TEAM LinG

 184 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 10HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 10

between the values entered into a field and the field’s data type, or with missing
values, and so can automatically perform the following operations:

■ For AUTO_INCREMENT fields, entering a NULL value automatically
increments the previously generated field value by 1.

■ For the first TIMESTAMP field in a table, entering a NULL value
automatically inserts the current date and time.

■ For UNIQUE or PRIMARY KEY fields, entering a value that already exists
causes MySQL to generate an error.

When inserting string and some date values into a table, enclose them
in quotation marks, so that MySQL doesn’t confuse them with variable
or field names. Quotation marks within the values themselves can be
“escaped” by preceding them with the backslash (\) symbol.

Now that you know how to insert records, try inserting some sample records
for the three tables created in the previous section, using the sample data in
Chapter 8 as a reference. You can start with these samples:

mysql> INSERT INTO movies VALUES (1,'Rear Window',1954);

Query OK, 1 row affected (0.06 sec)

mysql> INSERT INTO persons VALUES (1,'Alfred Hitchcock','M','1899-08-13');

Query OK, 1 row affected (0.06 sec)

mysql> INSERT INTO roles VALUES (1,1,'D'), (1,3,'A');

Query OK, 2 rows affected (0.06 sec)

Editing and Deleting Records
Just as you INSERT records into a table, you can also DELETE records with the
DELETE command, which is illustrated in the following:

mysql> DELETE FROM movies;

Query OK, 0 rows affected (0.06 sec)

The previous command would delete all the records from the movies table.
You can select a specific subset of rows to be deleted by adding the WHERE

clause to the DELETE statement. The following example would only delete records
for those persons born after 1960:

mysql> DELETE FROM movies WHERE myear > 1960;

Query OK, 1 row affected (0.05 sec)

ch10.indd 184 2/2/05 3:21:29 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 10: Editing Records and Performing Queries 185

HowTo8 (8)

It is not possible to reverse a DELETE operation in MySQL (unless you’re
in the middle of a InnoDB transaction which hasn’t yet been committed).
Therefore, be extremely careful when using DELETE commands, both with
and without WHERE clauses-a small mistake and the contents of your
entire table will be lost for good.

To delete all the records in a table, consider using the TRUNCATE
TABLE command, described in Chapter 9.

Data in a database usually changes over time, which is why SQL includes an
UPDATE command designed to change existing values in a table. As with the
DELETE command described previously, you can use the UPDATE command to
change all the values in a particular column, or change only those values matching
a particular condition.

To illustrate how this works, consider the following example, which changes
the value of the field 'The Maltese Falcon' to 'Maltese Falcon, The'.

mysql> UPDATE movies SET mtitle = 'Maltese Falcon, The' ↵
WHERE mtitle = 'The Maltese Falcon';

Query OK, 1 row affected (0.05 sec)

Rows matched: 1 Changed: 1 Warnings: 0

You can update multiple fields at once, simply by using multiple SET clauses.
The following example illustrates, by updating record #7 with a new movie title
and year:

mysql> UPDATE movies SET mtitle = 'Vertigo', myear = 1958 WHERE mid = 7;

Query OK, 1 row affected (0.06 sec)

Rows matched: 1 Changed: 1 Warnings: 0

Thus, the SET clause specifies the field name, as well as the new value for the
field. The WHERE clause is used to identify which rows of the table to change. In
the absence of this clause, all the rows of the table are updated with the new value.
Try this out by entering the following command, which updates the psex field in
the persons table:

mysql> UPDATE persons SET psex = 'M';

Query OK, 1 row affected (0.06 sec)

Rows matched: 6 Changed: 1 Warnings: 0

10

ch10.indd 185 2/2/05 3:21:30 PM

TEAM LinG

 186 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 10HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 10

If you look at the table now, you will see that all the records in the table sport
the value M for their psex field. Correct it by again using an UPDATE command
with a WHERE clause:

mysql> UPDATE persons SET psex = 'F' WHERE pname = 'Grace Kelly';

Query OK, 1 row affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: 0

Forgetting the WHERE clause in an UPDATE command is a common newbie
mistake, and it can lead to widespread data corruption. Always use a WHERE
clause to restrict the effect of the UPDATE to relevant fields only.

Performing Queries
Just as you can add records to a table with the INSERT command, you can retrieve
them with the SELECT command. The SELECT command is one of the most
versatile and useful commands in SQL. It offers tremendous flexibility in extracting
specific subsets of data from a table.

In its most basic form, the SELECT statement can be used to evaluate expressions
and functions, or as a “catch-all” query that returns all the records in a specific
table. Here is an example of using SELECT to evaluate mathematical expressions:

mysql> SELECT 75 / 15, 61 + (3 * 3);

+---------+--------------+

| 75 / 15 | 61 + (3 * 3) |

+---------+--------------+

| 5.00 | 70 |

+---------+--------------+

1 row in set (0.05 sec)

Multitasking with MySQL

Newer versions of MySQL enable you to update and delete records in multiple
tables simultaneously with a single query.

ch10.indd 186 2/2/05 3:21:30 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 10: Editing Records and Performing Queries 187

HowTo8 (8)

And here is an example of using SELECT to retrieve all the records in a table:

mysql> SELECT * FROM movies;

+-----+---------------------+-------+

| mid | mtitle | myear |

+-----+---------------------+-------+

| 1 | Rear Window | 1954 |

| 2 | To Catch A Thief | 1955 |

| 3 | The Maltese Falcon | 1941 |

| 4 | The Birds | 1963 |

| 5 | North By Northwest | 1959 |

| 6 | Casablanca | 1942 |

| 7 | Anatomy Of A Murder | 1959 |

+-----+---------------------+-------+

7 rows in set (0.00 sec)

Retrieving Specific Columns
The asterisk (*) in the previous example indicates that you’d like the output of
SELECT to contain all the columns present in the table. If, instead, you’d prefer to
see one or two specific columns only in the result set, you can specify the column
name(s) in the SELECT statement, like this:

mysql> SELECT mtitle FROM movies;

+---------------------+

| mtitle |

+---------------------+

| Rear Window |

| To Catch A Thief |

| The Maltese Falcon |

| The Birds |

| North By Northwest |

| Casablanca |

| Anatomy Of A Murder |

+---------------------+

7 rows in set (0.00 sec)

Filtering Records with a WHERE Clause
You can also restrict which records appear in the result set, by adding a WHERE
clause to your SELECT statement. This WHERE clause lets you define specific
criteria used to filter records from the result set. Records that do not meet the
specified criteria will not appear in the result set.

10

ch10.indd 187 2/2/05 3:21:31 PM

TEAM LinG

 188 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 10HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 10

For example, suppose you want to find out which year Casablanca was
released:

mysql> SELECT myear FROM movies WHERE mtitle = 'Casablanca';

+-------+

| myear |

+-------+

| 1942 |

+-------+

1 row in set (0.11 sec)

Using Operators
The = symbol previously used is an equality operator, used to test whether the left
side of the expression is equal to the right side. MySQL comes with numerous such
operators that can be used in the WHERE clause for comparisons and calculations.
Table 10-1 lists the important operators in MySQL, by category.

Here is an example of using a comparison operator in the WHERE clause, to list
all movies released after 1950:

mysql> SELECT myear, mtitle FROM movies WHERE myear > 1950;

+-------+---------------------+

| myear | mtitle |

+-------+---------------------+

Refer to Fields Clearly

When dealing with multiple tables, a good idea is to prefix the field name with
the table name so it is immediately clear which table each field belongs to.
This is of particular importance when joining tables to each other through
common fields. For example, the query SELECT a.name, b.dob from
a,b where a.id = b.id makes it clear that the name field belongs to
table a and the dob field belongs to table b. See the section entitled “Joining
Tables” to see many more examples of this in practice.

ch10.indd 188 2/2/05 3:21:31 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 10: Editing Records and Performing Queries 189

HowTo8 (8)

| 1954 | Rear Window |

| 1955 | To Catch A Thief |

| 1963 | The Birds |

| 1959 | North By Northwest |

| 1959 | Anatomy Of A Murder |

+-------+---------------------+

5 rows in set (0.00 sec)

Operator What It Does

Arithmetic operators

+ Addition

- Subtraction

* Multiplication

/ Division; returns quotient

% Division; returns modulus

Comparison operators

= Equal to

<> aka != Not equal to

<=> NULL-safe equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

BETWEEN Exists in specified range

IN Exists in specified set

IS NULL Is a NULL value

IS NOT NULL Is not a NULL value

LIKE Wildcard match

REGEXP aka RLIKE Regular expression match

Logical operators

NOT aka ! Logical NOT

AND aka && Logical AND

OR aka || Logical OR

XOR Exclusive OR

 TABLE 10-1 MySQL Operators

10

ch10.indd 189 2/2/05 3:21:31 PM

TEAM LinG

 190 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 10HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 10

You can combine multiple conditions by using the AND or OR logical operators.
This next example lists all movies released between 1955 and 1965:

mysql> SELECT mtitle FROM movies WHERE myear >= 1955 AND myear <= 1965;

+---------------------+

| mtitle |

+---------------------+

| To Catch A Thief |

| The Birds |

| North By Northwest |

| Anatomy Of A Murder |

+---------------------+

4 rows in set (0.06 sec)

Another way to perform this comparison is with the BETWEEN operator:

mysql> SELECT mtitle FROM movies WHERE myear BETWEEN 1955 AND 1965;

+---------------------+

| mtitle |

+---------------------+

| To Catch A Thief |

| The Birds |

| North By Northwest |

| Anatomy Of A Murder |

+---------------------+

4 rows in set (0.06 sec)

The LIKE operator can be used to perform queries using wildcards, and comes
in handy when you’re not sure what you’re looking for. Two types of wildcards are
allowed when using the LIKE operator: the % wildcard, which is used to signify
zero or more occurrences of a character, and the _ wildcard, which is used to
signify exactly one occurrence of a character.

This next example uses the LIKE operator with the logical OR operator to list
all movie titles containing the letters m or n:

mysql> SELECT mtitle FROM movies WHERE mtitle LIKE '%m%' ↵
OR mtitle LIKE '%n%';

+---------------------+

| mtitle |

+---------------------+

| Rear Window |

ch10.indd 190 2/2/05 3:21:32 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 10: Editing Records and Performing Queries 191

HowTo8 (8)

| The Maltese Falcon |

| North By Northwest |

| Casablanca |

| Anatomy Of A Murder |

+---------------------+

5 rows in set (0.06 sec)

Sorting Records and Eliminating Duplicates
If you’d like to see the data from your table ordered by a specific field, SQL offers
the ORDER BY clause. This clause enables you to specify both the column name
and the direction in which you would like to see data (ASCending or DESCending).

Here is an example of sorting the persons table by name, in ascending order:

mysql> SELECT * FROM persons ORDER BY pname ASC;

+-----+--------------------+------+------------+

| pid | pname | psex | pdob |

+-----+--------------------+------+------------+

| 1 | Alfred Hitchcock | M | 1899-08-13 |

| 2 | Cary Grant | M | 1904-01-18 |

| 3 | Grace Kelly | F | 1929-11-12 |

| 4 | Humphrey Bogart | M | 1899-12-25 |

| 6 | James Stewart | M | 1908-05-20 |

| 5 | Sydney Greenstreet | M | 1879-12-27 |

+-----+--------------------+------+------------+

6 rows in set (0.00 sec)

And here is the same table sorted by date of birth, in descending order:

mysql> SELECT * FROM persons ORDER BY pdob DESC;

+-----+--------------------+------+------------+

| pid | pname | psex | pdob |

+-----+--------------------+------+------------+

| 3 | Grace Kelly | F | 1929-11-12 |

| 6 | James Stewart | M | 1908-05-20 |

| 2 | Cary Grant | M | 1904-01-18 |

| 4 | Humphrey Bogart | M | 1899-12-25 |

| 1 | Alfred Hitchcock | M | 1899-08-13 |

| 5 | Sydney Greenstreet | M | 1879-12-27 |

+-----+--------------------+------+------------+

6 rows in set (0.00 sec)

10

ch10.indd 191 2/2/05 3:21:32 PM

TEAM LinG

 192 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 10HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 10

To eliminate duplicate records in a table, add the DISTINCT keyword. Consider
the following example, which illustrates the use of this keyword by printing a list of
all the unique year values in the movies table:

mysql> SELECT DISTINCT myear FROM movies;

+-------+

| myear |

+-------+

| 1954 |

| 1955 |

| 1941 |

| 1963 |

| 1959 |

| 1942 |

+-------+

6 rows in set (0.06 sec)

Limiting Results
You can limit the number of records returned by MySQL with the LIMIT clause,
as illustrated in the following:

mysql> SELECT mtitle FROM movies LIMIT 0,4;

+--------------------+

| mtitle |

+--------------------+

| Rear Window |

| To Catch A Thief |

| The Maltese Falcon |

| The Birds |

+--------------------+

4 rows in set (0.00 sec)

Need for Speed

MySQL 4.0 includes a query cache, which can substantially improve performance
by caching the results of common queries and returning this cached data to the
caller without having to reexecute the query each time.

ch10.indd 192 2/2/05 3:21:32 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 10: Editing Records and Performing Queries 193

HowTo8 (8)

You can even combine the ORDER BY and LIMIT clauses to return a sorted
list restricted to a certain number of values. The following example illustrates, by
listing the three oldest people (as per their birth dates) in the persons table:

mysql> SELECT pname FROM persons ORDER BY pdob LIMIT 0,3;

+--------------------+

| pname |

+--------------------+

| Sydney Greenstreet |

| Alfred Hitchcock |

| Humphrey Bogart |

+--------------------+

3 rows in set (0.00 sec)

Using Built-In Functions
MySQL comes with over 100 built-in functions to help you perform calculations
and process the records in a result set. These functions can be used in a SELECT
statement, either to manipulate field values or in the WHERE clause. The following
example illustrates, by using MySQL’s COUNT() function to return the total number
of records in the movies table:

mysql> SELECT COUNT(*) FROM movies;

+----------+

| COUNT(*) |

+----------+

| 7 |

+----------+

1 row in set (0.00 sec)

You can calculate string length with the LENGTH() function, as in the following:

mysql> SELECT pname, LENGTH(pname) FROM persons;

+--------------------+---------------+

| pname | LENGTH(pname) |

+--------------------+---------------+

| Alfred Hitchcock | 16 |

| Cary Grant | 10 |

| Grace Kelly | 11 |

| Humphrey Bogart | 15 |

| Sydney Greenstreet | 18 |

| James Stewart | 13 |

+--------------------+---------------+

6 rows in set (0.00 sec)

10

ch10.indd 193 2/2/05 3:21:32 PM

TEAM LinG

 194 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 10HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 10

You can use the DATE() function to format date and time values into
a human-readable form, as illustrated in the following:

mysql> SELECT pname, DATE_FORMAT(pdob, '%W %d %M %Y') FROM persons;

+--------------------+----------------------------------+

| pname | DATE_FORMAT(pdob, '%W %d %M %Y') |

+--------------------+----------------------------------+

| Alfred Hitchcock | Sunday 13 August 1899 |

| Cary Grant | Monday 18 January 1904 |

| Grace Kelly | Tuesday 12 November 1929 |

| Humphrey Bogart | Monday 25 December 1899 |

| Sydney Greenstreet | Saturday 27 December 1879 |

| James Stewart | Wednesday 20 May 1908 |

+--------------------+----------------------------------+

6 rows in set (0.00 sec)

You can even use functions in the WHERE clause of a SELECT statement. The
following example illustrates, by listing all those people who would be more than
100 years old today if they were still alive:

mysql> SELECT pname FROM persons WHERE YEAR(NOW()) - YEAR(pdob) > 100;

+--------------------+

| pname |

+--------------------+

| Alfred Hitchcock |

| Humphrey Bogart |

| Sydney Greenstreet |

+--------------------+

3 rows in set (0.06 sec)

Grouping Records
You can group records on the basis of a specific field with MySQL’s GROUP BY
clause. Each group created in this manner is treated as a single row, even though
it internally contains multiple records. Consider the following example, which
groups the records in the persons table on the basis of their sex:

mysql> SELECT * FROM persons GROUP BY psex;

+-----+------------------+------+------------+

| pid | pname | psex | pdob |

ch10.indd 194 2/2/05 3:21:33 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 10: Editing Records and Performing Queries 195

HowTo8 (8)

+-----+------------------+------+------------+

| 1 | Alfred Hitchcock | M | 1899-08-13 |

| 3 | Grace Kelly | F | 1929-11-12 |

+-----+------------------+------+------------+

2 rows in set (0.00 sec)

A number of specialized functions are available when grouping records in this
manner. The most commonly used one in this context is the COUNT() function,
which you saw earlier. In the context of a GROUP BY clause, this function can
be used to count the number of records in each group. The following example
illustrates by counting the number of males and females in the persons table:

mysql> SELECT psex, COUNT(psex) FROM persons GROUP BY psex;

+------+-------------+

| psex | COUNT(psex) |

+------+-------------+

| M | 5 |

| F | 1 |

+------+-------------+

2 rows in set (0.00 sec)

Here’s another example, this one returning the number of persons linked to each
movie in the roles table:

mysql> SELECT mid, COUNT(pid) FROM roles GROUP BY mid;

+-----+------------+

| mid | COUNT(pid) |

+-----+------------+

| 1 | 3 |

| 2 | 3 |

| 3 | 2 |

| 4 | 1 |

| 5 | 2 |

| 6 | 1 |

+-----+------------+

6 rows in set (0.06 sec)

You can further filter the groups by adding a HAVING clause to the GROUP
BY clause. This HAVING clause works much like a regular WHERE clause, letting
you further filter the grouped data by a specific condition. The following example

10

ch10.indd 195 2/2/05 3:21:33 PM

TEAM LinG

 196 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 10HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 10

revises the previous one to only return those movies having two or more persons
linked to them:

mysql> SELECT mid, COUNT(pid) FROM roles GROUP BY mid ↵
HAVING COUNT(pid) >= 2;

+-----+------------+

| mid | COUNT(pid) |

+-----+------------+

| 1 | 3 |

| 2 | 3 |

| 3 | 2 |

| 5 | 2 |

+-----+------------+

4 rows in set (0.00 sec)

Joining Tables
So far, all the queries you’ve seen have been concentrated on a single table. But
SQL also enables you to query two or more tables at a time, and to display a combined
result set. This is technically referred to as a join, because it involves “joining”
different tables at specific points to create new views of the data. MySQL has
supported joins well right from its inception, and today boasts support for standard
SQL2-compliant join syntax, which makes it possible to combine table records in
a variety of sophisticated ways.

When using a join, the recommendation is that you prefix each field name with
the name of the table it belongs to. For example, you would use movies.mid to
refer to the field named mid in the table movies, and roles.pid to refer to the
pid field in the roles table.

Playing the Numbers

In addition to the COUNT() function, MySQL also offers the MIN() and MAX()
functions to retrieve the minimum and maximum of a group, the AVG() function
to return the average of a group of values, and the SUM() function to return the
total of a group of values.

ch10.indd 196 2/2/05 3:21:33 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 10: Editing Records and Performing Queries 197

HowTo8 (8)

Inner Joins
Here’s an example of a simple join:

mysql> SELECT * FROM movies, roles WHERE movies.mid = roles.mid;

+-----+---------------------+-------+-----+-----+------+

| mid | mtitle | myear | mid | pid | role |

+-----+---------------------+-------+-----+-----+------+

| 1 | Rear Window | 1954 | 1 | 1 | D |

| 1 | Rear Window | 1954 | 1 | 3 | A |

| 1 | Rear Window | 1954 | 1 | 6 | A |

| 2 | To Catch A Thief | 1955 | 2 | 1 | D |

| 2 | To Catch A Thief | 1955 | 2 | 2 | A |

| 2 | To Catch A Thief | 1955 | 2 | 3 | A |

| 3 | Maltese Falcon, The | 1941 | 3 | 4 | A |

| 3 | Maltese Falcon, The | 1941 | 3 | 5 | A |

| 4 | The Birds | 1963 | 4 | 1 | D |

| 5 | North By Northwest | 1959 | 5 | 1 | D |

| 5 | North By Northwest | 1959 | 5 | 2 | A |

| 6 | Casablanca | 1942 | 6 | 4 | A |

+-----+---------------------+-------+-----+-----+------+

12 rows in set (0.00 sec)

In this case, the movies and roles tables have been joined together through
the common field mid. Such a join is referred to as an inner join, because its result
set contains only those records that match in all the tables in the join. Records that
do not match are excluded from the final result set.

The Inner Circle

Inner joins are the most common type of join you’ll see in this book (and in
your PHP-MySQL development). Specifically, the previous join is known as
an equijoin, because it attempts to equate records in one table with records in
another. You can also create inner joins using inequalities between fields in
different tables. In this case, the final result set will only include those rows
from the joined tables that have matches in the specified fields.

10

ch10.indd 197 2/2/05 3:21:33 PM

TEAM LinG

 198 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 10HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 10

You can also use INNER JOIN syntax to make things clearer. This next example,
which is equivalent to the previous one, illustrates.

mysql> SELECT * FROM movies INNER JOIN roles USING (mid);

+-----+---------------------+-------+-----+-----+------+

| mid | mtitle | myear | mid | pid | role |

+-----+---------------------+-------+-----+-----+------+

| 1 | Rear Window | 1954 | 1 | 1 | D |

| 1 | Rear Window | 1954 | 1 | 3 | A |

| 1 | Rear Window | 1954 | 1 | 6 | A |

| 2 | To Catch A Thief | 1955 | 2 | 1 | D |

| 2 | To Catch A Thief | 1955 | 2 | 2 | A |

| 2 | To Catch A Thief | 1955 | 2 | 3 | A |

| 3 | Maltese Falcon, The | 1941 | 3 | 4 | A |

| 3 | Maltese Falcon, The | 1941 | 3 | 5 | A |

| 4 | The Birds | 1963 | 4 | 1 | D |

| 5 | North By Northwest | 1959 | 5 | 1 | D |

| 5 | North By Northwest | 1959 | 5 | 2 | A |

| 6 | Casablanca | 1942 | 6 | 4 | A |

+-----+---------------------+-------+-----+-----+------+

12 rows in set (0.00 sec)

You can join as many tables as you like in this manner. This next example adds
the persons table to the previous join, and it also selects the rows and columns
to be displayed in the output of the join by specifying them in the SELECT statement:

mysql> SELECT movies.mtitle, persons.pname, roles.role ↵
FROM movies, persons, roles WHERE movies.mid = roles.mid ↵
AND persons.pid = roles.pid;

+---------------------+--------------------+------+

| mtitle | pname | role |

+---------------------+--------------------+------+

| Rear Window | Alfred Hitchcock | D |

| Rear Window | Grace Kelly | A |

| Rear Window | James Stewart | A |

| To Catch A Thief | Alfred Hitchcock | D |

| To Catch A Thief | Cary Grant | A |

| To Catch A Thief | Grace Kelly | A |

| Maltese Falcon, The | Humphrey Bogart | A |

| Maltese Falcon, The | Sydney Greenstreet | A |

ch10.indd 198 2/2/05 3:21:33 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 10: Editing Records and Performing Queries 199

HowTo8 (8)

| The Birds | Alfred Hitchcock | D |

| North By Northwest | Alfred Hitchcock | D |

| North By Northwest | Cary Grant | A |

| Casablanca | Humphrey Bogart | A |

+---------------------+--------------------+------+

12 rows in set (0.00 sec)

Obviously, you can add more WHERE clauses to this join to further filter the
result set. For example, this next query prints a list of all those movies directed by
Alfred Hitchcock:

mysql> SELECT movies.mtitle, persons.pname, roles.role ↵
FROM movies, persons, roles WHERE movies.mid = roles.mid ↵
AND persons.pid = roles.pid AND roles.role = 'D' ↵
AND persons.pname = 'Alfred Hitchcock';

+--------------------+------------------+------+

| mtitle | pname | role |

+--------------------+------------------+------+

| Rear Window | Alfred Hitchcock | D |

| To Catch A Thief | Alfred Hitchcock | D |

| The Birds | Alfred Hitchcock | D |

| North By Northwest | Alfred Hitchcock | D |

+--------------------+------------------+------+

4 rows in set (0.06 sec)

Outer Joins
MySQL also supports outer joins, which are asymmetrical-all records from one
side of the join are included in the final result set, regardless of whether they match

Joining Up

Inner and outer joins are not the only types of joins supported in MySQL. You
can also use a cross join to multiply the contents of both tables together; a self
join to join a table to a new, virtual copy of itself; and a union to join together
the results of two SELECT queries. To read more about these types of joins
and view examples, look in the online MySQL manual, at http://dev.mysql
.com/doc/mysql/en/JOIN.html.

10

ch10.indd 199 2/2/05 3:21:34 PM

TEAM LinG

 200 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 10HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 10

records on the other side of the join. Consider the following example, which illustrates
by using a left outer join to connect the movies table to the roles table:

mysql> SELECT * FROM movies LEFT JOIN roles ↵
ON movies.mid = roles.mid;

+-----+---------------------+-------+------+------+------+

| mid | mtitle | myear | mid | pid | role |

+-----+---------------------+-------+------+------+------+

| 1 | Rear Window | 1954 | 1 | 1 | D |

| 1 | Rear Window | 1954 | 1 | 3 | A |

| 1 | Rear Window | 1954 | 1 | 6 | A |

| 2 | To Catch A Thief | 1955 | 2 | 1 | D |

| 2 | To Catch A Thief | 1955 | 2 | 2 | A |

| 2 | To Catch A Thief | 1955 | 2 | 3 | A |

| 3 | Maltese Falcon, The | 1941 | 3 | 4 | A |

| 3 | Maltese Falcon, The | 1941 | 3 | 5 | A |

| 4 | The Birds | 1963 | 4 | 1 | D |

| 5 | North By Northwest | 1959 | 5 | 1 | D |

| 5 | North By Northwest | 1959 | 5 | 2 | A |

| 6 | Casablanca | 1942 | 6 | 4 | A |

| 7 | Vertigo | 1958 | NULL | NULL | NULL |

+-----+---------------------+-------+------+------+------+

13 rows in set (0.06 sec)

As you can see, all the rows from the table on the left side of the join appear in
the final result set. Those that have a corresponding value in the table on the right
side as per the match condition have that value displayed; the rest have a NULL
value displayed.

This kind of join comes in handy when you need to see which values from one
table are missing in another table-all you need to do is look for the NULL rows.
From a quick glance at the previous example, you can see that entries for all the
movies in the movies table exist in the roles table, except for the movie Vertigo.
Thus, outer joins come in handy when you’re looking for corrupted, or “dirty,” data
in interrelated tables.

Use the IS NULL operator to automatically isolate NULL rows in a left
or right join.

ch10.indd 200 2/2/05 3:21:34 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 10: Editing Records and Performing Queries 201

HowTo8 (8)

Just as there is a left outer join, there also exists a right outer join, which works
in reverse. A right outer join displays all the records from the table on the right side
of the join, and then tries to match them with records from the table on the left
side of the join.

Using Subqueries
Subqueries, as the name suggests, are queries nested inside other queries. They
make it possible to use the results of one query directly in the conditional tests
or FROM clauses of other queries. Subqueries can substantially simplify the task
of writing SQL-based applications, by reducing the number of application-level
query statements to be executed in a given program.

Subqueries come in many shapes, sizes, and forms. The most common is
a SELECT within a SELECT, such that the results of the inner SELECT serve
as values for the WHERE clause of the outer SELECT. However, while this is
certainly one of the most common uses of subqueries, it’s not the only one. You
can use subqueries in a number of other places, including within grouped result
sets, with comparison and logical operators, with membership tests, in UPDATE
and DELETE operations, and within a query’s FROM clause.

Subqueries are new to MySQL, so they are only available in MySQL 4.1
and above.

To see how a subquery works, try out the following example, which prints a list
of all those movie IDs starring Cary Grant:

mysql> SELECT mid FROM roles WHERE role = 'A' ↵
AND pid = (SELECT pid FROM persons WHERE pname = 'Cary Grant');

+-----+

| mid |

+-----+

| 2 |

| 5 |

+-----+

2 rows in set (0.00 sec)

Here, the inner query is executed first, and returns the ID of the record for
“Cary Grant” from the persons table. This ID (#1) is then substituted in the
outer query’s WHERE clause, and the query is executed on the roles table to list
all those movies in which he performed.

10

ch10.indd 201 2/2/05 3:21:34 PM

TEAM LinG

 202 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 10HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 10

However, this is still incomplete-the previous double query only returns a list
of movie IDs, not titles. For this to be truly valuable, you need the movie titles.
So, wrap the previous combination in yet another query, which takes the list of IDs
generated and matches them against the movies table to return the corresponding
titles:

mysql> SELECT mtitle FROM movies WHERE mid IN ↵
(SELECT mid FROM roles WHERE role = 'A' AND pid = ↵
(SELECT pid FROM persons WHERE pname = 'Cary Grant'));

+--------------------+

| mtitle |

+--------------------+

| To Catch A Thief |

| North By Northwest |

+--------------------+

2 rows in set (0.06 sec)

Thus, a subquery makes it possible to combine two or more queries into a single
statement, and to use the results of one query in the conditional clause of the other.
Subqueries are usually regular SELECT statements, separated from their parent query
by parentheses. As the previous example illustrates, you can nest subqueries to any
depth, as long as the basic rules are followed.

You Say Tom-Ah-To,
I Say Tom-Ay-To…

Most of the time, subqueries can be rewritten as joins, and vice versa. For
example, the queries SELECT x FROM a WHERE y = (SELECT y
FROM b WHERE condition) and SELECT x FROM a, b WHERE
a.y = b.y AND condition are equivalent. However, because subquery
support in MySQL is still experimental, joins currently offer better performance
than subqueries. Read more at http://dev.mysql.com/doc/mysql/en/
Subqueries.html.

ch10.indd 202 2/2/05 3:21:35 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 10: Editing Records and Performing Queries 203

HowTo8 (8)

Using Table and Column Aliases
For table and field names that are either too long to comfortably use or too
complex to read, use the AS keyword to alias the name to a different value.
The following example demonstrates, by aliasing the name of the persons
table to p and the psex, pname, and pdob fields to Sex, realName, and
DateOfBirth:

mysql> SELECT p.psex AS Sex, p.pname AS RealName, ↵
p.pdob AS DateOfBirth FROM persons AS p;

+-----+--------------------+-------------+

| Sex | RealName | DateOfBirth |

+-----+--------------------+-------------+

| M | Alfred Hitchcock | 1899-08-13 |

| M | Cary Grant | 1904-01-18 |

| F | Grace Kelly | 1929-11-12 |

| M | Humphrey Bogart | 1899-12-25 |

| M | Sydney Greenstreet | 1879-12-27 |

| M | James Stewart | 1908-05-20 |

+-----+--------------------+-------------+

6 rows in set (0.00 sec)

This also works on fields that are the result of a calculation or function operation.
The following examples demonstrate this:

mysql> SELECT COUNT(*) AS total FROM movies;

+-------+

| total |

+-------+

| 7 |

+-------+

1 row in set (0.00 sec)

mysql> SELECT pname AS name, YEAR(NOW()) - YEAR (pdob) AS age ↵
FROM persons ORDER BY age;

+--------------------+------+

| name | age |

+--------------------+------+

| Grace Kelly | 75 |

| James Stewart | 96 |

| Cary Grant | 100 |

| Alfred Hitchcock | 105 |

10

ch10.indd 203 2/2/05 3:21:35 PM

TEAM LinG

 204 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 10HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 10

| Humphrey Bogart | 105 |

| Sydney Greenstreet | 125 |

+--------------------+------+

6 rows in set (0.05 sec)

For many more examples of building sophisticated SELECT queries, visit
Chapter 12.

Summary
This chapter took a big step forward in your MySQL education, showing you how
to add, update, and remove data from a MySQL table, so you can begin using
MySQL to store information. It also showed you how to do something with all
that data once you have it safely inserted into one or more tables, by giving you
a crash course in the SELECT statement and its numerous variants. The SELECT
statement is one of the most versatile and useful commands in the SQL lexicon.
You’ll be using it frequently when you build PHP-MySQL applications.

While this chapter covered a fair bit of ground, it still barely scratched the surface
of what you can do with MySQL. For more in-depth information about the topics
in this chapter, you should visit the following links:

■ The INSERT statement, at http://dev.mysql.com/doc/mysql/en/
INSERT.html

■ The UPDATE statement, at http://dev.mysql.com/doc/mysql/en/
UPDATE.html

■ The DELETE statement, at http://dev.mysql.com/doc/mysql/en/
DELETE.html

■ More examples of using the SELECT statement in the MySQL manual, at
http://dev.mysql.com/doc/mysql/en/SELECT.html

■ MySQL operators, at http://dev.mysql.com/doc/mysql/en/Non-typed_
Operators.html

■ Built-in MySQL functions, at http://dev.mysql.com/doc/mysql/en/
Functions.html

■ Date and time functions in MySQL, at http://www.melonfire.com/
community/columns/trog/article.php?id=241

ch10.indd 204 2/2/05 3:21:35 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 10: Editing Records and Performing Queries 205

HowTo8 (8)

■ String functions in MySQL, at http://www.melonfire.com/community/
columns/trog/article.php?id=235

■ Group manipulation functions in MySQL, at http://dev.mysql.com/doc/
mysql/en/Group_by_functions_and_modifiers.html

■ Joining tables, at http://www.melonfire.com/community/columns/trog/
article.php?id=148

■ Using subqueries, at http://www.melonfire.com/community/columns/
trog/article.php?id=204

10

ch10.indd 205 2/2/05 3:21:35 PM

TEAM LinG

ch10.indd 206 2/2/05 3:21:35 PM

This page is intentionally left blank.

TEAM LinG

Chapter 11

HowTo8 (8)

Using the MySQL
Security System

ch11.indd 207 2/2/05 3:22:29 PM

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

TEAM LinG

 208 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 11HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 11

In previous chapters, you have been using the MySQL superuser account, root,
to execute queries and run commands. While this is convenient, it goes contrary

to one of the basic laws of multiuser system security: never use a privileged user
account to perform tasks that can be performed as well with a nonprivileged account.
Using a privileged account carelessly for your MySQL applications opens a security
hole, and can also produce inconsistent results if your application is ever forced
to run as a nonprivileged user (who has fewer capabilities and may, therefore, be
unable to perform critical actions).

For this reason, it’s important to understand the basics of the MySQL security
subsystem, and to use it to enforce access control rules on your databases. A careful
application of MySQL’s privilege levels and authentication schemes can go a long way
toward protecting the integrity of your data, and in ensuring that your applications
work securely and consistently.

How to…

■ Control access to MySQL on the basis of username and host

■ Set (and reset) user passwords

■ Grant and revoke user privileges to databases and tables

■ Restrict the SQL commands a user is permitted to call on

■ View the privileges assigned to a specific user

■ Gain access to MySQL even if you lose or forget the root account password

Understanding the Need for Access Control
As you saw in previous chapters, you can only connect to the MySQL server
through the MySQL client after sending the server a valid username and password.
This username-password combination is used by MySQL to check which databases
and tables you have access to, and which types of operations you are permitted to
perform on them.

For convenience, previous chapters have directed you to use the MySQL
superuser account, root, to execute queries and run commands. While this is
acceptable for testing purposes, it cannot continue in production applications, for
two reasons:

ch11.indd 208 2/2/05 3:22:29 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 11: Using the MySQL Security System 209

HowTo8 (8)

■ Allowing different applications superuser access to MySQL opens
a serious security hole in your RDBMS, as it makes the sensitive data
of one application visible to other applications and users. This lets an
application or user concerned with one database make changes to other
databases on the system, and thereby interfere with the security and
reliability of other applications. In the worst-case scenario, a single
badly written application could destroy the databases and tables of other
applications sharing the same RDBMS.

■ Because all commands are routed through a single user account, it’s
extremely difficult to audit and log the applications of individual users or
applications, because MySQL has no way of knowing which “real” person
performed which command. For obvious reasons, this is a security no-no.

Given these reasons, it is preferable for every MySQL application you create
to have a database of its own, to which it has complete access and that other
applications cannot enter. By creating such database “bubbles” for each application,
you can rest confident in the knowledge that applications are solely responsible for
their own database and cannot interfere with each other. This improves security
and database integrity, reduces the risk of a single application running amok, and—
because each application now corresponds to a MySQL user—also makes it possible
to create an audit trail for each application.

A good rule of thumb in this context is, “Grant no more permissions than are
necessary for the requirements of each application.” By being parsimonious with
application permissions and giving each application only the minimum necessary
privileges, you reduce the risk of a security breach in a single application affecting
your entire MySQL installation. Spend some time thinking about exactly what
actions your application needs to perform and assign privileges appropriately. The
investment in time and thought will pay rich dividends in terms of a more robust
and hack-proof MySQL server.

Understanding How MySQL Access Control Works
MySQL comes with a sophisticated access control and privilege system to prevent
unauthorized users from accessing the system. This system, implemented as
a five-tiered privilege hierarchy, enables MySQL administrators to protect access
to sensitive data using a combination of user- and host-based authentication schemes.
Users can be restricted to performing operations only on specified databases or
fields, and MySQL even makes it possible to control which types of queries a user
can run, at database, table, or field level.

11

ch11.indd 209 2/2/05 3:22:30 PM

TEAM LinG

 210 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 11HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 11

All these privileges are controlled through MySQL’s security subsystem
which consists of five tables. These tables, known as grant tables, offer database
administrators a great deal of power and flexibility in deciding the rules that govern
access to the system. Each table has a different role to play in deciding whether
a user has access to a specific database, table, or table column. Access rules may be
set up on the basis of username, connecting host, or database requested.

In MySQL, access control takes place in two stages:

 1. When a user requests a connection to the database server from a specific
host, MySQL will first check whether there is an entry for the user in the
grant tables, if the user’s password is correct, and if the user is allowed to
connect from that specific host. If the check is successful, a connection will
be allowed to the server.

 2. Once a connection is allowed, every subsequent request to the server—
SELECT, DELETE, UPDATE, and other queries—will first be vetted to
ensure that the user has the security privileges necessary to perform the
corresponding action. A number of different levels of access are possible—
some users may only have the ability to SELECT from the tables, while
others may have INSERT and UPDATE capabilities, but not DELETE
capabilities.

Normally, the MySQL superuser assigns rights and privileges to other users
with the GRANT and REVOKE commands. These commands are the primary
interface to the grant tables, and they should be used instead of manually modifying
the tables through INSERT or UPDATE commands.

Assigning, Revoking, and Viewing User Privileges
MySQL users can be assigned any of almost 25 different privileges. Table 11-1
lists the important ones.

For a complete list of privilege levels and examples of how they may be
assigned, visit the MySQL manual, at http://dev.mysql.com/doc/mysql/en/
Privileges_provided.html.

These privilege levels can be assigned to users with the special GRANT
command. To see how the GRANT command works, use the following command
to assign SELECT, INSERT, UPDATE, and DELETE privileges on the table
db2.movies to the user joe connecting from localhost with password
rosebud:

ch11.indd 210 2/2/05 3:22:30 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 11: Using the MySQL Security System 211

HowTo8 (8)

mysql> GRANT SELECT, INSERT, UPDATE, DELETE ON db2.movies ↵
TO joe@localhost IDENTIFIED BY 'rosebud';

Query OK, 0 rows affected (1.32 sec)

Now, once the user logs in, only the commands specified in the GRANT
command are permitted to the user. All other commands are denied. Every time
the user requests a specific command, MySQL refers to its grant tables and only
permits the command to be executed if the privilege rules allow it.

To see how this works, try logging in to the server with the username joe and
password rosebud, and performing different commands:

$ mysql -u joe -p

Password: *******

mysql> SELECT * FROM db2.movies;

+-----+---------------------+-------+

| mid | mtitle | myear |

+-----+---------------------+-------+

| 1 | Rear Window | 1954 |

| 2 | To Catch A Thief | 1955 |

| 3 | Maltese Falcon, The | 1941 |

| 4 | The Birds | 1963 |

| 5 | North By Northwest | 1959 |

| 6 | Casablanca | 1942 |

| 7 | Vertigo | 1958 |

+-----+---------------------+-------+

Privilege What It Permits

ALTER Altering tables after they have been created

DELETE Deleting records from tables

INSERT Inserting records into tables

SELECT Retrieving records from tables

UPDATE Updating records in tables

CREATE Creating new tables and databases

DROP Deleting tables and databases

GRANT Granting other users privileges

PROCESS Viewing MySQL process information

SHUTDOWN Shutting down the MySQL server

USAGE Using the MySQL server

 TABLE 11-1 Important MySQL Privilege Levels

11

ch11.indd 211 2/2/05 3:22:30 PM

TEAM LinG

 212 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 11HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 11

7 rows in set (0.11 sec)

mysql> ALTER TABLE db2.movies DROP PRIMARY KEY;

ERROR 1142: alter command denied to user: 'joe@127.0.0.1' ↵
for table 'movies'

Thus, only commands specified in the GRANT statement are permitted to the user.
The following command enables the user admin connecting from localhost

to perform SELECT queries on the db table in the mysql database.

mysql> GRANT SELECT ON mysql.db TO admin@localhost IDENTIFIED BY 'secret';
Query OK, 0 rows affected (0.1 sec)

If you like, you can even specify which fields the user is allowed to manipulate,
by naming them in the GRANT command. Here’s an example:

mysql> GRANT SELECT (mid, mtitle) ON db2.movies ↵
TO joe@localhost IDENTIFIED BY 'rosebud';

Query OK, 0 rows affected (0.1 sec)

You can use the * wildcard to mean “all databases” or “all tables” in the GRANT
and REVOKE commands. As an example, consider the following command:

mysql> GRANT SELECT ON db2.* TO guest@localhost;

Query OK, 0 rows affected (0.3 sec)

This lets the user guest perform SELECT operations on all tables in the db2
database.

To permit access to a user from any machine within a domain, use the %
wildcard in the hostname. Consider the following command:

mysql> GRANT USAGE ON *.* to 'guest'@'%.goodguys.com'

Query OK, 0 rows affected (0.3 sec)

This enables the user guest to access the server from any system in the
goodguys.com domain.

The REVOKE command does the reverse of the GRANT command, making it
possible to revoke privileges assigned to a user. Consider the following example,
which rescinds joe’s DELETE and UPDATE rights on the db2.movies table:

mysql> REVOKE DELETE, UPDATE ON db2.movies FROM joe@localhost;

Query OK, 0 rows affected (0.05 sec)

ch11.indd 212 2/2/05 3:22:31 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 11: Using the MySQL Security System 213

HowTo8 (8)

Now, try logging in as joe again and performing a DELETE:

$ mysql -u joe -p

Password: *******

mysql> DELETE FROM db2.movies WHERE id = 5;

ERROR 1142: delete command denied to user: 'joe@127.0.0.1' ↵
for table 'movies'

MySQL also lets you assign all privileges to a user with the shortcut keyword
ALL. This is illustrated in the next example, which grants all privileges on database
employees to user hr connecting from the company.com domain:

mysql> GRANT ALL ON employees.* TO hr@'%.company.com' ↵
IDENTIFIED BY 'secret';

Query OK, 0 rows affected (0.06 sec)

You can also use the ALL keyword in a REVOKE command to revoke all of
a user’s privileges to a database, as in the following example:

mysql> REVOKE ALL ON employees.* FROM hr@'%.company.com';

Query OK, 0 rows affected (0.05 sec)

To view the privileges assigned to a user, use the SHOW GRANTS command
with the username and hostname as argument. Here’s an example:

mysql> SHOW GRANTS FOR joe@localhost;

+---+

| Grants for joe@localhost |

+---+

| GRANT USAGE ON *.* TO 'joe'@'localhost' | ↵
IDENTIFIED BY PASSWORD '2469c1e2080e09ef' |

| GRANT SELECT, INSERT ON db2.movies TO 'joe'@'localhost' |

+---+

2 rows in set (0.05 sec)

Working with User Accounts and Password
As you already know, a valid MySQL user account is required to connect to
the MySQL server. This account may or may not be protected with a password,
although using a password is recommended for the security of your MySQL
installation. These user accounts and passwords are also controlled through the
grant tables, and the following sections discuss how to create and use them.

11

ch11.indd 213 2/2/05 3:22:31 PM

TEAM LinG

 214 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 11HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 11

Creating and Removing User Accounts
Normally, whenever you issue a GRANT command, MySQL automatically creates
an account for the user in its grant tables (if one does not already exist, that is).
If the GRANT command includes an IDENTIFIED BY clause, MySQL also
encrypts the user password in that clause and stores it in the grant tables. If the
IDENTIFIED BY clause is not present, MySQL assigns the account an empty
password. Here is an example:

mysql> GRANT USAGE ON *.* to john@localhost;

Query OK, 0 rows affected (0.06 sec)

However, when a user’s privileges are stripped with the REVOKE command,
MySQL does not automatically delete the user account. To explicitly remove
a user account, it is necessary to manually modify the grant tables with the
DELETE command. For example, to remove joe’s user account, you would
need to run the following commands:

mysql> DELETE FROM mysql.user WHERE User = 'john' ↵
AND Host = 'localhost';

Query OK, 1 row affected (0.06 sec)

mysql> FLUSH PRIVILEGES;

Query OK, 0 rows affected (0.28 sec)

If you’re using MySQL 4.1.1, you can also remove a user with the new DROP
USER command. The next command is equivalent to the previous two:

mysql> DROP USER john@localhost;

Query OK, 1 row affected (0.06 sec)

Lockdown

MySQL 4.1 uses a new, encrypted, and highly secure protocol to handle client-
server communication, which makes it harder for hackers to break your password.

ch11.indd 214 2/2/05 3:22:31 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 11: Using the MySQL Security System 215

HowTo8 (8)

Altering User Passwords
Users with write access to the MySQL grant tables, such as root, can alter the
passwords of other users by using the SET PASSWORD command. The following
example sets the password for user joe to guessme:

mysql> SET PASSWORD FOR joe@localhost = PASSWORD('guessme');

Query OK, 1 row affected (0.06 sec)

Passwords can also be set in the IDENTIFIED BY clause of a GRANT
command. Here is an example, which creates an account for user guest
connecting from localhost with account password guest:

mysql> GRANT USAGE ON *.* to guest@localhost IDENTIFIED BY 'guest';

Query OK, 0 rows affected (0.06 sec)

Starting from Zero

The FLUSH PRIVILEGES command forces MySQL to reread the privilege
tables.

Manual Labor

There is a difference between setting a password in the IDENTIFIED BY
clause of the GRANT command and with the SET PASSWORD command. In
the former case, the password is automatically encrypted by MySQL. In the
latter, it must be manually encrypted with the built-in MySQL PASSWORD()
function.

11

ch11.indd 215 2/2/05 3:22:32 PM

TEAM LinG

 216 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 11HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 11

Reset the MySQL root Password

If you forget the MySQL root password and are locked out of the system,
don’t panic—there’s still hope! All you need to do is follow the simple steps
outlined in the following:

 1. Shut down MySQL, and then restart it, using the procedures outlined in
Chapter 2 of this book. When restarting MySQL, add the following two
options to the mysqld_safe command line:

$ /usr/local/mysql/bin/mysqld_safe --skip-grant-tables ↵
--skip-networking &

 2. Log in to the MySQL server as root using the MySQL client. Because
MySQL was started without the grant tables, you can use an empty
password to gain access.

$ /usr/local/bin/mysql -u root

 3. Once logged in, set a new password for the root account, by directly
modifying the grant tables as follows:

mysql> UPDATE mysql.user SET ↵
Password=PASSWORD('new-password') WHERE User='root';

Query OK, 1 row affected (0.06 sec)

 4. Log out of MySQL, and then shut down and restart the server in the
normal manner. You should now be able to log in as the root user,
with the new password you set in step 3.

When a user logs in to the MySQL server and provides a password string,
MySQL first encrypts the provided password string using the PASSWORD()
function, and then compares the resulting value with the stored value. If the two
values match (and other access rules permit it), the user is granted access. If the
values do not match, access is denied.

ch11.indd 216 2/2/05 3:22:32 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 11: Using the MySQL Security System 217

HowTo8 (8)

Summary
This chapter focused on MySQL’s implementation of the Data Control Language
(DCL) component of SQL, teaching you how (and why) to use MySQL’s security
system to prevent unauthorized access to the server. The examples and commands
in this chapter showed you how to create user accounts, set passwords, assign
privileges, and create access rules to clearly define what each user can—and cannot—
do after logging in to the MySQL server. The chapter also provided a solution
to a common MySQL problem: gaining access to the server after forgetting the
superuser password.

MySQL’s security system is powerful and flexible, but it’s only as good as the
administrators who implement it. To improve your understanding of the MySQL
security system and to learn more about how to secure your system against attacks,
consider visiting the following links:

■ A detailed discussion of the MySQL grant tables, at http://www.melonfire
.com/community/columns/trog/article.php?id=62

■ Information on MySQL privilege levels, at http://dev.mysql.com/doc/
mysql/en/Privilege_system.html

■ Information on securing MySQL against network attacks, at http://dev
.mysql.com/doc/mysql/en/Security_against_attack.html

■ General MySQL security guidelines, at http://dev.mysql.com/doc/mysql/
en/Security_guidelines.html

■ Using encrypted server connections with SSL, at http://dev.mysql.com/
doc/mysql/en/Secure_connections.html

■ Tips on password security, at http://dev.mysql.com/doc/mysql/en/
Password_security.html

11

ch11.indd 217 2/2/05 3:22:32 PM

TEAM LinG

ch11.indd 218 2/2/05 3:22:32 PM

This page is intentionally left blank.

TEAM LinG

Chapter 12

HowTo8 (8)

Sample
Application: Order
Tracking System

ch12.indd 219 2/2/05 3:23:19 PM

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

TEAM LinG

 220 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 12HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 12

The examples you’ve seen thus far have been fairly simple. However, in the
real world (and in the rest of this book), you’ll see MySQL being used for all

manner of sophisticated applications and queries. To prepare you for these more
complex uses, the next (and final) example in this chapter uses the techniques and
commands taught in previous sections to design and use a slightly larger and more
challenging database.

How to. . .

■ Analyze the requirements for a simple order tracking system

■ Design and normalize a set of relational tables

■ Gain a better understanding of the SELECT statement through a range of
sophisticated queries

Understanding Requirements
The application here is an order tracking system for a small business that has
multiple customers for its products. It’s not hard to think of such a business: the
tools and hardware store down the road, the agency that delivers your newspaper,
the web-hosting company that hosts your web site, and the stationery store that
keeps your office stocked with supplies all fall into this broad category.

Every such business must do a number of basic things:

■ It must maintain a list of its customers, with addresses and phone numbers.
Some customers may have offices in multiple locations. In this case, branch
locations and contact information must also be maintained.

■ It must maintain a list of its currently available products, as well as its prices
for each. For some products, local and state taxes may be applicable. These
must be noted and added to the sale price of each item.

■ It must maintain a list of the orders placed by a customer for its products,
the date of the order, and the number of items ordered. This order list is used
to generate invoices, either on a per transaction basis or, if the customer is
a credit customer, at the end of a predefined billing cycle.

■ As customers come and go, and as new products are added and older products
discontinued, it must be easy to update the system to reflect these changes.

With these requirements in mind, it’s time to design a database.

ch12.indd 220 2/2/05 3:23:19 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 12: Sample Application: Order Tracking System 221

HowTo8 (8)

Creating an Optimized Database Design
When designing such a database, it’s important to check it for minimal redundancies
and repetitions, and for clear and logical relationships between its various entities.
This is part of the process called normalization, and to illustrate how it is
accomplished, each of the following subsections discuss two competing designs.
The first one is an inefficient, nonnormalized design, while the second is an
optimized, more compact and more scalable alternative.

Designing the Customer Tables
Let’s begin with the customer list. As noted previously, this list must include the
customer’s name, address, and phone number. For customers with multiple branches,
branch details must be included as well.

Here’s what a nonnormalized database table might look like:

This isn’t a very satisfactory design, for two reasons:

■ With this table structure, branch offices and customers are treated as though
they were synonymous. Because there’s no real differentiation between
a customer and a customer’s facilities, it is not possible to obtain an exact
count of the business’s customers. Thus, even though the previous table
contains four records, in reality there are only two customers: ABC Inc. and
Zee Corp. Further, if ABC Inc. alters its name, each record for ABC Inc.’s
branches will have to be updated, as the name is repeated in each.

■ A single field for addresses means that state and PIN code data is intermingled
with street and building names. If the business plans to query on the basis
of geographical region—say, to evaluate how many customers it has in each

12

ch12.indd 221 2/2/05 3:23:20 PM

TEAM LinG

 222 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 12HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 12

state or to find out which locations should be targeted in advertising—the
business will find both extracting state names and pin codes from the previous
table, and sorting and comparing the records by region extremely hard.

To rectify these flaws, it is necessary to redesign the previous table to remove
redundancies, establish a clear relationship between customers and branch offices,
and make it possible to extract location-specific information easily. Here’s the
revised structure:

This structure is better, because it is now clear exactly how many customers
exist (simply count the records in the customers table) and also how many
branch offices each customer has. Because customer names appear only once,
making a change involves updating only a single record instead of multiple records.
Finally, the decomposition of the address into different fields makes it easier to sort
and compare data by location.

Designing the Product Tables
Next up is the table that lists available products and services, and their prices.
Here’s what a nonnormalized table might look like:

ch12.indd 222 2/2/05 3:23:22 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 12: Sample Application: Order Tracking System 223

HowTo8 (8)

Again, this nonnormalized table throws up several inconsistencies:

■ The numerous repetitions and illogical display of both product prices and
tax information in the same table is not recommended. Notice that each
record in the previous table contains a VARCHAR field stating either “Sales
Tax” (9 characters) or “Sales Tax + Excise” (18 characters), and a field
containing the tax percentage (4 bytes). Because these values are frequently
repeated, between 13 and 22 bytes of storage are wasted per record. This
might not seem like a lot, but imagine a table containing thousands of
records, and it adds up to quite a large amount of disk space that’s being
unnecessarily wasted.

■ Notice also that the table contains hard-wired values for the pre-tax and
post-tax prices. This is unwise, because if tax rates change, each value in
the post-tax column will need to be recomputed and reentered. Because
MySQL supports most arithmetic operations, it makes more sense to have
MySQL calculate the post-tax price at run time, by adding the tax percentage
to the pre-tax sale price.

■ Finally, the previous table makes no accommodation for the fact that more
than one type of tax may be applicable to a particular product. However, in
the real world, it’s quite possible, for example, for state and local taxes both
to be applied to a product, or for both local taxes and cross-border duties to
be levied on products transported across borders.

Here is an optimized version of the previous table that rectifies these flaws:
12

ch12.indd 223 2/2/05 3:23:23 PM

TEAM LinG

 224 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 12HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 12

This structure is far superior to the previous one, because it separates tax
information from product information. Because the repeated tax values are now
represented through foreign key relationships (which use integers instead of text
strings), the previous tables save space, and are also more compact and easier to
understand. Finally, the establishment of a many-to-many relationship between
products and taxes through a third link table makes it possible to apply multiple
taxes to a single product, or to have the same tax levied on multiple products.

Designing the Order Table
Now, we finally come to the table that handles customer orders. This table needs to
store information on who placed the order, what was ordered, when the order was
placed, and how many units were ordered. All this information will be used when
generating the customer’s invoice. The following table accomplishes all this:

By now, the flaws should be visible to you. By repeating the customer name
and the product name in each record, the table will reduce in value the moment
a customer or product name changes, because it will become impossible to reconcile
the new customer (or product) name in the customer (or product) tables with the
old data in this table. Further, because this table also treats customers and branches
as synonymous, it is impossible to calculate the total sales or total outstanding amount
per branch or per customer.

ch12.indd 224 2/2/05 3:23:24 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 12: Sample Application: Order Tracking System 225

HowTo8 (8)

What makes more sense is to adopt the normalized approach and create a table
that stores only order data, and that links each order to products and customers
through foreign keys. This illustration indicates what such a table might look like:

With the tables now optimized, the next step is to assign appropriate data types
to each field. If you paid attention to Chapter 9, this should be fairly simple to do,
as the tables in this system mostly use the SMALLINT, DECIMAL, and VARCHAR
data types.

With the table relationships defined and the data types set, let’s look at the final
product:

Creating and Populating the Tables
Once the database is designed on paper, the next step is to implement it in MySQL.
If you have a diagram like the one just shown, this is largely a mechanical process

12

ch12.indd 225 2/2/05 3:23:26 PM

TEAM LinG

 226 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 12HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 12

involving the CREATE TABLE and INSERT statements. The following shows
some sample commands:

mysql> CREATE TABLE taxes (

 -> taxId SMALLINT AUTO_INCREMENT NOT NULL,

 -> taxDesc VARCHAR(255) NOT NULL,

 -> taxPercent DECIMAL (4,2) NOT NULL,

 -> PRIMARY KEY (taxId)

 ->);

Query OK, 0 rows affected (0.28 sec)

mysql> CREATE TABLE customers (

 -> customerId SMALLINT AUTO_INCREMENT NOT NULL,

 -> customerName VARCHAR(255) NOT NULL,

 -> PRIMARY KEY (customerId)

 ->);

Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE products (

 -> productId SMALLINT AUTO_INCREMENT NOT NULL,

 -> productDesc VARCHAR(255) NOT NULL,

 -> productUnitPrice DECIMAL (5,2) NOT NULL,

 -> PRIMARY KEY (productId)

 ->);

Query OK, 0 rows affected (0.06 sec)

mysql> CREATE TABLE facilities (

 -> facilityId SMALLINT AUTO_INCREMENT NOT NULL,

 -> FK_customerId SMALLINT NOT NULL,

 -> facilityName VARCHAR(255) NOT NULL,

 -> facilityAddress VARCHAR(255) NOT NULL,

 -> facilityCity VARCHAR(100) NOT NULL,

 -> facilityState CHAR(2) NOT NULL,

 -> facilityPinCode VARCHAR(10) NOT NULL,

 -> facilityTel VARCHAR(50) NOT NULL,

 -> PRIMARY KEY (facilityId),

 -> INDEX (FK_customerId),

 -> INDEX (facilityState)

 ->);

Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE products_taxes (

 -> FK_productId SMALLINT NOT NULL,

ch12.indd 226 2/2/05 3:23:27 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 12: Sample Application: Order Tracking System 227

HowTo8 (8)

 -> FK_taxId SMALLINT NOT NULL,

 -> PRIMARY KEY (FK_productId, FK_taxId)

 ->);

Query OK, 0 rows affected (0.05 sec)

mysql> CREATE TABLE orders (

 -> orderId SMALLINT AUTO_INCREMENT NOT NULL,

 -> FK_facilityId SMALLINT NOT NULL,

 -> FK_productId SMALLINT NOT NULL,

 -> orderDate DATETIME NOT NULL,

 -> orderQuantity INT NOT NULL,

 -> PRIMARY KEY (orderId),

 -> INDEX (FK_facilityId),

 -> INDEX (FK_productId)

 ->);

Query OK, 0 rows affected (0.05 sec)

mysql> INSERT INTO customers (customerName) ↵
VALUES ('ABC Inc.'), ('Zee Corp.'), ('PQW Consulting Group'), ↵
('Big Company plc');

Query OK, 4 rows affected (0.05 sec)

mysql> INSERT INTO facilities (facilityId, FK_customerId, ↵
facilityName, facilityAddress, facilityCity, facilityState, ↵
facilityPinCode, facilityTel, facilityStatus) ↵
VALUES ↵
(1, 1, 'Head Office', '24 Wildgreen Street', 'Los Angeles', ↵
'CA', '84828', '234-567-0890', 1), ↵
(2, 1, 'Texas Accounting Branch', '17 Boingo Towers', 'Houston', ↵
'TX', '34738', '567-891-2345', 0), ↵
(3, 1, 'HR Section', '25A Underten Street', 'Houston', 'TX', ↵
'34768', '567-892-3456', 1), ↵
(4, 2, 'Head Office', '76 Dreed Street', 'Miami', 'FL', ↵
'36279', '246-802-4680', 1), ↵
(5, 4, 'Operations', '45, Ingerstrasse Street', 'Boston', ↵
'MA', '12389', '658-436-6362', 1), ↵
(6, 4, 'Accounting', '9 Tigley Court', 'New York', 'NY', ↵
'84932', '623-234-7299', 1), ↵
(7, 3, 'Main Office', '12C Empryton Road', 'New York', 'NY', ↵
'35653', '123-098-7654', 1);

Query OK, 7 rows affected (1.05 sec)

12

ch12.indd 227 2/2/05 3:23:27 PM

TEAM LinG

 228 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 12HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 12

mysql> INSERT INTO taxes (taxDesc, taxPercent) ↵
VALUES ('Sales Tax', 10), ('Service Tax', 8), ↵
('Excise', 5), ('Customs', 25);

Query OK, 4 rows affected (0.06 sec)

mysql> INSERT INTO products (productDesc, productUnitPrice, ↵
productStatus) VALUES ('Power drill', 59.99, 1), ↵
('Electric kettle', 13.50, 1), ('Lawn mower', 45.00, 1), ↵
('Electronic tape measure', 20.00, 1), ('Alarm clock', 9.99, 1), ↵
('Toaster', 29.99, 1);

Query OK, 6 rows affected (0.06 sec)

mysql> INSERT INTO products_taxes (FK_productId, FK_taxId) ↵
VALUES (1,1), (2,1), (3,1), (3,3), (4,1), (4,3), (4,4), (6,1);

Query OK, 8 rows affected (0.06 sec)

mysql> INSERT INTO orders (orderId, FK_facilityId, FK_productId, ↵
orderDate, orderQuantity) VALUES ↵
(1, 4, 3, '2003-01-02 11:17:07', 10), ↵
(2, 4, 2, '2003-07-06 12:18:09', 25), ↵
(3, 2, 2, '2003-07-10 18:45:59', 5), ↵
(4, 3, 3, '2003-08-15 06:30:09', 3), ↵
(5, 3, 1, '2003-08-15 16:17:18', 5), ↵
(6, 1, 3, '2004-03-12 11:23:56', 7), ↵
(7, 4, 3, '2003-01-02 00:00:00', 12), ↵
(8, 3, 1, '2004-04-22 22:13:46', 1), ↵
(9, 2, 2, '2004-06-29 15:27:08', 20), ↵
(10, 5, 4, '2004-06-19 19:10:00', 20), ↵
(11, 7, 4, '2004-06-11 17:39:04', 35), ↵
(12, 7, 3, '2004-05-13 13:12:11', 2), ↵
(13, 1, 2, '2004-02-14 15:32:26', 4);

Query OK, 13 rows affected (0.06 sec)

You can download the complete set of queries needed to create this database
from this book’s web site at http://www.everythingphpmysql.com/.

Querying the Database
Once the database and tables are created and populated, it’s time to begin doing
something with them. This section runs different types of SELECT queries on the
tables in an attempt to answer some basic questions.

ch12.indd 228 2/2/05 3:23:27 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 12: Sample Application: Order Tracking System 229

HowTo8 (8)

Begin by finding out which branch offices belong to which customers. Because
the facilities and customers tables are linked by the customerID field,
a simple join accomplishes this:

mysql> SELECT c.customerName, f.facilityName, f.facilityState

 -> FROM customers AS c, facilities AS f

 -> WHERE c.customerId = f.FK_customerId;

+----------------------+-------------------------+---------------+

| customerName | facilityName | facilityState |

+----------------------+-------------------------+---------------+

| ABC Inc. | Head Office | CA |

| ABC Inc. | Texas Accounting Branch | TX |

| ABC Inc. | HR Section | TX |

| Zee Corp. | Head Office | FL |

| Big Company plc | Operations | MA |

| Big Company plc | Accounting | NY |

| PQW Consulting Group | Main Office | NY |

+----------------------+-------------------------+---------------+

7 rows in set (0.22 sec)

What about finding out how many branch offices each customer has? It’s
simple if you group the records in the facilities table together by the
customer ID, and then count the total number of records in each group.

mysql> SELECT c.customerName, COUNT(c.customerId) AS totalFacilities

 -> FROM customers AS c, facilities AS f

 -> WHERE c.customerId = f.FK_customerId

 -> GROUP BY f.FK_customerID;

+----------------------+-----------------+

| customerName | totalFacilities |

+----------------------+-----------------+

| ABC Inc. | 3 |

| Zee Corp. | 1 |

| PQW Consulting Group | 1 |

| Big Company plc | 2 |

+----------------------+-----------------+

4 rows in set (0.00 sec)

Add a HAVING clause to get a list of all those customers that have no branches:

mysql> SELECT c.customerName

 -> FROM customers AS c, facilities AS f

 -> WHERE c.customerId = f.FK_customerId

12

ch12.indd 229 2/2/05 3:23:28 PM

TEAM LinG

 230 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 12HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 12

 -> GROUP BY f.FK_customerID

 -> HAVING count(c.customerId) = 1;

+----------------------+

| customerName |

+----------------------+

| Zee Corp. |

| PQW Consulting Group |

+----------------------+

2 rows in set (0.00 sec)

Take another tack now, and find out which taxes apply to which products, by
joining the products and taxes tables:

mysql> SELECT p.productDesc, t.taxDesc

 -> FROM taxes AS t, products AS p, products_taxes AS pt

 -> WHERE t.taxId = pt.FK_taxId AND p.productId = pt.FK_productId;

+-------------------------+-----------+

| productDesc | taxDesc |

+-------------------------+-----------+

| Power drill | Sales Tax |

| Electric kettle | Sales Tax |

| Lawn mower | Sales Tax |

| Lawn mower | Excise |

| Electronic tape measure | Sales Tax |

| Electronic tape measure | Excise |

| Electronic tape measure | Customs |

| Toaster | Sales Tax |

+-------------------------+-----------+

8 rows in set (0.00 sec)

To calculate the price of each item after applying all relevant taxes, run the
following query:

mysql> SELECT p.productDesc, p.productUnitPrice,

 -> SUM(t.taxPercent) as totalTaxPercent,

 -> p.productUnitPrice + (p.productUnitPrice * SUM(t.taxPercent)/100)

 -> as productPostTaxPrice

 -> FROM taxes AS t, products AS p, products_taxes AS pt

 -> WHERE t.taxId = pt.FK_taxId AND p.productId = pt.FK_productId

 -> GROUP BY p.productId;

+--------------+------------------+-----------------+---------------------+

| productDesc | productUnitPrice | totalTaxPercent | productPostTaxPrice |

ch12.indd 230 2/2/05 3:23:28 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 12: Sample Application: Order Tracking System 231

HowTo8 (8)

+--------------+------------------+-----------------+---------------------+

| Power drill | 59.99 | 10.00 | 65.9890 |

| Electric

 kettle | 13.50 | 10.00 | 14.8500 |

| Lawn mower | 45.00 | 15.00 | 51.7500 |

| Electronic

 tape measure | 20.00 | 40.00 | 28.0000 |

| Toaster | 29.99 | 10.00 | 32.9890 |

+--------------+------------------+-----------------+---------------------+

5 rows in set (0.11 sec)

This might appear complex, but it isn’t. The taxes, products, and
products_taxes tables are all joined together, and the total tax (in percentage
terms) on each product is calculated by first grouping the records together by product,
and then calculating the sum of all the tax values. Once the total tax percent on each
product is known, calculating the post-tax price of each item is a simple matter.

This assumes, however, that all taxes are levied on the base price of the
product. If taxes are levied in a progressive manner—for example, customs
duties are calculated on the price after sales and service taxes have been
added—then the previous query will not return the correct result.

To calculate the total sales of a particular item—say, electric kettles—link the
orders table with the products table (and toss in a subquery, to boot):

mysql> SELECT SUM(o.orderQuantity) FROM products AS p, orders AS o

 -> WHERE p.productId = o.FK_productId AND o.FK_productID =

 -> (SELECT productId from products

 -> WHERE productDesc = 'Electric kettle');

+----------------------+

| SUM(o.orderQuantity) |

+----------------------+

| 54 |

+----------------------+

1 row in set (0.00 sec)

To find the total sales of each product, revise the previous query to group the
records by product, and then calculate the sum of orders for each product:

mysql> SELECT p.productDesc, SUM(o.orderQuantity) as totalSales

 -> FROM products AS p, orders AS o

 -> WHERE p.productId = o.FK_productId GROUP BY o.FK_productID;

12

ch12.indd 231 2/2/05 3:23:28 PM

TEAM LinG

 232 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 12HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 12

+-------------------------+------------+

| productDesc | totalSales |

+-------------------------+------------+

| Power drill | 6 |

| Electric kettle | 54 |

| Lawn mower | 34 |

| Electronic tape measure | 55 |

+-------------------------+------------+

4 rows in set (0.05 sec)

To find the total sales by facility, join the facilities and orders tables
together, and then use the SUM() function to obtain the total purchases by each
branch office:

mysql> SELECT f.facilityId, f.facilityName, SUM(o.orderQuantity)

 -> AS totalSales FROM facilities AS f, orders AS o

 -> WHERE f.facilityId = o.FK_facilityId GROUP BY o.FK_facilityId;

+------------+-------------------------+------------+

| facilityId | facilityName | totalSales |

+------------+-------------------------+------------+

| 1 | Head Office | 11 |

| 2 | Texas Accounting Branch | 25 |

| 3 | HR Section | 9 |

| 4 | Head Office | 47 |

| 5 | Operations | 20 |

| 7 | Main Office | 37 |

+------------+-------------------------+------------+

6 rows in set (0.05 sec)

This isn’t useful by itself because it doesn’t tell you which customer each
branch belongs to. To display that information as well, pop in another join to the
customers table:

mysql> SELECT c.customerName, f.facilityName, SUM(o.orderQuantity)

 -> AS totalSales FROM facilities AS f, orders AS o, customers AS c

 -> WHERE f.facilityId = o.FK_facilityId

 -> AND c.customerId = f.FK_customerId

 -> GROUP BY o.FK_facilityId;

+----------------------+-------------------------+------------+

| customerName | facilityName | totalSales |

+----------------------+-------------------------+------------+

| ABC Inc. | Head Office | 11 |

ch12.indd 232 2/2/05 3:23:29 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 12: Sample Application: Order Tracking System 233

HowTo8 (8)

| ABC Inc. | Texas Accounting Branch | 25 |

| ABC Inc. | HR Section | 9 |

| Zee Corp. | Head Office | 47 |

| Big Company plc | Operations | 20 |

| PQW Consulting Group | Main Office | 37 |

+----------------------+-------------------------+------------+

6 rows in set (0.00 sec)

An alternative view of this same data would be to analyze the total sales of each
item by state. To do this, group the orders by state code instead of branch code:

mysql> SELECT f.facilityState, SUM(o.orderQuantity) AS totalSales

 -> FROM facilities AS f, orders AS o

 -> WHERE f.facilityId = o.FK_facilityId

 -> GROUP BY f.facilityState;

+---------------+------------+

| facilityState | totalSales |

+---------------+------------+

| CA | 11 |

| FL | 47 |

| MA | 20 |

| NY | 37 |

| TX | 34 |

+---------------+------------+

5 rows in set (0.00 sec)

To see all orders placed within the last month, join the orders and products
tables, and use the DATE_SUB() function to filter results through the correct
time window:

mysql> SELECT p.productDesc, o.orderQuantity, o.orderDate

 -> FROM products AS p, orders AS o

 -> WHERE p.productId = o.FK_productId AND o.orderDate >

 -> DATE_SUB(NOW(), INTERVAL 1 MONTH);

+-------------------------+---------------+---------------------+

| productDesc | orderQuantity | orderDate |

+-------------------------+---------------+---------------------+

| Electric kettle | 20 | 2004-06-29 15:27:08 |

| Electronic tape measure | 20 | 2004-06-19 19:10:00 |

| Electronic tape measure | 35 | 2004-06-11 17:39:04 |

+-------------------------+---------------+---------------------+

3 rows in set (0.06 sec)

12

ch12.indd 233 2/2/05 3:23:29 PM

TEAM LinG

 234 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 12HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 12

To find the most popular product (the product with the maximum sales) over the
last year, use the following query, which groups and sums the orders by product type,
and then returns the product with the maximum number of orders:

mysql> SELECT p.productDesc, SUM(o.orderQuantity) AS totalSales

 -> FROM products AS p, orders AS o

 -> WHERE p.productId = o.FK_productId

 -> AND o.orderDate > DATE_SUB(NOW(), INTERVAL 1 YEAR)

 -> GROUP BY o.FK_productID

 -> ORDER BY totalSales DESC

 -> LIMIT 0 , 1;

+-------------------------+------------+

| productDesc | totalSales |

+-------------------------+------------+

| Electronic tape measure | 55 |

+-------------------------+------------+

1 row in set (0.05 sec)

To see which products were never purchased in 2004, use a left join between
the products and orders tables:

mysql> SELECT products.productDesc

 -> FROM products

 -> LEFT JOIN orders ON products.productId = orders.FK_productId

 -> AND YEAR(orders.orderDate) = 2004

 -> WHERE orders.FK_productId IS NULL ;

+-------------+

| productDesc |

+-------------+

| Alarm clock |

| Toaster |

+-------------+

2 rows in set (0.00 sec)

And now for the big kahuna: Figure 12-1 shows the total purchases made by
each facility of each product within the current month, together with the pre-tax
and post-tax price, and a subtotal.

ch12.indd 234 2/2/05 3:23:29 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 12: Sample Application: Order Tracking System 235

HowTo8 (8)

m
y
s
q
l
>

S
E
L
E
C
T

f
.
f
a
c
i
l
i
t
y
N
a
m
e
,

p
.
p
r
o
d
u
c
t
D
e
s
c
,

o
.
o
r
d
e
r
Q
u
a
n
t
i
t
y
,

p
.
p
r
o
d
u
c
t
U
n
i
t
P
r
i
c
e

a
s

p
r
e
T
a
x
P
r
i
c
e
,

S
U
M
(
t
.
t
a
x
P
e
r
c
e
n
t
)

a
s

t
a
x
-

P
e
r
c
e
n
t
,

(
p
.
p
r
o
d
u
c
t
U
n
i
t
P
r
i
c
e
*
(
1
+
S
U
M
(
t
.
t
a
x
P
e
r
c
e
n
t
)
/
1
0
0
)
)

a
s

p
o
s
t
T
a
x
P
r
i
c
e
,

(
p
.
p
r
o
d
u
c
t
U
n
i
t
P
r
i
c
e
*
(
1
+
S
U
M
(
t
.
t
a
x
P
e
r
c
e
n
t
)
/
1
0
0
)
*
o
.

o
r
d
e
r
Q
u
a
n
t
i
t
y
)

a
s

s
u
b
T
o
t
a
l

F
R
O
M

f
a
c
i
l
i
t
i
e
s

a
s

f
,

p
r
o
d
u
c
t
s

a
s

p
,

o
r
d
e
r
s

a
s

o
,

p
r
o
d
u
c
t
s
_
t
a
x
e
s

a
s

p
t
,

t
a
x
e
s

a
s

t

W
H
E
R
E

f
.
f
a
c
i
l
i
t
y
I
d
=
o
.
F
K
_
f
a
c
i
l
i
t
y
I
d

A
N
D

o
.
F
K
_
p
r
o
d
u
c
t
I
d
=
p
.
p
r
o
d
u
c
t
I
d

A
N
D

p
.
p
r
o
d
u
c
t
I
d
=
p
t
.
F
K
_
p
r
o
d
u
c
t
I
d

A
N
D

p
t
.
F
K
_
t
a
x
I
d
=
t
.
t
a
x
I
d

G
R
O
U
P

B
Y

f
.
f
a
c
i
l
i
t
y
I
d
,

p
.
p
r
o
d
u
c
t
I
d
,

o
.
o
r
d
e
r
I
d
;

+
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
+

|

f
a
c
i
l
i
t
y
N
a
m
e

|

p
r
o
d
u
c
t
D
e
s
c

|

o
r
d
e
r
Q
u
a
n
t
i
t
y

|

p
r
e
T
a
x
P
r
i
c
e

|

t
a
x
P
e
r
c
e
n
t

|

p
o
s
t
T
a
x
P
r
i
c
e

|

s
u
b
T
o
t
a
l

|

+
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
+

|

H
e
a
d

O
f
f
i
c
e

|

E
l
e
c
t
r
i
c

k
e
t
t
l
e

|

4

|

1
3
.
5
0

|

1
0
.
0
0

|

1
4
.
8
5
0
0

|

5
9
.
4
0
0
0

|

|

H
e
a
d

O
f
f
i
c
e

|

L
a
w
n

m
o
w
e
r

|

7

|

4
5
.
0
0

|

1
5
.
0
0

|

5
1
.
7
5
0
0

|

3
6
2
.
2
5
0
0

|

|

T
e
x
a
s

A
c
c
o
u
n
t
i
n
g

B
r
a
n
c
h

|

E
l
e
c
t
r
i
c

k
e
t
t
l
e

|

5

|

1
3
.
5
0

|

1
0
.
0
0

|

1
4
.
8
5
0
0

|

7
4
.
2
5
0
0

|

|

T
e
x
a
s

A
c
c
o
u
n
t
i
n
g

B
r
a
n
c
h

|

E
l
e
c
t
r
i
c

k
e
t
t
l
e

|

2
0

|

1
3
.
5
0

|

1
0
.
0
0

|

1
4
.
8
5
0
0

|

2
9
7
.
0
0
0
0

|

|

H
R

S
e
c
t
i
o
n

|

P
o
w
e
r

d
r
i
l
l

|

5

|

5
9
.
9
9

|

1
0
.
0
0

|

6
5
.
9
8
9
0

|

3
2
9
.
9
4
5
0

|

|

H
R

S
e
c
t
i
o
n

|

P
o
w
e
r

d
r
i
l
l

|

1

|

5
9
.
9
9

|

1
0
.
0
0

|

6
5
.
9
8
9
0

|

6
5
.
9
8
9
0

|

|

H
R

S
e
c
t
i
o
n

|

L
a
w
n

m
o
w
e
r

|

3

|

4
5
.
0
0

|

1
5
.
0
0

|

5
1
.
7
5
0
0

|

1
5
5
.
2
5
0
0

|

|

H
e
a
d

O
f
f
i
c
e

|

E
l
e
c
t
r
i
c

k
e
t
t
l
e

|

2
5

|

1
3
.
5
0

|

1
0
.
0
0

|

1
4
.
8
5
0
0

|

3
7
1
.
2
5
0
0

|

|

H
e
a
d

O
f
f
i
c
e

|

L
a
w
n

m
o
w
e
r

|

1
0

|

4
5
.
0
0

|

1
5
.
0
0

|

5
1
.
7
5
0
0

|

5
1
7
.
5
0
0
0

|

|

H
e
a
d

O
f
f
i
c
e

|

L
a
w
n

m
o
w
e
r

|

1
2

|

4
5
.
0
0

|

1
5
.
0
0

|

5
1
.
7
5
0
0

|

6
2
1
.
0
0
0
0

|

|

O
p
e
r
a
t
i
o
n
s

|

E
l
e
c
t
r
o
n
i
c

t
a
p
e

m
e
a
s
u
r
e

|

2
0

|

2
0
.
0
0

|

4
0
.
0
0

|

2
8
.
0
0
0
0

|

5
6
0
.
0
0
0
0

|

|

M
a
i
n

O
f
f
i
c
e

|

L
a
w
n

m
o
w
e
r

|

2

|

4
5
.
0
0

|

1
5
.
0
0

|

5
1
.
7
5
0
0

|

1
0
3
.
5
0
0
0

|

|

M
a
i
n

O
f
f
i
c
e

|

E
l
e
c
t
r
o
n
i
c

t
a
p
e

m
e
a
s
u
r
e

|

3
5

|

2
0
.
0
0

|

4
0
.
0
0

|

2
8
.
0
0
0
0

|

9
8
0
.
0
0
0
0

|

+
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
+

1
3

r
o
w
s

i
n

s
e
t

(
0
.
0
5

s
e
c
)

 F
IG

U
R

E
 1

2-
1

Po
st

-t
ax

 p
ri

ce
s

an
d

to
ta

ls
, s

or
te

d
by

 p
ro

du
ct

 a
nd

 lo
ca

tio
n

12

ch12.indd 235 2/2/05 3:23:29 PM

TEAM LinG

 236 How to Do Everything with PHP & MySQL

Summary
This chapter was designed to demonstrate a practical application of MySQL:
creating a simple order tracking system, and then using SQL to obtain answers to
common questions from the raw data stored inside it. This application used many
of the structures and techniques—normalization, data types, operators, groups, joins,
and built-in functions—taught in earlier chapters, and if you were able to follow it
all the way through, you now know enough to begin using MySQL on your own.

To improve your knowledge of MySQL’s capabilities and also to learn how to
design more sophisticated queries, consider visiting the following links:

■ Database normalization, at http://support.microsoft.com/default
.aspx?kbid=283878

■ Examples of common queries, at http://dev.mysql.com/doc/mysql/en/
Examples.html

■ Devshed’s MySQL section, at http://www.devshed.com/c/a/MySQL/

■ Building sophisticated MySQL subqueries, at http://www.melonfire.com/
community/columns/trog/article.php?id=204

■ Using different types of joins, at http://www.melonfire.com/community/
columns/trog/article.php?id=148

■ Using the MySQL query cache, at http://dev.mysql.com/doc/mysql/en/
Query_Cache.html

■ Optimizing MySQL queries, at http://dev.mysql.com/doc/mysql/en/
Query_Speed.html

■ MySQL replication, at http://dev.mysql.com/doc/mysql/en/Replication.html

■ More articles and tutorials on MySQL, at http://www.melonfire.com/
community/columns/trog/archives.php?category=MySQL and http://
www.mysql-tcr.com/

ch12.indd 236 2/2/05 3:23:30 PM

TEAM LinG

Part IV

HowTo8 (8)

Using PHP
with MySQL

ch13.indd 237 2/8/05 6:06:11 PM

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

TEAM LinG

ch13.indd 238 2/8/05 6:06:11 PM

This page is intentionally left blank.

TEAM LinG

Chapter 13

HowTo8 (8)

Querying a MySQL
Database with PHP

ch13.indd 239 2/8/05 6:06:11 PM

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

TEAM LinG

 240 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 13HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 13

By now, you’ve seen PHP and MySQL in action, and you should have a fair
appreciation of what they can do individually. But why stop there? It’s also

possible to use them together. Because PHP comes with built-in support for
MySQL, developers can access and query MySQL databases through a PHP script,
and then use the results of the query to dynamically generate web pages. This close
integration makes it possible to significantly simplify the task of creating database-
driven web applications, and it has made the PHP-MySQL combination extremely
popular with open-source developers.

This chapter examines the MySQL API in PHP, explaining how it can be used
to perform MySQL queries and process the results of those queries.

How to…

■ Connect to (and disconnect from) a MySQL database server

■ Execute an SQL query and process the results

■ Dynamically populate an HTML page with the results of an SQL query

■ Catch errors in MySQL query execution

■ Obtain information on the current state of the MySQL server

Using MySQL and PHP Together
PHP has included support for MySQL since version 3.x, although the procedure
to activate this support has varied widely between versions. PHP 4.x included a set
of MySQL client libraries, which were activated by default. PHP 5.x no longer
bundles these libraries, however, due to licensing issues, so you need to obtain and
install them separately. Then, you need to explicitly activate the MySQL extension—
ext/mysql—by adding the --with-mysql option to PHP’s configure script.
The procedure to accomplish this is outlined in Chapter 2.

The MySQL API built into PHP is designed to accomplish four primary goals:

■ Manage database connections

■ Execute queries

■ Process query results

■ Provide debugging and diagnostic information

ch13.indd 240 2/8/05 6:06:11 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 13: Querying a MySQL Database with PHP 241

HowTo8 (8)

To illustrate these functions, let’s create a simple MySQL database table, and
then use PHP to connect to the server, retrieve a set of results, and format them for
display on a web page. The sample table used here consists of a single table named
items, which holds a list of products and their prices. Here are the SQL queries
needed to create and initialize this table:

CREATE TABLE items (

itemID int(11) NOT NULL auto_increment,

itemName varchar(255) NOT NULL default '',

itemPrice float NOT NULL default '0',

PRIMARY KEY (itemID)) TYPE=MyISAM;

INSERT INTO items VALUES (1, 'Paperweight', '3.99');

INSERT INTO items VALUES (2, 'Key ring', '2.99');

INSERT INTO items VALUES (3, 'Commemorative plate', '14.99');

INSERT INTO items VALUES (4, 'Pencils (set of 4)', '1.99');

INSERT INTO items VALUES (5, 'Coasters (set of 3)', '4.99');

You can enter these commands either interactively or noninteractively through
the MySQL client program. Once entered, run a SELECT query to ensure that the
data has been successfully imported.

mysql> SELECT * FROM items;

+--------+---------------------+-----------+

| itemID | itemName | itemPrice |

+--------+---------------------+-----------+

| 1 | Paperweight | 3.99 |

| 2 | Key ring | 2.99 |

| 3 | Commemorative plate | 14.99 |

| 4 | Pencils (set of 4) | 1.99 |

| 5 | Coasters (set of 3) | 4.99 |

+--------+---------------------+-----------+

5 rows in set (0.00 sec)

Now, to do the same thing using PHP, create the following PHP script:

<html>

<head></head>

<body>

<?php

// open connection to MySQL server

$connection = mysql_connect('localhost', 'guest', 'pass') ↵
or die ('Unable to connect!');

13

ch13.indd 241 2/8/05 6:06:12 PM

TEAM LinG

 242 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 13HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 13

// select database for use

mysql_select_db('db2') or die ('Unable to select database!');

// create and execute query

$query = 'SELECT * FROM items';

$result = mysql_query($query) ↵
or die ('Error in query: $query. ' . mysql_error());

// check if records were returned

if (mysql_num_rows($result) > 0)

{

 // print HTML table

 echo '<table width=100% cellpadding=10 cellspacing=0 border=1>';

 echo

'<tr><td>ID</td><td>Name</td><td>Price</td></tr>';

 // iterate over record set

 // print each field

 while($row = mysql_fetch_row($result))

 {

 echo '<tr>';

 echo '<td>' . $row[0] . '</td>';

 echo '<td>' . $row[1] . '</td>';

 echo '<td>' . $row[2] . '</td>';

 echo '</tr>';

 }

 echo '</table>';

}

else

{

 // print error message

 echo 'No rows found!';

}

// once processing is complete

// free result set

mysql_free_result($result);

// close connection to MySQL server

mysql_close($connection);

?>

</body>

</html>

ch13.indd 242 2/8/05 6:06:12 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 13: Querying a MySQL Database with PHP 243

HowTo8 (8)

When you view this through your browser, you will see something that looks
like Figure 13-1.

An examination of the previous script will reveal that using PHP to perform
and process a MySQL query involves several steps, which the following explains.

 1. To begin communication with the MySQL database server, you first need to
open a connection to the server. All communication between PHP and the
database server takes place through this connection, which is initialized by
the mysql_connect() function.

 The mysql_connect() function requires three parameters: the host
name of the MySQL server, and the MySQL username and password
required to gain access to it. If the function is able to successfully initialize
a connection, it returns a link identifier, which is stored in the variable
$connection. This identifier is used throughout the script when
communicating with the database.

 FIGURE 13-1 Querying a MySQL database through PHP

13

ch13.indd 243 2/8/05 6:06:12 PM

TEAM LinG

 244 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 13HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 13

 2. Once a connection has been initialized, the next step is to select a database
for use (this is equivalent to the SQL USE command) with the mysql_
select_db() command, and then send the server a query through the
mysql_query() function. Both functions use the last opened connection
as their default for all operations.

 3. The result set returned by the query is assigned to the variable $result.
This result set may contain, depending on your query, zero or more rows
or columns of data. The number of rows in the result set is obtained from
the mysql_num_rows() function. Assuming one or more rows exist,
the mysql_fetch_row() function is used to iterate over the result set
and retrieve rows as arrays. Individual field values can then be accessed as
array elements.

There are several other alternatives to mysql_fetch_row(). These
are discussed in detail in the section entitled “Processing Result Sets.”

 4. Each result set returned by a query occupies some amount of memory.
Once you’re done processing it, therefore, it’s a good idea to use the
mysql_free_result() function to free up the used memory for
other purposes. And, once you’re done querying the database, close the
connection with a call to mysql_close().

The previous steps outlined the standard process for using data from a MySQL
database in PHP. The following sections examine each of these steps in greater
detail.

Managing Database Connections
In PHP, connections to the MySQL server are opened via the mysql_connect()
function, which accepts a number of different arguments: the hostname (and,
optionally, the port number) of the MySQL server, the MySQL username to gain
access, and the corresponding password. Here are some examples:

<?php

// open connection to MySQL server

$connection = mysql_connect('mydbserver', 'guest', 'pass');

ch13.indd 244 2/8/05 6:06:13 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 13: Querying a MySQL Database with PHP 245

HowTo8 (8)

// print status message

if ($connection)

{

 echo 'Connected!';

}

else

{

 echo 'Could not connect!';

}

?>

<?php

// open connection to MySQL server on custom port

$connection = mysql_connect('localhost:3316', 'root', 'secret') ↵
or die ('Unable to connect');

?>

If a connection can be established, the mysql_connect() function returns
a link identifier, which is used by other functions to communicate with the server.
If a connection cannot be established, the function returns false and, depending on
the default error level of the PHP script, an error message indicating the cause of
failure will be printed to the output device (usually the browser).

To avoid this automatically generated error message, it is necessary to prefix
the call to mysql_connect() with PHP’s special error-suppression operator: @.
Here is an example:

<?php

// open connection to MySQL server

$connection = @mysql_connect('mydbserver', 'guest', 'pass');

// print status message

echo $connection ? 'Connected!' : 'Could not connect!';

?>

Normally, the link to the server remains open for the lifetime of the script,
and is automatically closed by PHP once the script completes executing. That
said, just as it’s good manners to close the doors you open, it’s good programming
practice to explicitly close the MySQL connection once you finish using it.

13

ch13.indd 245 2/8/05 6:06:13 PM

TEAM LinG

 246 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 13HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 13

This is accomplished by calling the mysql_close() function, which closes
the link and returns the used memory to the system. Here is an example:

<?php

// open connection to MySQL server

$connection = @mysql_connect('mydbserver', 'guest', 'pass');

if ($connection)

{

 // close connection

 mysql_close($connection);

}

?>

Using Persistent Connections
When dealing with high-traffic sites, the constant opening and closing of MySQL
server connections can often prove a drain on resources. In such situations, it is
possible to obtain a reduction in overhead, as well as some performance gain, by
replacing the call to mysql_connect() with a call to mysql_pconnect().

The mysql_pconnect() function opens a “persistent” connection to the
server. Such a persistent connection does not automatically end when the script
creating it ends; rather, it remains available for use by other scripts requesting an
equivalent connection to the MySQL server. Because such “persistent” connections
reduce the need for scripts to open a different connection for every request, they are
considered more efficient and can produce performance gains in certain situations.

The arguments passed to the mysql_pconnect() function are identical to
those passed to the mysql_connect() function. Here is an example:

<?php

// open connection to MySQL server on custom port

$connection = mysql_pconnect('mydbserver', 'myuser', 'mypass') ↵
or die ('Unable to connect!');

// print status message

echo $connection ? 'Persistent connection open!' : ↵
'Could not open persistent connection!';

?>

If your web server and MySQL server are on the same physical machine,
you can obtain a performance boost by passing a UNIX socket to mysql_
connect(), instead of a hostname. See http://www.php.net/manual/en/
function.mysql-connect.php for examples and syntax.

ch13.indd 246 2/8/05 6:06:13 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 13: Querying a MySQL Database with PHP 247

HowTo8 (8)

Performing Queries
Once a connection has been opened, the next step is to select a database for use.
This is done with the mysql_select_db() function, which accepts a database
name as argument. It can optionally also accept a link identifier; if this is not
specified, the function defaults to using the last opened connection. Here’s an
example of how it may be used:

<?php

// select the database "mydb"

mysql_select_db('mydb'),

?>

Once the database has been selected, it becomes possible to execute queries on
it. In PHP, MySQL queries are handled via the mysql_query() function, which
accepts a query string and a link identifier and sends it to the server represented by
the link identifier. If no link identifier is specified, the last opened link is used as
the default. Here is an example:

<?php

// execute query

$result = mysql_query('SELECT * FROM items WHERE price < 10.00');

?>

Don’t use a semicolon to terminate the query string passed to mysql_
query().

Depending on the type of query, the return value of mysql_query() differs:

■ If the query is a data-retrieval query—for example, a SELECT or SHOW
query—then mysql_query() returns a resource identifier pointing to
the query’s result set, or false on failure. The resource identifier can then
be used to process the records in the result set.

■ If the query is a data manipulation query—for example, an INSERT or
UPDATE query—then mysql_query() returns true if the query succeeds,
or false on failure.

The result-set processing functions outlined in the next section can now be
used to extract data from the return value of mysql_query().

13

ch13.indd 247 2/8/05 6:06:14 PM

TEAM LinG

 248 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 13HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 13

Processing Result Sets
The return value of a successful mysql_query() invocation can be processed
in a number of different ways, depending on the type of query executed.

Queries Which Return Data
For SELECT-type queries, a number of techniques exist to process the returned
data. The simplest is the mysql_fetch_row() function, which returns each
record as a numerically indexed PHP array. Individual fields within the record
can then be accessed using standard PHP-array notation. The following example
illustrates this:

<?php

// open connection to MySQL server

$connection = mysql_connect('localhost', 'guest', 'pass') ↵
or die ('Unable to connect!');

// select database for use

mysql_select_db('db2') or die ('Unable to select database!');

Out with the Old…

PHP 5.0 includes a brand-spanking-new MySQL extension called MySQLi
(MySQL Improved). This extension, intended for use only with MySQL 4.1.3
or better, boasts improved security, an object-oriented interface, and support
for upcoming MySQL features. If you need the new features in MySQL 4.1.3
or better, or if you’re using an older version of MySQL, but you still want
to benefit from the speed/security improvements in the new extension, you
may want to consider using it. MySQLi works almost exactly like the “old”
MySQL extension described in this chapter, except that function names begin
with mysqli_*() instead of mysql_*(). Read more about it at www
.php.net/manual/en/ref.mysqli.php.

ch13.indd 248 2/8/05 6:06:14 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 13: Querying a MySQL Database with PHP 249

HowTo8 (8)

// create and execute query

$query = 'SELECT itemName, itemPrice FROM items';

$result = mysql_query($query) ↵
or die ('Error in query: $query. ' . mysql_error());

// check if records were returned

if (mysql_num_rows($result) > 0)

{

 // iterate over record set

 // print each field

 while($row = mysql_fetch_row($result))

 {

 echo $row[0] . " - " . $row[1] . "\n";

 }

}

else

{

 // print error message

 echo 'No rows found!';

}

// once processing is complete

// free result set

mysql_free_result($result);

// close connection to MySQL server

mysql_close($connection);

?>

Notice, in the previous listing, how the call to mysql_fetch_row() is
wrapped in a mysql_num_rows() conditional test. The mysql_num_rows()
function returns the number of records in the result set and comes in handy to
check whether the query returned any records at all.

A Clean Field

There’s also a mysql_num_fields() function, which returns the number of
fields in each record of the result set.

13

ch13.indd 249 2/8/05 6:06:14 PM

TEAM LinG

 250 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 13HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 13

You can use PHP’s mysql_fetch_assoc() function to represent each
row as an associative array of field-value pairs, a minor variation of the previously
used technique. Take a look:

<?php

// open connection to MySQL server

$connection = mysql_connect('localhost', 'guest', 'pass') ↵
or die ('Unable to connect!');

// select database for use

mysql_select_db('db2') or die ('Unable to select database!');

// create and execute query

$query = 'SELECT itemName, itemPrice FROM items';

$result = mysql_query($query) ↵
or die ('Error in query: $query. ' . mysql_error());

// check if records were returned

if (mysql_num_rows($result) > 0)

{

 // iterate over record set

 // print each field

 while($row = mysql_fetch_assoc($result))

 {

 echo $row['itemName'] . " - " . $row['itemPrice'] . "\n";
 }

}

else

{

 // print error message

 echo 'No rows found!';

}

// once processing is complete

// free result set

mysql_free_result($result);

// close connection to MySQL server

mysql_close($connection);

?>

In this case, field values are accessed using the field name instead of the index.

ch13.indd 250 2/8/05 6:06:15 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 13: Querying a MySQL Database with PHP 251

HowTo8 (8)

There’s also the mysql_fetch_object() function, which returns each row
as an object, with properties corresponding to the field names. Here is an example:

<?php

// open connection to MySQL server

$connection = mysql_connect('localhost', 'guest', 'pass') ↵
or die ('Unable to connect!');

// select database for use

mysql_select_db('db2') or die ('Unable to select database!');

// create and execute query

$query = 'SELECT itemName, itemPrice FROM items';

$result = mysql_query($query) ↵
or die ('Error in query: $query. ' . mysql_error());

// check if records were returned

if (mysql_num_rows($result) > 0)

{

 // iterate over record set

 // print each field

 while($row = mysql_fetch_object($result))

 {

 echo $row->itemName . " - " . $row->itemPrice . "\n";

 }

}

else

{

 // print error message

 echo 'No rows found!';

}

// once processing is complete

// free result set

mysql_free_result($result);

// close connection to MySQL server

mysql_close($connection);

?>

In this case, each $row object is created with properties corresponding to the
field names in that row. Row values can be accessed using standard $object->
property notation.

13

ch13.indd 251 2/8/05 6:06:15 PM

TEAM LinG

 252 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 13HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 13

If you like having your cake and eating it too, you will probably enjoy the
mysql_fetch_array() function, which returns both an associative
array and a numerically indexed array, a combination of the mysql_
fetch_row() and mysql_fetch_assoc() functions. Read about
it at http://www.php.net/manual/en/function.mysql-fetch-array.php.

Queries That Alter Data
You can also use PHP’s MySQL API for queries that don’t return a result set, for
example, INSERT or UPDATE queries. Consider the following example, which
demonstrates by asking for user input through a form, and then INSERT-ing that
data into the database:

<html>

<head>

<basefont face="Arial">

</head>

<body>

<?php

if (!$_POST['submit'])

{

 // form not submitted

?>

 <form action="<?=$_SERVER['PHP_SELF']?>" method="post">

 Item name: <input type="text" name="name">

 Item price: <input type="text" name="price">

 <input type="submit" name="submit">

 </form>

<?php

}

else

{

 // get form input

 // escape input values for greater safety

 $name = (trim($_POST['name']) == '') ? ↵
die ('ERROR: Enter a name') : mysql_escape_string($_POST['name']);

 $price = (trim($_POST['price'] == '') || !is_numeric($_POST['price'])) ↵
? die ('ERROR: Enter a price') : $_POST['price'];

 // open connection

 $connection = mysql_connect('localhost', 'guest', 'pass') ↵
or die ('Unable to connect!');

 // select database

 mysql_select_db('db2') or die ('Unable to select database!');

ch13.indd 252 2/8/05 6:06:15 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 13: Querying a MySQL Database with PHP 253

HowTo8 (8)

 // create query

 $query = "INSERT INTO items (itemName, itemPrice) ↵
VALUES ('$name', '$price')";

 // execute query

 $result = mysql_query($query) ↵
or die ("Error in query: $query. " . mysql_error());

 // print ID of inserted record

 echo 'New record inserted with ID ' . mysql_insert_id() . '<br \>';

 // print number of rows affected

 echo mysql_affected_rows() . ' record(s) affected';

 // close connection

 mysql_close($connection);

}

?>

</body>

</html>

Here, the user is first presented with a form asking for an item and its associated
price. Once the form is submitted, the form input is used inside to create an INSERT
query, which is then sent to the database with the mysql_query() method. Because
mysql_query() returns a Boolean indicating whether the query was successful,
it is possible to check whether the INSERT took place and return an appropriate
message.

The previous example has three new functions:

■ The mysql_escape_string() function escapes special characters
(like quotes) in the user input, so it can be safely entered into the database.
If the magic_quotes_gpc setting in your PHP configuration file is
enabled, you might need to first call stripslashes() on the user input
before calling mysql_escape_string(), to avoid characters getting
escaped twice.

■ The mysql_insert_id() function returns the ID generated by the
previous INSERT query (useful only if the table into which the INSERT
occurs contains an AUTO_INCREMENT field).

■ The mysql_affected_rows() function returns the total number of
rows affected by the last operation.

All these functions come in handy when dealing with queries that alter the
database.

13

ch13.indd 253 2/8/05 6:06:15 PM

TEAM LinG

 254 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 13HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 13

Handling Errors
Before you go out there and start building data-driven web sites, you should be
aware that PHP’s MySQL API also comes with some powerful error-tracking
functions that can reduce debugging time. Take a look at the following example,
which contains a deliberate error in the SELECT query string:

<?php

// open connection to MySQL server

$connection = mysql_connect('localhost', 'guest', 'pass') ↵
or die ('Unable to connect!');

// select database for use

mysql_select_db('db2') or die ('Unable to select database!');

// create and execute query

$query = 'SELECT FROM items';

$result = mysql_query($query);

// if no result

// print MySQL error message

if(!$result)

{

 echo 'MySQL error ' . mysql_errno() . ': ' . mysql_error();

 mysql_close($connection);

}

?>

The mysql_errno() function displays the error code returned by MySQL
if there’s an error in your SQL statement, while the mysql_error() function
returns the actual error message. Turn these both on, and you’ll find they can
significantly reduce the time you spend fixing bugs.

Using Ancillary Functions
In addition to the functions discussed in previous sections, PHP’s MySQL API
comes with a number of ancillary functions that may be used to find out more
about the databases and tables on the MySQL server or to obtain server status
information. Table 13-1 lists the important functions in this category.

ch13.indd 254 2/8/05 6:06:16 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 13: Querying a MySQL Database with PHP 255

HowTo8 (8)

And here’s an example that demonstrates some of these functions in action:

<html>

<head>

<basefont face="Arial">

</head>

<body>

<?php

// open connection

$connection = mysql_connect('localhost', 'guest', 'pass') ↵
or die ('Unable to connect!');

// get list of available databases and tables

$dbs = mysql_list_dbs($connection);

echo 'Available databases and tables:';

echo '';

for ($x=0; $x<mysql_num_rows($dbs); $x++)

Function What It Does

mysql_get_server_info() Returns the version number of the MySQL server

mysql_get_proto_info() Returns the version number of the MySQL protocol

mysql_get_client_info() Returns the version number of the MySQL client

mysql_get_host_info() Returns information on the MySQL host

mysql_thread_id() Returns the thread ID for the current MySQL connection

mysql_list_dbs() Returns a list of databases available on the MySQL server

mysql_list_tables() Returns a list of tables available in a specified MySQL
database

mysql_list_fields() Returns information about the fields of a specified MySQL
table

mysql_stat() Returns status information about the MySQL server

mysql_info() Returns information about the last executed query

mysql_db_name() Returns a name of a database from the list generated by
mysql_list_dbs()

mysql_tablename() Returns a name of a table from the list generated by
mysql_list_tables()

mysql_ping() Tests the server connection

 TABLE 13-1 Useful Debugging and Diagnostic Functions

13

ch13.indd 255 2/8/05 6:06:16 PM

TEAM LinG

 256 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 13HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 13

{

 // print database name

 $db = mysql_db_name($dbs, $x);

 echo '' . $db . '';

 // for each database, get list of tables within it

 $tables = mysql_list_tables($db, $connection);

 echo '';

 // iterate over table list

 for ($y=0; $y<mysql_num_rows($tables); $y++)

 {

 // print table name

 echo '' . mysql_tablename($tables, $y) . '';

 }

 echo '';

}

// get version and host information

echo "Client version: " . mysql_get_client_info() . "
";

echo "Server version: " . mysql_get_server_info() . "
";

echo "Protocol version: " . mysql_get_proto_info() . "
";

echo "Host: " . mysql_get_host_info() . "
";

echo "Thread ID: " . mysql_thread_id() . "
";

// get server status

$status = mysql_stat();

echo $status;

// close connection

mysql_close($connection);

?>

</body>

</html>

Figure 13-2 illustrates what the output might look like.
The first part of this script is fairly simple: it runs the mysql_list_dbs()

function to get a list of databases, and then it iterates over the list and runs the
mysql_list_tables() function to retrieve the list of tables inside each.
Next, the mysql_get_*_info() functions provide the client version number,
the MySQL version number, the version number of the special MySQL client-
server protocol used for communication between the two, the current hostname,

ch13.indd 256 2/8/05 6:06:16 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 13: Querying a MySQL Database with PHP 257

HowTo8 (8)

how it is connected to the MySQL server, and the connection thread ID. Finally,
new in PHP 4.3.0, is the mysql_stat() function, which returns a string
containing status information on the MySQL server (including information on
server uptime, open tables, queries per second, and other statistical information).

Summary
The whole is frequently greater than the sum of its parts . . . and so it is with PHP
and MySQL. The combined capabilities of the two technologies make it possible to
integrate the results of database queries into web pages quickly and efficiently, and
thereby speed the development of database-driven web sites and applications.

This chapter examined the PHP-MySQL API in detail, showing you how to use
PHP to manage MySQL server connections, perform queries, and process query
results. It also demonstrated many of the ancillary functions built into the PHP-
MySQL API, including functions to retrieve error messages, obtain server status
at run time, and list database, table, and field information.

 FIGURE 13-2 Viewing MySQL databases and tables through PHP

13

ch13.indd 257 2/8/05 6:06:16 PM

TEAM LinG

 258 How to Do Everything with PHP & MySQL

To learn more about PHP’s MySQL functions and to see examples of them in
action, consider visiting the following links:

■ PHP’s MySQL extension, at http://www.php.net/manual/en/ref.mysql.php

■ The improved MySQLi extension in PHP 5.0, at http://www.php.net/
manual/en/ref.mysqli.php

■ More examples of using PHP with MySQL, at http://www.melonfire.com/
community/columns/trog/article.php?id=18

■ A case study of building an online recruitment application with PHP and
MySQL, at http://www.melonfire.com/community/columns/trog/article
.php?id=74

■ A case study of building a time-and-material tracking system with PHP and
MySQL, at http://www.melonfire.com/community/columns/trog/article
.php?id=92

■ A case study of building a document management system with PHP and
MySQL, at http://www.melonfire.com/community/columns/trog/article
.php?id=64

ch13.indd 258 2/8/05 6:06:17 PM

TEAM LinG

Chapter 14

HowTo8 (8)

Validating
User Input

ch14.indd 259 2/2/05 3:28:44 PM

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

TEAM LinG

 260 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 14HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 14

You may have heard the acronym GIGO before. It stands for “Garbage In,
Garbage Out” and, very simply, it means that bad input produces bad output.

Or, in PHP-MySQL terms, if the raw data inserted into a MySQL database is
flawed, any subsequent analysis or report based on that data is sure to be misleading
or incorrect.

That’s where input validation comes in. By sanitizing and validating user input
before it reaches the database, a developer guarantees the integrity of the database
and creates a sound foundation for future calculations and operations. Such input
validation is a critical part of your PHP-MySQL application development.

How to…

■ Use database constraints to reduce the incidence of empty or duplicate records

■ Set field data types to make input data more consistent

■ Ensure that required form fields are filled

■ Validate the length and data type of user input

■ Use regular expressions for more complex pattern matching

■ Capture validation errors in a single list, instead of one by one

This chapter makes frequent reference to the terms “application layer” and
“database layer.” For the uninitiated, the database layer in this context refers
to the MySQL server, and the built-in functions and features it provides. The
application layer here is the PHP script, or application, that interacts with
the MySQL server to perform calculations or read/write data.

Setting Input Constraints at the Database Layer
When it comes to maintaining the integrity of your database, a powerful tool is
provided by the database system itself: the capability to restrict the type of data entered
into a field or make certain fields mandatory, using field definitions or constraints.

Using the NULL Modifier
As you’ve seen in Chapter 9, MySQL enables you to specify whether a field is
allowed to be empty or if it must necessarily be filled with data, by placing the
NULL and NOT NULL modifiers after each field definition. This is a good way

ch14.indd 260 2/2/05 3:28:44 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 14: Validating User Input 261

HowTo8 (8)

to ensure that required fields of a record are never left empty, because MySQL will
simply reject entries that do not have all the necessary fields filled in. Here’s an
example of this in action:

mysql> CREATE TABLE products (

 -> id int(4),

 -> name varchar(50)

 ->);

Query OK, 0 rows affected (0.06 sec)

Here, the name field can hold NULL values, which means the following
INSERT will go unchallenged,

mysql> INSERT INTO products VALUES (NULL, NULL);

Query OK, 1 row affected (0.06 sec)

and create the following nonsense entry in the table:

mysql> SELECT * FROM products;

+------+------+

| id | name |

+------+------+

| NULL | NULL |

+------+------+

1 row in set (0.11 sec)

Now, look what happens if you make the name field mandatory:

mysql> CREATE TABLE products (

 -> id int(4),

 -> name varchar(50) NOT NULL

 ->);

Query OK, 0 rows affected (0.05 sec)

mysql> INSERT INTO products VALUES (NULL, NULL);

ERROR 1048: Column 'name' cannot be null

Of course, because MySQL makes a distinction between a NULL value and
an empty string (''), the following record—which is also meaningless—would
be accepted.

mysql> INSERT INTO products VALUES ('', '');

Query OK, 1 row affected (0.05 sec)

14

ch14.indd 261 2/2/05 3:28:45 PM

TEAM LinG

 262 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 14HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 14

mysql> SELECT * FROM products;

+------+------+

| id | name |

+------+------+

| 0 | |

+------+------+

1 row in set (0.00 sec)

Thus, while the NOT NULL modifier can help reduce the incidence of empty
or incomplete records in a database, it is not a comprehensive solution. It needs to
be supplemented by application-level verification to ensure that empty strings are
caught before they get to the database.

Using the UNIQUE Modifier
Using MySQL’s built-in validation mechanisms has an important advantage: it
makes it easy to perform certain types of validation that would be lengthy and
time-consuming to write code for. Consider, for example, the situation of ensuring
that a particular field contains only unique values. MySQL makes it possible to
do this, simply by attaching a UNIQUE modifier to the field, as in the following
example:

mysql> CREATE TABLE users (

 -> username VARCHAR(50) NOT NULL UNIQUE

 ->);

Query OK, 0 rows affected (0.06 sec)

mysql> INSERT INTO users (username) VALUES ('tim');

Query OK, 1 row affected (0.06 sec)

mysql> INSERT INTO users (username) VALUES ('jon');

Query OK, 1 row affected (0.00 sec)

Now, if you attempt to enter another record with the value tim in the
username field, MySQL will reject your entry with an error:

mysql> INSERT INTO users (username) VALUES ('tim');

ERROR 1062: Duplicate entry 'tim' for key 1

If you had to perform this type of validation at the application layer, the only
way to do it would be to select all the records in the table, scan the username
field to obtain a list of all values present in it, and check the user’s input against

ch14.indd 262 2/2/05 3:28:45 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 14: Validating User Input 263

HowTo8 (8)

each to eliminate duplication. Needless to say, this is expensive, both in terms of
CPU cycles and time. Fortunately, the UNIQUE modifier renders it unnecessary.

Using Field Data Types
Of course, checking for mandatory and unique values are just small pieces of a much
bigger picture. It’s also necessary to make sure that the data being entered is of the
correct type—after all, you don’t want string values in a numeric field or decimal
values in a timestamp field. To this end, MySQL also requires you to specify the type
of data a particular field can hold at the time of defining a table. Input that does not
match the named data type is automatically converted into a more acceptable, though
incorrect, value.

Here’s an example of this:

mysql> CREATE TABLE items (

 -> id INT(2) NOT NULL,

 -> price INT(4) NOT NULL

 ->);

Query OK, 0 rows affected (0.05 sec)

mysql> INSERT INTO items (id, price) VALUES (1, 'five');

Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM items;

+----+-------+

| id | price |

+----+-------+

| 1 | 0 |

+----+-------+

1 row in set (0.05 sec)

In this case, because the price field has been constrained to only store
integers, the string five has been converted into a 0 and saved.

Of course, this isn’t perfect. Sure, you were able to avoid storing a string instead
of a number, but you also simply replaced one problem with another: the field
now contains a 0 instead of a valid price. This is a good example of how database
constraints can help restrict input errors, yet not solve them completely. To close the
gap between what should happen and what actually happens, it’s necessary to also
validate input at the application layer, before it even reaches the database. The next
section discusses this in some detail.

14

ch14.indd 263 2/2/05 3:28:45 PM

TEAM LinG

 264 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 14HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 14

Validating Input at the Application Layer
When it comes to catching errors in user input, the best place to do this is at the
point of entry—the application itself. That’s why a good part of this chapter is
devoted to showing you techniques you can use to catch common input errors and
ensure that they don’t get into your database.

Checking for Required Values
One of the most common mistakes a novice programmer makes is forgetting to
check for required field values. This can result in a database with numerous empty
records, and these empty records can, in turn, affect the accuracy of your queries.

To see what I mean by this, consider the following users table:

mysql> CREATE TABLE users (

 -> username varchar(8) NOT NULL DEFAULT '',

 -> password varchar(8) NOT NULL DEFAULT ''

 ->) TYPE=MyISAM;

Query OK, 0 rows affected (0.05 sec)

When inserting a record into this table, values must be specified for both
username and password fields (this is reinforced by the use of NOT NULL
constraints on these fields). Here’s a script that enforces these constraints at the
application level:

<html>

<head>

<basefont face="Arial">

</head>

<body>

<?php

if (!$_POST['submit'])

{

 // form not submitted

?>

 <form action="<?=$_SERVER['PHP_SELF']?>" method="post">

 Username: <input type="text" name="username">

 Password: <input type="password" name="password">

 <input type="submit" name="submit" value="Sign Up">

 </form>

ch14.indd 264 2/2/05 3:28:45 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 14: Validating User Input 265

HowTo8 (8)

<?php

}

else

{

 // form submitted

 // check the username field

 $username = ↵
(!isset($_POST['username']) || trim($_POST['username']) == "") ↵
? die ('ERROR: Enter a username') : ↵
mysql_escape_string(trim($_POST['username']));

 // check the password field

 $password = ↵
(!isset($_POST['password']) || trim($_POST['password'] == "")) ↵
? die ('ERROR: Enter a password') : ↵
mysql_escape_string(trim($_POST['password']));

 // connect to database

 // open connection

 $connection = mysql_connect('localhost', 'guest', 'pass') ↵
or die ('Unable to connect!');

 // select database

 mysql_select_db('db2') or die ('Unable to select database!');

 // create query

 $query = "INSERT INTO users (username, password) ↵
VALUES ('$username', '$password')";

 // execute query

 $result = mysql_query($query) ↵
or die ("Error in query: $query. " . mysql_error());

 // close connection

 mysql_close($connection);

}

?>

</body>

</html>

14

ch14.indd 265 2/2/05 3:28:46 PM

TEAM LinG

 266 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 14HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 14

To see this in action, attempt to submit the previous form with either of the two
fields empty. The script will simply die() with an error message. This is because
of the additional lines of input validation code in the script.

In the previous listing, the validation test consists of checking for data in the
username and password field, by using a combination of PHP’s isset() and
trim() functions. The isset() function checks whether the named variable
is set or not, and returns false if the variable has either not been set or assigned
a NULL value. The trim() function removes the white space around the ends of
the string, and then compares it with an empty string ("") to ensure that it contains
at least one character.

If both tests return true, then the script proceeds to connect to the database and
insert the record into the table (this process is explained in detail in Chapter 13).
If either one returns false, the user clearly has not entered the corresponding form
value, and the script terminates immediately, without even attempting to open
a connection to the database.

This listing makes it clear that a simple conditional test is all you need to ensure
that required fields in your forms are never left empty. In the absence of these lines
of validation code, the script would save a record to the database without first
checking it for validity. In the context of the previous example, this means a user
could successfully sign up without providing a username or a password—a clear
error that also has serious ramifications for the security of your application (because
an empty record exists, a user could gain access to the application, even without
a username and password). This can be easily avoided by testing the user’s input
before it is saved to the database, in the manner described previously.

Notice my use of the ternary operator ? in the previous listing. This
operator, akin to an if-else() conditional statement, is discussed in
detail in Chapter 4.

Restricting the Size of Input Data
As you’ve seen in Chapter 9, MySQL enables you to control the length of a particular
field by adding a size modifier to the field data type. Now, the way MySQL works,
values greater than the specified length are automatically truncated, with no notification
or exception generated to let the user know about the change.

This is disturbing, because it means that user data can easily get corrupted
without the user’s awareness. As an example, go back a couple of pages and read
the definition of the users table created in the previous section. You’ll see that
the two fields of the table are restricted to eight characters each. Now, if a user
enters the user name jamesscott, MySQL will automatically (and silently) truncate

ch14.indd 266 2/2/05 3:28:46 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 14: Validating User Input 267

HowTo8 (8)

it to eight characters and save it as jamessco. Obviously, any subsequent attempt by
the user to log in as jamesscott will fail, as MySQL will have no record of that
particular username.

One way around this is, of course, to set sensible length restrictions for your
database fields. However, this must be coupled with application-level input
validation of entered data, to alert users if their input goes above the prescribed
limit and to allow them to modify it. To see an example of this in action, consider
the following database table, which constrains data entered into the title field to
50 characters:

mysql> CREATE TABLE news (

 -> id INT (10) NOT NULL,

 -> title VARCHAR(50) NOT NULL

 ->);

Query OK, 0 rows affected (0.05 sec)

And here’s the PHP script that replicates this constraint in a form:

<html>

<head>

<basefont face="Arial">

</head>

<body>

<?php

if (!$_POST['submit'])

{

 // form not submitted

?>

 <form action="<?=$_SERVER['PHP_SELF']?>" method="post">

 Title: <input type="text" name="title">

 <input type="submit" name="submit" value="Save">

 </form>

<?php

}

else

{

 // form submitted

 // trim the title field

 $title = trim ($_POST['title']);

14

ch14.indd 267 2/2/05 3:28:46 PM

TEAM LinG

 268 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 14HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 14

 // check its length

 if (strlen($title) > 50)

 {

 die ('ERROR: Title contains more than 50 characters');

 }

 // connect to database

 // save record

}

?>

</body>

</html>

To see this in action, try entering a string greater than 50 characters in the title
field. When you submit the form, you’ll see an error message, and the data will not
be saved to the database until you correct the error.

The code behind this is straightforward—just pass the user input to PHP’s
strlen() function, which returns the length of the string. You can then wrap this
in an if() test to ensure that only strings under the specified limit pass muster.

Another simple way to implement a field length restriction is to use the
MAXLENGTH attribute of the INPUT form tag. This attribute enables
you to specify the maximum number of characters that can be entered in
a form text input field. This is a quick way to restrict the length of user
input. Note, this assumes the device you’re displaying the form on supports
this attribute. The major browsers all support it, but PDAs or cell phones
running a reduced HTML implementation might not. For this reason,
an application-level check should be performed, regardless of browser
features like MAXLENGTH support.

Checking the Type of Input Data
You’ve already seen how MySQL automatically “corrects” values that don’t match
the data type specified in the table definition. Often, the assumptions MySQL makes
when performing these corrections aren’t true, and the corrected (but incorrect)
values subsequently affect the integrity of your database. Therefore, an important
test of user input involves checking the data type of input values against the
database’s expectations, and raising an error in the event of a mismatch.

ch14.indd 268 2/2/05 3:28:47 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 14: Validating User Input 269

HowTo8 (8)

To see an example of this, consider the following table definition:

mysql> CREATE TABLE items (

 -> itemID INT(11) NOT NULL AUTO_INCREMENT,

 -> itemName VARCHAR(255) NOT NULL DEFAULT '',

 -> itemSPrice FLOAT NOT NULL DEFAULT '0',

 -> itemCPrice FLOAT NOT NULL DEFAULT '0',

 -> itemQuantity INT(11) NOT NULL DEFAULT '0',

 -> PRIMARY KEY (itemID)

 ->) TYPE=MyISAM;

Query OK, 0 rows affected (0.07 sec)

Now, if you attempt to enter a string into any of the INT or FLOAT fields, MySQL
will simply convert that string to a 0. At first glance, this might seem like an intelligent
thing to do, because it avoids having to deal with error messages. However, it isn’t,
because the database now contains incorrect data.

What is needed, then, is a way to verify the data type of a value before
allowing it to be entered into the database. A useful PHP function to accomplish
this is the is_numeric() function, demonstrated in the next example:

<html>

<head>

<basefont face="Arial">

</head>

<body>

<?php

if (!$_POST['submit'])

{

 // form not submitted

?>

 <form action="<?=$_SERVER['PHP_SELF']?>" method="post">

 Item name:

 <input type="text" name="itemName">

 Item sale price:

 <input type="text" name="itemSPrice">

 Item cost price:

 <input type="text" name="itemCPrice">

14

ch14.indd 269 2/2/05 3:28:47 PM

TEAM LinG

 270 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 14HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 14

 Item quantity:

 <input type="text" name="itemQuantity">

 <input type="submit" name="submit" value="Enter Data">

 </form>

<?php

}

else

{

 // form submitted

 // check the itemName field

 $itemName = ↵
(!isset($_POST['itemName']) || trim($_POST['itemName']) == "") ↵
? die ('ERROR: Enter the item name') : ↵
mysql_escape_string(trim($_POST['itemName']));

 // check the itemSPrice field

 if(!isset($_POST['itemSPrice']) || ↵
trim($_POST['itemSPrice']) == "")

 {

 die ('ERROR: Enter the item\'s selling price');

 }

 elseif(!is_numeric(trim($_POST['itemSPrice'])))

 {

 die ('ERROR: Enter numeric value for the item\'s selling price');

 }

 else

 {

 $itemPrice = floatval(trim($_POST['itemSPrice']));

 }

 // check the itemCPrice field

 if(!isset($_POST['itemCPrice']) || ↵
trim($_POST['itemCPrice']) == "")

 {

 die ('ERROR: Enter the item\'s cost price');

 }

 elseif (!is_numeric(trim($_POST['itemCPrice'])))

 {

 die ('ERROR: Enter numeric value for the item\'s cost price');

 }

 else

 {

 $itemCost = floatval(trim($_POST['itemCPrice']));

 }

ch14.indd 270 2/2/05 3:28:47 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 14: Validating User Input 271

HowTo8 (8)

 // check the itemQuantity field

 if(!isset($_POST['itemQuantity']) || ↵
trim($_POST['itemQuantity']) == "")

 {

 die ('ERROR: Enter the quantity');

 }

 elseif (!is_numeric(trim($_POST['itemQuantity'])))

 {

 die ('ERROR: Enter numeric value for quantity');

 }

 else

 {

 $itemQuantity = intval(trim($_POST['itemQuantity']));

 }

 // connect to database

 // save record

}

?>

</body>

</html>

Load this script, and try entering a nonnumeric value for the itemSPrice,
itemCPrice, and itemQuantity fields. Each attempt will be rejected with
the display of an error message.

In this example, the first test is to ensure that the field is not empty. If this is true,
the second test involves checking whether the value entered is a numeric string, with
the is_numeric() function. Only if the user input passes both tests is it allowed to
proceed into the database.

You cannot use the is_int() or the is_float() functions to test if
a value submitted through a web form is an integer or a floating-point
value. This is because data submitted through a form is always stored as
a string within the special $_POST array. All you can do is use the is_
numeric() function to check if a value is a numeric string. Read more
about this at http://www.php.net/manual/en/function.is-int.php.

In addition to the is_numeric() function, you may also use PHP’s character
type extension to further test input before saving them to your database. The important
functions supported by this extension are listed in Table 14-1.

14

ch14.indd 271 2/2/05 3:28:47 PM

TEAM LinG

 272 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 14HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 14

Here’s an example that illustrates some of these functions in action:

<html>

<head>

<basefont face="Arial">

</head>

<body>

<?php

if (!$_POST['submit'])

{

 // form not submitted

?>

 <form action="<?php echo $SERVER['PHP_SELF']; ?>" ↵
method="post">

 First Name:

 <input type="text" name="firstName">

 Last Name:

 <input type="text" name="lastName">

 Age:

 <input type="text" name="age">

 <input type="submit" name="submit" value="Enter Data">

 </form>

<?php

}

else

{

 // form submitted

 // check the firstName field

 if (!isset($_POST['firstName']) || ↵
trim($_POST['firstName']) == "")

Function What It Does

ctype_alnum() Check if a value contains only alphanumeric characters.

ctype_alpha() Check if a value contains only alphabetic characters.

ctype_digit() Check if a value contains only numeric characters.

ctype_print() Check if a value contains only printable characters.

ctype_space() Check if a value contains only white space characters.

 TABLE 14-1 Character Type Functions

ch14.indd 272 2/2/05 3:28:48 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 14: Validating User Input 273

HowTo8 (8)

 {

 die ('ERROR: Enter first name');

 }

 elseif(!ctype_alpha(trim($_POST['firstName'])))

 {

 die ('ERROR: Enter alphabetic value for first name');

 }

 else

 {

 $firstName = mysql_escape_string(trim($_POST['firstName']));

 }

 // check the lastName field

 if(!isset($_POST['lastName']) || ↵
trim($_POST['lastName']) == "")

 {

 die ('ERROR: Enter last name');

 }

 elseif(!ctype_alpha(trim($_POST['lastName'])))

 {

 die ('ERROR: Enter alphabetic value for last name');

 }

 else

 {

 $lastName = mysql_escape_string(trim($_POST['lastName']));

 }

 // check the age field

 if(!isset($_POST['age']) || trim($_POST['age']) == "")

 {

 die ('ERROR: Enter age');

 }

 elseif (!ctype_digit(trim($_POST['age'])))

 {

 die ('ERROR: Enter numeric value for age');

 }

 else

 {

 $age = floatval(trim($_POST['age']));

 }

 // connect to database

 // save record

}

?>

14

ch14.indd 273 2/2/05 3:28:48 PM

TEAM LinG

 274 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 14HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 14

In this script, after performing the basic tests, the ctype_alpha() function
tests the input string for alphabetic characters, while the ctype_digit() function
tests for digits from 0 to 9.

Note, for values containing more than one character, every character is
tested and a positive result is returned only if all the characters satisfy the
data type requirements. While this rigidity is useful at times, it can also
be a double-edged sword, for example, the number 20.50 would not pass
a ctype_digit() test, because it contains a decimal point (which is not
a digit).

Checking for Illegal Input Values
In addition to the tests listed in previous sections, an application’s particular business
logic often demands custom validation routines of its own. To illustrate this, consider
the example of a form that asks the user to enter a positive two-digit number. Here,
it is necessary to write a validation test to check if the user’s input falls between
10 and 99 (both inclusive) and to display an error if it doesn’t. Take a look at the
next script, which demonstrates what the code for such a validation test would
look like:

<html>

<head>

<basefont face="Arial">

</head>

<body>

<?php

if (!$_POST['submit'])

{

 // form not submitted

?>

 <form action="<?=$_SERVER['PHP_SELF']?>" method="post">

 Enter any positive two-digit number:

 <input type="text" name="num" size="2">

 <input type="submit" name="submit" value="Check">

 </form>

<?php

}

ch14.indd 274 2/2/05 3:28:48 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 14: Validating User Input 275

HowTo8 (8)

else

{

 // form submitted

 // check for presence of number

 $num = ↵
(!isset($_POST['num']) || trim($_POST['num']) == "" || ↵
!is_numeric($_POST['num'])) ↵
? die ('ERROR: Enter a number') : trim($_POST['num']);

 // check for number range

 if ($num < 10 || $num > 99)

 {

 die ('ERROR: Enter a number between 10 and 99');

 }

}

?>

</body>

</html>

This type of custom validation can play an important role in avoiding common
errors, such as the dreaded division-by-zero error. Harking back to the example in
the previous section, assume you have a table containing the following data,

mysql> SELECT * FROM items;

+--------+----------+------------+------------+--------------+

| itemID | itemName | itemSPrice | itemCPrice | itemQuantity |

+--------+----------+------------+------------+--------------+

| 1 | Syringe | 10 | 5 | 200 |

| 2 | Swab | 1 | 0.25 | 1000 |

| 3 | Pump | 95 | 0 | 5 |

+--------+----------+------------+------------+--------------+

3 rows in set (0.00 sec)

and you’d like to calculate the percentage profit on each item using the formula
Percentage Profit = (Profit/Cost Price) * 100. You’d probably
need to run a SELECT query like this:

mysql> SELECT itemName, (((itemSPrice - itemCPrice)/itemCPrice) * 100) ↵
AS percentProfit FROM items;

14

ch14.indd 275 2/2/05 3:28:48 PM

TEAM LinG

 276 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 14HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 14

+----------+---------------+

| itemName | percentProfit |

+----------+---------------+

| Syringe | 100 |

| Swab | 300 |

| Pump | NULL |

+----------+---------------+

3 rows in set (0.00 sec)

Notice how one of the records in the output displays a NULL value. This is
because the cost price for that item was stored as 0, causing a division-by-zero
error and forcing MySQL to display a NULL as the result of the calculation.

This error might have been avoided if the application developer had thought
to include a custom check to avoid zero values entering the database. Here’s an
example of what that test might have looked like:

<html>

<head>

<basefont face="Arial">

</head>

<body>

<?php

if (!$_POST['submit'])

{

 // form not submitted

?>

 <form action="<?=$_SERVER['PHP_SELF']?>" method="post">

 Item name:

 <input type="text" name="itemName">

 Item sale price:

 <input type="text" name="itemSPrice">

 Item cost price:

 <input type="text" name="itemCPrice">

 Item quantity:

 <input type="text" name="itemQuantity">

 <input type="submit" name="submit" value="Enter Data">

 </form>

<?php

}

ch14.indd 276 2/2/05 3:28:49 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 14: Validating User Input 277

HowTo8 (8)

else

{

 // form submitted

 // check the itemCPrice field

 $itemCost = (↵
!isset($_POST['itemCPrice']) || trim($_POST['itemCPrice']) == "") ↵
? die ('ERROR: Enter the item\'s cost price') : ↵
 (!is_numeric(trim($_POST['itemCPrice']))) ↵
? die ('ERROR: Enter numeric value for the item\'s cost price') : ↵
floatval(trim($_POST['itemCPrice']));

 // check if itemCPrice field is equal to zero

 if($itemCost == 0)

 {

 die ('ERROR: Please enter an item cost price greater ↵
than zero');

 }

 // connect to database

 // save record

}

?>

Validating Dates
Dates often play an important role in an application’s business logic, and users
are prone to errors when entering these values. Luckily, PHP comes with a
checkdate() function that provides an easy way to validate user-provided
date values.

To see how this works, consider the following simple script, which asks the
user to enter a date, and then tests it for validity:

<html>

<head>

<basefont face="Arial">

</head>

<body>

<?php

if (!$_POST['submit'])

{

 // form not submitted

?>

 <form action="<?=$_SERVER['PHP_SELF']?>" method="post">

 Day <input type="text" name="day" size="2">

14

ch14.indd 277 2/2/05 3:28:49 PM

TEAM LinG

 278 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 14HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 14

 Month <input type="text" name="month" size="2">

 Year <input type="text" name="year" size="2">

 <input type="submit" name="submit" value="Check">

 </form>

<?php

}

else

{

 // form submitted

 // check date

 if (!checkdate($_POST['month'], $_POST['day'], $_POST['year'])) ↵
 {

 die ('ERROR: Enter a valid date');

 }

}

?>

</body>

</html>

To see this in action, enter an incorrect date—for example, 31 February 2005—and
submit the form. Your date will be rejected with an error message.

Most of the magic here happens with the checkdate() function. This
function accepts three numeric arguments, representing the month, day, and
year, respectively, and returns true if the combination is a valid Gregorian date.
A good idea is to always check user-supplied date values in this manner before
using them.

(Un)Intelligent Automation

MySQL expects application developers to enforce date checking within their
application. If you enter an invalid date, MySQL will either store it as is,
or convert it to a series of zeroes. From the usability point of view, both
alternatives are equally bad. Read more about this at http://dev.mysql.com/
doc/mysql/en/Using_DATE.html.

ch14.indd 278 2/2/05 3:28:50 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 14: Validating User Input 279

HowTo8 (8)

Validating Multiple-Choice Input
Checkboxes and drop-down lists are an important component of web forms, and it’s
often necessary to include validation for these controls in your PHP applications.
Normally, the user’s selections from these controls are submitted to the form
processor in the form of an array, and it’s necessary to use PHP’s array functions to
validate them.

To see this in action, consider the following script, which requires the user to
fill out a brief user profile and select at least three hobbies and two subscriptions
from the multiple-choice controls presented.

<html>

<head>

<basefont face="Arial">

</head>

<body>

<?php

if (!$_POST['submit'])

{

 // form not submitted

?>

 <form action="<?=$_SERVER['PHP_SELF']?>" method="post">

 Username:

 <input type="text" name="username">

 <p />

 Password:

 <input type="password" name="password">

 <p />

 Date of Birth:

 Month <input type="text" name="month" size="2">

 Day <input type="text" name="day" size="2">

 Year <input type="text" name="year" size="4">

 <p />

 Hobbies (select at least three):

 <input type="checkbox" name="hobbies[]" value="Sports">Sports

 <input type="checkbox" name="hobbies[]" value="Reading">Reading

 <input type="checkbox" name="hobbies[]" value="Travel">Travel

 <input type="checkbox" name="hobbies[]" value="Television">Television

 <input type="checkbox" name="hobbies[]" value="Cooking">Cooking

 <p />

 Subscriptions (Select at least two):

14

ch14.indd 279 2/2/05 3:28:50 PM

TEAM LinG

 280 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 14HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 14

 <select name="subscriptions[]" multiple>

 <option value="General">General Newsletter</option>

 <option value="Members">Members Newsletter</option>

 <option value="Premium">Premium Newsletter</option>

 </select>

 <p />

 <input type="submit" name="submit" value="Sign Up">

 </form>

<?php

}

else

{

 // form submitted

 // validate "username", "password" and "date of birth" fields

 $username = (!isset($_POST['username']) || ↵
trim($_POST['username']) == "") ↵
? die ('ERROR: Enter a username') : trim($_POST['username']);

 $password = (!isset($_POST['password']) ↵
|| trim($_POST['password'] == "")) ↵
? die ('ERROR: Enter a password') : trim($_POST['password']);

 if (!checkdate($_POST['month'], $_POST['day'], $_POST['year']))

 {

 die ('ERROR: Enter a valid date');

 }

 // check the "hobbies" field for valid values

 $hobbies = ((sizeof($_POST['hobbies']) < 3) ? ↵
die ('ERROR: Please select at least 3 hobbies') : ↵
implode(',', $_POST['hobbies']));

 // check the "subscriptions" field for valid values

 $subscriptions = ((sizeof($_POST['subscriptions']) < 2) ? ↵
die ('ERROR: Please select at least 2 subscriptions') : ↵
implode(',', $_POST['subscriptions']));

 // connect to database

 // save record

}

?>

</body>

</html>

ch14.indd 280 2/2/05 3:28:50 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 14: Validating User Input 281

HowTo8 (8)

Now, try submitting the form without first selecting the required number of items
from each multiple-choice control, and you will be presented with an error message.

The options selected by a user from each multiple-choice control are submitted in
the form of a PHP array. Thus, it is convenient to use PHP’s array functions—namely,
the sizeof() function, which returns the number of elements in an array—to check
whether the required number of options was selected.

Matching Patterns
Often, input validation requires more sophisticated tools than the primitive checks
and tests shown in previous sections of this chapter. Fortunately, PHP comes with
these tools built in, with its support for regular expressions.

Regular expressions (regex) are a powerful tool used in pattern-matching and
substitution. Commonly associated with almost all *NIX-based tools, scripting
languages, and shell programs, a regular expression lets you build patterns using
a set of special characters. These patterns can then be compared with text in a file,
data entered into an application, or input from a form filled up by users on a web
site. Depending on whether or not there’s a match, appropriate action can be taken
and appropriate program code executed. Regular expressions play an important role
in the decision-making routines of web applications, and in complex find-and-replace
operations.

To see how regular expressions work, consider a form that requires the user to
enter a name, password, and e-mail address. The application needs to enforce the
following constraints:

■ The name may contain only uppercase (A–Z) or lowercase characters (a–z),
with a minimum of three and a maximum of eight.

■ The password may contain only lowercase characters (a–z) or integers (0–9),
with a minimum of five and a maximum of eight.

■ The e-mail address must conform to the standard user@domain format.

As you can see in the code listing that follows, these restrictions can be
implemented using regular expressions without adding too many extra lines of code:

<html>

<head>

<basefont face="Arial">

</head>

<body>

14

ch14.indd 281 2/2/05 3:28:50 PM

TEAM LinG

 282 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 14HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 14

<?php

if (!$_POST['submit'])

{

 // form not submitted

?>

 <form action="<?=$_SERVER['PHP_SELF']?>" method="post">

 Username:

 <input type="text" name="username">

 <p />

 Password:

 <input type="password" name="password">

 <p />

 Email address:

 <input type="text" name="email">

 <p />

 <input type="submit" name="submit" value="Sign Up">

 </form>

<?php

}

else

{

 // form submitted

 // validate "username", "password" and "email" fields

 // using regular expressions

 $username = (!isset($_POST['username']) || ↵
!ereg('^([a-zA-Z]){3,8}$', $_POST['username'])) ? ↵
die ('ERROR: Enter valid username') : ↵
mysql_escape_string(trim($_POST['username']));

 $password = (!isset($_POST['password']) || ↵
!ereg('^([a-z0-9]){5,8}$', $_POST['password'])) ? ↵
die ('ERROR: Enter valid password') : ↵
mysql_escape_string(trim($_POST['password']));

 $email = (!isset($_POST['email']) || ↵
!ereg('^([a-zA-Z0-9_-]+)([\.a-zA-Z0-9_-]+)@([a-zA-Z0-9_-]+) ↵
(\.[a-zA-Z0-9_-]+)+$', $_POST['email'])) ? ↵
die ('ERROR: Enter valid email address') : ↵
mysql_escape_string(trim($_POST['email']));

ch14.indd 282 2/2/05 3:28:51 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 14: Validating User Input 283

HowTo8 (8)

 // connect to database

 // save record

}

?>

</body>

</html>

This listing uses PHP’s ereg() function to ensure that the user’s input conforms
to the constraints listed previously. This ereg() function requires two compulsory
arguments: the pattern to be matched, and the string to match it against.

Coming to the regular expressions themselves, the first two are self-explanatory,
especially if you have some familiarity with the syntax. Both of them list the allowed
characters and also test the length of the string. The third and final pattern is a little
more complex, because it uses numerous modifiers and special characters. To
understand it better, consider reading the article on regular expressions, or visit
the PHP manual page for the ereg() function, at http://www.php.net/manual/
en/function.ereg.php.

Migrating from Perl to PHP? No problem—PHP comes equipped with
a preg_match() function that lets you use Perl Compatible Regular
Expressions (PCRE) in your code. This enables you to easily reuse
patterns from your Perl scripts in your PHP scripts. Read more at
http://www.php.net/manual/en/ref.pcre.php.

Listing Multiple Validation Errors at Once
In all the examples demonstrated so far, I have used the die() function to
terminate script processing and display an error message if input validation fails.
Now, while this is fine for forms with just a few fields, it doesn’t make sense for
forms that contain a large number of fields. For such forms, it is often more efficient
to display a comprehensive list of errors at once, instead of displaying them one at
a time, so that the user immediately has clear visibility of what (s)he did wrong. For
some applications, you might even want to save the errors to a log file or database
for future reference.

These varied requirements mean that it isn’t enough for you only to catch errors
in user input, but also present them in a manner that is efficient, extensible, and easy
to understand. This next listing shows you how to validate all the data submitted by
a user, prepare a list of errors encountered, and display them all at once.

<html>

<head>

<basefont face="Arial">

</head>

14

ch14.indd 283 2/2/05 3:28:51 PM

TEAM LinG

 284 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 14HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 14

<body>

<?php

if (!$_POST['submit'])

{

 // form not submitted

?>

 <form action="<?=$_SERVER['PHP_SELF']?>" method="post">

 Username (3-8 char):

 <input type="text" name="username">

 <p />

 Password (5-8 char):

 <input type="password" name="password">

 <p />

 Email address:

 <input type="text" name="email">

 <p />

 Date of Birth:

 Month <input type="text" name="month" size="2">

 Day <input type="text" name="day" size="2">

 Year <input type="text" name="year" size="4">

 <p />

 Hobbies (select at least three):

 <input type="checkbox" name="hobbies[]" value="Sports">Sports

 <input type="checkbox" name="hobbies[]" value="Reading">Reading

 <input type="checkbox" name="hobbies[]" value="Travel">Travel

 <input type="checkbox" name="hobbies[]" value="Television">Television

 <input type="checkbox" name="hobbies[]" value="Cooking">Cooking

 <p />

 Subscriptions (Select at least two):

 <select name="subscriptions[]" multiple>

 <option value="General">General Newsletter</option>

 <option value="Members">Members Newsletter</option>

 <option value="Premium">Premium Newsletter</option>

 </select>

 <p />

 <input type="submit" name="submit" value="Sign Up">

 </form>

<?php

}

else

{

 // array to store the error messages

 $ERRORS = array();

ch14.indd 284 2/2/05 3:28:51 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 14: Validating User Input 285

HowTo8 (8)

 // validate "username" field

 $username = !ereg('^([a-zA-Z]){3,8}$', $_POST['username']) ? ↵
$ERRORS[] = 'Enter valid username' : ↵
mysql_escape_string(trim($_POST['username']));

 // validate "password" field

 $password = !ereg('^([a-z0-9]){5,8}$', $_POST['password']) ? ↵
$ERRORS[] = 'Enter valid password' : trim($_POST['password']);

 // validate "email" field

 $email = !ereg('^([a-zA-Z0-9_-]+)([\.a-zA-Z0-9_-]+)@([a-zA-Z0-9_-]+)(\ ↵
[a-zA-Z0-9_-]+)+$', $_POST['email']) ? ↵
$ERRORS[] ='Enter valid email address' : trim($_POST['email']);

 // validate "date of birth" field

 $dob = (!checkdate($_POST['month'], $_POST['day'], $_POST['year']) ? ↵
$ERRORS[] = 'Enter valid date of birth' : ↵
date("Y-m-d", mktime(0, 0, 0, $_POST['month'], $_POST['day'], ↵
$_POST['year'])));

 // validate "hobbies" field

 $hobbies = (sizeof($_POST['hobbies']) < 3) ? ↵
$ERRORS[] = 'Please select at least three hobbies' : ↵
implode(',', $_POST['hobbies']);

 // validate "subscriptions" field

 $subscriptions = (sizeof($_POST['subscriptions']) < 2) ? $ERRORS[] = ↵
'Please select at least two subscriptions' : ↵
implode(',', $_POST['subscriptions']);

 // verify if there were any errors by checking

 // the number of elements in the $ERRORS array

 if(sizeof($ERRORS) > 0)

 {

 // format and display error list

 echo "";

 foreach ($ERRORS as $e)

 {

 echo "$e";

 }

 echo "";

 die();

 }

 // no errors?

 // connect to database

 // save record

}

?>

</body>

</html>

14

ch14.indd 285 2/2/05 3:28:51 PM

TEAM LinG

 286 How to Do Everything with PHP & MySQL

Here, for every input test that fails, a new element is added to the global
$ERRORS array. At the end of the tests, before connecting to the database, this
array is checked. If it contains one or more elements, script processing stops and
the errors are displayed to the user as a bulleted list.

If you prefer, you can also log the errors, by using the file_put_
contents() function to dump the array elements to a file. Look at
Chapter 6 for more information on this function.

Summary
Input validation is a critical part of any web application, and this chapter focused
on showing you how to use it to reduce the incidence of errors and illegal values
in your MySQL tables. Techniques covered included checking for required values,
testing the type and length of user input, using regular expressions and pattern-
matching techniques to ensure input conforms to predefined rules, and validating
multiple-choice input and date values.

Of course, input validation is simply too vast a topic to be covered in a single
chapter. To this end, you should read more about it at the following places:

■ The basics of regular expressions, at http://www.melonfire.com/
community/columns/trog/article.php?id=2

■ More tutorials on regular expressions, at http://gnosis.cx/publish/
programming/regular_expressions.html, http://www.pcre.org/man.txt,
and http://sitescooper.org/tao_regexps.html

■ The PHP character type extension, at http://www.php.net/ref.ctype

■ A discussion of SQL Injection attacks, at http://www.php.net/manual/en/
security.database.sql-injection.php

■ Securing user-submitted data, at http://www.php.net/manual/en/security
.variables.php

■ Input validation on the client using JavaScript, at http://www.sitepoint
.com/article/client-side-form-validation and http://home.cogeco
.ca/~ve3ll/jstutor5.htm

■ Building an extensible form validator, at http://www.melonfire.com/
community/columns/trog/article.php?id=119

ch14.indd 286 2/2/05 3:28:52 PM

TEAM LinG

Chapter 15

HowTo8 (8)

Formatting
Query Output

ch15.indd 287 2/2/05 3:29:44 PM

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

TEAM LinG

 288 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15

As a developer, it’s easy to fall in love with your code and to spend hours tuning
it for performance. Remember, though, no matter how engrossing the loops

and swirls of your PHP code are to you, it’s unlikely that the person for whom
you’re developing the application will care about them (or even see them). To the
application end user, all that matters is how user friendly your product is, and how
it will help him or her get things done better. The elegance of your SQL queries
or the impeccable logic of your PHP conditionals will be completely lost on the
end user.

That’s where this chapter comes in. The focus of this chapter is massaging the
output of your MySQL queries so it conforms to the expectations of your users,
and, thereby, becomes more readable and useful. Both PHP and the MySQL RDBMS
come with a number of built-in functions to perform such output formatting. This
chapter describes most of the important ones.

How to…

■ Join multiple fields into a single string, using custom separators

■ Make string or numeric data a uniform size with left/right padding

■ Translate line breaks and special characters in text fields to their HTML
equivalents

■ Format numbers according to local or international currency conventions

■ Use commas or other user-defined characters to make large numeric values
more readable

■ Truncate or round large floating-point values to one or two decimal places

■ Display English-equivalent day and month names for UNIX timestamps or
numeric date/time values

■ Perform simple date arithmetic

■ Break the results of a SELECT query into multiple “pages,” and dynamically
present links to move between pages

Formatting Character Data
A lot of your MySQL data is going to be stored as strings or text blocks, in CHAR,
VARCHAR, or TEXT fields. It’s essential that you know how to manipulate this string
data and adjust it to fit the requirements of your application user interface. Both PHP

ch15.indd 288 2/2/05 3:29:44 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 15: Formatting Query Output 289

HowTo8 (8)

and MySQL come equipped with numerous string manipulation functions (in fact,
they overlap in functionality in many places), and the following sections discuss the
important ones.

Concatenating String Values
You learned about string concatenation in PHP in Chapter 3. It’s pretty simple—just
string together the variables you want to concatenate using the PHP concatenation
operation, a period (.). Concatenating fields from a MySQL result set is equally
simple—just assign the field values to PHP variables and concatenate the variables
together in the normal manner.

To see how this works, consider the following table:

mysql> SELECT * FROM users;

+-----------+---------+----------+

| username | fname | lname |

+-----------+---------+----------+

| matt | Matthew | Johnson |

| har56 | Harry | Thompson |

| kellynoor | Kelly | Noor |

| jimbo2003 | Jim | Doe |

| x | Xavier | Belgudui |

+-----------+---------+----------+

5 rows in set (0.00 sec)

Now, assume you need to concatenate the first- and last-name fields into
a single value (a common requirement). Here’s how:

<html>

<head></head>

<body>

<?php

// open connection to MySQL server

$connection = mysql_connect('localhost', 'guest', 'pass') ↵
or die ('Unable to connect!');

// select database for use

mysql_select_db('db2') or die ('Unable to select database!');

15

ch15.indd 289 2/2/05 3:29:45 PM

TEAM LinG

 290 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15

// create and execute query

$query = 'SELECT fname, lname FROM users';

$result = mysql_query($query) ↵
or die ('Error in query: $query. ' . mysql_error());

// check if records were returned

if (mysql_num_rows($result) > 0)

{

 // print HTML table

 echo '';

 // iterate over record set

 // print each field

 while($row = mysql_fetch_object($result))

 {

 // prints in format "last-name, first-name"

 echo '' . $row->lname . ', ' . $row->fname;

 }

 echo '';

}

else

{

 // print error message

 echo 'No rows found!';

}

// once processing is complete

// free result set

mysql_free_result($result);

// close connection to MySQL server

mysql_close($connection);

?>

</body>

</html>

Figure 15-1 illustrates what the output looks like.
There’s another way to do this as well, though. MySQL comes with two built-in

functions—CONCAT() and CONCAT_WS()—which can be used to glue fields
together within the SQL query itself. Take a look at this next snippet from the
MySQL interactive client, which shows these functions in action:

ch15.indd 290 2/2/05 3:29:45 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 15: Formatting Query Output 291

HowTo8 (8)

mysql> SELECT CONCAT(fname, lname) FROM users ↵
WHERE username = 'matt';

+----------------------+

| CONCAT(fname, lname) |

+----------------------+

| MatthewJohnson |

+----------------------+

1 row in set (0.02 sec)

mysql> SELECT CONCAT_WS(', ', lname, fname) FROM users ↵
WHERE username = 'matt';

+-------------------------------+

| CONCAT_WS(', ', lname, fname) |

+-------------------------------+

| Johnson, Matthew |

+-------------------------------+

1 row in set (0.00 sec)

 FIGURE 15-1 Concatenating string values

15

ch15.indd 291 2/2/05 3:29:45 PM

TEAM LinG

 292 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15

Note the difference between the two functions: the CONCAT() function
concatenates two or more fields, while the CONCAT_WS() function lets you
specify a string separator between the concatenated field values. Obviously, the
CONCAT_WS() function is used more often; it’s also more forgiving of NULLs
in your table (see the following Caution for more information).

Ensure that none of the fields you’re trying to join with CONCAT() contain
NULLs. This is because the function returns a NULL value if any of its
input arguments are NULL. This quirk can produce unexpected results,
damaging the carefully cultivated look of your output screens. To avoid
this, check for NULL values prior to using the function, and ensure that
your database and validation rules are rigid enough to prevent the entry
of empty/NULL values into fields that aren’t supposed to contain them
(Chapter 14 has more information on how to do this).

The CONCAT_WS() function is more forgiving, simply ignoring NULL
values if it encounters them.

Here’s a rewrite of the previous script that uses these database-level functions
to perform the concatenation and achieve the same result:

<html>

<head></head>

<body>

<?php

// open connection to MySQL server

$connection = mysql_connect('localhost', 'guest', 'pass') ↵
or die ('Unable to connect!');

// select database for use

mysql_select_db('db2') or die ('Unable to select database!');

// create and execute query

$query = "SELECT CONCAT_WS(', ', lname, fname) AS name ↵
FROM users";

$result = mysql_query($query) ↵
or die ('Error in query: $query. ' . mysql_error());

ch15.indd 292 2/2/05 3:29:46 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 15: Formatting Query Output 293

HowTo8 (8)

// check if records were returned

if (mysql_num_rows($result) > 0)

{

 // print HTML table

 echo '';

 // iterate over record set

 // print each field

 while($row = mysql_fetch_object($result))

 {

 // prints in format "last-name, first-name"

 echo '' . $row->name;

 }

 echo '';

}

else

{

 // print error message

 echo 'No rows found!';

}

// once processing is complete

// free result set

mysql_free_result($result);

// close connection to MySQL server

mysql_close($connection);

?>

</body>

</html>

Padding String Values
In Chapter 14, you read about the PHP trim() function, used to strip leading and
trailing white space from string values prior to testing them for validity or inserting
them into a database. However, PHP also comes with the str_pad() function,
which does just the reverse: it pads strings to a specified length using either white
space or a user-specified character sequence. This can come in handy if you need
to artificially elongate string values for display or layout purposes.

15

ch15.indd 293 2/2/05 3:29:46 PM

TEAM LinG

 294 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15

Here’s a table containing string values of differing lengths:

mysql> SELECT * FROM ingredients;

+----------------+

| name |

+----------------+

| cinnamon |

| ginger |

| red pepper |

| cloves |

| peas |

| tender coconut |

+----------------+

6 rows in set (0.00 sec)

And here’s some PHP code that demonstrates padding them:

<html>

<head></head>

<body>

<pre>

<?php

// open connection to MySQL server

$connection = mysql_connect('localhost', 'guest', 'pass') ↵
or die ('Unable to connect!');

// select database for use

mysql_select_db('db2') or die ('Unable to select database!');

// create and execute query

$query = "SELECT name FROM ingredients";

$result = mysql_query($query) ↵
or die ('Error in query: $query. ' . mysql_error());

// check if records were returned

if (mysql_num_rows($result) > 0)

{

ch15.indd 294 2/2/05 3:29:46 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 15: Formatting Query Output 295

HowTo8 (8)

 // iterate over record set

 // print each field

 while($row = mysql_fetch_object($result))

 {

 // prints " name"

 echo str_pad($row->name, 30, ' ', STR_PAD_LEFT) . '
';

 }

}

else

{

 // print error message

 echo 'No rows found!';

}

// once processing is complete

// free result set

mysql_free_result($result);

// close connection to MySQL server

mysql_close($connection);

?>

</pre>

</body>

</html>

Figure 15-2 illustrates what the output looks like.
The str_pad() function takes three parameters: the variable to be padded, the

size it should be padded to, and the character to use for padding. By default, the
function pads the string on the right side. You can alter this default, however, by
passing one of the constants STR_PAD_LEFT or STR_PAD_BOTH to the function
as an optional fourth parameter.

The PHP str_pad() function is functionally equivalent to MySQL’s RPAD()
and LPAD() functions, which pad a string from the right and left, respectively. The
following snippets demonstrate how these functions work:

mysql> SELECT RPAD(name, 20,'_'), LPAD(name, 20, '_') ↵
FROM ingredients LIMIT 0,2;

+-------------------------+-------------------------+

| RPAD(name, 20,'_') | LPAD(name, 20, '_') |

+-------------------------+-------------------------+

| cinnamon____________ | ____________cinnamon |

15

ch15.indd 295 2/2/05 3:29:46 PM

TEAM LinG

 296 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15

+-------------------------+-------------------------+

| ginger______________ | ______________ginger |

+-------------------------+-------------------------+

2 rows in set (0.00 sec)

A word of caution: if the total length specified in the RPAD() and LPAD()
function call is less than the length of the field value, the value will be truncated.
The next snippet illustrates this:

mysql> SELECT RPAD(name, 5, '_') FROM ingredients ↵
WHERE name = 'cinnamon';

+------------------------+

| RPAD(name, 5, '_') |

+------------------------+

| cinna |

+------------------------+

1 row in set (0.00 sec)

 FIGURE 15-2 Padding string values

ch15.indd 296 2/2/05 3:29:47 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 15: Formatting Query Output 297

HowTo8 (8)

PHP’s str_pad() function, however, does not truncate strings in
equivalent situations.

Altering String Case
If you need case manipulation, just reach for PHP’s string manipulation API again.
Four useful functions are here: strtolower(), which converts all characters in
a string to lowercase; strtoupper(), which converts all characters to uppercase;
ucfirst(), which converts the first character of a string to uppercase, and the
useful ucwords(), which converts the first character of all the words in a string
to uppercase.

The following example demonstrates these functions, using them on the
different fields of the following table:

mysql> SELECT * FROM customers;

+-------+---------+----------------+----------+----------------------------+

| fname | lname | addr | city | email |

+-------+---------+----------------+----------+----------------------------+

| David | Johnson | 18 mcgoo place,

 ray road | boston | David_Johnson@CORPMAIL.DOM |

| Flora | Bharti | 239/a harkrishna bldg,

 j b marg | hyderabad| bharti@MyOwnCompany.in |

| joe | cool | 15 hill view,

 east end road | yorktown | joecool@guess.it |

+-------+---------+----------------+----------+----------------------------+

3 rows in set (0.00 sec)

Here’s the code that reformats all this data to a more consistent casing style:

<html>

<head></head>

<body>

<?php

// open connection to MySQL server

$connection = mysql_connect('localhost', 'guest', 'pass') ↵
or die ('Unable to connect!');

// select database for use

mysql_select_db('db2') or die ('Unable to select database!');

15

ch15.indd 297 2/2/05 3:29:47 PM

TEAM LinG

 298 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15

// create and execute query

$query = "SELECT * FROM customers";

$result = mysql_query($query) ↵
or die ('Error in query: $query. ' . mysql_error());

// check if records were returned

if (mysql_num_rows($result) > 0)

{

 // iterate over record set

 // print each field

 echo '<table border=1 cellpadding=10>';

 echo '<tr><td>Name</td><td>Mailing Address</td> ↵
<td>Email Address</td></tr>';

 while($row = mysql_fetch_object($result))

 {

 echo '<tr>';

 echo '<td>' . ucfirst($row->fname) . ' ' . ↵
ucfirst($row->lname) . '</td>';

 echo '<td>' . ucwords($row->addr) . '
' . ↵
strtoupper($row->city) . '</td>';

 echo '<td>' . strtolower($row->email) . '</td>';

 echo '</tr>';

 }

 echo '</table>';

}

else

{

 // print error message

 echo 'No rows found!';

}

// once processing is complete

// free result set

mysql_free_result($result);

// close connection to MySQL server

mysql_close($connection);

?>

</body>

</html>

Figure 15-3 shows an output sample.

ch15.indd 298 2/2/05 3:29:47 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 15: Formatting Query Output 299

HowTo8 (8)

If you want to, you could also do some of this in the query string itself, by using
MySQL’s UCASE() and LCASE() functions. The following snippet illustrates this:

mysql> SELECT CONCAT_WS('\n', UCASE(addr), UCASE(city)) ↵
AS address, LCASE(email) AS email FROM customers;

+---------------------------------+----------------------------+

| address | email |

+---------------------------------+----------------------------+

| 18 MCGOO PLACE, RAY ROAD | |

| BOSTON | david_johnson@corpmail.dom |

| 239/A HARKRISHNA BLDG, J B MARG | |

| HYDERABAD | bharti@myowncompany.in |

 FIGURE 15-3 Changing string case

15

ch15.indd 299 2/2/05 3:29:47 PM

TEAM LinG

 300 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15

| 15 HILL VIEW, EAST END ROAD | |

| YORKTOWN | joecool@guess.it |

+---------------------------------+----------------------------+

3 rows in set (0.11 sec)

MySQL does not offer functions to capitalize the first character of a
string value. If you need to do this, use the PHP functions described
previously.

Dealing with Special Characters
When it comes to displaying large text blocks on a web page, a PHP developer
must grapple with a number of issues. Special characters need to be protected,
white space and line breaks must be preserved, and potentially malicious HTML
code must be defanged. PHP comes with a number of functions designed to
perform just these tasks.

Repeat Business

MySQL also provides a REPEAT() function, which can be used to display
a string field multiple times. Here’s an example:

mysql> SELECT REPEAT('ho ', 5);

+------------------+

| REPEAT('ho ', 5) |

+------------------+

| ho ho ho ho ho |

+------------------+

1 row in set (0.00 sec)

PHP’s equivalent function is the str_repeat() function.

ch15.indd 300 2/2/05 3:29:48 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 15: Formatting Query Output 301

HowTo8 (8)

To illustrate, consider a table containing large blocks of text data, like the
following one:

mysql> SELECT id, data FROM newsdata LIMIT 0,1;

+----+--+

| id | data |

+----+--+

| 1 | Recently, I put together a Web site and the public actually liked |

 my <html> & <javascript>. People... |

+----+--+

1 row in set (0.00 sec)

Now, here’s how you’d normally retrieve and display this information in
a web page:

<html>

<head></head>

<body>

<?php

// open connection to MySQL server

$connection = mysql_connect('localhost', 'guest', 'pass') ↵
or die ('Unable to connect!');

// select database for use

mysql_select_db('db2') or die ('Unable to select database!');

// create and execute query

$query = "SELECT title, data FROM newsdata";

$result = mysql_query($query) ↵
or die ('Error in query: $query. ' . mysql_error());

// check if records were returned

if (mysql_num_rows($result) > 0)

{

 // iterate over record set

 while($row = mysql_fetch_object($result))

 {

 echo '' . $row->title . '';

 echo '<p />';

15

ch15.indd 301 2/2/05 3:29:49 PM

TEAM LinG

 302 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15

 echo $row->data;

 echo '<p />';

 }

}

else

{

 // print error message

 echo 'No rows found!';

}

// once processing is complete

// free result set

mysql_free_result($result);

// close connection to MySQL server

mysql_close($connection);

?>

</body>

</html>

Figure 15-4 illustrates what this looks like.
If you compare the output of the previous script with the original table data,

you’ll see numerous discrepancies: line breaks and white space are not correctly
rendered, and characters like <,>, and & are interpreted as HTML by the browser
instead of being displayed as is. The integrity of the original text block has, therefore,
been compromised.

To correct these discrepancies, alter the script so it looks like this:

<html>

<head></head>

<body>

<?php

// open connection to MySQL server

$connection = mysql_connect('localhost', 'guest', 'pass') ↵
or die ('Unable to connect!');

// select database for use

mysql_select_db('db2') or die ('Unable to select database!');

ch15.indd 302 2/2/05 3:29:49 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 15: Formatting Query Output 303

HowTo8 (8)

// create and execute query

$query = "SELECT title, data FROM newsdata";

$result = mysql_query($query) ↵
or die ('Error in query: $query. ' . mysql_error());

// check if records were returned

if (mysql_num_rows($result) > 0)

{

 // iterate over record set

 while($row = mysql_fetch_object($result))

 {

 echo '' . $row->title . '';

 echo '<p />';

 echo nl2br(wordwrap(htmlentities($row->data), 70));

 FIGURE 15-4 Printing a text block as is, resulting in display errors

15

ch15.indd 303 2/2/05 3:29:49 PM

TEAM LinG

 304 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15

 echo '<p />';

 }

}

else

{

 // print error message

 echo 'No rows found!';

}

// once processing is complete

// free result set

mysql_free_result($result);

// close connection to MySQL server

mysql_close($connection);

?>

</body>

</html>

Figure 15-5 illustrates the revised output.
The revised listing uses three new functions.

■ The htmlentities() function takes care of replacing special characters
like ", &, <, and > with their corresponding HTML entity values. This
function is useful to defang user-supplied HTML text and render it incapable
of effecting the display or functionality of your web page. This function also
translates these special characters and prevents them from being interpreted
as HTML code by the browser.

■ Next, the wordwrap() function wraps text to the next line once it reaches
a particular, user-defined size, by inserting the /n newline character at
appropriate points in the text block (these are then converted into HTML
line breaks by the next function). This can be used to set artificial boundaries
on the width of your text display area, and to maintain the integrity of your
page layout.

■ Finally, the nl2br() function automatically preserves newlines in a text
block, by converting them to HTML
 elements. This makes it possible
to reproduce the original formatting of the text when it is displayed.

ch15.indd 304 2/2/05 3:29:49 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 15: Formatting Query Output 305

HowTo8 (8)

While wordwrap() is a useful way to restrict your text display areas
to specific dimensions, it isn’t the best. Using CSS width and height rules
or constrained <div>s to control the size of your text display areas is
usually more appropriate.

PHP also comes with a strip_tags() function, which enables you
to strip all the HTML and PHP tags out of a string, returning only the
ASCII output. This can be useful if your application has a rigid “no HTML
input” policy.

 FIGURE 15-5 Printing a text block, after correcting for special characters and line breaks

15

ch15.indd 305 2/2/05 3:29:50 PM

TEAM LinG

 306 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15

Formatting Numeric Data
Just as you can massage string values into a number of different shapes, so, too,
can you format numeric data. Both PHP and MySQL come with a full set of functions
to manipulate integer and floating-point numbers, and to format large numeric
values for greater readability.

Using Decimal and Comma Separators
When it comes to formatting numeric values in PHP, there are only two functions:
number_format() and sprintf(). Of these, the former is easier to understand
and use, so let’s begin with that function.

The number_format() function is used to display large numbers with comma
and decimal separators. It can be used to control both the visibility and the appearance
of the decimal digits, as well as the character used as the thousands separator.

To see how this works, consider the following table:

mysql> SELECT accountNumber, accountName, ↵
accountBalance FROM accounts;

+---------------+-------------+----------------+

| accountNumber | accountName | accountBalance |

+---------------+-------------+----------------+

| 1265489921 | James D | 2346.00000 |

| 2147483647 | Timothy J | 56347.50000 |

| 5739304575 | Harish K | 996564.87500 |

| 2173467271 | Kingston X | 634238.00000 |

| 2312934021 | Sue U | 34.67000 |

| 1248954638 | Ila T | 5373.81982 |

| 2384371001 | Anil V | 72460.00000 |

| 9430125467 | Katrina P | 100.00000 |

| 1890192554 | Pooja B | 17337.11914 |

| 2388282010 | Sue U | 388883.12500 |

| 2374845291 | Jacob N | 18410.00000 |

+---------------+-------------+----------------+

11 rows in set (0.05 sec)

Here’s a PHP script that displays this information on a web page, using
number_format() to display account balances with two decimal places and
commas as thousand separators:

ch15.indd 306 2/2/05 3:29:50 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 15: Formatting Query Output 307

HowTo8 (8)

<html>
<head></head>
<body>

<?php
// open connection to MySQL server
$connection = mysql_connect('localhost', 'guest', 'pass') ↵
or die ('Unable to connect!');

// select database for use
mysql_select_db('db2') or die ('Unable to select database!');

// create and execute query
$query = "SELECT accountNumber, accountName, accountBalance ↵
FROM accounts";
$result = mysql_query($query) ↵
or die ('Error in query: $query. ' . mysql_error());

// check if records were returned
if (mysql_num_rows($result) > 0)
{
 echo '<table border=1 cellpadding=10>';
 echo '<tr><td>Number</td><td>Name</td><td>Balance</td></tr>';
 // iterate over record set
 while($row = mysql_fetch_object($result))
 {
 echo '<tr>';
 echo '<td>' . $row->accountNumber . '</td>';
 echo '<td>' . $row->accountName . '</td>';
 echo '<td align=right>' . ↵
number_format($row->accountBalance, 2, '.', ',') . '</td>';
 echo '</tr>';
 }
 echo '</table>';
}
else
{
 // print error message
 echo 'No rows found!';
}

15

ch15.indd 307 2/2/05 3:29:50 PM

TEAM LinG

 308 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15

// once processing is complete

// free result set

mysql_free_result($result);

// close connection to MySQL server

mysql_close($connection);

?>

</body>

</html>

Figure 15-6 shows the output of this script. Notice how the use of a comma
separator significantly increases the readability of the numbers.

 FIGURE 15-6 Formatting numbers with the number_format() function

ch15.indd 308 2/2/05 3:29:50 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 15: Formatting Query Output 309

HowTo8 (8)

You’ve already used the echo() function extensively to display output.
However, echo()doesn’t let you format output in any significant manner, for
example, you can’t write 1 as 00001.00. So, another common function used to perform
this type of number formatting is the sprintf() function, which enables you to
define the format in which data is output.

Consider the following example:

<?php

// returns 1.6666666666667

print(5/3);

?>

As you might imagine, that’s not very friendly. Ideally, you’d like to display
just the significant digits of the result, so you’d use the sprintf() function, as
in the following:

<?php

// returns 1.67

echo sprintf("%1.2f", (5/3));

?>

The PHP sprintf() function is similar to the sprintf() function that
C programmers are used to. To format the output, you need to use field templates,
templates that represent the format you’d like to display. Common field templates
are listed in Table 15-1.

You can also combine these field templates with numbers that indicate the number
of digits to display—for example, %1.2f implies that PHP should only display
two digits after the decimal point. If you’d like the formatted string to have a minimum
length, you can tell PHP which character to use for padding by prefixing it with
a single quote (').

Template What It Represents

%s string

%d decimal number

%x hexadecimal number

%o octal number

%f float number

 TABLE 15-1 Common Field Templates Supported by the sprintf() Function

15

ch15.indd 309 2/2/05 3:29:51 PM

TEAM LinG

 310 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15

Here are a few more examples of sprintf() in action:

<?php

// returns 00003

echo sprintf("%05d", 3);

// returns $25.99

echo sprintf("$%2.2f", 25.99);

// returns ****56

printf("%'*6d", 56);

?>

To see a real-world example of sprintf() usage, consider the following
number-heavy MySQL table:

mysql> SELECT * FROM stocks;

+--------+--------------+------------+------------+------------+-----------+

| symbol | qty | buy | sell | high | low |

+--------+--------------+------------+------------+------------+-----------+

| HGTY | 17000.0000 | 289.9786 | 195.7474 | 315.7643 | 187.9540|

| HDYS | 5.8701 | 19000.2734 | 21759.6465 | 21759.6465 | 18639.2988|

| IWIK | 2174733.0000 | 868.0000 | 870.0000 | 891.0000 | 800.0000|

+--------+--------------+------------+------------+------------+-----------+

3 rows in set (0.00 sec)

Here’s the PHP script that formats this mass of data into something more readable:

<html>

<head></head>

<body>

Target Selection

The sprintf() function returns the result of output formatting, while the
printf() function prints the result directly to the standard output device.

ch15.indd 310 2/2/05 3:29:51 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 15: Formatting Query Output 311

HowTo8 (8)

<?php

// open connection to MySQL server

$connection = mysql_connect('localhost', 'guest', 'pass') ↵
or die ('Unable to connect!');

// select database for use

mysql_select_db('db2') or die ('Unable to select database!');

// create and execute query

$query = "SELECT * FROM stocks";

$result = mysql_query($query) ↵
or die ('Error in query: $query. ' . mysql_error());

// check if records were returned

if (mysql_num_rows($result) > 0)

{

 echo '<table border=1 cellpadding=10>';

 echo '<tr><td>Stock</td> <td>Purchase value</td>';

 echo '<td>Sale value</td><td>Profit/Loss</td>';

 echo '<td>High/Low</td></tr>';

 // iterate over record set

 // format and print numeric data

 while($row = mysql_fetch_object($result))

 {

 echo '<tr>';

 echo '<td>' . $row->symbol . '</td>';

 printf('<td align=right>%s</td>', ↵
number_format($row->qty * $row->buy));

 printf('<td align=right>%s</td>', ↵
number_format($row->qty * $row->sell));

 printf('<td align=right>%s</td>', ↵
number_format($row->qty * ($row->sell - $row->buy)));

 printf('<td align=right>%s / %s</td>', ↵
number_format($row->high), number_format($row->low));

 echo '</tr>';

 }

 echo '</table>';

}

else

{

 // print error message

 echo 'No rows found!';

}

15

ch15.indd 311 2/2/05 3:29:51 PM

TEAM LinG

 312 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15

// once processing is complete

// free result set

mysql_free_result($result);

// close connection to MySQL server

mysql_close($connection);

?>

</body>

</html>

Figure 15-7 shows the output of this script.

Formatting Currency Values
At this point, it’s appropriate to mention PHP’s money_format() function,
introduced in PHP 4.3.0. This function is designed specifically for use with currency

Rounding Off

If you have a decimal value that you need to round up or down, you can do
it using either PHP or MySQL. MySQL offers the CEIL() and FLOOR()
functions, while PHP offers the round(), ceil(), and floor() functions.
Take a look at the following examples to see how these functions work:

mysql> SELECT CEIL(12.052),

FLOOR(12.052);

+--------------+--------------+

| ceil(12.052) | floor(12.052)|

+--------------+--------------+

| 13 | 12|

+--------------+--------------+

1 row in set (0.00 sec)

<?php

// returns 13

echo ceil(12.052);

// returns 12

echo floor(12.052);

// returns 12.1

// the second argument specifies ↵
// the number of decimals to round to

echo round(12.052, 1);

?>

ch15.indd 312 2/2/05 3:29:51 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 15: Formatting Query Output 313

HowTo8 (8)

values, and it formats numbers in accordance with local or international conventions
for currency display.

The money_format() function is not available in the Windows version
of PHP.

To see how this works, consider the following revision of a previous script, which
formats account balances using American, Indian, and French conventions:

<html>

<head></head>

<body>

<?php

// open connection to MySQL server

$connection = mysql_connect('localhost', 'guest', 'pass') ↵
or die ('Unable to connect!');

 FIGURE 15-7 Formatting numbers with the printf() function

15

ch15.indd 313 2/2/05 3:29:52 PM

TEAM LinG

 314 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15

// select database for use

mysql_select_db('db2') or die ('Unable to select database!');

// create and execute query

$query = "SELECT accountNumber, accountName, accountBalance ↵
FROM accounts";

$result = mysql_query($query) ↵
or die ('Error in query: $query. ' . mysql_error());

// check if records were returned

if (mysql_num_rows($result) > 0)

{

 echo '<table border=1 cellpadding=10>';

 echo '<tr><td>Number</td><td>Name</td><td>Balance</td>

<td>Balance</td><td>Balance</td></tr>';

 // iterate over record set

 while($row = mysql_fetch_object($result))

 {

 echo '<tr>';

 echo '<td>' . $row->accountNumber . '</td>';

 echo '<td>' . $row->accountName . '</td>';

 // display in Indian rupees

 setlocale(LC_MONETARY, 'en_IN');

 echo '<td align=right>' . ↵
money_format('%i', $row->accountBalance) . '</td>';

 // display in US dollars (convert using 1 USD = 45 INR)

 setlocale(LC_MONETARY, 'en_US');

 echo '<td align=right>' . ↵
money_format('%i', $row->accountBalance/45) . '</td>';

 // display in euros (convert using 1 EUR = 52 INR)

 setlocale(LC_MONETARY, 'fr_FR');

 echo '<td align=right>' . ↵
money_format('%i', $row->accountBalance/52) . '</td>';

 echo '</tr>';

 }

 echo '</table>';

}

else

{

ch15.indd 314 2/2/05 3:29:52 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 15: Formatting Query Output 315

HowTo8 (8)

 // print error message

 echo 'No rows found!';

}

// once processing is complete

// free result set

mysql_free_result($result);

// close connection to MySQL server

mysql_close($connection);

?>

</body>

</html>

Figure 15-8 demonstrates what the output looks like.

 FIGURE 15-8 Formatting numbers with the money_format() function

15

ch15.indd 315 2/2/05 3:29:52 PM

TEAM LinG

 316 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15

Here, the money_format() function formats numeric values as per international
currency conventions, using the appropriate separators. As the output illustrates,
the French locale uses commas instead of decimals and spaces instead of commas,
while the Indian locale differs from the American locale in its placement of thousand
separators. Locale information is set with PHP’s setlocale() function, and
numerous adjustments can be made to the alignment and precision of the final
currency value using sprintf()-type field templates (you can obtain a complete
list of these from http://www.php.net/manual/en/function.money-format.php).

To display the national currency symbol instead of the three-letter
international currency code, replace the %i symbol in the call to money_
format() with %n.

Formatting Dates and Times
As you saw in Chapter 6, you can use PHP’s mktime() function to obtain a UNIX
timestamp for any arbitrary date/time value. However, because the timestamp returned
by mktime() does not resemble traditional date/time displays, it is usually necessary
to format this timestamp, so it is understandable to humans. This is particularly true in
web applications, where dates and times are frequently displayed in human-readable,
rather than machine-readable, form. To this end, PHP offers the date() function,
which accepts two arguments: one or more format specifiers, which indicates how
the timestamp should be formatted, and the timestamp itself (optional; PHP assumes
the current time if this second argument is not provided).

To see a few examples of the date() function in action, create and run the
following script:

<?php

// retrieve current date and time

// prints a date and time like "09:18 pm 19 Jun 2004"

echo date("h:i a d M Y", mktime());

// returns just the date "27 April 2003"

echo date("d F Y", mktime(0, 0, 0, 04, 27, 2003));

// returns the time in 24-hr format "21:18"

echo date("H:i", mktime());

?>

ch15.indd 316 2/2/05 3:29:53 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 15: Formatting Query Output 317

HowTo8 (8)

Table 15-2 lists some of the more useful format specifiers recognized by the
date() function.

Let’s see an example of this in action. Consider the following database table,
which holds a list of users and their birth dates:

mysql> SELECT * FROM birthdays;

+-------+------------+

| name | dob |

+-------+------------+

| raoul | 1978-06-04 |

| luis | 1970-11-17 |

| larry | 1971-08-19 |

| moe | 1992-01-23 |

+-------+------------+

4 rows in set (0.00 sec)

Specifier What It Means

d Day of the month; numeric

D Day of the week; short string

F Month of the year; long string

h Hour; numeric 12-hour format

H Hour; numeric 24-hour format

i Minute; numeric

l Day of the week; long string

L Boolean indicating whether it is a leap year

m Month of the year; numeric

M Month of the year; short string

s Seconds; numeric

T Timezone

Y Year; numeric

z Day of the year; numeric

 TABLE 15-2 Common Format Specifiers Supported by the date() Function

15

ch15.indd 317 2/2/05 3:29:53 PM

TEAM LinG

 318 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15

Now, create and run a PHP script to retrieve these dates and format them into
more readable values:

<html>

<head></head>

<body>

<?php

// open connection to MySQL server

$connection = mysql_connect('localhost', 'guest', 'pass') ↵
or die ('Unable to connect!');

// select database for use

mysql_select_db('db2') or die ('Unable to select database!');

// create and execute query

$query = 'SELECT name, UNIX_TIMESTAMP(dob) AS dob ↵
FROM birthdays';

$result = mysql_query($query) ↵
or die ('Error in query: $query. ' . mysql_error());

// check if records were returned

if (mysql_num_rows($result) > 0)

{

 // print HTML table

 echo '<table border=1 cellpadding=10>';

 // iterate over record set

 // print each field

 while($row = mysql_fetch_object($result))

 {

 echo '<tr>';

 echo "<td>$row->name</td><td>" . ↵
date("d M Y", $row->dob) . "</td>";

 echo '</tr>';

 }

 echo '</table>';

}

else

{

 // print error message

 echo 'No rows found!';

}

ch15.indd 318 2/2/05 3:29:53 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 15: Formatting Query Output 319

HowTo8 (8)

// once processing is complete

// free result set

mysql_free_result($result);

// close connection to MySQL server

mysql_close($connection);

?>

</body>

</html>

Figure 15-9 demonstrates the output.
MySQL isn’t far behind either: the RDBMS comes with powerful DATE_

FORMAT() and TIME_FORMAT() functions to manipulate the display of date
and time values until they’re exactly the way you want them. As with the PHP
date() function, format specifiers are used to control the appearance of the
output.

Table 15-3 demonstrates the specifiers supported by the DATE_FORMAT()
and TIME_FORMAT() functions.

Here are some examples demonstrating these in action:

mysql> SELECT DATE_FORMAT(NOW(), '%W, %D %M %Y %r');

+--+

| DATE_FORMAT(NOW(), '%W, %D %M %Y %r') |

+--+

| Thursday, 18th November 2004 12:07:55 PM |

+--+

1 row in set (0.22 sec)

Just in Time

The MySQL UNIX_TIMESTAMP() function converts a MySQL-compliant
date or time value into a UNIX timestamp suitable for use with the PHP
date() function.

15

ch15.indd 319 2/2/05 3:29:53 PM

TEAM LinG

 320 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15

mysql> SELECT DATE_FORMAT(19980317, '%d/%m/%Y');

+-----------------------------------+

| DATE_FORMAT(19980317, '%d/%m/%Y') |

+-----------------------------------+

| 17/03/1998 |

+-----------------------------------+

1 row in set (0.00 sec)

mysql> SELECT DATE_FORMAT("20011215101030", ↵
"%H%i hrs on %a %d %M %y");

+--+

| DATE_FORMAT("20011215101030", "%H%i hrs on %a %d %M %y") |

+--+

| 1010 hrs on Sat 15 December 01 |

+--+

1 row in set (0.00 sec)

 FIGURE 15-9 Formatting dates with the date() function

ch15.indd 320 2/2/05 3:29:54 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 15: Formatting Query Output 321

HowTo8 (8)

mysql> SELECT TIME_FORMAT(19690609140256, '%h:%i %p');

+---+

| TIME_FORMAT(19690609140256, '%h:%i %p') |

+---+

| 02:02 PM |

+---+

1 row in set (0.00 sec)

Using the DATE_FORMAT() function, you can perform date formatting
within your SQL query itself, without needing PHP’s date() function. This
next script revisits the previous PHP listing, moving the formatting task to the
database layer:

<html>

<head></head>

<body>

Symbol What It Means

%a Short weekday name (Sun, Mon . . .)

%b Short month name (Jan, Feb . . .)

%d Day of the month

%H Hour (01, 02 . . .)

%I Minute (00, 01 . . .)

%j Day of the year (001, 002 . . .)

%m 2-digit month (00, 01 . . .)

%M Long month name (January, February)

%p AM/PM

%r Time in 12-hour format

%S Second (00, 01 . . .)

%T Time in 24-hour format

%w Day of the week (0,1 . . .)

%W Long weekday name (Sunday, Monday . . .)

%Y 4-digit year

 TABLE 15-3 MySQL Date/Time Formatting Codes

15

ch15.indd 321 2/2/05 3:29:54 PM

TEAM LinG

 322 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15

<?php

// open connection to MySQL server

$connection = mysql_connect('localhost', 'guest', 'pass') ↵
or die ('Unable to connect!');

// select database for use

mysql_select_db('db2') or die ('Unable to select database!');

// create and execute query

$query = "SELECT name, DATE_FORMAT(dob, '%d %b %Y') ↵
AS dob FROM birthdays";

$result = mysql_query($query) ↵
or die ('Error in query: $query. ' . mysql_error());

// check if records were returned

if (mysql_num_rows($result) > 0)

{

 // print HTML table

 echo '<table border=1 cellpadding=10>';

 // iterate over record set

 // print each field

 while($row = mysql_fetch_object($result))

 {

 echo '<tr>';

 echo "<td>$row->name</td><td>$row->dob</td>";

 echo '</tr>';

 }

 echo '</table>';

}

else

{

 // print error message

 echo 'No rows found!';

}

// once processing is complete

// free result set

mysql_free_result($result);

// close connection to MySQL server

mysql_close($connection);

?>

</body>

</html>

ch15.indd 322 2/2/05 3:29:54 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 15: Formatting Query Output 323

HowTo8 (8)

Calculating Your Age with MySQL

MySQL comes with a comprehensive date/time manipulation API that lets you
perform complex date arithmetic and extraction. While the list of available
functions is too large to list, two of the more interesting ones are the
PERIOD_DIFF() and TO_DAYS() functions, which return the difference,
in months and days, respectively, between two date values.

To see how this works, consider the following variant of the previous listing,
which lists the current age of each user in the table, given their date of birth:

mysql> SELECT name, dob, ↵
ROUND(PERIOD_DIFF(DATE_FORMAT(NOW(), '%Y%m'), ↵
DATE_FORMAT(dob, '%Y%m')) / 12, 1) AS age ↵
FROM birthdays;

+-------+------------+------+

| name | dob | age |

+-------+------------+------+

| raoul | 1978-06-04 | 26.4 |

| luis | 1970-11-17 | 34.0 |

| larry | 1971-08-19 | 33.2 |

| moe | 1992-01-23 | 12.8 |

+-------+------------+------+

4 rows in set (0.06 sec)

mysql> SELECT name, dob, ↵
(TO_DAYS(NOW()) - TO_DAYS(dob)) / 365 AS age ↵
FROM birthdays;

+-------+------------+------+

| name | dob | age |

+-------+------------+------+

| raoul | 1978-06-04 | 26.48 |

| luis | 1970-11-17 | 34.03 |

| larry | 1971-08-19 | 33.28 |

| moe | 1992-01-23 | 12.83 |

+-------+------------+------+

4 rows in set (0.00 sec)

15

ch15.indd 323 2/2/05 3:29:55 PM

TEAM LinG

 324 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15

There’s also an entire family of functions designed to extract each component
of a timestamp separately. Take a look at Table 15-4, which has a list, and the examples
following it to see how these work.

Here are some examples of these in action:

mysql> SELECT DAYOFMONTH(NOW()), DAYOFYEAR('1979-01-02');

+-------------------+-------------------------+

| DAYOFMONTH(NOW()) | DAYOFYEAR('1979-01-02') |

+-------------------+-------------------------+

| 23 | 2 |

+-------------------+-------------------------+

1 row in set (0.00 sec)

mysql> SELECT DAYNAME(NOW()), MONTHNAME(NOW()), YEAR(NOW());

+----------------+------------------+-------------+

| DAYNAME(NOW()) | MONTHNAME(NOW()) | YEAR(NOW()) |

+----------------+------------------+-------------+

| Tuesday | November | 2004 |

+----------------+------------------+-------------+

1 row in set (0.00 sec)

Function What It Does

DAYOFWEEK() Returns a number (1 to 7) representing the day of the week for a date

DAYOFMONTH() Returns the day component (1 to 31) of a date

DAYOFYEAR() Returns a number (1 to 366) representing the day of the year for a date

DAYNAME() Returns the weekday name for a date

HOUR() Returns the hour component (0–23) of a time

MINUTE() Returns the minute component (0–59) of a time

MONTH() Returns the month component (1 to 12) for a date

MONTHNAME() Returns the month name for a date

QUARTER() Returns the quarter (1–2) in which a date falls

WEEK() Returns the week number (0–53) for a date

YEAR() Returns the year component (1000–9999) of a date

 TABLE 15-4 More MySQL Date Functions

ch15.indd 324 2/2/05 3:29:55 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 15: Formatting Query Output 325

HowTo8 (8)

mysql> SELECT HOUR(NOW()), MINUTE('14:36');

+-------------+-----------------+

| HOUR(NOW()) | MINUTE('14:36') |

+-------------+-----------------+

| 21 | 36 |

+-------------+-----------------+

1 row in set (0.05 sec)

Read more about these functions at http://dev.mysql.com/doc/mysql/en/
Date_and_time_functions.html.

Paginating Large Result Sets
In previous sections of this chapter, you’ve seen how to massage and reformat
individual records so they meet your display requirements. In this concluding
segment, it’s time to step back and understand how to better present the entire set
of records returned by an SQL query.

It’s not uncommon for query result sets to contain hundreds or even thousands
of records. In such cases, it’s usually not user friendly to display the entire result
set on a single HTML page, as doing so forces the user to scroll up and down
endlessly to view the results. This is where pagination—the act of breaking up
large record collections into smaller subsets and displaying them one page at
a time—can help. By breaking the large mass of data into smaller, more easily
navigable pages, you increase the usability of your application, and you also avoid
overwhelming the user with mountains of data at once.

Writing PHP code to paginate a MySQL result set is fairly simple and grounded
in common sense. First, you decide how many results you want to display at a
time, say, ten. Next, you COUNT() how many records exist in the result set. Now
you can extract the first ten records using a LIMIT clause, and provide a link to
enable the user to select the next ten records. On each “page,” the last record identifier
serves as the starting point for the next page of records. This continues until all the
records in the collection have been processed.

Once you understand the underlying principle, writing the code to implement it
is simple. Take a look at the next listing, which illustrates this:

<html>

<head>

<basefont face="Arial">
</head>

<body>

15

ch15.indd 325 2/2/05 3:29:55 PM

TEAM LinG

 326 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15

<?php

// number of records to be displayed per page

$records_per_page = 10;

// look for starting marker

// if not available, assume 0

(!$_GET['start']) ? $start = 0 : $start = $_GET['start'];

// open connection to MySQL server

$connection = mysql_connect('localhost', 'guest', 'pass') ↵
or die ('Unable to connect!');

// select database for use

mysql_select_db('db2') or die ('Unable to select database!');

// create and execute query to count records

$query = "SELECT COUNT(*) FROM books WHERE rating > 3";

$result = mysql_query($query) ↵
or die ('Error in query: $query. ' . mysql_error());

// get total number of records

$row = mysql_fetch_row($result);

$total_records = $row[0];

// if records exist

if (($total_records > 0) && ($start < $total_records))

{

 // create and execute query to get batch of records

 $query = "SELECT title, author, DATE_FORMAT(date, '%d %M %Y') ↵
AS date FROM books WHERE rating > 3 LIMIT $start, $records_per_page";

 $result = mysql_query($query) ↵
or die ('Error in query: $query. ' . mysql_error());

 // iterate over record set

 // print data

 echo '<table border=1 cellpadding=10>';

 while($row = mysql_fetch_object($result))

 {

 echo '<tr>';

 echo "<td>$row->title</td>";

 echo "<td>$row->author</td>";

 echo "<td>$row->date</td>";

ch15.indd 326 2/2/05 3:29:55 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 15: Formatting Query Output 327

HowTo8 (8)

 echo '</tr>';

 }

 echo '</table>';

 // set up the previous page link

 // this should appear on all pages except the first page

 // the start point for the previous page will be

 // the start point for this page

 // less the number of records per page

 if ($start >= $records_per_page)

 {

 echo "<a href=" . $_SERVER['PHP_SELF'] . ↵
"?start=" . ($start-$records_per_page) . ">Previous ↵
Page ";

 }

 // set up the "next page" link

 // this should appear on all pages except the last page

 // the start point for the next page

 // will be the end point for this page

 if ($start+$records_per_page < $total_records && $start >= 0)

 {

 echo "<a href=" . $_SERVER['PHP_SELF'] . ↵
"?start=" . ($start+$records_per_page) . ">Next Page";

 }

}

?>

</body>

</html>

In this listing, the key variable is $records_per_page, which controls
the number of records displayed at one time. This value is used as the upper
boundary in the SELECT query’s LIMIT clause to restrict the number of records
returned by the query (the lower boundary is the number of the last record
displayed, received from the previous instance of the page through the URL
GET method).

For each batch of records, further calculations are performed to assess if
“next page” and “previous page” links should be displayed. The presence of
these links is heavily dependent on the interaction between the total number
of records in the result set, and the number of records to be displayed at any
one time.

Figure 15-10 illustrates what the output looks like.

15

ch15.indd 327 2/2/05 3:29:56 PM

TEAM LinG

 328 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 15

Summary
Output formatting is an important aspect of application design. This chapter
highlighted the important MySQL and PHP functions in this category. It taught you
how to pad and concatenate string values, change case, and handle special characters
and embedded HTML. Next, this chapter discussed formatting numeric data, with
examples and information on breaking up large values with separators, rounding
and truncating floating-point values, and attaching local and international currency
symbols to numbers. Finally, it showed you the numerous date/time display options
available, and demonstrated how to break a large result set into separate pages for
greater readability.

 FIGURE 15-10 Paginating a MySQL result set

ch15.indd 328 2/2/05 3:29:56 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 15: Formatting Query Output 329

HowTo8 (8)

As noted at the outset of this chapter, both PHP and MySQL come with numerous
functions for data manipulation and display. To find out more, consider visiting the
following links:

■ PHP string functions, at http://www.php.net/manual/en/ref.strings.php and
http://www.melonfire.com/community/columns/trog/article.php?id=88

■ PHP date/time functions, at http://www.php.net/manual/en/ref.datetime
.php and http://www.melonfire.com/community/columns/trog/article
.php?id=118

■ MySQL string functions, at http://dev.mysql.com/doc/mysql/en/String_
functions.html and http://www.melonfire.com/community/columns/
trog/article.php?id=235

■ MySQL numeric functions, at http://dev.mysql.com/doc/mysql/en/
Mathematical_functions.html

■ MySQL date/time functions, at http://dev.mysql.com/doc/mysql/en/Date_
and_time_functions.html

■ A discussion of PHP’s automatic quoting (aka “magic quotes”) of special
characters, at http://www.php.net/manual/en/security.magicquotes.php

■ A discussion of MySQL’s date/time field types, date manipulation, and
date arithmetic, at http://www.melonfire.com/community/columns/trog/
article.php?id=241

■ Ready-to-use code for result set pagination, at http://pear.php.net/
package/Pager

15

ch15.indd 329 2/2/05 3:29:56 PM

TEAM LinG

ch15.indd 330 2/2/05 3:29:56 PM

This page is intentionally left blank.

TEAM LinG

Chapter 16

HowTo8 (8)

Sample
Application: News
Publishing System

ch16.indd 331 2/2/05 3:30:46 PM

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

TEAM LinG

 332 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 16HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 16

Over the last three chapters, you learned a little bit about how PHP and MySQL
can be used together. It’s now time for you to put that knowledge to use, by

building a real-world application that retrieves data from a MySQL database to
create a dynamic PHP-based web site. This application is more challenging than
the examples you’ve seen in previous chapters. Once you complete this exercise,
however, you will have practical, hands-on knowledge of how to use PHP and
MySQL together to build usable web applications.

Understanding Requirements
The application here is a news publishing system for a business web site, either
on an intranet or the public Internet. It’s intended to provide the organization’s
administrative and press personnel with a way to post news items, press releases,
and articles on the web site, and to easily maintain (view, edit, and delete) this
information. A MySQL database stores this information, with PHP taking care of
retrieving and manipulating the information through a web browser.

This application has two pieces: the “public” piece, which consists of the code that
displays the latest news and press releases to the site’s visitors, and the “private”
piece, which consists of the administration interface for individual editors within
the PR department to publish new content to the web site. Both these pieces
interact with the MySQL database (which contains the actual news stories and
press releases) using the MySQL API built into PHP.

With this in mind, it should be clear that this application must support the
following tasks:

■ It must be able to display a list of all news items in the database (or the most
recent ones), and enable users to view the complete contents of each.

■ It must let administrators add new items and press releases to the database.

■ It must enable administrators to edit existing releases, to make corrections
or update them with new information.

■ It must permit the removal of older, out-of-date releases, and news items
from the database.

With these requirements in mind, it’s time to design the database.

ch16.indd 332 2/2/05 3:30:47 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 16: Sample Application: News Publishing System 333

HowTo8 (8)

Designing the Database
Because the content for the application is stored in a MySQL table, it’s important
to define exactly what constitutes a press release. If you think about it, you’ll see
that a press release or article can typically be broken down into three subsections:
a title, a main body containing the text of the press release or news item, and an
information section with the publication date and name of the contact person.

To begin, create a database to store this information, and select it for use:

mysql> CREATE DATABASE news;

Query OK, 1 row affected (0.16 sec)

mysql> USE news;

Database changed

Next, create a table to hold press releases and news:

mysql> CREATE TABLE news (

 -> id SMALLINT(5) unsigned NOT NULL auto_increment,

 -> title TEXT NOT NULL,

 -> content TEXT NOT NULL,

 -> contact VARCHAR(255),

 -> timestamp DATETIME DEFAULT '0000-00-00 00:00:00'

 -> NOT NULL,

 -> PRIMARY KEY (id)

 ->);

Query OK, 0 rows affected (0.05 sec)

As you can see, this maps right into the information provided previously. The
table has one field for every element of a press release.

To get things rolling, populate this table with a couple of dummy records, like
the following ones:

mysql> INSERT INTO news (id, title, content, contact, timestamp)

VALUES ('1', 'Megalomaniacs Inc. Is Born', 'EARTH -- A new star was

born today on the planet third closest to the sun. Megalomaniacs

Inc., a venture of WeWantItAll Corp., today threw open its doors

for business in the ritzy Jefferson Square business district.

16

ch16.indd 333 2/2/05 3:30:47 PM

TEAM LinG

 334 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 16HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 16

Created with the sole goal of colonizing every single planet in the

known Universe (and beyond), Megalomaniacs Inc. hopes to quickly

acquire a monopoly over the vast tracts of uncharted real estate

in space. Speaking at a press conference, Megalomaniacs Inc. CEO

warned reporters that Megalomaniacs Inc. would "take everything it

could, and then some". ', 'Peter Paul (peter@megalo.mania)', '2003-

12-11 17:29:25');

Query OK, 1 row affected (0.01 sec)

mysql> INSERT INTO news (id, title, content, contact, timestamp)

VALUES ('2', 'Megalomaniacs Inc. Expands To Mars', 'MARS -- As part

of its business strategy of "expand and swallow", Megalomaniacs

Inc. today announced that it had successfully sent a team of corporate

raiders to Mars, in an effort to persuade the inhabitants of that

planet to surrender their planet for colonization.

Megalomaniacs Inc. COO today said that the move was a "friendly

overture", but that a failure to comply with the company\'s

colonization plans would result in a "swift and sure eviction of

those little green guys". ', 'Tim Jr. (tim@megalo.mania)', '2004-08-30

12:13:48');

Query OK, 1 row affected (0.07 sec)

If the previous commands are unfamiliar to you, page back to Chapters 9 and 10,
which explain them in greater detail.

Listing and Displaying News Items
You’ll remember from the requirements discussion a couple of pages back, that
this development effort can broadly be split into two parts. One part consists of
the scripts that retrieve the list of newest items from the database and display this
list to the user. The other part consists of administrative tools that enable editors to
manage this list, enter new information, and edit or delete existing information.

Because the first part is simpler, let’s get that out of the way first. Two scripts
are involved here: list.php, which retrieves a list of the five newest entries in the
database; and story.php, which displays the full text for the selected story.

ch16.indd 334 2/2/05 3:30:47 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 16: Sample Application: News Publishing System 335

HowTo8 (8)

Listing News Items
Create list.php first:

<html>

<head>

<basefont face="Verdana">

</head>

<body>

<!-- standard page header begins -->

<p> <p>

<table width="100%" cellspacing="0" cellpadding="5">

<tr>

 <td></td>

</tr>

<tr>

 <td bgcolor="Navy">

 Megalomaniacs Inc : Press Releases

 </td>

</tr>

</table>

<!-- standard page header ends -->

<?php

// includes

include('../conf.php');

include('../functions.php');

// open database connection

$connection = mysql_connect($host, $user, $pass) ↵
or die ('Unable to connect!');

// select database

mysql_select_db($db) or die ('Unable to select database!');

// generate and execute query

$query = "SELECT id, title, timestamp FROM news ↵
ORDER BY timestamp DESC LIMIT 0, 5";

$result = mysql_query($query) ↵
or die ("Error in query: $query. " . mysql_error());

16

ch16.indd 335 2/2/05 3:30:48 PM

TEAM LinG

 336 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 16HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 16

// if records present

if (mysql_num_rows($result) > 0)

{

 // iterate through resultset

 // print article titles

 while($row = mysql_fetch_object($result))

 {

 ?>

 <a href="story.php?id= ↵
 <?php echo $row->id; ?>"><?php echo $row->title; ?>

 <?php echo formatDate($row->timestamp); ?>

 <p>

 <?php

 }

}

// if no records present

// display message

else

{

?>

 No press releases currently available

<?php

}

// close database connection

mysql_close($connection);

?>

<!-- standard page footer begins -->

<p>

<table width="100%" cellspacing="0" cellpadding="5">

<tr>

 <td align="center">

 All rights reserved. Visit Melonfire

 here for more.</td>

</tr>

</table>

<!-- standard page footer ends -->

</body>

</html>

ch16.indd 336 2/2/05 3:30:48 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 16: Sample Application: News Publishing System 337

HowTo8 (8)

This script connects to the database, retrieves a set of records, and formats
them for display in a web browser. You’ve already seen this in Chapter 13, so none
of it should be a surprise. Pay special attention to the SELECT query that retrieves
the records from the MySQL table: it contains a DESC clause to order the items in
the order of most recent first, and a LIMIT clause to restrict the result set to five
items only.

The formatDate() function used in the previous code listing is a user-
defined function that turns a MySQL timestamp into a human-friendly date string
(Chapter 5 has more information on how to define such a function). The function
is defined in the functions.php file and looks like this:

<?php

// format MySQL DATETIME value into a more readable string

function formatDate($val)

{

 $arr = explode('-', $val);

 return date('d M Y', mktime(0,0,0, $arr[1], $arr[2], $arr[0]));

}

?>

Also necessary is to include some code that tells the script what to do if no
records are returned by the query (this could happen when the application is
installed for the first time, and no records are present in the database). Without this
code, the generated page would be completely empty—not a nice thing to show to
users, especially on a potentially high-traffic page. The solution is to use an if()
loop to check if any records were returned by the query and display a neat little
message if none were returned.

Here’s a fragment that outlines how this would work:

<?php

// if records present

if (mysql_num_rows($result) > 0)

{

 // iterate through resultset

 // print article titles

}

// if no records present

else

16

ch16.indd 337 2/2/05 3:30:48 PM

TEAM LinG

 338 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 16HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 16

{

 // display error message

}

?>

Figure 16-1 shows what it looks like when you view this script through a browser.

As a developer, it’s important to think through all possible situations and
write code that handles each one intelligently. The possibility of an empty
database doesn’t even occur to many novice developers—and this can lead
to embarrassing situations if you’re demonstrating the application to your
boss . . . or worse, the customer!

 FIGURE 16-1 A list of available news items

ch16.indd 338 2/2/05 3:30:49 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 16: Sample Application: News Publishing System 339

HowTo8 (8)

The Configuration File
In case you’re wondering, the MySQL hostname, the username, and the password
used by the mysql_connect() function are all variables sourced from the
configuration file conf.php. This file has been include()-d at the top of each
script and it looks like this:

<?php

// database configuration

$host = 'localhost';

$user = 'newuser';

$pass = 'newspass';

$db = 'news';

// default contact person

$def_contact = 'Johnny Doe (jd@megalo.mania)';

?>

Extracting this configuration information into a separate file makes it easier
to update the application in case the database username or password changes.
Updating a single file is far easier than updating multiple scripts, each with the
values hard-wired into it.

Displaying Story Content
You’ll notice, from the previous code listing, that every press release title is linked
to story.php via its unique ID. The story.php script uses this ID to connect to the
database and retrieve the full text of the release. Here is what it looks like:

<html>

<head></head>

<body>

<!-- standard page header -->

<?php

// includes

include('../conf.php');

include('../functions.php');

16

ch16.indd 339 2/2/05 3:30:49 PM

TEAM LinG

 340 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 16HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 16

// check for record ID

if ((!isset($_GET['id']) || trim($_GET['id']) == ''))

{

 die('Missing record ID!');

}

// open database connection

$connection = mysql_connect($host, $user, $pass) ↵
or die ('Unable to connect!');

// select database

mysql_select_db($db) or die ('Unable to select database!');

// generate and execute query

$id = $_GET['id'];

$query = "SELECT title, content, contact, timestamp FROM news ↵
WHERE id = '$id'";

$result = mysql_query($query) ↵
or die ("Error in query: $query. " . mysql_error());

// get resultset as object

$row = mysql_fetch_object($result);

// print details

if ($row)

{

?>

 <p>

 <?php echo $row->title; ?>

 <p>

 <?php echo nl2br($row->content); ?>

 <p>

 This release was published on

 <?php echo formatDate($row->timestamp); ?>.

 For more information, please contact <?php echo $row->contact; ?>

<?php

}

else

{

?>

 <p>

 That release could not be located in

 our database.

<?php

}

ch16.indd 340 2/2/05 3:30:49 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 16: Sample Application: News Publishing System 341

HowTo8 (8)

// close database connection

mysql_close($connection);

?>

<!-- standard page footer -->

</body>

</html>

Again, extremely simple—connect, use the ID to get the full text for the
corresponding item, and display it. Figure 16-2 illustrates what it looks like.

At this point, you have a primitive publishing system that can be used to
provide users of a web site with news, press releases, and other information.
There’s only one small hitch. . . .

 FIGURE 16-2 Displaying story content

16

ch16.indd 341 2/2/05 3:30:49 PM

TEAM LinG

 342 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 16HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 16

Manipulating News Items
At this point in time, there is no simple way to update the database with new
information. To insert or edit information, an administrator needs to know SQL
and have access to a MySQL client. This may not always be possible, so it’s
necessary to also develop a simple, friendly interface for database updates.

Based on the requirements outlined previously, this administration module will
consist of at least the following four scripts: list.php, which lists all press releases
currently in the database and lets the administrator select an individual record for
an edit or delete operation; edit.php, which enables the administrator to update
a record; delete.php, which lets the administrator delete a record; and add.php,
which enables the administrator to add a new record.

Let’s look at each of these in turn.

Listing News Items
First up, the list.php script. As you might imagine, this is almost identical to
the previous list.php—it displays a list of all press releases currently stored in
the database, with additional links to edit or delete them. Here it is.

<html>

<head></head>

<body>

<!-- standard page header -->

<?php

// includes

include('../conf.php');

include('../functions.php');

// open database connection

$connection = mysql_connect($host, $user, $pass) ↵
or die ('Unable to connect!');

// select database

mysql_select_db($db) or die ('Unable to select database!');

// generate and execute query

$query = "SELECT id, title, timestamp FROM news ORDER BY timestamp ↵
DESC";

ch16.indd 342 2/2/05 3:30:49 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 16: Sample Application: News Publishing System 343

HowTo8 (8)

$result = mysql_query($query) ↵
or die ("Error in query: $query. " . mysql_error());

// if records present

if (mysql_num_rows($result) > 0)

{

 // iterate through resultset

 // print title with links to edit and delete scripts

 while($row = mysql_fetch_object($result))

 {

 ?>

 <?php echo $row->title; ?>

 [<?php echo formatDate($row->timestamp); ?>]

 <a href="edit.php?id=<?php echo $row->id; ?>">

 edit | <a href="delete.php?id=<?php echo $row->id; ?>">

 delete

 <p>

 <?php

 }

}

// if no records present

// display message

else

{

?>

 No releases currently available<p>

<?php

}

// close connection

mysql_close($connection);

?>

add new

<!-- standard page footer -->

</body>

</html>

Pay special attention to the links to edit.php and delete.php in the previous script.
You’ll see that each of these scripts is passed an additional $id variable, which
contains the unique record identifier for that particular item. More on this shortly.

16

ch16.indd 343 2/2/05 3:30:50 PM

TEAM LinG

 344 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 16HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 16

Figure 16-3 demonstrates what page generated by the previous script looks like.
Notice the differences between Figure 16-3 and Figure 16-1—namely, the additional
links next to each record, and the link to add new items at the end of the page.

Adding News Items
Next, add.php. If you think about it, you’ll realize this script has two components:
a form, which displays fields for the administrator to enter information, and a form
processor, which validates the input and inserts it into the database.

This next listing compresses both these components into the same script,
using a conditional test to decide which one gets used when (Chapter 4 has more
information on this technique). Here is the listing:

 FIGURE 16-3 A list of available news items, with administrative functions

ch16.indd 344 2/2/05 3:30:50 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 16: Sample Application: News Publishing System 345

HowTo8 (8)

<html>

<head></head>

<body>

<!-- standard page header -->

<?php

// form not yet submitted

// display initial form

if (!$_POST['submit'])

{

?>

<table cellspacing="5" cellpadding="5">

<form action="<?php echo $_SERVER['PHP_SELF']; ?>" method="POST">

<tr>

 <td valign="top">Title</td>

 <td>

 <input size="50" maxlength="250" type="text" name="title">

 </td>

</tr>

<tr>

 <td valign="top">Content</td>

 <td>

 <textarea name="content" cols="40" rows="10"></textarea>

 </td>

</tr>

<tr>

 <td valign="top">Contact person</td>

 <td>

 <input size="50" maxlength="250" type="text" name="contact">

 </td>

</tr>

<tr>

 <td colspan=2>

 <input type="Submit" name="submit" value="Add">

 </td>

</tr>

</form>

</table>

<?php

}

16

ch16.indd 345 2/2/05 3:30:50 PM

TEAM LinG

 346 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 16HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 16

else

{

 // includes

 include('../conf.php');

 include('../functions.php');

 // set up error list array

 $errorList = array();

 $title = $_POST['title'];

 $content = $_POST['content'];

 $contact = $_POST['contact'];

 // validate text input fields

 if (trim($_POST['title']) == '')

 {

 $errorList[] = 'Invalid entry: Title';

 }

 if (trim($_POST['content']) == '')

 {

 $errorList[] = "Invalid entry: Content";

 }

 // set default value for contact person

 if (trim($_POST['contact']) == '')

 {

 $contact = $def_contact;

 }

 // check for errors

 // if none found...

 if (sizeof($errorList) == 0)

 {

 // open database connection

 $connection = mysql_connect($host, $user, $pass) ↵
or die ('Unable to connect!');

 // select database

 mysql_select_db($db) ↵
or die ('Unable to select database!');

ch16.indd 346 2/2/05 3:30:50 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 16: Sample Application: News Publishing System 347

HowTo8 (8)

 // generate and execute query

 $query = "INSERT INTO ↵
news(title, content, contact, timestamp) ↵
VALUES('$title', '$content', '$contact', NOW())";

 $result = mysql_query($query) ↵
or die ("Error in query: $query. " . mysql_error());

 // print result

 echo 'Update successful. ↵
Go back to the main menu.';

 // close database connection

 mysql_close($connection);

 }

 else

 {

 // errors found

 // print as list

 echo 'The following errors were encountered:';

 echo '
';

 echo '';

 for ($x=0; $x<sizeof($errorList); $x++)

 {

 echo "$errorList[$x]";

 }

 echo '';

 }

}

?>

<!-- standard page footer -->

</body>

</html>

When this script is first executed, it will display a form like that shown in
Figure 16-4.

Now, once the administrator enters data into this form and submits it, the same
script is called again to process the data (note the presence of the special
$_SERVER['PHP_SELF'] variable in the form’s ACTION attribute). Because
the $submit variable will now exist, control will transfer to the latter half of
the script.

16

ch16.indd 347 2/2/05 3:30:50 PM

TEAM LinG

 348 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 16HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 16

As a prelude to any other activity, this branch of the script first ensures that all
required values are present and generates errors if they are not. These errors are
stored in the array $errorList. Once all the input validation is complete, the
$errorList array is checked for elements. If entries are present in this array,
a message is displayed listing the errors; if not, an INSERT query is generated
to add the data to the database, and a success message is printed to the browser
(Figure 16-5).

For less significant fields, where it doesn’t matter as much if the user
enters a value or not, you can always substitute a default value instead of
generating an error. An example of this can be seen in the previous script
where, in the event that the contact person field is left empty, a default
value is used from the configuration file.

 FIGURE 16-4 A form to add news items

ch16.indd 348 2/2/05 3:30:51 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 16: Sample Application: News Publishing System 349

HowTo8 (8)

You can automatically time-stamp an entry into a MySQL table with the
built-in NOW() function. Look at the INSERT query in the previous listing
for an example.

MySQL will automatically fill the first field declared as TIMESTAMP in
a row with the current date and time if no value is explicitly specified for
that field, or if a NULL value is specified for that field.

Deleting News Items
You’ll remember, from the discussion of list.php a few pages back, that the script
delete.php is passed a $id variable, which holds the unique record identifier for

 FIGURE 16-5 Successful addition of a news item to the database

16

ch16.indd 349 2/2/05 3:30:51 PM

TEAM LinG

 350 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 16HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 16

the selected news item. This identifier is used by delete.php to delete the selected
record from the database. The next listing illustrates this:

<html>

<head></head>

<body>

<!-- standard page header -->

<?php

// includes

include('../conf.php');

include('../functions.php');

// check for record ID

if ((!isset($_GET['id']) || trim($_GET['id']) == ''))

{

 die('Missing record ID!');

}

// open database connection

$connection = mysql_connect($host, $user, $pass) ↵
or die ('Unable to connect!');

// select database

mysql_select_db($db) or die ('Unable to select database!');

// generate and execute query

$id = $_GET['id'];

$query = "DELETE FROM news WHERE id = '$id'";

$result = mysql_query($query) ↵
or die ("Error in query: $query. " . mysql_error());

// close database connection

mysql_close($connection);

// print result

echo 'Deletion successful.';

echo 'Go back to the main menu.';

?>

ch16.indd 350 2/2/05 3:30:51 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 16: Sample Application: News Publishing System 351

HowTo8 (8)

<!-- standard page footer -->

</body>

</html>

This is so simple, it hardly requires any explanation. The ID passed to the
script via the $id variable is used to construct and execute a DELETE query,
which removes the corresponding record from the database.

Figure 16-6 illustrates the output of a successful deletion.

Editing News Items
The last task on the to-do list involves updating, or editing, a news item. The script
that does this is called edit.php, and it’s a combination of both add.php and delete.php.
Like delete.php, edit.php also receives the record’s unique identifier via the $id
variable. It now needs to display a form similar to that used by add.php, except this

 FIGURE 16-6 Successful deletion of a news item from the database

16

ch16.indd 351 2/2/05 3:30:52 PM

TEAM LinG

 352 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 16HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 16

form needs to be prefilled with the data for that news item. Once the user changes
the data and submits the form, the script has to execute an UPDATE query using
the record identifier to save the changes to the database.

This sounds like a lot of work . . . and it is! Here’s the first part of the listing:

<html>

<head></head>

<body>

<!-- standard page header -->

<?php

// includes

include('../conf.php');

include('../functions.php');

// form not yet submitted

// display initial form with values pre-filled

if (!$_POST['submit'])

{

 // check for record ID

 if ((!isset($_GET['id']) || trim($_GET['id']) == ''))

 {

 die('Missing record ID!');

 }

 // open database connection

 $connection = mysql_connect($host, $user, $pass) ↵
or die ('Unable to connect!');

 // select database

 mysql_select_db($db) or die ('Unable to select database!');

 // generate and execute query

 $id = $_GET['id'];

 $query = "SELECT title, content, contact FROM news ↵
WHERE id = '$id'";

 $result = mysql_query($query) ↵
or die ("Error in query: $query. " . mysql_error());

 // if a result is returned

 if (mysql_num_rows($result) > 0)

ch16.indd 352 2/2/05 3:30:52 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 16: Sample Application: News Publishing System 353

HowTo8 (8)

 {

 // turn it into an object

 $row = mysql_fetch_object($result);

 // print form with values pre-filled

?>

<table cellspacing="5" cellpadding="5">

<form action="<?php echo $_SERVER['PHP_SELF']; ?>" method="POST">

<input type="hidden" name="id" value="<?php echo $id; ?>">

<tr>

 <td valign="top">Title</td>

 <td>

 <input size="50" maxlength="250" type="text" name="title"

value="<?php echo $row->title; ?>">

 </td>

</tr>

<tr>

 <td valign="top">Content</td>

 <td>

 <textarea name="content" cols="40" rows="10">

 <?php echo $row->content; ?>

 </textarea>

 </td>

</tr>

<tr>

 <td valign="top">Contact person</td>

 <td>

 <input size="50" maxlength="250" type="text" name="contact"

 value="<?php echo $row->contact; ?>">

 </td>

</tr>

<tr>

 <td colspan=2>

 <input type="Submit" name="submit" value="Update">

 </td>

</tr>

</form>

</table>

<?php

 }

 // no result returned

 // print graceful error message

 else

 {

 echo 'That press release could not be located ↵
in our database.';

 }

}

16

ch16.indd 353 2/2/05 3:30:52 PM

TEAM LinG

 354 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 16HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 16

else

{

// form submitted

// start processing it

}

?>

<!-- standard page footer -->

</body>

</html>

Using the identifier provided by list.php, edit.php queries the database for
the fields relevant to that particular record and uses that information to prefill an
HTML form. Figure 16-7 illustrates what this form might look like.

 FIGURE 16-7 A form to edit news items

ch16.indd 354 2/2/05 3:30:52 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 16: Sample Application: News Publishing System 355

HowTo8 (8)

The $id variable is attached to the form as a hidden variable and is submitted
together with the other values. This ID will be used by the form processor
when constructing the UPDATE query in the second part of the script.

Once the form is submitted, the data entered into it needs to be validated and
integrated into an UPDATE query. This is handled by the second part of the listing,
as shown in the following:

<html>

<head></head>

<body>

<!-- standard page header -->

<?php

if (!$_POST['submit'])

Locking the Doors

You might be wondering why the listing includes a check for the number of
rows returned by the query. This is necessary because if the identifier provided
to edit.php is invalid or nonexistent, the query will return zero rows, and the
administrator will be faced with a form with no data in it. Always perform
such “boundary condition” checks to ensure that your script doesn’t behave in
an unexpected manner.

Most of the time, this additional check is redundant because the identifier
will be generated from list.php and will, therefore, usually be valid. However,
if someone (say, a malicious hacker) decides to experiment with the URL
string, changing the ID that gets appended to it to an invalid value, this could
result in a series of ugly error messages or even cause the application to break.
Therefore, by adding this check, not only does the overall security of the
application improve, but also the possibility of errors reduces.

16

ch16.indd 355 2/2/05 3:30:53 PM

TEAM LinG

 356 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 16HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 16

{

// display initial form with values pre-filled

}

else

{

 // set up error list array

 $errorList = array();

 $title = $_POST['title'];

 $content = $_POST['content'];

 $contact = $_POST['contact'];

 $id = $_POST['id'];

 // check for record ID

 if ((!isset($_POST['id']) || trim($_POST['id']) == ''))

 {

 die ('Missing record ID!');

 }

 // validate text input fields

 if (trim($_POST['title']) == '')

 {

 $errorList[] = 'Invalid entry: Title';

 }

 if (trim($_POST['content']) == '')

 {

 $errorList[] = "Invalid entry: Content";

 }

 // set default value for contact person

 if (trim($_POST['contact']) == '')

 {

 $contact = $def_contact;

 }

 // check for errors

 // if none found...

 if (sizeof($errorList) == 0)

 {

 // open database connection

 $connection = mysql_connect($host, $user, $pass) ↵
or die ('Unable to connect!');

ch16.indd 356 2/2/05 3:30:53 PM

TEAM LinG

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 16

 CHAPTER 16: Sample Application: News Publishing System 357

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 16

 // select database

 mysql_select_db($db) ↵
or die ('Unable to select database!');

 // generate and execute query

 $query = "UPDATE news SET title = '$title', ↵
content = '$content', contact = '$contact', timestamp = NOW() ↵
WHERE id = '$id'";

 $result = mysql_query($query) ↵
or die ("Error in query: $query. " . mysql_error());

 // print result

 echo 'Update successful.';

 echo 'Go back to the main menu.';

 // close database connection

 mysql_close($connection);

 }

 else

 {

 // errors occurred

 // print as list

 echo 'The following errors were encountered:';

 echo '
';

 echo '';

 for ($x=0; $x<sizeof($errorList); $x++)

 {

 echo "$errorList[$x]";

 }

 echo '';

 }

}

?>

<!-- standard page footer -->

</body>

</html>

This part of the script is almost identical to the code previously used in add.php,
with the obvious difference that this query string uses an UPDATE command
instead of an INSERT command.

16

ch16.indd 357 2/2/05 3:30:53 PM

TEAM LinG

 358 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 16HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 16

Figure 16-8 illustrates what the result of a successful update looks like.
At this point, you have an application that meets all the requirements outlined

in the section “Understanding Requirements.” You can now proceed to upload it
to your web server and begin using it to manage the content of your web site. But
first, a few words about security.

Protecting the Administration Module
The way the application has been built thus far, all the scripts are accessible
to anyone with a web browser. This is fine for the “public” component of the
application, but unacceptable for the “private” administration module. What you
really need is a way to protect the administrative scripts so that only authorized
users (that is, administrators) can get in to futz with the database content.

If you’re using Apache, a simple way to accomplish this is with Apache’s
built-in user-authentication mechanism. This mechanism is based on the traditional

 FIGURE 16-8 Successful update of a news item in the database

ch16.indd 358 2/2/05 3:30:54 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 16: Sample Application: News Publishing System 359

HowTo8 (8)

username-password challenge. When the web server receives a request for a directory
or file that it knows is a protected resource, it responds by sending the client
browser an authentication challenge. Only after receiving a valid username and
password back from the client browser is access granted to the directory or file.

The following instructions apply to Windows and UNIX versions of the
Apache 1.3.x web server.

To see how this works, move the four administration scripts—list.php, add.php,
edit.php, and delete.php—into a separate directory under the server root (let’s call
it admin/) and create a file named .htaccess in this directory. Open the file in a text
editor and add the following lines to it:

AuthType Basic

AuthName "Administration Module"

AuthUserFile /usr/local/apache/users

require valid-user

The AuthType directive specifies the type of authentication, while the
AuthName directive specifies a name or description for the resource (this
description will appear in the client browser when the user attempts to access
the protected directory, so you should choose something descriptive). The
AuthUserFile directive specifies the location for the file containing the list
of authorized users and passwords (in this example, /usr/local/apache/users).

The file containing usernames and passwords should always be placed
outside the web server root, in a directory not accessible through a
browser . . . or else absolutely anyone will be able to download it! That
said, note that the default Apache configuration blocks remote retrieval
of any file beginning with .ht.

Next, open your main Apache configuration file, httpd.conf, and look for the
<Directory> tags that reference your web server root. These tags should look
something like this:

<Directory "/usr/local/apache/htdocs">

...

</Directory>

16

ch16.indd 359 2/2/05 3:30:54 PM

TEAM LinG

 360 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 16HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Chapter 16

Ensure this <Directory> block contains the line

AllowOverride All

If this line isn’t there, add it, and save the file. Restart the server for this change
to take effect.

Next, create the password file itself, by running Apache’s htpasswd program
(usually in the bin/ subdirectory of the Apache installation directory). Pass the
program two parameters: the location to which the file should be written and a
username (in this example, newsadmins).

$./htpasswd -c /usr/local/apache/users newsadmins

Adding password for newsadmins.

New password:

Re-type new password:

The Final Authority

The AllowOverride directive tells the server whether global configuration
parameters can be overridden by local ones, like the parameters in the
.htaccess file.

First Time Flag

You can add as many users as you like using the previous method. However,
omit the -c parameter for all users after the first because the -c parameter is
only used when creating the file for the first time.

ch16.indd 360 2/2/05 3:30:54 PM

TEAM LinG

HowTo8 (8)

 CHAPTER 16: Sample Application: News Publishing System 361

HowTo8 (8)

The username passed to htpasswd need not be an actual user on the
system; it exists only within the context of the Apache security mechanism.

On Windows, the operating system will not let you create a file name beginning
with a period. To work around this, open an MS-DOS command shell and
issue the command REN htaccess .htaccess to rename the file.

A password file named users should now be created in the named location,
containing the username and the password (in encrypted form) you just entered.

With everything in place, start up your browser and point it to the directory you
just protected. The web server should immediately pop up a dialog box asking for
a username and password and will only let you view the contents of the directory
if you enter the correct values. Figure 16-9 shows what this looks like.

This simple authentication system will prevent random visitors (or not-so-
random hackers) from gaining access to the administration module and manipulating
your MySQL database without your knowledge.

Summary
As you can see, building a simple publishing system with PHP and MySQL is
extremely easy. The two technologies, combined together, are so powerful that
putting together dynamic, robust web applications, like the one just described,

 FIGURE 16-9 Password-protecting a directory with Apache

16

ch16.indd 361 2/2/05 3:30:55 PM

TEAM LinG

 362 How to Do Everything with PHP & MySQL

is a snap. They’re also great for rapid development, which can come in handy
when working against aggressive deadlines.

To learn more about the techniques discussed in this chapter or to read more
case studies, consider visiting the following links:

■ Case study of an online polling system, at http://www.melonfire.com/
community/columns/trog/article.php?id=59

■ Case study of a web-based file management system, at http://www
.melonfire.com/community/columns/trog/article.php?id=64

■ Case study of a web-based e-mail client, at http://www.melonfire.com/
community/columns/trog/article.php?id=100

■ Case study of a time/resource tracking system, at http://www.melonfire
.com/community/columns/trog/article.php?id=92

■ Case study of a resume management system for recruitment personnel, at
http://www.melonfire.com/community/columns/trog/article.php?id=74

■ Case study of a web page monitoring system, at http://www.melonfire
.com/community/columns/trog/article.php?id=160

■ Apache tricks and tweaks, at http://www.melonfire.com/community/
columns/trog/article.php?id=115

■ More articles and tutorials on PHP, at http://www.melonfire.com/
community/columns/trog/archives.php?category=PHP

You’ve now reached the end of this book. I hope you now have a clearer idea
of what you can do with PHP and MySQL, both individually and together. I also
hope you feel you have the grounding you need to go out there and begin creating
dynamic web applications of your own.

ch16.indd 362 2/2/05 3:30:55 PM

TEAM LinG

HowTo8 (8)

Symbols
-- (auto-decrement) operator

effect of, 71
example of, 75

$ (dollar) symbol, using before variables, 64
$_SESSION['cart'] associative array, example of,

136–144
% (division/modulus) operator, effect of, 71
& (ampersand), rendering correctly, 302–304
&& (logical AND) operator, effect of, 71
* (asterisk)

appearance in queries, 187
as multiplication operator, effect of, 71
as wildcard used with privileges, 212

@ error-suppression operator, using with mysql_
connect, 245

[] (square braces), using with arrays, 103
_ (underscore), using with variables, 64
` (backticks)

using with database names, 163
using with external programs

and scripts, 130
|| (logical OR) operator, effect of, 71
++ (auto-increment) operator, example of, 71, 75
< (left angle bracket), rendering correctly, 302–304
< (less than) operator, effect of, 71
<= (less than or equal to) operator, effect of, 71
<?=$variable?> syntax, displaying variable values

with, 88
<> (not equal to/not of same type) operator, effect

of, 71
= (assignment operator), using with variable

values, 65

!= (not equal to) operator, effect of, 71
== (equal to) operator, effect of, 71
!== (not equal to/not of same type) operator, effect

of, 71
=== (equal to/of same type) comparison operator,

example of, 71, 73–74
-> (continuation character), using with MySQL, 158
> (right angle bracket), rendering correctly,

302–304
> (greater than) operator, effect of, 71
>= (greater than or equal to) operator, effect of, 71
\ (backslash), escaping quotation marks with, 184
" (quotes)

escaping, 184
escaping user input with, 131
using with string and date values, 184
using with string values, 69

; (semicolon)
advisory about using with

mysql_query(), 247
omitting from PHP blocks, 63

' (single quote), using with field templates, 309
. (string concatenation operator), example of, 72,

289–290
? (ternary operators)

using with if-else() blocks, 85
validating data with, 266

' '/ " " (empty strings)
comparing to white space, 266
distinguishing from NULL values, 261

/ (division/quotient) operator, effect of, 71
! (logical NOT) operator, effect of, 71
. (string concatenation) operator, effect of,

71–72, 289–290

 363

Index

Index.indd 363 2/9/05 5:21:48 PM

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

TEAM LinG

 364 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/IndexHowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Index

A
a (append) mode, using with fopen() function, 118
%a date/time formatting code, description of, 321
$a_qty array, using with catalog data, 136
access control

features of, 209–210
importance of, 208–209

action attribute of <form> tag, effect of, 66
ADD PRIMARY KEY clause, using with

tables, 174
addition operator, symbol for, 71, 189
add.php script, using with news publishing system,

344–348
administration module, protecting in news

publishing system, 358–361
advertiser/banner management system, web

resource for, 145
aliases, using with tables and columns, 203–204
ALL keyword, using with REVOKE

command, 213
AllowOverride directive, using with news

publishing system, 360
ALTER privilege, effect of, 211
ALTER TABLE command

effect of, 175
example of, 173

American currency locale, using commas with, 316
ampersand (&), rendering correctly, 302–304
AND logical operator

example of, 74, 190
symbol for, 71, 189

Apache
configuring for Windows, 49
configuring to start automatically, 54–55
installing in Windows, 42–46
installing on UNIX, 31–35
obtaining, 25
testing, 51–53
user-authentication mechanism in, 358–361

Apache installations, resources for troubleshooting
of, 55

Apache tricks and tweaks, web resource for, 362
application examples, 19–20
application layer

checking for illegal input values at, 274–277
checking for required values at, 264–266

checking type of input data at, 268–274
listing multiple validation errors at,

283–286
matching patterns at, 281–283
restricting size of input data at, 266–268
validating dates at, 277–278
validating multiple-choice input at,

279–281
application sample. See news publishing system
arguments, using with functions, 108–110
arithmetic operators

list of, 189
using, 70–71

array elements, modifying and removing, 99
array functions

using, 104–106
using with multiple-choice input, 281

array_pop() function, effect of, 105
array_shift() function, effect of, 105
array_unshift() function, effect of, 105
arrays

adding elements to ends of, 105
creating, 98–99
definition of, 97
examining contents of, 98
grouping form selections with, 102–103
processing with loops, 100
using foreach() loops with, 100–102
using with argument lists and return

values, 110
using with result sets, 248–249
variables as, 104
web resources for, 113

AS keywords, using with table and column aliases,
203–204

ASCcending order, sorting records by, 185
assigning and concatenating, example of, 72
assignment operator (=), using with variable

values, 65
associative arrays

$_SESSION['cart'], 136–137
$_COOKIE, 128
creating, 99
definition of, 97
examples of, 98
processing with foreach() loops, 101–103

Index.indd 364 2/9/05 5:21:48 PM

TEAM LinG

HowTo8 (8)

 Index 365

HowTo8 (8)

representing rows as, 250
returning with mysql_fetch_array()

function, 252
asterisk (*)

appearance in queries, 187
as operator, effect of, 71
as wildcard used with privileges, 212

authentication module in Apache, using with news
publishing system, 358–361

AuthType directive, using with news publishing
system, 359

AuthUserFile directive, using with news
publishing system, 359

auto-decrement (--) operator
effect of, 71
example of, 75

AUTO_INCREMENT modifiers
using NULL values with, 184
using with databases, 169, using with

databases, 178
auto-increment (++) operator, 75
AVG() function, effect of, 196

B
b (binary) mode, using with fopen() function, 118
%b date/time formatting code, description of, 321
backing up databases and tables, 175–176
backslash (\), escaping quotation marks with, 184
backticks (`)

using with database names, 163
using with external programs and scripts, 130

backups, restoring databases and tables from,
176–177

banner/advertiser management system, web
resource for, 145

BerkeleyDB table type, description of, 171
BIGINT numeric type, description of, 164–165
/bin directory, listing files in, 122–123
binary files, using functions on, 119
binary types, using, 166
BLOB data type, description of, 165–166
Boolean data type

description and example of, 67
returning with file functions, 121

 elements, converting newlines to, 304
branch offices, associating with customers, 229

break keyword, exiting loops with, 92
built-in functions. See also character type

functions; functions
using, 193–194
web resource for, 204

C
case of strings, altering, 297–300
case sensitivity of variables, significance of, 64
case studies

document management system, 258
online polling system, 362
online recruitment application, 258
resume management system, 362
time-and-material tracking system, 258
time/resource tracking system, 362
web-based e-mail client, 362
web-based file management system, 362
web-page monitoring system, 362

catalog data, retrieving, 134–136
ceil() function, rounding decimal values with, 312
CEIL() function, rounding decimal values with, 312
CHANGE clause, using with tables, 173–174
CHAR data type, description of, 165–166
CHARACTER SET modifiers, using with

databases, 169
character sets, listing, 179
character type extension, web resource for, 286
character type functions, list of, 272. See also

built-in functions; functions
character types, using, 166
characters

escaping from user input, 130–131
escaping with mysql_escape_string()

function, 253
checkboxes, including validation for, 279–281
checkdate() function, effect of, 277–278
client-side scripting, benefits of, 5
closedir() function, example of, 123
column aliases, using, 203–204
columns, retrieving, 187
comma separators, formatting numeric data with,

306–312
comments, writing in PHP, 63
comparison operators

list of, 189
using, 72–73

Index.indd 365 2/9/05 5:21:48 PM

TEAM LinG

 366 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/IndexHowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Index

compiled versus interpreted languages, 62–63
composite primary keys, creating, 169–170
CONCAT() and CONCAT_WS() functions, using,

290–292
concatenating and assigning, example of, 72
concatenating string values, 289–293
conditional statements

capabilities of, 80
if() statement, 81–84
merging forms and result pages with, 86–88
nesting, 86
switch() statement, 84–85

conditions, combining with AND or OR, 190
configure script

sending arguments to, 32–33
using with UNIX, 27

conf.php file, using with news publishing
system, 339

connections
closing, 244, 246
opening, 243, 244–245
persistent connections, 246

content management and personalization system,
web resource for, 145

continuation character (->), using with
MySQL, 158

continue keyword, skipping loop iterations with, 93
controls structures, syntax for, 82
$_COOKIE associative array, example of, 128
cookie data, retrieving, 128
cookies

deleting, 128
setting, 127
testing, 128
using with session data, 124
web resource for, 132

costs, calculating for items in shopping carts,
137–138

COUNT() function
using, 193
using to paginate result sets, 325

CREATE DATABASE command, using, 163
CREATE privilege, effect of, 211
CREATE TABLE command

using, 163–164, 172
using LIKE clause with, 177

using with order tracking system, 226
web resource for, 180

CREATE TEMPORARY TABLE command,
using, 172

cross join, definition of, 199
ctype_* () functions, list of, 272
ctype_alpha() function, effect of, 274
ctype_digit() function, effect of, 274
currency values, formatting, 312–316
customer tables, designing for databases, 221–222
customers, associating with branch offices, 229

D
d and D specifiers, using with date() function, 317
%d date/time formatting code, description of, 321
%d field template, using with sprintf() function, 309
data

altering with queries, 252–253
capabilities of, 126
reading from files, 116–119
returning with queries, 248–251
writing to files, 119–120

data slices, relationship to RDBMSes, 154
data types. See also field data types

detecting for variables, 67–68
list of, 165
overview of, 66–67
selecting, 168
verifying for values, 269–271
web resource for, 77, 180

database connections. See connections
database design, web resource for, 156
database layer

using DATE_FORMAT() function at,
321–322

using field data types at, 263
using NULL modifier at, 260–262

database names, character limitations for, 163
database normalization, overview of, 156
database queries. See queries
databases. See also DBMSes (database

management systems)
adding field modifiers and keys to, 168–170
backing up, 175–176
creating, 163

Index.indd 366 2/9/05 5:21:48 PM

TEAM LinG

HowTo8 (8)

 Index 367

HowTo8 (8)

definition of, 5
designing customer tables for, 221–222
designing order table for, 224–225
designing product tables for, 222–224
dropping, 177–178
listing, 255
for news publishing system, 333–334
querying, 228–235
restoring from backup, 176–177
returning names of, 255
selecting, 244
selecting with mysql_selectdb()

function, 247
specifying field data types in, 164–167
using lowercase and underscores with, 164
using SHOW TABLES command with, 177
viewing, 178

date and time functions, web resource for, 204
DATE() function, using, 194
date functions in MySQL

example of, 316–320
list of, 324

DATE numeric type, description of, 165–167
date types, using, 166–167
date values

formatting, 194
using quotation marks with, 184

DATE_FORMAT() function
effect of, 319
example of, 321–322

dates, validating at application layer, 277–278
dates and times, dealing with, 129–130
date/time API in MySQL, features of, 323
date/time formatting codes in MySQL, list of, 323
date/time functions, web resource for, 329
DATETIME numeric type, description of, 165–166
DAYNAME() function, effect of, 324
DAYOFMONTH() function, effect of, 324
DAYOFWEEK() function, effect of, 324
DAYOFYEAR() function, effect of, 324
DBMSes (database management systems),

characteristics of, 6. See also databases
DCL (Data Control Language), relationship

to SQL, 155
DDL (Data Definition Language), relationship

to SQL, 155

debugging functions, list of, 255
DECIMAL numeric type, description of, 164–165
decimal separators, formatting numeric data with,

306–312
decimal values

representing with field templates, 309
rounding up and down, 312

default keywords, using with switch()
statements, 85

DEFAULT modifiers, using with databases, 168
DELETE privilege, effect of, 211, 213
DELETE statements

using with records, 184–185
web resource for, 204

delete.php script, using in news publishing system,
343, 349–351

deleting news items, 349–351
DESC clause in SELECT query, using in news

publishing system, 337
desc key, using with catalog data, 135
DESCending order, sorting records by, 185
DESCRIBE command, viewing table structures

with, 179
Devshed’s MySQL section, web resource for, 236
diagnostic functions, list of, 255
die() function, using with error handling, 118, 283
directories, password-protecting with Apache, 361
directory listings, obtaining, 122–123, 132
DISTINCT keyword, eliminating duplicate records

with, 192
division operators, symbols for, 71, 189
division-by-zero error, avoiding, 275–276
DML (Data Manipulation Language), relationship

to SQL, 155
do() loop, example of, 89–90
document management system, web address

for, 258
dollar ($) symbol, using before variables, 64
dolphin logo, significance of, 14
domain attribute, using with cookies, 126
DOUBLE numeric type, description of, 164–165
double quotes ("), using with string values, 69
do-while() loop, example of, 89–90
DROP DATABASE command, using, 177–178
DROP PRIMARY KEY clause, using with

tables, 174

Index.indd 367 2/9/05 5:21:48 PM

TEAM LinG

 368 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/IndexHowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Index

DROP privilege, effect of, 211
DROP USER command, effect of, 214–215
drop-down lists, including validation for,

279–281
Drupal application, description of, 20
DSO (Dynamic Shared Object) support, compiling

Apache server with, 31
du (disk usage) command, running in UNIX,

130–131
duplicates of records, eliminating, 191–192

E
echo() function

formatting numeric data with, 309
using with print() function, 64

editing news items, 351–358
edit.php script, using in news publishing system,

343, 351–358
empty strings

comparing to white space, 266
distinguishing from NULL values, 261

encrypted server connections with SSL, web
resource for, 217

ENUM data type
description of, 165
using, 167

equal to operators, symbols for, 71, 189
equality and type, testing with === comparison

operator, 73–74
equijoin, definition of, 197
ereg() function, effect of, 283
error handlers, die() function as, 118
errors

handling, 254
logging, 286
storing for news publishing system, 348
viewing list of, 179

error-suppression operator, using with mysql_
connect, 245

escapeshellarg() function, example of, 130–131
escapeshellcmd() function, example of, 130–131
escaping special characters, 253
Expires attribute, using with cookies, 126
explode() function

using with arrays, 106
using with catalog data, 135

extensibility, significance of, 10
extract() functions, converting array elements to

variables with, 104–105

F
%f field template, using with sprintf() function, 309
F specifier, using with date() function, 317
facilities table, joining with orders table, 232
fatal errors, using die() function with, 118
fclose() function, significance of, 117
$fh file handle, significance of, 117
field data types. See also data types

character and string types, 166
date and time types, 166–167
enumerations, 167
numeric types, 164–165
text and binary types, 166
using at database layer, 263

field definitions, using with tables, 164
field length restrictions, implementing, 268
field modifiers, adding to databases, 168–170
field names, altering, 173
field properties, altering, 173–174
field templates, using with sprintf() function, 309
fields

adding and removing, 174
concatenating, 289–290
generating numbers for automatically, 169
naming, 188
in RDBMSes, 151
returning information about, 255
updating, 185

field values, checking at application layer,
264–266

file attributes, testing, 120–122
file() function

reading file data with, 117–118
using with catalog data, 135

file handles, assigning, 117
file manipulation, web resource for, 132
file sizes, returning, 121
file_get_contents() function, example of, 119
file_put_contents() function

effect of, 286
example of, 120

Index.indd 368 2/9/05 5:21:49 PM

TEAM LinG

HowTo8 (8)

 Index 369

HowTo8 (8)

files
displaying contents of, 117–118
listing in /bin directory, 122–123
reading data from, 116–119
writing data to, 119–120

float numbers, representing with field
templates, 309

FLOAT numeric type, description of, 164–165
floating-point data type, description and example

of, 67
FLOOR() function, rounding decimal values

with, 312
floor() function, rounding decimal values with, 312
FLUSH PRIVILEGES command, effect of, 215
fopen() function

binary-safe quality of, 119
modes available to, 118
significance of, 117

for() loop
example of, 90–92
iterating through arrays with, 100

foreach() loop
using with arrays, 100–103
using with catalog data, 135–136
using with files, 117–118

foreign keys in RDBMSes
overview of, 151–154
versus primary keys, 170
specifying, 170

form input, saving in variables, 65–66
form selections, grouping with arrays, 102–103
form validator, web resource for, 286
form variables and PHP, web resource for, 77
format specifiers, using with dates, 316–318
formatDate() function, using with news publishing

system, 337
forms

editing news items with, 354
merging with conditional statements,

86–88
using with queries that alter data, 252–253

fread() function
binary-safe quality of, 119
significance of, 117

French currency locale, using commas with, 316
function definitions, importing, 112

functions. See also built-in functions; character
type functions

ancillary functions, 254–257
benefits of, 107
classifying, 113
defining and invoking, 107–108
definition of, 106
using arguments and return values with,

108–110
web resources for, 113

functions.php file, using with news publishing
system, 337

fwrite() function
binary-safe quality of, 119
example of, 120

G
Gallery application, description of, 20
$_GET variable, using with forms, 66
getdate() function, example of, 129
gettype() function, example of, 67
global variables, defining, 110–111
GPL licensing, advisory about, 16
GRANT command, assigning privilege levels with,

210–212
grant tables

using for access control, 210
web resource for, 217

graphical clients, using with MySQL, 159–160
greater than operators, symbols for, 71, 189
GROUP BY clause, using with records, 194–196
group manipulation functions, web resource for, 205
groupadd command, using with MySQL on

UNIX, 28
Gutmans, Andi and development of PHP, 8

H
h and H specifiers, using with date() function, 317
%H date/time formatting code, description of, 321
handling errors, 254
hash arrays, definition of, 97
HAVING clauses

using with GROUP BY clauses, 195–196
using with order tracking system, 229–230

HEAP table type, description of, 171

Index.indd 369 2/9/05 5:21:49 PM

TEAM LinG

 370 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/IndexHowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Index

hexadecimal numbers, representing with field
templates, 309

HHMMSS format, explanation of, 166
Horde application, description of, 19
HOUR() function, effect of, 324
.htaccess file

creating for news publishing system, 359
renaming for use in Windows, 359

HTML (HyperText Markup Language), embedding
PHP in, 60–62

HTML tags, stripping from strings, 305
htmlentities() function, effect of, 304
htpasswd program in Apache, using with news

publishing system, 360
httpd.conf file for Apache

editing for Windows installations, 49
opening, 34–35
using with news publishing system, 359–360

I
%I date/time formatting code, description of, 321
i specifier, using with date() function, 317
$id variable

passing to delete.php script, 349–351
using with edit.php script, 355

IDENTIFIED BY clause, using with GRANT
command, 214–215

identifiers for edit.php, managing, 355
if() statements, examples of, 81–84
if() tests, using with strlen() functions, 268
if-else() blocks, using ternary operators with, 85
if-else() construct, example of, 81–82
if-elseif-else() construct, example of, 82–84
illegal input values, checking for, 274–277
implode() function, using with arrays, 106
include() function, importing files with, 112
INDEX modifiers, using with databases, 169
index notation, defining arrays with, 98–99
indexes

versus keys, 170
replacing with keys, 97
viewing, 179

Indian currency locale, using commas with, 316
INNER JOIN, example of, 197–199
InnoDB table type, description of, 171–172

input data at application layer, restricting size of,
266–268

input data type, checking at application layer,
268–274

input validation using JavaScript, web resource
for, 286

input values, checking for illegality of, 274–277
INSERT privilege, effect of, 211
INSERT statement

syntax of, 182–183
using with order tracking system, 226
using with queries that alter data, 252–253
web resource for, 204

INT numeric type, using, 164–165
integer data type, description and example of, 67
integer values, specifying in databases, 164–165
interpreted language, PHP as, 62–63
IS NULL operator, using with joins, 200
is_* functions, effects of, 68
is_array() functions, using with variables, 104
is_float() function, restriction on, 271
is_int() function, restriction on, 271
is_numeric() function, example of, 269–271
ISAM table type, description of, 171
isset() function, validating data with, 266
items table, creating SQL queries for, 241

J
%j date/time formatting code, description of, 321
joining tables, web resource for, 205
joins

INNER JOIN, 197–199
LEFT JOIN, 200
OUTER JOIN, 199–201
overview of, 196–197
rewriting subqueries as, 202
web resource for, 236

K
keys

adding and removing, 174
adding to databases, 168–170
versus indexes, 170
replacing indices with, 97

Index.indd 370 2/9/05 5:21:49 PM

TEAM LinG

HowTo8 (8)

 Index 371

HowTo8 (8)

L
l and L specifiers, using with date() function, 317
LAMP platform, significance of, 17–18
LCASE() function, example of, 299–300
left angle bracket (<), rendering correctly,

302–304
LEFT JOIN

example of, 200
using with order tracking system, 234

LENGTH() function, using, 193
Lerdorf, Rasmus and development of PHP, 8
less than operators, symbols for, 71, 189
libmysql.dll file, copying during installation, 47
libraries

installing for UNIX, 26–27
obtaining for UNIX, 25

libxml2 library
extracting contents of, 26–27
obtaining, 25

LIKE clause, using with CREATE TABLE
command, 177

LIKE operator, effect of, 189
LIMIT clause in SELECT query

using in news publishing system, 337
using with records, 192–193

line breaks, rendering correctly, 302–304
line-ending character, controlling, 118
link identifiers

accepting with mysql_selectdb()
function, 247

returning with mysql_connect()
function, 245

list() functions, converting array elements to
variables with, 104

list.php script
code for, 342–343
creating for news publishing system,

334–339
local variables, defining, 110–111
logical operators

symbols for, 71, 189
using, 74–75

LONGBLOB data type, description of, 165–166
LONGTEXT data type, description of, 165–166
loop iteration, controlling with break and continue

keywords, 92–93

loops
definition of, 88
do() loop, 89–90
for() loop, 90–92
foreach() loop, 100–103, 117–118, 135–136
processing arrays with, 100
while() loop, 88–89

LPAD() function versus str_pad(), 295–296

M
%m and %M date/time formatting codes,

descriptions of, 321
m and M specifiers, using with date() function, 317
Mac OS X

installing PHP on, 26
web resource for, 55

magic quotes in PHP, web resource for, 329
magic_quotes_gpc setting, using with queries that

alter data, 253
make command

compiling and installing PHP with, 34
compiling Apache server with, 32
compiling UNIX libraries with, 27

mathematical expressions, evaluating with
SELECT statements, 186–187

MAX() function, effect of, 196
MAXLENGTH attribute of INPUT form tag, effect

of, 268
MEDIUMBLOB data type, description of, 165–166
MEDIUMINT numeric type, description of,

164–165
MEDIUMTEXT data type, description of, 165–166
memory, freeing up, 244
MERGE table type, description of, 171
message.php server-side script, example of, 66
method attribute of <form> tag, effect of, 66
Midgard application, description of, 20
MIN() function, effect of, 196
MINUTE() function, effect of, 324
mktime() function

effect of, 316
example of, 130
significance of, 128

modulus operator, symbol for, 71, 189
money_format() function, example of, 312–316
MONTH() function, effect of, 324

Index.indd 371 2/9/05 5:21:49 PM

TEAM LinG

 372 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/IndexHowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Index

MONTHNAME() function, effect of, 324
multiple-choice input, validating at application

layer, 279–281
multiplication operator, symbol for, 71, 189
my.ini file, description of, 38
MyISAM table type, description of, 170
MySQL

benefits of, 13
compliance with existing standards of, 15
configuring to start automatically, 54–55
date functions in, 324
date/formatting codes in, 321
date/time API in, 323
determining version of, 158
ease of use of, 14–15
features of, 12
history of, 11–12
installing on UNIX, 28–30
installing on Windows, 36–42
licensing of, 15
obtaining, 25
overview of, 11
performing postinstallation steps for, 53–55
popularity of, 150
reliability of, 13–14
representing databases and tables in, 163
scalability and portability of, 14
security of, 14
speed of, 12–13
support for, 15
testing, 50–51
using graphical clients with, 159–160

MySQL and PHP
architecture of, 17–19
compatibility of, 16–17
goals of, 240
sample applications in, 19–20

MySQL articles and tutorials, web resource for, 236
MySQL client, obtaining help on, 159
MySQL command-line client

exiting, 51
starting, 50
using, 156–159

MySQL connection, returning thread ID for, 255
MySQL Control Center, web address for, 159
MySQL databases, querying through PHP, 243

MySQL extension
activating on Windows, 48
features of, 10–11
web resource for, 258

MySQL host, returning information on, 255
MySQL installations, resources for troubleshooting

of, 55
MySQL manual, web address for, 14
MySQL queries

creating for items table, 241
processing with PHP, 243–244

MySQL replication, web resource for, 236
MySQL section of Devshed, web resource for, 236
MySQL server

connecting to, 50
listing databases on, 255
opening connections to, 244–246
returning status information about, 255
returning version number of, 255
starting in Windows, 40
starting in UNIX, 30

MySQL super-user password, setting, 53–54
mysql_affected_rows() function, effect of, 253
mysql_close() function

effect of, 244
using with connections, 246

mysql_connect() function, effect of, 243, 244–245
mysql_db_name() function, effect of, 255
mysql_errno() function, effect of, 254
mysql_escape_string() function, effect of, 253
mysql_fetch_array() function, effect of, 252
mysql_fetch_assoc() function, effect of, 250
mysql_fetch_object() function, effect of, 251
mysql_fetch_row() function, effect of, 244,

248–249
mysql_free_result() function, effect of, 244
mysql_get_client() function, effect of, 255–256
mysql_get_proto() function, effect of, 255–256
mysql_get_server_info() function, effect of,

255–256
mysql_info() function, effect of, 255
mysql_insert_id() function, effect of, 253
mysql_install_db script, initializing MySQL tables

with, 28–29
mysql_list_dbs() function, effect of, 255–256
mysql_list_fields() function, effect of, 255

Index.indd 372 2/9/05 5:21:49 PM

TEAM LinG

HowTo8 (8)

 Index 373

HowTo8 (8)

mysql_list_tables() function, effect of, 255–256
mysql_num_fields() function, effect of, 249
mysql_num_rows() function, effect of, 244, 249
mysql_ping() function, effect of, 255
mysql_query() function

effect of, 244, 247
processing return value of, 248–253

mysql_safe script
editing to reset root password, 216
starting MySQL server on UNIX with, 30

mysql_selectdb() command, effect of, 244, 247
mysql_stat() function, effect of, 255
mysql_tablename() function, effect of, 255
mysql_thread_id() function, effect of, 255
mysqladmin utility in UNIX, setting passwords

with, 53–54
mysqldump utility

backing up databases with, 175–176
web resource for, 180

MySQLi extension in PHP 5.0
features of, 248
web resource for, 258

N
/n (newline character), inserting, 304
Name attribute, using with cookies, 126
nesting conditional statements, 86–88
news items, 354

adding to news publishing system, 344–348
deleting, 349–351
editing, 351–358
listing in news publishing system, 334,

342–344
news publishing system

adding news items to, 344–348
configuration file for, 339
designing database for, 333–334
displaying story content in, 339–341
listing news items in, 335–338, 342–344
private administration module of, 358–361
public and private pieces of, 332
requirements for, 332–333
storing errors related to, 348

nl2br() function, effect of, 304
normalization

examples of, 222–223, 225

overview of, 156
web resource for, 236

not equal to operators, symbols for, 71, 189
NOT logical operator

example of, 74
symbol for, 189

NOT NULL modifiers
limiting empty records with, 262
using with databases, 168
using with primary keys, 175

NOT operator, symbol for, 71
NOW() function

using with DATETIME fields, 167
using with news publishing system, 349

NULL modifiers
advisory about using CONCAT() function

with, 292
using, 260–262
using with AUTO_INCREMENT, 184
using with databases, 168
using with TIMESTAMP fields, 184

NULL type, web resource for, 77
NULL values

distinguishing from empty strings, 261
overview of, 69–70
relationship to division-by-zero errors, 276

NULL-safe equal to operator, symbol for, 189
number_format() function, example of, 306–308
numbers, formatting with printf() function,

310–313
numeric data, 305
numeric data formatting

of currency values, 312–316
using decimal and comma separators for,

306–312
numeric types, specifying in databases, 164–165
numeric values, web resource for, 329

O
%o field template, using with sprintf() function, 309
objects, returning rows as, 251
octal numbers, representing with field templates, 309
online recruitment application, web address for, 258
open source, significance of, 10
opendir() function, example of, 123
operator precedence, overview of, 75–76

Index.indd 373 2/9/05 5:21:50 PM

TEAM LinG

 374 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/IndexHowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Index

operators. See also ternary operators
arithmetic operators, 70–71
auto-increment and auto-decrement

operators, 75
comparison operators, 72–74
list of, 71
logical operators, 74–75
string operators, 72
using in queries, 188–191
web resource for, 204

OR logical operator
example of, 74, 190–191
symbol for, 71, 189

ORDER BY clause
sorting records with, 191–192
using with LIMIT clause, 193

order tables, designing for databases, 224–225
order tracking system

associating branch offices and customers
in, 229

associating taxes with products in, 230–231
calculating prices in, 230
calculating total sales in, 231–233
creating and populating tables for,

225–228
designing customer tables for, 221–222
designing order table for, 224–225
designing product tables for, 222–224
displaying orders placed in, 233
displaying total purchases in, 234–235
finding popular products in, 234
requirements for, 220
using HAVING clause with, 229–230

orders, grouping in order tracking system, 233
orders table

joining facilities table with, 232
joining products table with, 233

OUTER JOIN, example of, 199–201

P
%p date/time formatting code, description of, 321
padding

controlling with width specifiers, 164
of string values, 293–297

paginating result sets, 325–328
password security, web resource for, 217

passwords
altering, 215–216
setting, 53–54
using with news publishing system, 361

path attribute, using with cookies, 126
patterns, matching at application layer, 281–283
PCRE (Perl Compatible Regular Expressions),

using, 283
performance, boosting with UNIX sockets, 246
PERIOD_DIFF() function, effect of, 323
Perl, migrating to PHP from, 283
permissions, guildelines for granting of, 209
persistent connections, using, 246
persons table

grouping records in, 194–196
sorting, 191
sorting lists in, 193
updating fields in, 185

PHP
embedding in HTML, 60–62
enabling to be loaded dynamically, 31
extensibility of, 10
history of, 8–9, 12
installing in Windows, 46–49
installing on Mac OS X, 26
installing on UNIX, 26–27, 31–35
as interpreted language, 8, 62–63
migrating from Perl to, 283
obtaining, 25
popularity of, 7
portability of, 9–10
processing MySQL queries with, 243–244
simplicity of, 9
speed of, 10
testing, 51–53

PHP 101 series, web resource for, 77
PHP 4.3.0, advisory about installing on

Windows, 47
PHP 4.x and 5.x, using with UNIX, 27
PHP 5.0 object framework, web resource for, 107
PHP and MySQL

architecture of, 17–19
compatibility of, 16–17
goals of, 240
sample applications in, 19–20

PHP articles and tutorials, web resource for, 145

Index.indd 374 2/9/05 5:21:50 PM

TEAM LinG

HowTo8 (8)

 Index 375

HowTo8 (8)

PHP commands, examples of, 60–61
PHP configuration process, resource for, 34
PHP installations, resources for troubleshooting

of, 55
PHP manual, web address for, 8, 26
PHP operators, web resource for, 77
PHP scripts

running external programs from, 130–131
using with items table, 241–242

PHP string manipulation API, web resource for, 77
PHP tags, stripping from strings, 305
PHP tutorials, web resource for, 362
PHP variables, web resource for, 77
PHP with MySQL examples, web resource

for, 258
phpAdsNew application, description of, 19
phpBB application, description of, 20
phpGroupware application, description of, 20
php.ini file, editing session.save_patch variable

in, 125
php.ini-recommended file, copying during

installation, 47
phpMyAdmin application

description of, 19
web address for, 160

PHP.net tutorial, web address for, 77
phpNuke application, description of, 20
polling system, web resource for, 145
portability, significance of, 9–10
$_POST variable, using with forms, 66
precision specifiers, using with numeric types, 164
prefix argument, using with configure script in

UNIX, 27
preg_match() function, effect of, 283
press release, significance to news publishing

system, 333
price key, using with catalog data, 135
prices, calculating in order tracking system,

230–231
PRIMARY KEY fields, using with INSERT

commands, 183–184
primary keys

adding, 174
creating, 169
deleting, 174
versus foreign keys, 170

as NOT NULL, 175
overview of, 151–154

print() function, using echo() function with, 64
print_r() function, examining arrays with, 98
printf() function, formatting numbers with,

310–313
privilege levels

list of, 211
web resource for, 210, 217

privilege tables, forcing rereading of, 215
privileges, controlling, 209–210
PROCESS privilege, effect of, 211
product popularity, determining in order tracking

system, 234
product tables, designing for databases, 222–224
products, associating taxes with, 230
products table, joining orders table with, 233–234
program execution functions, web resource for, 132
programs, running from PHP scripts, 130–131
purchases, totaling in order tracking system,

234–235

Q
QUARTER() function, effect of, 324
queries. See also subqueries

altering data with, 252–253
combining in subqueries, 201–202
creating for items table, 241
definition of, 6
filtering records with, 187–188
limiting results returned by, 192–193
performing, 247
relationship to RDBMSes, 154
retrieving columns with, 187
returning data with, 248–251
returning information about, 255
running, 228–235
using operators with, 188–191
using WHERE clauses with, 187–188
web resource for, 236

query cache
benefits of, 192
web resource for, 236

query optimization, web resource
for, 236

Index.indd 375 2/9/05 5:21:50 PM

TEAM LinG

 376 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/IndexHowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Index

quotes (")
escaping, 184
escaping user input with, 131
using with string and date values, 184

quotient operator, symbol for, 71, 189

R
r (read) mode, using with fopen() function, 118
%r date/time formatting code, description

of, 321
RDBMSes (relational database management

systems)
characteristics of, 6
overview of, 150–151
primary and foreign keys in, 151–154
tables, records, and fields in, 151

readdir() function, example of, 123
records

controlling display of, 327
creating for news publishing system,

333–334
in databases, 6
editing and deleting, 184–186
emptying from tables, 178
filtering with WHERE clauses, 187–188
grouping, 194–196
inserting into tables, 182–184
limiting returns of, 192–193
managing in news publishing system,

337–338
in RDBMSes, 151
retrieving with SELECT commands,

186–187
sorting and eliminating duplicates of,

191–192
referential integrity, relationship to RDBMSes,

153–154
regular expressions

matching patterns with, 281–283
web resource for, 286

RENAME TABLE command, example of, 173
require() function, importing files with, 112
resources. See web sites
result pages and forms, merging with conditional

statements, 86–88

result sets
paginating, 325–328
processing, 248–253
relationship to RDBMSes, 154
returning from queries, 244

$result variables, assigning result sets to, 244
result-set pagination, web resource for, 329
return values, using with functions, 108–110
REVOKE command, using * wildcard with,

212–213
right angle bracket (>), rendering correctly,

302–304
right outer join, effect of, 201
root password, resetting, 216
root superuser account, vulnerability of, 208–209
round() function, rounding decimal values

with, 312
rows

determining in result sets, 244
representing as associative arrays, 250
returning as objects, 251

RPAD() function versus str_pad(), 295–296

S
s and S specifiers, using with date() function, 317
%S date/time formatting code, description of, 321
%s field template, using with sprintf() function, 309
Sakila dolphin logo, significance of, 14
sales

analyzing in order tracking system, 233
calculating in order tracking system,

231–232
sample application. See news publishing system
scripts

running external programs from, 130–131
using with items table, 241–242

secure attribute, using with cookies, 126
security

of MySQL, 14
of user-submitted data, 286
web resource for, 217

SELECT privilege, effect of, 211
SELECT queries

returning data with, 248–251
running on items table, 241
using with news publishing system, 337

Index.indd 376 2/9/05 5:21:50 PM

TEAM LinG

HowTo8 (8)

 Index 377

HowTo8 (8)

SELECT statements
example of, 157, 186–187
nesting in other SELECT statements, 201
using built-in functions with, 194
web resource for, 204

self join, definition of, 199
semicolon (;)

advisory about using with mysql_query(), 247
omitting from PHP blocks, 63

$_SERVER array, purpose of, 88
server connections

opening, 243
testing, 255
viewing lists of, 179

server status, obtaining, 179
server-side applications and scripts, overview

of, 4–6
session variables, creating, 124–125
session_destroy() function, emptying shopping

carts with, 144
session_start() function, effect of, 124
sessions

creating, 124–125
definition of, 123–124
destroying, 125
web resource for, 132

SET clauses, updating multiple fields with, 185
SET data type, description of, 165
SET data type, using, 167
SET PASSWORD command, using, 215
setcookie() function, example of, 127
setlocale() function, effect of, 316
settype() function, example of, 68
shopping carts

calculating costs for items in, 137–138
code for, 139–144
creating, 136–137
emptying, 144
updating, 138–139

SHOW CHARACTER SET command, effect
of, 179

SHOW... commands, web resource for, 180
SHOW CREATE TABLE command, effect of, 179
SHOW DATABASES command, using, 178
SHOW ERRORS command, effect of, 179
SHOW INDEX command, effect of, 179

SHOW PROCESSLIST command, effect of, 179
SHOW STATUS command, effect of, 179
SHOW TABLE STATUS command, effect of, 179
SHOW TABLES command, inspecting databases

with, 177, 178
SHOW WARNINGS command, effect of, 179
SHUTDOWN privilege, effect of, 211
SimpleXML extension, features of, 11
single quote ('), using with field templates, 309
sizeof() function

using with arrays, 100
using with multiple-choice input, 281

SMALLINT numeric type, description of, 164–165
sorting records, 191–192
special characters

dealing with, 300–305
escaping with mysql_escape_string()

function, 253
speed

of MySQL, 12–13
of PHP, 10

sprintf() function
examples of, 309–312
using with user-defined formats, 138

SQL (Structured Query Language), overview of,
154–155

SQL commands
executing, 50–51
retrieving, 179

SQL Injection attacks, web resource for, 286
SQLyog graphical client, web address for, 160
square braces ([]), using with arrays, 103
stateless protocol, HTTP as, 123
statements, writing in PHP, 63
status information, returning for MySQL

server, 255
story content, displaying in news publishing

system, 339–341
story.php script

code for, 339–341
creating for news publishing system, 334

str_pad() function
effect of, 293
parameters for, 295
and truncating strings, 297

string case, altering, 297–300

Index.indd 377 2/9/05 5:21:50 PM

TEAM LinG

 378 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/IndexHowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Index

string concatenation operator, symbol for, 71
string data type, description and example of, 67
string functions, web resource for, 205, 329
string length, calculating, 193
string operators, using, 72
string types, using, 166
string values

concatenating, 289–293
overview of, 69
padding, 293–297
using quotation marks with, 184

strings
reading files into, 119
representing with field templates, 309
stripping HTML tags from, 305
writing to files, 120

strip_tags() function, effect of, 305
strlen() function, effect of, 268
strtolower() function, effect of, 297
strtoupper() function, effect of, 297
subqueries. See also queries

rewriting as joins, 202
using, 201–202
web resource for, 205

subtraction operator, symbol for, 71, 189
SUM() function

effect of, 196
using with order tracking system, 232

superglobal variables, definition of, 112
superuser account

advisory about running with MYSQL, 28
vulnerability of, 208–209

Suraski, Zeev and development of PHP, 8
switch() statements, examples of, 84–85

T
%T date/time formatting code, description of, 321
t mode, using with fopen() function, 118
T specifier, using with date() function, 317
table aliases, using, 203–204
table indexes, viewing, 179
table manipulation, web resource for, 180
table names, altering, 173
table types

altering, 175
retrieving lists of, 179

selecting, 170–172
web resource for, 180

tables
adding fields and keys to, 174
backing up, 175–176
creating, 163–164
creating and populating for databases,

225–228
creating empty copies of, 177
creating temporarily, 172
in databases, 6
dropping, 177–178
emptying records from, 178
inserting records into, 183
joining, 196–201
joining resource for, 205
joining with INNER JOIN, 198
listing, 255
obtaining information about, 179
in RDBMSes, 151
representing in MySQL, 163
restoring from backups, 176–177
retrieving records in, 187
returning names of, 255
time-stamping entries into, 349
viewing, 178
viewing structures of, 179

tags, stripping from strings, 305
taxes, associating with products, 230–231
ternary operators (?). See also operators

using with if-else() blocks, 85
validating data with, 266

TEXT data type, description of, 165–166
text display, controlling size of, 305
text types, using, 166
thread ID, returning for MySQL connection, 255
time and date functions, web resource for, 204
time formatting codes, list of, 321
TIME numeric type, description of, 165–167
time types, using, 166–167
time values, formatting, 194
TIME_FORMAT() function, effect of, 319
time-and-material tracking system, web address

for, 258
time/date formatting codes in MySQL, list of, 323
times and dates, dealing with, 129–130

Index.indd 378 2/9/05 5:21:50 PM

TEAM LinG

HowTo8 (8)

 Index 379

HowTo8 (8)

TIMESTAMP fields, using NULL values
with, 184

TIMESTAMP numeric type, description of,
165–167

timestamps, obtaining, 129–130
TINYBLOB data type, description of, 165–166
TINYINT numeric type, description of, 164–165
TINYTEXT data type, description of, 165–166
/tmp variable, relationship to sessions, 125
TO_DAYS() function, effect of, 323
trim() function, validating data with, 266
troubleshooting installation processes, 55
TRUNCATE TABLE command, using, 178
type and equality, testing with === comparison

operator, 73–74
TYPE modifiers, using with databases, 170

U
$u_aty array, using with shopping carts, 138–139
UCASE() function, example of, 299–300
ucfirst() function, effect of, 297
ucwords() function, effect of, 297
underscore (_), using with variables, 64
unions, joining query results with, 199
UNIQUE modifiers

using at database layer, 262–263
using with databases, 169
using with INSERT command, 183–184

UNIREG database system, significance of, 11
UNIX

configuring MySQL and Apache to start
automatically on, 54–55

installing Apache and PHP on, 31–35
installing MySQL on, 28–30
installing PHP on, 26–27
obtaining libraries for, 25
running du (disk usage) command in, 130

UNIX sockets, boosting performance with, 246
UNIX timestamps, using with cookies, 127–128
UNIX_TIMESTAMP() function, effect of, 319
UNSIGNED attribute, using with numeric

types, 165
UPDATE privilege, effect of, 211
UPDATE query, running in news publishing

system, 355–357

UPDATE statements
using with tables, 185–186
web resource for, 204

USAGE privilege, effect of, 211
USE command, using with databases, 163
user accounts, creating and removing, 214
user input at application layer

and checking for illegal input values,
274–277

and checking for required values, 264–266
and checking type of input data, 268–274
and listing multiple validation errors,

283–286
and matching patterns, 281–283
and restricting size of input data, 266–268
and validating dates, 277–278
and validating multiple choice input,

279–281
user input at database layer

using NULL modifier with, 260–262
using UNIQUE modifier with, 262–263

user input, escaping illegal characters from,
130–131

user passwords, altering, 215–216
useradd command, using with MySQL on UNIX, 28
user-authentication module in Apache, using with

news publishing system, 358–361
user-defined functions. See functions

V
validation errors, listing at application layer,

283–286
validation mechanisms, advantages of, 262–263
validation tests, example of, 266
values, storing in variables, 63–64
VALUES() clauses, using with INSERT

statements, 183
VARCHAR data type, description of, 165–166
variable values, assigning and using, 65
variables

as arrays, 104
detecting data types of, 67–68
displaying values of, 88
saving form input in, 65–66
storing values in, 63–64
using is_array() functions with, 104

Index.indd 379 2/9/05 5:21:51 PM

TEAM LinG

 380 How to Do Everything with PHP & MySQL

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/IndexHowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Index

version number, returning for MySQL server, 255
versions of MySQL, determining, 158

W
w (write) mode, using with fopen() function, 118
%w and %W date/time formatting codes,

descriptions of, 321
warnings, viewing list of, 179
web sites

advertiser/banner management system, 145
Apache installations on UNIX, 55
Apache software, 25
Apache tricks and tweaks, 362
array creation and use, 113
banner/advertiser management system, 145
basic language syntax, 77
binary-safe file manipulation, 119
break and continue statements, 93
built-in functions, 204
character type extension, 286
content management and personalization

system, 145
control structures in PHP, 93
cookie specification, 132
CREATE TABLE statement options, 180
currency values, 316
data types, 77, 180
database design, 156
database queries, 236
date and time functions, 204
date checking, 278
date functions in MySQL, 325
date/time functions, 329
DELETE statement, 204
Devshed’s MySQL section, 236
directory entries, 132
document management system, 258
Drupal application, 20
encrypted server connections with SSL, 217
ereg() function, 283
file manipulation, 132
fopen() function, 118
form validator, 286
form variables and PHP, 77
function creating and use, 113
Gallery application, 20

grant tables, 217
group manipulation functions, 205
Horde application, 19
input validation using JavaScript, 286
INSERT statement, 204
installation troubleshooting, 55
is_int() function, 271
joining tables, 205
joins, 199, 236
Mac OS X installations of PHP, 55
magic quotes in PHP, 329
Midgard application, 20
MySQL articles and tutorials, 236
MySQL Control Center, 159
MySQL extension, 258
MySQL history, 12
MySQL installation notes, 55
MySQL manual, 14
MySQL replication, 236
MySQL section of Devshed, 236
MySQL software, 25
mysql_fetch_array() function, 252
mysqldump utility, 180
MySQLi extension, 248
MySQLi extension in PHP 5.0, 258
normalization, 236
NULL type, 77
numeric values, 329
online polling system, 362
online recruitment application, 258
operators, 204
password security, 217
PCRE (Perl Compatible Regular

Expressions), 283
PHP, 7
PHP 101 series, 77
PHP 5.0 object framework, 107
PHP articles and tutorials, 145
PHP configuration process information, 34
PHP history, 12
PHP installations, 55
PHP manual, 8, 26
PHP operators, 77
PHP software, 25
PHP string manipulation API, 77
PHP tutorials, 362

Index.indd 380 2/9/05 5:21:51 PM

TEAM LinG

HowTo8 (8)

 Index 381

HowTo8 (8)

PHP variables, 77
PHP with MySQL examples, 258
phpAdsNew application, 19
phpBB application, 20
phpGroupware application, 20
phpMyAdmin application, 19, 160
PHP.net tutorial, 77
phpNuke application, 20
polling system, 145
privilege levels, 210, 217
program execution functions, 132
queries, 236
query cache, 236
query optimization, 236
regular expressions, 286
result-set pagination, 329
resume management system, 362
security, 217
security of user-submitted data, 286
SELECT statement, 204
sessions, 132
settype() function, 68
SHOW... commands, 180
sprintf() function, 138
SQL Injection attacks, 286
SQLyog, 160
string functions, 205, 329
subqueries, 202, 205
table manipulation, 180
table types, 180
time and date functions, 204
time-and-material tracking system, 258
time/resource tracking system, 362
UNIX installations of Apache, 55
UNIX sockets for boosting performance, 246
UPDATE statement, 204
web-based e-mail client, 145, 362
web-based file management system, 362
web-based management systems, 145
web-page monitoring system, 362
WinZip decompression tool, 25

web-based e-mail clients, web resource for, 145
web-based management systems, web resource

for, 145
WEEK() function, effect of, 324

WHERE clauses
filtering records with, 187–188
updating multiple fields with, 185–186
using built-in functions with, 194

while() loop, example of, 88–89
white space

comparing to empty strings, 266
rendering correctly, 302–304

Widenius, Michael and development of MySQL, 11
width specifiers, using with numeric types, 164
wildcard matches, using LIKE operator for, 189–190
Windows

configuring MySQL and Apache to start
automatically on, 55

installing Apache on, 42–46
installing MySQL on, 36–42
installing PHP on, 46–49

WinMySQLadmin tool
launching, 38
using system tray icon for, 42

WinZip decompression tool, obtaining, 25
wordwrap() function, effect of, 304–305

X
%x field template, using with sprintf() function, 309
XML extension, features of, 11
xor logical operator

example of, 75
symbol for, 71, 189

Y
%y date/time formatting code, description of, 321
Y specifier, using with date() function, 317
YEAR() function, effect of, 324
YEAR numeric type, description of, 165, 167
YYYYMMDD format, explanation of, 166

Z
z specifier, using with date() function, 317
ZEROFILL attribute, using with numeric types, 165
ZIP archive, installing PHP on Windows from,

46–49
zlib library

compiling and installing on UNIX, 27
obtaining, 25

Index.indd 381 2/9/05 5:21:51 PM

TEAM LinG

INTERNATIONAL CONTACT INFORMATION

AUSTRALIA
McGraw-Hill Book Company
Australia Pty. Ltd.
TEL +61-2-9900-1800
FAX +61-2-9878-8881
http://www.mcgraw-hill.com.au
books-it_sydney@mcgraw-hill.com

CANADA
McGraw-Hill Ryerson Ltd.
TEL +905-430-5000
FAX +905-430-5020
http://www.mcgraw-hill.ca

GREECE, MIDDLE EAST, & AFRICA
(Excluding South Africa)
McGraw-Hill Hellas
TEL +30-210-6560-990
TEL +30-210-6560-993
TEL +30-210-6560-994
FAX +30-210-6545-525

MEXICO (Also serving Latin America)
McGraw-Hill Interamericana Editores
S.A. de C.V.
TEL +525-1500-5108
FAX +525-117-1589
http://www.mcgraw-hill.com.mx
carlos_ruiz@mcgraw-hill.com

SINGAPORE (Serving Asia)
McGraw-Hill Book Company
TEL +65-6863-1580
FAX +65-6862-3354
http://www.mcgraw-hill.com.sg
mghasia@mcgraw-hill.com

SOUTH AFRICA
McGraw-Hill South Africa
TEL +27-11-622-7512
FAX +27-11-622-9045
robyn_swanepoel@mcgraw-hill.com

SPAIN
McGraw-Hill/
Interamericana de España, S.A.U.
TEL +34-91-180-3000
FAX +34-91-372-8513
http://www.mcgraw-hill.es
professional@mcgraw-hill.es

UNITED KINGDOM, NORTHERN,
EASTERN, & CENTRAL EUROPE
McGraw-Hill Education Europe
TEL +44-1-628-502500
FAX +44-1-628-770224
http://www.mcgraw-hill.co.uk
emea_queries@mcgraw-hill.com

ALL OTHER INQUIRIES Contact:
McGraw-Hill/Osborne
TEL +1-510-420-7700
FAX +1-510-420-7703
http://www.osborne.com
omg_international@mcgraw-hill.com

HowTo8 (8) / How to Do Everything with PHP & MySQL/Vaswani/225795-4/Back Matter
Blind Folio BM:383

Index.indd 382 2/9/05 5:21:51 PM

TEAM LinG

HowTo8 (8)

Index.indd 383 2/9/05 5:21:52 PM

TEAM LinG

Index.indd 384 2/9/05 5:21:52 PM

TEAM LinG

	Acknowledgments:
	Introduction:
	Part I Learning the Basics:
	Chapter 1 Introducing PHP and MySQL:
	Server-Side Applications:
	And the Databases That Love Them:
	The PHP Story:
	The MySQL Story:
	History:
	Features:
	PHP and MySQL: The Well-Matched Couple:
	Architecture:
	Sample Applications:
	Chapter 2 Setting Up a PHP-MySQL Development Environment:
	Obtaining the Software:
	Installing and Configuring the Software:
	Installing on UNIX:
	Installing on Windows:
	Testing the Software:
	Testing MySQL:
	Testing Apache:
	Testing Apache and PHP:
	Performing Postinstallation Steps:
	Setting the MySQL Super-User Password:
	Configuring MySQL and Apache to Start Automatically:
	Summary:
	Part II Learning PHP:
	Chapter 3 Using Variables, Statements, and Operators:
	Embedding PHP in HTML:
	Writing Statements and Comments:
	Storing Values in Variables:
	Assigning and Using Variable Values:
	Saving Form Input in Variables:
	Understanding Simple Data Types:
	Detecting the Data Type of a Variable:
	Using Operators to Manipulate and Compare Variables:
	Using Arithmetic Operators:
	Using String Operators:
	Using Comparison Operators:
	Using Logical Operators:
	Using the Auto-Increment and Auto-Decrement Operators:
	Understanding Operator Precedence:
	Chapter 4 Using Conditional Statements and Loops:
	Adding Decision-Making Capabilities with Conditional Statements:
	Using the if () Statement:
	Using the switch () Statement:
	Nesting Conditional Statements:
	Merging Forms and Their Result Pages with Conditional Statements:
	Repeating Actions with Loops:
	Using the while () Loop:
	Using the do () Loop:
	Using the for () Loop:
	Controlling Loop Iteration with break and continue:
	Chapter 5 Using Arrays and Custom Functions:
	Using Arrays to Group Related Values:
	Creating an Array:
	Modifying Array Elements:
	Processing Arrays with Loops:
	Grouping Form Selections with Arrays:
	Using Array Functions:
	Creating User-Defined Functions:
	Defining and Invoking Functions:
	Using Arguments and Return Values:
	Defining Global and Local Variables:
	Importing Function Definitions:
	Chapter 6 Using Files, Sessions, Cookies, and External Programs:
	Reading and Writing Files:
	Reading Data from a File:
	Writing Data to a File:
	Testing File Attributes:
	Obtaining Directory Listings:
	Managing Sessions and Using Session Variables:
	Creating a Session and Registering Session Variables:
	Destroying a Session:
	Storing Data in Cookies:
	Setting Cookies:
	Retrieving Cookie Data:
	Deleting Cookies:
	Dealing with Dates and Times:
	Executing External Programs:
	Chapter 7 Sample Application: Session-Based Shopping Cart:
	Retrieving Catalog Data:
	Creating the Shopping Cart:
	Calculating Costs:
	Handling Cart Updates:
	Putting It All Together:
	Part III Learning MySQL:
	Chapter 8 Understanding an RDBMS:
	Understanding a Relational Database:
	Understanding Tables, Records, and Fields:
	Understanding Primary and Foreign Keys:
	Understanding SQL and SQL Queries:
	Understanding Database Normalization:
	Using the MySQL Command-Line Client:
	Interacting with MySQL Through a Graphical Client:
	Chapter 9 Working with Databases and Tables:
	Creating Databases:
	Creating Tables:
	Specifying Field Data Types:
	Selecting the Most Appropriate Data Type:
	Adding Field Modifiers and Keys:
	Selecting a Table Type:
	Altering Tables:
	Altering Table and Field Names:
	Altering Field Properties:
	Adding and Removing Fields and Keys:
	Altering Table Types:
	Backing Up and Restoring Databases and Tables:
	Backing Up Databases and Tables:
	Restoring Databases and Tables from Backup:
	Dropping Databases and Tables:
	Viewing Database, Table, and Field Information:
	Chapter 10 Editing Records and Performing Queries:
	Inserting Records:
	Editing and Deleting Records:
	Retrieving Specific Columns:
	Filtering Records with a WHERE Clause:
	Using Operators:
	Sorting Records and Eliminating Duplicates:
	Limiting Results:
	Using Built-In Functions:
	Grouping Records:
	Joining Tables:
	Using Subqueries:
	Using Table and Column Aliases:
	Chapter 11 Using the MySQL Security System:
	Understanding the Need for Access Control:
	Understanding How MySQL Access Control Works:
	Assigning, Revoking, and Viewing User Privileges:
	Working with User Accounts and Password:
	Creating and Removing User Accounts:
	Altering User Passwords:
	Chapter 12 Sample Application: Order Tracking System:
	Understanding Requirements:
	Creating an Optimized Database Design:
	Designing the Customer Tables:
	Designing the Product Tables:
	Designing the Order Table:
	Creating and Populating the Tables:
	Querying the Database:
	Part IV Using PHP with MySQL:
	Chapter 13 Querying a MySQL Database with PHP:
	Using MySQL and PHP Together:
	Managing Database Connections:
	Performing Queries:
	Processing Result Sets:
	Queries Which Return Data:
	Queries That Alter Data:
	Handling Errors:
	Using Ancillary Functions:
	Chapter 14 Validating User Input:
	Setting Input Constraints at the Database Layer:
	Validating Input at the Application Layer:
	Using the NULL Modifier:
	Using the UNIQUE Modifier:
	Using Field Data Types:
	Checking for Required Values:
	Restricting the Size of Input Data:
	Checking the Type of Input Data:
	Checking for Illegal Input Values:
	Validating Dates:
	Validating Multiple-Choice Input:
	Matching Patterns:
	Chapter 15 Formatting Query Output:
	Formatting Character Data:
	Concatenating String Values:
	Padding String Values:
	Altering String Case:
	Dealing with Special Characters:
	Formatting Numeric Data:
	Using Decimal and Comma Separators:
	Formatting Currency Values:
	Formatting Dates and Times:
	Paginating Large Result Sets:
	Chapter 16 Sample Application: News Publishing System:
	Designing the Database:
	Listing and Displaying News Items:
	Displaying Story Content:
	Manipulating News Items:
	Listing News Items:
	Adding News Items:
	Deleting News Items:
	Editing News Items:
	Protecting the Administration Module:
	Index:
	Copyright © 2005 by The McGraw-Hill Companies:
	 Click here for terms of use:

