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PREFACE

Chemistry is an experimental science, and primarily lives in the laboratory. No book on
spreadsheets will change that. However, many aspects of chemical analysis have significant
quantitative, mathematical components, and many of these can be illustrated effectively
using spreadsheets. At the same time, the spreadsheet is a very accessible tool for data anal-
ysis, an activity common to all of the physical sciences. This book emphasizes the use of
spreadsheets in data analysis, while at the same time illustrating some of the underlying
principles. The basic strength of spreadsheets was summarized by the name of the very first
spreadsheet, VisiCalc, in that it facilitates the visualization of calculations, and thereby can
help to make theory and data analysis come to life.

Spreadsheets are well-recognized for their near-immediate response to changes in their
input parameters, for their ease in making graphs, for their open format and intuitive lay-
out, and for their forgiving error-handling. For these reasons they are usually considered to
be the most easily learned computer tools for numerical data analysis. Moreover, they are
widely available, as they are often bundled with standard word processors.

Spreadsheets used to be far inferior to the so-called higher-level computer languages in
terms of the mathematical manipulations they would support. In particular, numerical
methods requiring iterations used to be awkward on a spreadsheet. Fortunately, this has
changed with the introduction, in version 5 of Excel, of a macro language (Visual BASIC for
Applications, or VBA) that allows the inclusion of standard computer code. Now the imme-
diacy of the spreadsheet and the convenience of its graphical representations can be com-
bined with the wide availability in the literature of sophisticated higher-level programs to
make the spreadsheet a powerful scientific as well as didactic tool.

Of course, spreadsheets cannot do everything. While they make quite competent graphs,
they lack some of the stunning three-dimensional representations of more specialized,
graphics-oriented packages. Moreover, spreadsheets cannot handle symbolic mathematics,
and they are unsuitable for highly specialized, computation-intensive tasks such as molecu-
lar modeling. However, they are unmatched for ease of learning, and for general availability
and price.

Spreadsheets can be used as glorified calculators. There is nothing wrong with that, but
there is no need to write about such rather obvious applications here, since there are already

X1
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a sufficient number of books devoted to this topic. Instead I have tried to illustrate some of
the more subtle aspects of data analysis, some of the more specialized features of chemical
equilibrium, some of the more abstract underpinnings of modern chemical instrumenta-
tion, and some of the finer points of numerical simulation. The choice and sequence of
topics closely follows the order in which these are typically encountered in textbooks in ana-
lytical chemistry, so that this book can readily be used in courses in quantitative or instru-
mental chemical analysis. Since the choice of topics is rather wide, the reader is welcome to
pick and choose from among these according to his or her own preference and need.

Most chapters start with a brief summary of the theory in order to put the spreadsheet
exercises in perspective, and to define the nomenclature used. The standard versions of
Excel 95 through Excel 2000 for Windows 95 or Windows 98 are used. Many exercises use the
Solver and the Analysis ToolPak, both of which are available in the standard Excel packages
but may have to be loaded separately, as add-ins, in case this was not done initially. When
use of chapter 10 is contemplated, the VBA help file should also be loaded.

While the specific spreadsheet instructions in this book are for Excel 97 on IBM-compati-
ble computers, they can all be implemented readily (i.e., with no or very minor modifica-
tions) in Excel 5 (forWindows 3.1), Excel 95 (for Windows 95), Excel 98 (for the Mac), or Excel
2000 (for Windows 98 or Windows 2000). Moreover, I have indicated where Excel 5 and Excel
95 require different procedures from those in Excel 97, 98, or 2000, namely in their handling
of graphs and macros. There are some minor differences between the Excel versions for
IBM-compatible and MacIntosh computers. The most important of these are listed in
chapter 1; none of them are serious.

Many exercises also work in the earlier versions (1 through 4) of Excel. However, these
earlier versions cannot handle VBA macros, so that those spreadsheet exercises that use
macros for weighted least squares, fast Fourier transformation, and convolution, cannot be
run with versions preceding Excel 5. (Specifically, these are exercises 3.4 and beyond in
chapter 3, and all exercises in chapter 7.) Moreover, the macros described in chapter 10
cannot be used in these earlier versions.

Many of the exercises in this book can also be run on spreadsheets other than Excel. In
that case, however, apart from the impossibility to import higher-level computer programs
into the spreadsheet, the user may also lack the convenience of a powerful multi-parameter
non-linear least squares routine such as Solver. Given the choice of writing a book to fit all
spreadsheets, or one that exploits the extra power of modern Excel, I have opted for the
latter.

The purpose of this book is not to provide its readers with a set of prepackaged routines,
into which they merely enter some constants. Instead, the emphasis is on letting the readers
gain enough familiarity and experience to enable them to use spreadsheets independently,
and in other scientific contexts, while at the same time illustrating a number of interesting
features of analytical chemistry. In most cases, no theory is derived, and the reader should
consult standard texts on statistics and on quantitative and instrumental chemical analysis
for the necessary background information, as well as for a perspective on the strengths and
weaknesses of the various methods.

The reader may discover some unavoidable parallelism between the material in this book
and that in my undergraduate textbook, Principles of Quantitative Chemical Analysis,
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McGraw-Hill, 1997, and even some remnants of my Spreadsheet Workbook for Quantitative
Chemical Analysis, McGraw-Hill, 1992. This is partially because I have retained some of the
didactic innovations introduced in these earlier texts, such as an emphasis on the progress
of a titration rather than on the traditional titration curve, the use of buffer strength rather
than buffer value, and the use of the abbreviations h and kin the description of electrochem-
ical equilibria. However, the present text exploits the power of Excel to go far beyond what
was possible in those earlier books.

For a few problems that would require the reader to write some rather complex macros,
these have been provided. They are fully documented and explained in chapter 10, and can
be downloaded from http://uk.cambridge.org/chemistry/resources/delevie Note that
their code is readily accessible, and that the reader is not only encouraged to modify them,
but is given the tools to do so. Again, the idea is to empower the reader to incorporate exist-
inghigher-language code into macros, in order to increase the reach and usefulness of Excel.

The first chapter introduces the reader to the software; it can be speed-read or skipped by
those already familiar with Windows- or Mac-based spreadsheets. The last chapter dis-
cusses macros, which can convert a spreadsheet into a powerful computing tool.
Sandwiched between these are the four main parts of this book: statistics and related
methods, chemical equilibrium, instrumental methods, and mathematical analysis. These
parts can be used independently, although some aspects introduced in chapters 2 and 3 are
used in subsequent chapters, and the spreadsheet instructions tend to become somewhat
less detailed as the text progresses.

The treatment of statistics is focused on explicit applications of both linear and non-
linear least-squares methods, rather than on the alphabet soup (E Q, R, T, etc.) of available
tests. However, within that rather narrow framework, many practical aspects of error analy-
sis and curve fitting are considered. They are chosen to illustrate the now almost two centu-
ries old dictum of de Laplace that the theory of probability is merely common sense
confirmed by calculation.

Since the spreadsheet is eminently capable of doing tedious numerical work, exact math-
ematical expressions are used as much as possible in the examples involving chemical equi-
libria. Similarly, the treatment of titrations emphasizes the use of exact mathematical
relations, which can then be fitted to experimental data. In some of the exercises, the
student first computes, say, a make-believe titration curve, complete with simulated noise,
and is then asked to extract from that curve the relevant parameters. The make-believe
curve is clearly a stand-in for using experimental data, which can be subjected to the very
same analysis.

For the more instrumental methods of quantitative chemical analysis, I have taken a
rather eclectic approach, merely illustrating some aspects that are especially suitable for
spreadsheet exploration, such as Beer’s law and its applications to the analysis of multi-
component mixtures, chromatographic plate theory, polarography, and cyclic voltammetry.

Because of its important place in modern chemical instrumentation, an entire chapter is
devoted to Fourier transformation and its applications, including convolution and decon-
volution. The chapter on mathematical analysis illustrates several aspects of signal handling
traditionally included in courses in instrumental analysis, such as signal averaging and
synchronous detection, that deal with the relation between signal and noise. Its main focus,
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however, is on numerical analysis, and it covers such aspects as finding roots and fitting
curves, integrating, differentiating, smoothing, and interpolating data. Numerical solution
of differential equations is the focus of chapter 9, where we discuss a number of kinetic
schemes, partially to counterbalance the earlier emphasis on equilibrium behavior.

The final chapter describes the nitty-gritty of macros, and illustrates how they can be used
to make the spreadsheet do many amazing things in exchange for relatively little effort on
the part of the user, who can simply incorporate pre-existing, well-documented, widely
available algorithms.

The aim of this book, then, is to illustrate numerical applications rather than to explain
fundamental concepts. Theory is mentioned only insofar as it is needed to define the
nomenclature used, or to explain the approach taken. This book can therefore be used in
conjunction with a regular textbook in analytical chemistry, in courses on quantitative or
instrumental chemical analysis. It can also serve as a stand-alone introduction to modern
spreadsheet use for students of chemistry and related scientific disciplines, provided they
are already familiar with some of the underlying scientific concepts. Because of its emphasis
on exercises, this book s also suitable for individual, home use.

Iam grateful to Drs. T. Moisio and M. Heikonen of Valio Ltd, Helsinki, for permission to use
their unpublished experimental data in chapter 4, to Professor Phillip Barak of the
University of Minnesota for permission to include his adaptive-degree least-squares algo-
rithm in chapter 10, and to Numerical Recipes Software of Cambridge Massachusetts for
permission to use some subroutines from the Numerical Recipes.

I'am indebted to Professors Nancy Gordon and Gale Rhodes of the University of Southern
Maine, Professor Barry Lavine of Clarkson University, Professors Panos Nikitas and Nanna
Papa-Louisi of Aristotle University, as well as to Mr. William H. Craig and Professors Andrew
Vogt, George Benke, and Daniel E. Martire of Georgetown University, for their many helpful
and constructive comments and suggestions. I am especially indebted to Professor Joseph T.
Maloy of Seton Hall University for his extensive advice.

I am grateful to Georgetown University for a sabbatical leave of absence, which gave me
the unbroken time to work on this book, and to Professor Nancy Gordon of the University of
Southern Maine in Portland, Maine, and Professor Panos Nikitas of Aristotle University of
Thessaloniki, Greece, for their gracious hospitality during the writing of it. Finally I thank my
son, Mark, for his invaluable help in getting me started on this project, and my wife, Jolanda,
forletting me finish it.

User comments, including corrections of errors, and suggestions for additional topics
and/or exercises, are most welcome. I can be reached at RDELEVIE@GBOWDOIN.EDU
Corrections will be posted in the web site

http://uk.cambridge.org/chemistry/resources/ delevie

From this web site you can also download the data set used in section 4.11, and the macros
of chapter 10.



PART I: INTRODUCTION TO USING THE SPREADSHEET

CHAPTER 1

First things first: this introductory chapter is intended for readers who have
no prior experience with Excel, and only provides the minimum informa-
tion necessary to use the rest of this book. Emphatically, this chapter is not
meant to replace a spreadsheet manual; if it were, that part alone would
occupy more space than that of this entire workbook. Instead, during and
after using this workbook, you may be tempted to consult an Excel manual
(of which there will be several in your local library and bookstore) to learn
what else it can do for you-but thatis up to you.

Second: this book is not intended to be read, but instead to be used while
you sit at the computer keyboard, trying out whatever is described in the
text. Learning to use a spreadsheet is somewhat like learning to swim, toride
a bicycle, or to paint: you can only learn it by doing it. So set aside a block of
time (one or two hours should do for this chapter, unless you are really new
to computers, in which case you might want to reserve several such sessions
in order to get acquainted), make yourself comfortable, turn on the com-
puter, and try things out as they are described in, say, the first three sections
of this chapter. (If it confuses you on your first try, and there is nobody at
hand to help you along, stop, do something else, and come back to it later, or
the next day, but don’t give up.) Then try the next sections.

In order to run Excel (or any other spreadsheet program), your computer
will need an operating system. Here we will assume that you have Windows
as the operating system on your personal computer, and that you have a
compatible version of Excel. Although there are relatively minor differences
between the various versions of Excel, they fall roughly into three categories.
Excel versions 1 through 4 did not use VBA as their macro language, and the
macros described and used in this book will therefore not run on them. The
second category includes Excel 5 and Excel 95 (also called Excel version 7;
there never was a version 6), which use VBA with readily accessible modules.
Excel 97, Excel 98 (for the Mac), and Excel 2000 make up the third category,
which has macro modules that are hidden from sight. The instructions given
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in this book are specifically for the second and third categories, starting with
Excel 5. While they were mostly tested in Excel 97, all versions more recent
than Excel 4 will do fine for most of the spreadsheet exercises in this book.
Because Excel is backward compatible, you can run older software in a more
recent version, but not necessarily the other way around.

When you have a Macintosh, your operating system will be different, but
Excel will be very similar. After all, both IBM and Mac versions of Excel were
written by Microsoft. With relatively minor modifications, mostly reflecting
differences between the IBM and Mac keyboards, all exercises in this book
will run on the Mac, provided you have Excel version 5 or later.

In either case, whether you use an IBM-compatible PC or a Macintosh, use
at least Excel version 5, because earlier versions lacked some of the more
useful features of Excel that will be exploited in this book. If you have Excel 4
or earlier, it is time to upgrade.

When you are already familiar with earlier versions of Windows and Excel,
you may want to use this chapter as a refresher, or scan the text quickly and
then go directly to the next chapter. When you are already familiar with
Windows 95 or Windows 98, and with Excel 95 or 97, you may skip this
chapter altogether.

Starting Windows

Windows is a so-called graphical user interface, in which many programs,
files, and instructions are shown pictorially, and in which many operations
can be performed by ‘pointing and clicking’, an approach pioneered in the
early 1970s by the Xerox Corporation, and long familiar to Macintosh users.
The pointing device is usually a mouse or a trackball; for many instructions,
equivalent typed commands can be used as well. We will use ‘mouse’ as the
generic term for whatever pointing device you may have. There are often
several ways to let the computer know what you want it to do. Here we will
usually emphasize how to do it with the mouse, because most users find that
the easiest.

In what follows we will assume that Windows and Excel have been
installed in their complete, standard forms. For some applications we will
also use the Solver and the Analysis Toolpak. These come with Excel, but
(depending on the initial installation) may have to be loaded as an add-in.

When you start Windows, your monitor will show a screen (the desktop)
which typically displays, on its left side, a number of pictures (icons), each
with its own explanatory label. The bottom icon is labeled ‘Start’, and acts as
the on switch of Windows. (There is no simple off switch, since Windows
requires a more elaborate turn-off routine, which rather illogically begins
with the Start button, and via the Shut Down command leads you to the Shut
Down Windows dialog box, where you can choose between several options.)
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Icons, such as the start label, are also called buttons, as if you could actu-
ally push them. Move the mouse so that the sharp point of the arrow on the
screen, the pointer, indeed ‘points to’ (i.e., is inside) the start button, and
press the left mouse button once. (Left and right depend, of course, on the
orientation of the mouse. By ‘left’ we mean the left button when the two or
three mouse buttons are pointing away from you, so that you can hold the
body of the mouse with your thumb and index finger, or with the palm of
your hand, while your index finger, middle finger, and ring finger can play
with the buttons.) To briefly depress the left mouse button we will call to
click the mouse; when you need to do this twice in quick succession we will
call it double clicking, whereas briefly depressing the right mouse button
we will call right clicking.

As soon as you have clicked the start button, a dialog box will pop up
above it, showing you a number of choices. Manipulate the mouse so
that the arrow points to ‘Programs’, which will now be highlighted, and
click. A second dialog box will pop up next to the first to show you the
various programs available. One of these will be Excel; click on it to start
the spreadsheet. Alternatively, click on the Excel icon if the desktop
shows it.

A first look at the spreadsheet

After displaying the Excel logo, the monitor screen will show you a rather
busy screen, as illustrated in Fig. 1.2-1. The actual screen you will see may
have more bars, or fewer, depending on how the screen has been configured.
Please ignore such details for the moment; few if any of the instructions to
follow will depend on such local variations.

At the top of the screen is the title bar. In its right-hand corner are
three icon buttons, to minimize the screen to near-zero size, to restore it to
medium or full size, and to close it. To the left on the same bar you will find
the Excel logo and the name of the file you use, where ‘file’ is the generic
name for any unit in which you may want to store your work. Below the title
bar is the menu bar (with such menu headings as File, Edit, View, Insert,
etc.). This is usually followed by a standard bar with icons (pictograms
showing an empty sheet, an opening file folder, a diskette, a printer, etc.) and
a formula bar. At this point, the latter will show two windows, of which the
larger one will be empty.

Starting from the bottom of the screen and moving upwards, we usually
first encounter the task bar, which has the Start button in its left corner.
Next to the start button you will find the name of the Workbook you are
using. When you have not yet given it a name, Excel will just call it Bookl,
Book2, etc. Above the task bar is the status bar, which may be largely empty
for now.
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Title bar

Menu bar

Standard toolbar

Formula bar

Fig.1.2-1: The left top corner of the spreadsheet.

Status bar

Fig.1.2-2: The left bottom corner of the spreadsheet.

What we have described so far is the frame around the actual spreadsheet.
Now we come to the spreadsheet itself, which is called a workbook, and is
organized in different pages.

Above the status bar you will find a tab, in Fig. 1.2-2 labeled Sheet1, which
identifies which page of the work book is open. Here, then, you see the
general organization of individual spreadsheet pages into workbooks. You
can have as many pages in your workbook as you wish (by adding or remov-
ing sheets), and again as many different workbooks as you desire. For the
exercises in the present text, you may want to use a new sheet for each exer-
cise, and anew workbook for each chapter, and label them accordingly.

In the region between the formula bar and the status bar you will find the
actual working part of the spreadsheet page. It starts at the top with a
sequence of rectangles, each containing one letter of the alphabet on a gray
background. It ends, at the bottom, with a bar containing a series of tabs;
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one such tab, such as the one labeled Sheetl in Fig. 1.2-2, will have a white
background, indicating the currently open (or ‘active’) sheet, while the
others will be gray. In between these is a rectangular array of blank cells.
Each such cell can be identified by its (vertical) column and its (horizontal)
row. Columns are labeled by the letters shown just above row 1 of the
spreadsheet, while rows are labeled by the numbers shown to the left of
column A. The cell at the top left of the spreadsheet is labeled Al, the one
below it A2, the one next to A2 is B2, etc. One cell will be singled out by a
heavy black border; that is the highlighted, active cell in which the spread-
sheet anticipates your next action. The address of the active cell is displayed
in the left-most window of the formula bar; in Fig. 1.2-1 itis cell Al.

To activate another cell, move the mouse so that the pointer, which should
now have the shape of a hollow cross, is within that cell, then click. The corre-
sponding cell coordinates will show on the left-most window of the formula
bar. When you move the mouse pointer to another cell and click again, that
cell will now become the active one. Note that the left-most window in the
formula bar will track the coordinates of the active cell. Play with moving the
active cell around in order to get a feel for manipulating the mouse.

A cell can also be specified by typing its coordinates. The simplest way to
do so is by using the function key labeled F5. (The function keys are usually
located above the regular alphabet and number keys, and labeled F1
through F10 or F12. On some keyboards they are found to the left of the
alphabet keys.) A dialog box will appear, and you just type the coordinates of
the cell, say, D11, and deposit this by depressing the large ‘enter’ key (to the
right of the regular alphabet keys). Another way, initially perhaps more con-
venient for those used to DOS-based spreadsheets, is to use the keystroke
sequence Alt + e Alt +g. Here Alt + e denotes that you depress Alt and then,
while keeping Alt down, also depress e; follow this by Alt + g. Alt specifies that
you want to select an item from the menu bar, e selects the Edit command,
and g the Go to command, where the underlining indicates the letter to be
used: ein Edit, gin Go, o in Format, etc. As a gesture to prior users of Lotus 1-
2-3 or QuattroPro, you can even use the slant instead of the Alternate key: / +
e / +g . Any of the above methods will produce the dialog box in which to
type the cell coordinates.

Below we will usually indicate how to accomplish something by using the
mouse. For those more comfortable with using the keyboard rather than the
mouse, keystrokes to accomplish the same goals are often available. There is
no need to memorize these commands: just look for the underlined letters
to find the corresponding letter code. Using keystrokes is often faster than
pointing-and-shooting with a mouse, especially when you use a track ball.

Note that, inside the cell area of the spreadsheet, the mouse pointer
usually shows as a cross. Select a cell, then move the pointer away from it
and back again. You will see that, near the border of the active cell, the
pointer changes its shape and becomes an arrow. When the pointer shows
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as an arrow, you can depress the left mouse button and, while keeping it
down, move the pointer in the cell area. You will see that this will drag the cell
by its border. By releasing the mouse button you can deposit the cell in a new
location; the formula bar will then show its new coordinates.

Practice activating a set of neighboring, contiguous cells; such cell blocks
or arrays are often needed in calculations. Move your mouse pointer to a
particular cell, say cell F8, and click to activate it. You can now move
the pointer away, the cell remains active as shown by its heavy border; also,
the formula bar shows it as the active cell regardless of where you move the
mouse pointer, as long as you don’t click. Return the pointer to cell F8, and
depress the left mouse button withoutreleasing it, then (while still keeping
the cell button down) move the mouse pointer away from cell F8 and slowly
move it in a small circle around cell F8. You are now outlining a cell block; its
size is clear from the reverse color used to highlight it (it will show as black
on a white background, except for the cell with which you started, in this
example F8, which will remain white, and which we will call the anchor cell).
The size of the block will show in the formula bar in terms of rows and
columns, e.g., 3R X 2C will denote a block three rows high and two columns
wide. By releasing the mouse button you activate the entire block, while the
formula bar will return to showing the location of the anchor cell. You can
then move away from it; the active block will remain. After you have selected
the cell block, go back to it, grab its border (when the pointer is an arrow)
and move the entire block around! To deposit the block in a new location,
just release the mouse button. To abolish a block, release the mouse button
to deposit it, then move the pointer to another cell and click on it.

To activate a block of cells from the keyboard, use F5 (or Alt+e Alt+g),
then specify the block by the coordinates of its upper left cell and of its lower
right cell, separated by a colon, as in D4:E9, and deposit it with the enter key.

There is yet another way to activate a block, starting from a single active
cell. Again move the mouse pointer outside the active cell, but now
approach the small square in the right bottom corner of the border around
the active cell; this little square is the cell handle. The mouse pointer will
change into a plus sign when it points to the cell handle; you can then drag
the cell by its handle (rather than by its border) and make either columns or
rows. Again, fix your choice by releasing the mouse button. You can drag it
again to make a block out of a row or column. Practice these maneuvers to
familiarize yourself with the mouse, and see how the pointer changes from a
hollow cross (when you point at the middle of the cell ) to an arrow (at its
border) to a plus sign (at its handle). Below we will specifically indicate when
to use the cell border or the cell handle; if nothing is specified, go to the
center of the cell and use its standard pointer, the hollow cross.
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A simple spreadsheet and graph

The spreadsheet is designed to facilitate making calculations, especially
repeated calculations that would quickly become tedious and boring if you
had to do them by hand, or even on a pocket calculator. (Unlike humans,
computers do not tire of repetition.) The spreadsheet is also very useful
when you have computations that would be too difficult for a pocket calcu-
lator. The tabular format, resembling an accountant’s ledger, helps us to
organize the calculations, while the so-called ‘double precision’ of the
spreadsheet keeps round-off errors in check. When you change one number
somewhere in a spreadsheet, the computer automatically recalculates all
cells that depend on the one you have just changed. (There are a few excep-
tions to this statement: special functions and macros do not update auto-
matically. We will alert you when we come to them.) The spreadsheet also
makes it very easy to construct graphs. We will demonstrate this now that
you know how to move around in the spreadsheet.

Among the things we can place inside a cell are a number, alabel such as a
column heading, or a formula. A cell can hold only one of these items at a
time. Activate cell Al by clicking on it, then type the letter x, followed by
depressing the ‘enter’ key, or by moving the mouse pointer to a different cell
and by then clicking on that other cell. Either method will deposit the typed
letter.

Activate cell A3; to do this, either move the mouse pointer to cell A3 and
click, or use the down arrow to get there. In cell A3 deposit the number 0. (As
with the letter x, nothing will happen until you deposit it, using the Enter
key. This lets the computer know that this is all you want to enter, rather
than, say, 0.3 or 0.0670089.) Be careful to distinguish between the number 0
and the letter O; they are close neighbors on the keyboard but they are com-
pletely different symbols to the computer. Similarly, don’t confuse the
number 1, the lowercase letter L, and the capital I.

In cell A4 deposit the number 1. The letter x in Al will usually show as left-
justified (i.e., placed in the left corner of its cell), whereas the numbers 0 and
1 will usually be right-justified. (We hedge our bets with the ‘will usually be’
because all these features can easily be changed, as they may well have been
on the computer you are using.) Return to cell A3, then activate both cells (by
depressing the left mouse button while pointing to A3, keeping it down
while moving to cell A4, then releasing the button). Both cells should now be
active, as shown by their shared border.

Now comes a neat trick: grab both cells by their common handle (the little
square at the right-hand bottom of their common border), drag the handle
down to cell A11, and release the mouse button. With this simple procedure
you have made a whole column of numbers, each one bigger by 1 than that
in the cell above it!
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sine

0 0
1 0.707107
2 |
3 0.707107
4 1.23E-16
5 -0.70711
6 -1
7 -0.70711

Fig. 1.3-1: Detail of the spreadsheet with its two columns and column headings.

Had you started with, say, the number 7 in cell A3, and 4.6 in cell A4,
column A would have shown 7, 4.6, 2.2, — 0.2, — 2.6, and so on, each succes-
sive cell differing from its predecessor by 4.6 —7 =—2.4. In other words, this
method of making a column generates constant increments or decrements,
in arithmetic progression. Try this, with different values in A3 and A4. Then
go back to deposit the series ranging from 0 to 7 with an increment of 1 or, in
mathematical notation, the series 0 (1) 7. Incidentally, there are many other
ways to fill a column, some of which we will encounter later.

In column B we will now calculate a sine wave. Activate cell Bl and deposit
the heading ‘sine’. Move to cell B3 and deposit the formula = sin(a3*pi()/4).
The equal sign identifies this as a formula rather than as text; the asterisk
indicates a multiplication. The spreadsheet uses the notation pi() to
denote the value of 7; the brackets alert the computer that this is a func-
tion. Excel instructions do not distinguish between lower case and capitals,
but the formula bar always displays them as capitals, which are more
clearly legible. By now your spreadsheet should look like that depicted in
Fig. 1.3-1.

If you were to extend the columns to row 11, the value shown in cell B11
might baffle you, since it may not quite be 0 but a small number close to it,
reflecting computer round-off error. But don't worry: the error will usually
be below 1 partin 10'°.

There is a more convenient way to generate the second column. After you
have entered the instruction =sin(a3*pi()/4) in cell B3, grab its handle (at
which point the mouse arrow will show as a plus sign) and double-click. This
will copy the instruction down as far as the column to its immediate right
contains data! This is a very useful method, especially for long columns.
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When there are no data to its immediate right, the column to its immediate
left will do. When both are absent, the trick will not work.

Finally we will make a graph of this sine wave. Doing so is slightly different
in Excel 97, Excel 98 for the Mac, or Excel 2000 on the one hand, and Excel 95
or Excel 5 on the other. We will here describe the procedure for each of these
two versions.

Bring the mouse pointer to cell A3, click on it, drag the pointer (while
keeping the mouse button depressed) to cell B11, then let go of the mouse
button. This will activate (and highlight) the rectangular area from cell A3
through B11 (in spreadsheet parlance: A3:B11) containing the data to be
graphed. Alternatively, you can highlight cell A3, then depress the Shift key,
and while keeping this key down depress End, 1, End, and finally —. (The
sequence Shift + End, Shift + | will highlight the column A3:A11, while Shift
+End, Shift + — will include column B. As with double-clicking on the cell
handle to copy an instruction, Shift + End looks for contiguous data.)

Making a graph in Excel 97 or a more recent version

If this is your first reading, and you use Excel 95 or Excel 5, skip the following,
and continue with section 1.3b.

In Excel 97 or a more recent version, go with the mouse pointer to the
menu bar, click on Insert, and in the resulting drop-down submenu click on
Chart. Or achieve the same result with the keystrokes Alt+i, Alt +h. Either
method will produce a dialog box labeled Chart Wizard — Step 1 of 4 — Chart
Type.

In the list of Chart types, click on XY (Scatter); do not select the Line plot,
which in Excel means something quite different from what a scientist might
expect. The line plot can give you very misleading graphs because it pre-
sumes that the x-values are always equidistant.

As soon as you have selected the XY plot, the right-hand side of the dialog
box will show five Chart sub-types: loose points, points connected by
smooth or straight lines, or just smooth or straight lines. For now, pick the
points connected by smooth lines — you can always change it later. (This is a
general property of working with Windows Excel: you need not agonize over
achoice, because there are almost always opportunities to change it later. So
the best strategy is: when in doubt, pick something, move on, and worry
about the details later.) Click on the Next > button.

Step 2 of the Chart Wizard shows the Data range selected. Also, under the
Series tab, it shows which column will be used for X-values, and which for Y-
values. The default (i.e., the assumption the spreadsheet makes in case you
do not overrule it) is to use the left-most column of the selected block for X-
values, so you need not take any action here, just press on with Next >. But it
is handy to know that you can here, in step 2 of the Chart Wizard, change the
assignments for XandY.
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Step 3 lets you enter a Chart title and axes labels. Click on the Chart title
window, and enter Sine wave. Then click in the Value (X) Axis window, and
enter angle. Finally, click in the Value (Y) Axis window, and enter sine. A
picture will show you what your graph is going to look like.

There are other things you can specify at this point, such as the axes, grid-
lines, legends, and data labels, but we will forgo them here in order to keep
things simple for now, and to illustrate later how to modify the end product.
So, on to the Next >.

Step 4 defines the chart location, either As a new sheet, or As object in a
spreadsheet page. Select the latter, and Finish. This will place the graph on
the spreadsheet.

Now click on the graph, preferably inside its outer frame near its left edge,
where the computer cannot misinterpret your command. This will adorn
the graph with eight black handles, which allow you to change its size and
location. First, locate the mouse pointer on the graph, depress the mouse
button, and while keeping it down move the graph to any place you like on
the spreadsheet, preferably somewhere where it does not block data from
view. To release, simply release the mouse button. Note that the graph as it
were floats on the page, and does not obliterate the underlying information.
To fit the graph in the cell grid, depress the Alt key, then (while keeping Alt
depressed) bring the mouse pointer to a handle in the middle of the side of
the graph, where the pointer should change into a two-sided arrow, and pull
that pointer toward a cell boundary. Repeat with the other sides. For greater
efficiency you can combine this for two adjacent sides by pulling or pushing
on two opposing corners.

In the final result, click on the little rectangular box to the right of the
graph, then press Delete.

If you want to remove the gray background (which seldom prints well) just
click somewhere in the plot area (where the label shows Plot Area), right-
click, highlight Format Plot Area, and under Area either select None or, in the
choice of colors, click on white. Exit with OK.

If you want to get rid of the horizontal grid lines, point to them (the label
will identify Value (Y) Axis Major Gridlines), right-click, and select Clear.

To change the range of the x-scale, point to the axis (the label will show
Value (X) Axis), right-click, select Format Axis, and under the Scale tab pick
the scale properties you want. And, while you're at it, please note that you
can also change the font, size, color, position, and alignment of the numbers
of the x-axis. Ditto for the numbers on the vertical axis.

To change the type of graph itself, point at the curve, right-click, and select
Format Data Series. Then for the Line pick the Style, Color, and Weight you
like, and for Marker the Style, Forground and Background color, and Size.

And so it goes: you can point at virtually every detail of the graph, and
modify it to your taste. Figure 1.3-2 shows you what you might have wrought.
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Fig. 1.3-2: The graph showing your sine wave.

Making a graph in Excel 5 or Excel 95

Ifthis is your first reading, and you use Excel 97, Excel 98, or Excel 2000, skip to
the last two paragraphs of this section.

Go with the mouse pointer to the menu bar, click on Insert, and in the
resulting drop-down submenu click on Chart. A second box will appear,
which lets you select a graph either On the spreadsheet, or As a separate
sheet. Select the former by clicking on it. You will now see a succession of
ChartWizard boxes that let you specify how the graph should look. You can
achieve the same result with the keystrokes Alt + i, Alt + h, Alt + o, Enter, with
ifor Insert, h for Chart, etc. Either method will produce a dialog box labeled
ChartWizard.

The first ChartWizard box, labeled Step 1 of 5, asks you what area of the
spreadsheet you want to be graphed. Since you already selected that area,
the window with the heading Range should show =$A$3:$B$11. If it does,
move the pointer to the Next >button, and click. Ifit does not, first move the
pointer to the Range window, click, if necessary replace its present contents
by A3:B11 (use the Delete key located to the right of the enter key, type
A3:B11, and click again to deposit this), then click on the Next >button and
proceed to step 2.

The second ChartWizard box lets you specify the type of graph you want.
Click on the XY (Scatter) plot; your choice will be highlighted. (Do notselect
the Line plot, because it will automatically assume that all X-values are
equidistant. This is convenient when you want to plot, e.g., income or
expense as a function of the month of the year, or the region of the country.
In scientific applications, however, it makes no sense to treat the X-values
merely as labels, and it can yield quite misleading graphs.) Click on Next >to
move to the next ChartWizard.
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The third box lets you define the data presentation. Let’s just select 2,
which will show the individual data points in a linear graph, connected by
line segments. If you want to see what the other presentation styles look like,
try them out, either now or, better yet, after you have made your first few
charts. Excel has many options, and often several ways to achieve each of
them. Here we describe only a few simple ways to get you started, without
confusing you with many possible alternatives. After you have become
familiar with the spreadsheet, by all means play to find out how to move
around in Excel, what all is available, and what formats and shortcuts you
like; then use those.

The fourth box shows you a sample chart. The top right-hand corner will
let you specify whether you want to plot rows or columns; we will usually
plot columns, and that will most probably already have been selected. On to
the Next > step of the ChartWizard.

Step 5 allows you to add a legend, and to label the axes. If the question Add
a Legend? is answered affirmatively, push the radio button to Yes. Point to
therectangular window under the heading Chart Title, click on it, then type a
title of your choice, say, Sine wave, and deposit that title. Similarly, enter a
legend for the X-axis (in the text box next to Category [X]:), and a legend for
theY-axis (in the box next to Value [Y]:). That is all for now: click on the Finish
button in the lower right-hand corner of the ChartWizard. You should see
the graph, properly scaled, with tick marks and associated numbers, and it
should look more or less like Fig. 1.3-2 (although there will almost certainly
be differences in the exact scaling, letter type used, and so on, details that
will not concern us here). If you had made the graph As a separate sheet,
click the mouse on the tab labeled Sheet1 at the bottom of the spreadsheet;
to go back again to the graph, click on the tab labeled Chartl, etc.

We will now add a few finishing touches. The numbers for the horizontal
scale in Fig. 1.3-2 are placed just below the horizontal axis, at y= 0. It is nice
that Excel selects and labels the scales for you, automatically, but you may
want to have the numbers outside rather than inside the graph area. In that
case, point with your mouse to a number with the horizontal axis, and click
on it. This will result in two black blocks, one on each end of the axis,
showing that you have activated the axis. Right-click to produce a small pop-
up menu, and click on Format Axis, then select the tab Patterns, click on Tick
mark lables Low, and end with OK.

Figure 1.3-2 contains the few points you have calculated, with connecting
line segments. In this case, where we deal with a continuous function, it will
look much better when we use a ‘French curve’ to connect the points with a
smooth line. There are two ways to do so. The obvious one is to calculate
more points per cycle, so that the points get closer together, the linear seg-
ments are shorter, and therefore more closely approach a smooth curve.
The easier one (OK as long as you do not use the curve for precise interpola-
tion) is to let the computer draw a smooth curve through the points, which
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Sine wave

angle

Fig. 1.3-3: The same graph after smoothing.

it will do with ease using what is called a cubic spline. You can do this as
follows: double-click on the graph, click on a connecting line segment,
right-click on it to get its properties, then click on Format Data Series. In the
Format Data Series dialog box, click on Smoothed Line, followed by OK.
That does it. The effect is shown in Fig. 1.3-3.

Finally, we change the font of the legends and labels. First get the
Formatting toolbar with View= Toolbars = Formatting. Now click on the
axis numbers, then in the Formatting toolbar select Times New Roman and,
in the adjacent Font Size window, click on 12 (points). Do this for both axes.
Then click on the axis labels and the graph title and adjust them likewise. It
doesn’t matter whether you prefer the cleaner-looking sans-serif fonts like
Ariel, or the more readable serif fonts such as Times New Roman; the
purpose of the present exercise is merely to show you how to change it to
yourtaste. Incidentally, instead of using the Formatting bar you can click on,
say, the axis numbers, and then use Format= Selected Axis to get the
Format Axis dialog box, in which you can accomplish the same tasks as with
the Formatting toolbar.

Addressing a spreadsheet cell

It is useful to go back to the spreadsheet and see what you have done. Bring
the mouse pointer to cell B3, click on it, and observe the instruction shown
in the formula bar: it should read = SIN(A3*PI()/4). Now move the pointer to
cell B4 (again it should show a cross) and click on it. The formula bar will
show the instruction as=SIN(A4*PI()/4). Move to the cell below, and
examine its instruction: it will read = SIN(A5*PI()/4), and so on. Clearly, as
you copied the instruction from cell B3 down, the address of the cell to
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which the instruction referred was also pulled down, from A3 to A4 to A5 etc.
This is called relative addressing, and is a main feature of all spreadsheets.
In other words, the instruction refers to a cell in a given position relative to
that of the cell from which it is called. It is as if the instruction reads: take the
sine of 7r/4 times the contents of the cell to my immediate left. In copying a
formula in a spreadsheet from one cell to another, relative addressing is the
norm, i.e., the default, the operation you get without specifying anything
special. An example of relative addressing in a different context is the move-
ment of a knight on a chess board. In fact, most chess moves are relative to
the starting position of the moving piece.

Sometimes we need to refer to a particular cell, for instance when such a
cell contains a constant. In that case we must specify that we want absolute
addressing; we do this by preceding both components of the cell address (its
column letter and its row number) by that symbol of stability, the dollar sign.
(We already encountered this notation in the previous section, where the
block A3:B11 showed in the first ChartWizard dialog box as the range
=$A$3:$B$11.) We can also protect the column but not the row, by placing a
dollar sign in front of the column letter, or vice versa; we will occasionally
encounter such mixed address modes in subsequent chapters. To return to
our earlier analogy: the movement of a chess pawn is relative, except at its
first move, or when it reaches the opposite end of the board, at which points
its absolute address counts.

Now go back to column A, and examine its cell contents. Here we find no
specific formula, but only numbers. The way we generated that column of
numbers, by dragging its top two cells by their common handle, was conven-
ient and quick, but did not give us much flexibility to change it later. If we
anticipate that we might subsequently want to modify the contents of
column A, here are two alternative ways to do so.

First, deposit the number 1 in cell F1. Then go to cell A4, and there deposit
the instruction +A3 + $F$1. (You can type it as shown or, faster, first type
+A3 +F1 followed by depressing the function key F4, which will insert the
two dollar signs for you. Please don't get confused: F1 here means column F
row 1, while ‘function key F4’ signifies the function key so labeled.)

Now copy this instruction down to cell A11; again, there are several ways
to do this. They all start with cell A4 as the active cell; if cell A4 is not the
active cell, make it so by clicking on it. Then try out the alternative methods
described below:

(a) Depress the control key labeled Ctrl (there are two on the usual key-
board, one on each side of the ‘space bar’) and, with the Ctrl key down, also
depress the letter c; this combination will from now on be denoted by
Ctrl+c. (If you have been brought up with the DOS taboo never to use
Ctrl +c, there are numerous other ways to do the same thing. For example,
clickon Edit in the menu bar, then on Copy, or use the keystrokes Alt + e Alt +
cinstead. You can also click on the copyicon in the icon bar, indicated by two
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sheets to the right of the icon showing scissors. In Excel 95 and subsequent
versions, you can point to theicon if you are not sure of its meaning, and wait
one or two seconds: an explanatory note will appear to tell you its function.

Ctrl + c makes a copy of the active cell, and stores it in a place in the com-
puter memory called the clipboard. Drag the active cell down to generate a
column from A4 through A11 (make sure that the mouse pointer is the cross,
so that you make a column rather than just move a single cell around), then
paste the contents of the clipboard in this column with the command
Ctrl + v (or Edit = Paste on the menu bar, the Paste icon on the icon bar, or
Alt+e, Alt + p from the keyboard).

(b) When you want to make a long column, from A4 all the way to, say,
A1394, itis more convenient to use the PageDown key rather than to drag the
active cell. In that case we again start with copying the active cell with
Ctrl + c. Now depress the Shift key while depressing the PageDown key until
you are roughly where you want to be, and fine-tune with the up or down
keys to reach your destination, all the time keeping the Shift key down.
Release the shift key only when your column has the required length, then
press Ctrl + v to paste the instruction from the clipboard into the now acti-
vated column A4:A1394.

(c) Even faster (for such a long column) is the following method. Activate
cell A4, copy it onto the clipboard (Ctrl + c), then select the Goto function
key F5. This invokes the Go To dialog box; in its Reference window type
A1397, click on OK, and you will now find yourselfin cell 1397. While keeping
down the shift key, now select End and the arrow up key, T, then paste with
Ctrl +v. Bingo.

The above methods illustrate the use of relative and absolute addressing.
Now let us look at the result. Go to cell F1 and deposit the value 2; immedi-
ately, column A will show the sequence 0, 2, 4, 6, etc. Play with it, and satisfy
yourself that the constant value stored in cell F1 indeed determines the
increment. The constant in F1 can be a fraction, a negative number, what-
ever. Then go to cell A3 and deposit a new starting value, say — 3. Again the
data in column A adjust immediately, as do the values in column B that
depend on it. You now have much more flexibility to modify the contents of
column A, without having to reprogram the spreadsheet.

More on graphs

Graphs are such an important part of spreadsheets because most of us can
take in the meaning of a figure much faster than that of formulas or of a
column of numbers.

First we lengthen the columns in the spreadsheet to contain more data.
Go back to the (left-hand) top of the spreadsheet; the fastest way to do so is
with Ctrl+ Home (i.e., by depressing Control while hitting the Home key,
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which you will usually find in the key cluster above the arrow keys). Using
any of the methods described in section 1.4, you can now extend column
A3:Al11 to A83, then go to cell B11 and double-click on its handle.
Alternatively you can extend columns A and B simultaneously: highlight the
two adjacent cells A11:B11, copy these with Ctrl + c as if they were one cell,
go down to cell A83, use Shift+End + Up to highlight A12:A83, and paste
with Ctrl + p. This will copy both columns.

The spreadsheet should now contain several complete cycles of the sine
wave. However, the graph does not yet reflect this, because you had earlier
specifically instructed it to plot A3:B11. Check that this is, indeed, the case.
We will now modify this.

With the mouse, point to the line in the graph, and press the Enter key.
You will see some points in the graph highlighted, while the formula
bar will contain the graph range, in a statement such as=SERIES
(,Sheet1!$A$3:$3A$11,Sheet1!$B$3:$B$11,1). Quite a mouthful, butlet that be
so. Simply move your mouse pointer to that statement, specifically go to the
11’s in it, and change them into 83’s. Then press Enter; the graph will now
show the entire set, B3:B83 versus A3:A83.

Instead of modifying Chartl we can also make a new graph. Because our
earlier graph was embedded in the spreadsheet, now make a separate graph.
Embedding a graph has the advantage that you can see it while you are
working on the spreadsheet, and the disadvantage that it tends to clutter up
your workspace, and that (in order to keep them visible on the screen)
embedded graphs are usually quite small. On the other hand, graphs on the
spreadsheet can be moved around easily, because they as it were float on the
spreadsheet. Likewise, their size can be changed readily. (In Excel 97 etc., the
two types of graph are treated as fully equivalent, and you can readily change
them from one type to another. Activate the chart, then select Chart =
Location and use the dialog box. Note that the Chart menu appears only
after you have activated a chart, otherwise the same location hosts the Data
menu label.)

The next two paragraphs are intended specifically for users of Excel 5 or
Excel 95. If you use a more recent version of Excel, which treats embedded
and separate charts the same way, you may want to speed-read (or skip) this
part.

Highlight (activate) block A3:B83. (You can do this most conveniently as
follows: go to cell A3 and, while keeping the Shift key down, press End —,
then End !.) Click on Insert Chart, then select On this sheet. The mouse
pointer will change into a cross with a small histogram attached, the histo-
gram being Excel’s idea of a graph. Bring the pointer to the left top corner of
cell D1, and click. Reenter the ChartWizard, which will show the highlighted
area as = $A$3:$B$83. Click on Next. In step 2, select the XY(Scatter) plot,
then click on Next. In step 3, select 2, then Next. In step 4 use Data Series in
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Columns, Use First 1 Column(s) for X Data, Use First 0 Row(s) for Legend
Text, then Next >. In step 5, Add a Legend Yes, Chart Titles: Sine wave, Axis
Titles Category (X): angle, Value (Y): sine, then press Finish.

Ifyou are adventuresome, make alternative choices and see what they do.
There is no penalty for experimenting; to the contrary, this is how you will
quickly become familiar with the spreadsheet. If you don't like the choices
you have made, select Back to back up in the ChartWizard steps, and change
your choices; if you dislike the final result, just scrap it and start over again.
To abolish the graph, bring the mouse pointer anywhere inside the graph
area, click on it, then use the Delete key to abolish it. To modify it, highlight
the curve and make your changes in the formula bar. You are in charge here,
the spreadsheet is your willing servant.

Again, the graph you just made may need some adjusting. Firstlet us do its
positioning. Bring the mouse pointer to the graph (anywhere inside the
figure or its edge will do) and click. The graph will now be identified by eight
handles, one on each corner, and one in the middle of each side. These
handles are there for you to grab if you want to move or resize the graph.

In order to move the graph as a whole rather than to resize it, click with the
pointer anywhere inside the figure (but not on any handle), drag it to
another place, then drop it there by releasing the mouse button. In order to
move it again, click again on the graph, grab it, and this time move it right
smack on top of the data in block A3:B83. As you will see, it does not matter:
it really floats on top of the data, and you can pick up the chart again, and
place it somewhere else on the spreadsheet, thereby freeing the A and B
columns. These columns will emerge unscathed, since you did not erase
them, but only placed an image over them. It is like the sun, which is not
obliterated by a cloud moving in front of it, but is merely blocked from our
view.

Now resize the graph. Activate the graph again, and go to the middle
bottom handle. When you are on target, the pointer will change into a verti-
cal double arrow. Now you can drag the handle, up or down. Likewise you
can move the other borders. You can also grab a corner, which allows you to
change the graph size simultaneously in two directions. If you like to nest
the graph neatly inside the spreadsheet, you may want the borders to line up
with cell boundaries. You can achieve this by depressing the Alt key while
dragging the borders, in which case the graph boundaries will jump from
line to line. Use this to make the graph fit the area D1:F9.

Place the label ‘second sine’ in cell C1. Go to cell C3, and deposit the
formula =0.7* sin(A3*pi()/16). (Note that you must use * to specify multipli-
cation: =0.7sin(A3*pi()/16) will not be accepted.) Copy this instruction all
the way down to cell C83 by double-clicking on its handle. Now plot the
second sine wave versus X, again embedding the graph in the spreadsheet.
The more figures, the more fun!
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Gotocell A3, and highlight the range A3:A83 (e.g., with Shift + End, Shift + 1.
Then release the shift key and, instead, depress the Ctrl key, and keep it
down. With the mouse, move the pointer sideways to cell C83, release the
Ctrl key, and use Shift + End, Shift + T, ie., depress the Shift key, and press
End T. You will now have marked two non-adjacent columns.

Click on Insert, Chart, On this sheet, place the new graph next (or below)
the earlier one, and answer the ChartWizard; you already preselected the
Range in step 1 as $A$1:$A$83,5C$1: $C$83. (When you prefer to type in the
range rather than to point to it, this shows you the format to use, except that
you can leave out the dollar signs: just type A1:A83,C1:C83.) Answer the
other ChartWizard queries, look at the result, and if necessary reposition the
graphs to resemble Fig. 1-5.

(In Excel 97 and later versions there is an even easier way: activate the plot,
click on Chart = Add Data, then specify the Range in the Add Data dialog
box.)

Do you want to change the markers indicating the individual points? Click
on a graph. Then position the mouse to point to a marker, and click again
(sometimes it requires a few clicks) until a few markers are highlighted. At
that point double-click, and a Format Data Point or Format Data Series
dialog box will appear. (The latter is actually a whole series of boxes, each
selectable by clicking on its tab. The top dialog box is labeled Patterns, and is
the one to play with here.)

Either dialog box allows you to select or modify the type of plot: whether
you want to show the data as a line, as points only, or as their combination;
what color and line thickness you want for the line, and/or what type and
color of markers you wish to use. Either box shows you what the line and
marker will look like; click on OK when you are done making your selection,
or on Cancel when you do not want any changes.

At this point you get the idea: once you have learned to ride this horse, it
will do most anything you want from it to make life easy for you. You want to
change the axes: click on them, then double-click, and a magic box will
appear to ask for your wishes. You want to change the legend, the font used,
whatever — the possibilities are endless. Most changes beyond the simplest
use dialog boxes: they allow you to order your graphs ala carte.

Back to serious business: these graphs represent your spreadsheet data.
Even if you now modify those data, the graphs will reflect the numbers in your
spreadsheet. For example, go to cell B36, there deposit the instruction =
0.2*cos(A36*pi()/8) + $G$1, then copy this down through cell B67. The top
graph will immediately show the modification, because it plots column B.
Now go to cell C3 and modify it (again using the edit keystroke, F2) by adding
to the already existing instruction = SIN(A3*PI()/16) a second term, + 0.3*B3,
and deposit it (with the Enter key). Copy the instruction down to C83, by
double-clicking on its handle. Look at the second graph, which represents
column C: it now shows the sum of a sine and cosine wave, including the
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Fig.1-5: The top of a spreadsheet with two embedded graphs.

modified section in column B, and the vertical scale has changed to accom-
modate the data. Then depositanumberincell G1, and see whathappens.

In the Chart Wizard we have encountered how to give the graph a title and
how to label its axes; now we will see how to introduce annotating text any-
where in the actual graph. To activate the inner frame of the graph, locate the
mouse pointer inside this inner frame but away from any specific feature
such as a data point or curve, and click so that this inner frame becomes
accentuated. Now click on the formula window (the larger window in the
formula bar), type the text you want to introduce, and hit the enter key,
whereupon the text will appear somewhere inside the figure, in a small box.
Aslong as itis selected (as indicated by the surrounding box; which you can
select again by clicking on it) and the mouse pointer shows as an arrow-
tipped plus sign, you can move that box with its contents to any position in
the graph. Moreover, you can change the properties of the lettering by
moving the mouse pointer over it until it shows as a capital I, highlighting
part or all of the text you want to be changed with the mouse key, and then,
change its letter type, point size, color, etc. Try it out, and play with it. Again,
in Excel 97 and subsequent versions, you can activate the graph, then use
Chart = Chart Options to achieve the same result.
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Once you have a graph, it is easy to add another curve to it, provided it has
the same x-axis. Merely highlight the column containing the new y-values,
press Ctr + ¢, activate the chart so that its inner (coordinate) frame is high-
lighted (this may require clicking twice inside that frame), then press
Ctrl +v. This will convert a column of numbers into a new curve or set of
points. The reverse process, removing a particular curve from a graph, is
even easier: highlight the curve, erase its description in the formula bar,
then press Enter.

How do we name the spreadsheet? Bring the mouse pointer to the tab at
the bottom of the central area of the spreadsheet, which will show a generic
name, such as Sheetl. Right-click on the mouse, which is the general
method of gaining access to the properties of the item to which you point.
Select Rename; in the resulting Rename Sheet dialog box, click on Sheetl in
the Name window, and replace it with your own choice of spreadsheet name.

Copying a graph embedded in a spreadsheet to another location on the
same sheet merely requires that we activate the graph, copy it with Ctrl +c,
then click on a new location and paste it there with Ctrl +v. Make sure that
the spreadsheet shows a zoom value of 100%, otherwise the copy will differ
in size from the original.

Copying a graph to another sheet is another matter. It is just as easy to do,
but the graph you get will still refer to the original sheet, because the coordi-
nates of the graphed columns or rows contain the name of the sheet. That
may be just what you want, in which case everything is fine. However, when
you copy a graph, or an entire sheet, including its graphs, to another sheet,
and you want that graph to refer to the data on the new sheet, you must acti-
vate each curve and then, in the formula box, change the associated sheet
name (just before the exclamation mark). The same, incidentally, applies to
names. Regardless of how many worksheets you use, in one workbook a
given name can only be assigned once.

When you copy a graph to another workbook, and want it to refer to its new
environment, you must also change the workbook name.

How do we save the spreadsheet? When you are ready to stop, click on File,
then on Save As. In the resulting Save As dialog box, a name of your choice
should go in the window File name. The location where the spreadsheet will
be saved is specified in the Save in window. If you don’t want to save in the
My Documents file, click on the arrow to the right of My Documents. A list of
options appears; select one of them by double clicking.

To end this section on a playful note: let's move some of the embedded
graphs around. Take one graph, and click on it while keeping the Ctrl button
down. Now move the entire graph: you are moving a copy of it, the original
remains in place! You can move it anywhere, deposit it by releasing the
mouse button, pick it up again (or leave it, and only pick up a copy of it by
using Ctrl) and move it all over the place. Drop it partway over another
graph, or over data; it does not bother either of them, just temporarily blocks
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you from seeing them. Move it away again, or make a pleasing pattern with
them. To erase a graph, highlight it (so that it shows its eight handles), then
use the Delete button.

Mathematical operations

In this section we will summarize some of the most useful mathematical
operations available in Excel. This section is merely for your information,
just to give you an idea of what is available; it is certainly not meant to be
memorized. There are many more functions, notlisted here, that are mainly
used in connection with statistics, with logic (Boolean algebra), with busi-
ness and database applications, with the manipulation of text strings, and
with conversions between binary, octal, decimal and hexadecimal notation.
The mathematical operations and functions are organized here in order of
increasing complexity, and are listed in Tables 1.6-1 through 1.6-6. We often
use only a few of them; the listis given here only to illustrate the wide range of
available spreadsheet operations. More detailed information on any of these
worksheet functions can be found under Help, as described in section 1.11.

Table 1.6-1: The basic calculator operations.

Operator Description Notes Precedence!
A Exponentiation **will not work; E sometimes works® 1
* Multiplication X, . or - will not work® 2
/ Division* 2
+ Addition 3
- Subtraction or negation 3
& Concatenation® 4
= Equal to 5
< Less than 5
> Greater than 5
Notes:

! Precedence indicates the order in which operations will be performed in the absence of brackets.
For example, 4*3/2 = 4*(3/2) = 4*9 = 45; if you want to compute the square of 4*3 you must use
brackets, asin (4*3)A2 = 12A2 = 144. Likewise, 8/2/3 = 64/3 = 21.333; 8/ (2/3) = 4. Note that Excel
has one annoying quirk: negation is performed before exponentiation: —2/2 = 4. When in doubt, use
brackets: (—2)A\2 =4, —(2/2) =— 4.

2E-notation works as long as the exponentis an integer, i.e., 3.4E-5 (for 3.4 X 107°) is OKbut 3E-5.2 is
not.

3The multiplication sign is always needed; instructions such as $A$1(A3 + 4) will be flagged as
incorrect, and should instead read $A$1*(A3 + 4).

4Do not use repeated dividers, as in N3/D2/D2, which is ambiguous, but instead use N3/(D2*D2) or
N3/(D2A2).

3 Concatenation is the joining together of two or more strings of text or digits. For example, when cell
B3 contains the string R2D2 and cell C6 contains 4U then = B3&C6 will yield R2D24U.
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Table 1.6-2: Some of the most common mathematical operations.

Function Description and example

ABS(x) Absolute value: ABS(— 3) =3; SQRT(ABS(—25)) =5

AVERAGE(range) Average of the range specified, as in AVERAGE(A3:A7)

COUNT(range) Counts number of entries in given range, as in
COUNT(A3:A7)

COUNTA(range) Counts number of non-blank values in range, as in
COUNTA(A3:A7)

COUNTBLANK(range) Counts number of blank cells in specified range

COUNTIF(range, criterion)
DEGREES (anglein radians)
EVEN(x)

EXP(x)

FACT(n)

FACTDOUBLE(n)

INT(x)
LN(x)

LOG(x,n)

LOG10(x)
MAX(range)

MDETERM (array)

MEDIAN (range)

MIN(range)
MOD(x,y)
ODD(x)

Counts only those values in the range that satisfy a given
criterion, asin COUNTIF(A3:A7,”>0"), which counts only
positive entries

Converts radians to degrees: DEGREES(PI()) =180

Rounds anumber to the nearest even integer away from
zero: EVEN(1.9) = 2; EVEN(2.1) =4; EVEN(—-0.1) =—2
Exponentiates, i.e., raises e =2.7182818284904 to the power
x: EXP(2) =7.389056; EXP(LN(3)) =3

Factorial of a non-negative integer, n! = n(n—1)(n —2)--3 X
2X1:FACT(4) =4 X3 X2 X1=24;FACT(5) =5 X4 X3 X2X
1 =120, FACT(0) = 1. Non-integer positive arguments are
first truncated

Double factorial of a non-negative number: n!! = n(n —2)
(n—4)-4 x2forneven, n!'=n(n—2)(n—4)--3 X1for nodd:
FACTDOUBLE(4) =4 X2 =8; FACTDOUBLE(5) =5 X3 X 1=
15

Rounds anumber down to the nearestinteger: INT(1.9) = 1;
INT(-1.9)=-2

Natural logarithm of positive number: LN(2) = 0.693147;
LN(EXP(3)) =3

Logarithm of base n, where nis optional, with a default
value of 10: LOG(10) = 1; LOG(10,2) =3.321928; LOG(8) =
0.90309; LOG(8,2) =3

Ten-based logarithm, LOG10(x) = LOG(x): LOG10(100) = 2;
LOG10(8) =0.90309

Finds the maximum value in a specified range or in up to 30
ranges, as in MAX(H3:H402) or MAX(H3:H402, P6:Q200)
Yields the determinant of a square array of numbers;
MDETERM(A1:B2) = A1*B2 — A2*B1; MDETERM(D3:F5) =
D3*(E4*F5 — F4*E5) + E3*(F4*D5 — D4*F5) + F3*(D4*E5 —
E4*D5)

The median of a set of numbers: the middle value for an odd
number of values, the average of the two middle numbers
for an even number of values

Finds the smallest number in a range or number of ranges
The remainder of the division x/y

Rounds away from zero to the nearest odd number:
ODD(1.5) =3
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Table 1.6-2: (cont.)

Function Description and example

PI() The number 7 =3.14159265358979; note that PI() contains
no argument, but still requires (empty) brackets:
SIN(PI()/2) =1

POWER(x,y) =xNy, i.e., raises xto the power y: POWER(4.3,2.1) =
21.39359. Equivalent instruction: 4.3/A2.1

PRODUCT (range) Product of numbers in specified range, as in
PRODUCT(A2:C2) =A2*B2*C2

RADIANS(angle) Converts from degrees to radians: RADIANS(270) =
4.712389 (=3m/2)

RAND() Generates arandom number between 0 and 1. Note that the
brackets remain empty, as with PI(). The random number
will change every time a spreadsheet calculation is made. If
you do not want that to happen, highlight the cell where you
want the random number, then go to the formula bar,
type = RAND(), and deposit that instruction with the
function key F9 (for the MacIntosh use COMMAND + =)

ROUND(x,n) Rounds xto ndecimal places: ROUND(21.49,1) =21.4;
ROUND(-21.49,—1)=-20

ROUNDDOWN (x,1) As ROUND but always rounds away from zero

ROUNDUP(x,n) As ROUND but always rounds towards zero

SIGN(x) SIGN(x) =1forx>1,0forx=0,and -1 for x<0

SQRT(x) Square root of non-negative number: SQRT(9) = 3;
SQRT(—9) =#NUM!; SQRT(ABS(—-9)) =3

SUM(range) Sums values in specified range or ranges, as in

SUMPRODUCT (arrayl,array?, ...)

SUMSQ(range)

SUMX2MY2(xarray,yarray)
SUMX2PY2(xarray,yarray)
SUMXMY2 (xarray,yarray)
TRUNC(x)

SUM(C6:C65) or SUM(C6:C65, D80:F93)

Computes the sums of the products of two or more arrays of
equal dimensions; SUMPRODUCT(A1:A3,C1:C3) =A1*C1 +
A2*C2 +A3*C3

Sum of squares of specified range or ranges, as in
SUMSQ(G7:G16); SUMSQ(3,4) =25

Sum of x? minus y?: SUMX2MY2 =3 (x2? — 3%

Sum of x? plus y* SUMX2PY2 =3, (x? + y?)

Sum of (x minus )% SUMXMY2 = 3(x — y)?

Truncates anumber to an integer: TRUNC(PI()) =3,
TRUNC(2.9) =2, TRUNC(—2.9) =—2
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Table 1.6-3: Trigonometric and related operations.

Function = Description and example

ACOS(x) The inverse cosine, arccos, in radians: ACOS(0.5) = 1.047198

ACOSH(x) Theinverse hyperbolic cosine, arcosh, in radians: ACOSH(1.5) =0.962424
ASIN (x) The inverse sine, arcsin, in radians: ASIN(0.5) =0.523599

ASINH (x) The inverse hyperbolic sine, arsinh, in radians: ASINH(0.5) = 0.481212
ATAN (x) The inverse tangent, arctan, in radians: ATAN(0.5) = 0.463648

ATAN2(x,y) =ATAN(y/x)

ATANH(x) Theinverse hyperbolic tangent, artanh, in radians: ATANH(0.5) = 0.549306
COS(x) The cosine, in radians: COS(0.5) =0.877583

COSH(x) The hyperbolic cosine, cosh, in radians: COSH(0.5) =1.127626

SIN (x) The sine, in radians: SIN(0.5) =0.479426

SINH (x) The hyperbolic sine, in radians: SINH(0.5) = 0.521095

TAN(x) The tangent, in radians: TAN(0.5) = 0.546302

TANH (x) The hyperbolic tangent, in radians: TANH(0.5) =0.462117

The functions listed in Tables 1.6-4 and 1.6-5 require that the Analysis
Toolpak has been loaded.

Table 1.6-4: Some engineering functions.

Function Description and example

BESSELI(x,n) The modified Bessel function I,,(x) =i J,,(ix): BESSELI(1.5,1) =
I;(1.5) =0.981666

BESSELJ (x,n) The Bessel function J,,(x): BESSELJ(1.9, 2) = J»(1.9) =0.329926

BESSELK (x, n) The modified Bessel function K,,(x): BESSELK(1.5, 1) = K;(1.5) =
0.277388

BESSELY(x, 1) The Bessel function Y,,(x): BESSELY(1.5, 1) = Y;(1.5) =0.145918

CONVERT(n,fromUnit,toUnit) Converts anumber from one measurement system to another:

CONVERT(1.0, 'Ibm’, 'kg') =0.453592;
CONVERT(64, 'F','C') =20

DELTA(n,m) Kronecker delta, tests whether two values are equal: DELTA(4,5)
=0; DELTA(5,5) =1

ERF(n) The error function: ERF(1) =0.8427

ERFC(n) The complementary error function, erfc(x) = 1 — erf(x): ERF(1)
=0.1573

GESTEP(n,step) Tests whether anumber n exceeds (is Greater than or Equal to) a
threshold value step: GESTEP(4,5) = 0; GESTEP(5,5) =1,
GESTEP(6,5) =1.

RANDBETWEEN (n,m) Generates arandom integer between the integer values nand

m; it will change every time a spreadsheet calculation is
performed.
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Table 1.6-5: Functions involving complex numbers.

Function

Description and example

COMPLEX(a,b)
IMABS('a+ bi")
IMAGINARY('a + bi")
IMARGUMENT('a + bi'")
IMCONJUGATE('a + bi")
IMCOS(‘'a+ bi")
IMDIV('a+ bi','c+di")
IMEXP('a+ bi')
IMLN('a+ bi")
IMLOGI10('a+ bi")
IMLOG2('a+ bi")
IMPOWER('a+ bi', n)
IMPRODUCT('a+ bi','c+di")
IMREAL('a+ bi'")
IMSIN('a+ bi")

IMSQRT('a+ bi")
IMSUB('a+ bi','c+di')

IMSUM('a+bi','c+di")

Converts areal and an imaginary number to a complex one:
COMPLEX(3,4) =3 +4i

Absolute value (modulus) of a complex number, (a2 + b2)%:
IMABS('3 +4i')=5

The imaginary component of a complex number:
IMAGINARY('3 +4i') =4

The argument of a complex number, in radians, = arctan(b/ a):
IMARGUMENT('3 +4i'") =0.927295

The complex conjugate of a complex number: IMCONJUGATE
('3+4i")=3—4i

The cosine of a complex number: IMCOS('3 +4i') =
—27.034946 —3.851153i

The quotient of two complex numbers: IMDIV('1 + 21", '3 +41i")
=0.44 +0.081

The exponential of a complex number: IMEXP('3 +4i') =
—13.128783 —15.200784i

The natural logarithm of a complex number: IMLN('3 +4i") =
1.609438 +0.927295i

The base-10logarithm of a complex number: IMLOG10('3 +
4i"')=0.698970 +0.402719i

The base-2 logarithm of a complex number: IMLOG2('3 +4i")
=2.321928 +1.3378041

The complex number raised to an integer power: IMPOWER('3
+4i',3)=—17 +44i

The product of two complexnumbers('1 +2i','3 +4i") =—5 +
107

The real component of a complex number: IMREAL('3 +4i') =
3

The sine of acomplex number: IMSIN('3 +4i') =3.853738 —
27.06813i

The square root of a complex number: IMSQRT('3 +4i') =2 +1i
The difference between two (or more) complex numbers:
IMSUB ('1 +2i','3 +4i")=—2-2]

The sum of two (or more) complex numbers: IMSUM('1 + 21",
'3+4i')=4+61

Note:

Operations on complex numbers all start with IM, and use text strings to squeeze the two compo-
nents of a complex number into one cell. In order to use the results of complex number operations,
you must therefore first extractits real and imaginary components, using IMREAL() and IMAGI-
NARY(). Instead of iyou can use jto denote the square root of minus one (which you must then
specifyas such), but you cannotuse the corresponding capitals, Tor J.
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trix operations.!

Function

Description and example

INDEX(array,row#,column# Looks up an individual matrix element in given array:

INDEX({1,2,3;4,5,6},2,3) =6

MINVERSE(army)2 The matrix inverse of a square array: MINVERSE({3,4;5,6}) =
— 2 — 2
{—3,2;2.5,—1.5} = 3 , MINVERSE(B3:C4) = 3
25 —15 25 —15

MMULT (array)?

when B3:C4 contains the dat.a i 6

The matrix product of two arrays (where the number of columns
in the first array must be equal to the number of rows in the

10
second array): MMULT ({3,4;5,6},{—3,2;2.5,—1.5}) =

01 and,

10
likewise, MMULT (B3:C4,E6:F7) = ‘0 ] ‘When B3:C4 and E6:F7

35 -3 2
contain the data and respectively
46 25 —15

Notes:

! A fourth matrix operation, TRANSPOSE, is performed as part of the Edit = Paste Special operation.
ZMatrix inversion and matrix multiplication work only on data arrays, i.e., rectangular blocks of
cells, butnot on single cells. To enter these instructions, enter the array with CRTL + SHIFT + ENTER
(on the MacIntosh: COMMAND + RETURN).

In addition, several special data analysis tools are available through Tools
= Data Analysis. While most of these are for statistical and business use, we
will use two of them, for Random Number Generation, and for Regression.
Data Analysis also contains a Fourier Analysis tool, which we will not use
because a simpler macro is provided, see chapters 7 and 9. Likewise, the
Regression tool can be replaced by the Weighted Least Squares macro dis-
cussed in chapters 3 and 9, which is somewhat simpler to use but does not
provide as much statistical information.

Error messages

Excel is very forgiving when you ask it to do something it does not know how
to do. For instance, when you use SQRT () to take the square root of a series of
numbers, and one or more of these numbers is negative, Excel does not
come to a screeching halt, but simply prints the somewhat cryptic error
message #NUM! to alert you of the problem, then goes on taking the other
square roots. There are only seven different error messages, as listed in Table
1.7-1. While it is not absolutely necessary to take corrective action when an
error message appears, it is usually wise to heed the warning and to correct
the underlying problem.
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Table 1.7-1: Excel’s error messages.

Error message Problem

#DIV/0!
#NAME?
#N/A
#NULL!
#NUM!

#REF!
#VALUE!

Division by zero or by an empty cell

Excel does not recognize the name; perhaps it has been deleted

Some needed data are not available

The formula refers to a non-existing intersection of two ranges

The number is of incorrect type, e.g., it is negative when a positive number is
expected

The reference is not valid; it may have been deleted

The argument or operand is of the wrong type

Naming and annotating cells

You can assign descriptive names to cells, such as Kal and Kaz2 to refer to the
two acid dissociation constants of a diprotic acid. It is usually much easier to
write and read formulas that contain descriptive names rather than cell
addresses such as $B$2 and $C$2. Names can be used only to refer to indi-
vidual absolute addresses. Names must start with a letter, may contain only
letters, numbers, periods and underscores, and cannot be R, C, or possible
cell addresses. Consequently, C1 and Cal are not valid names, but Ca, caa3
and (in all current versions of Excel) Kal are, since the rightmost column
label is IV; in future versions of Excel you might have to use Kaaland Kaa2
instead.

Assigning names to constants is easy: highlight the cell you want to be
named, then click on the address box in the formula bar, type the name, and
press enter. Alternatively, you can use Insert = Name = Define, then use the
resulting Define Name dialog box. After you have named a cell, you can refer
to it either by its regular address or by its given name. To delete a name, use
the Define Name dialog box (via Insert = Name = Define). When you erase a
name that is used in a formula, that formula will become invalid, and will
show the error message #NAME?

In recent versions of Excel it is possible to attach a descriptive or explana-
tory note to a cell, reminding you of its source, explaining its function,
giving a literature reference, expressing doubts about the correctness of the
answer, or whatever. In order to attach such a note, use Insert = Note, in
the resulting Cell Note dialog box enter the text of the note, then deposit it
by clicking on OK. The cell will have a small red square in its right top
corner to indicate that a note is attached. The text of the note will show
when you use the mouse to point to the cell. If you want to see what notes
are attached, again use Insert = Note which lists them all in the column
Notes in Sheet.



28

How to use Excel

Viewing the spreadsheet

The monitor screen may display only a part of a spreadsheet, perhaps the
first 10 columns and 20 or so rows. In order to get an overview of a much
larger spreadsheet you may want to display a larger area, but then the cell
contents may then become unreadable. Or you may want to zoom in on a
smaller area so that you can examine a graph in detail. In all those cases you
can use the Zoom Control, which allows you to enlarge all distances on the
screen up to four times (to 400%), thereby showing only one-sixteenth
(%4 X %) of the usual area, or to reduce the display to provide a larger (but less
detailed) overview, reducing all linear distances to a minimum of 10%, in
which case the screen displays a (10 X 10=) 100 times larger spreadsheet
area. The Zoom Control is found as a window on the right-hand side of the
Standard Toolbar. Click on the arrow to the right of that window, and click on
any of the fixed percentages shown. Or enter any integer between 10 and
400, then deposit it with the Enter key. If the Standard Toolbar is not dis-
played, use View = Zoom instead.

In order to move the zoomed area use the scroll bars (to the right and at
the bottom of the spreadsheet, for vertical and horizontal movement
respectively) or the associated arrows. The arrows let you move one cell
height (or cell width) at the time; clicking on the gray areas where the sliding
bar moves lets you move in bigger steps, of about one screen height or screen
width.

When you anticipate that a spreadsheet will be too large to keep on screen,
it is best to organize it in such a way that all important information is in one
area, say at its top. Still, it may sometimes be desirable to view different part
of the spreadsheet simultaneously. This can be done in several ways. You can
copy the worksheet with Edit & Move or Copy Sheet, then display both
copies as multiple views with Windows = New Window. Each window can
then be manipulated independently. Or you can divide the screen into two
(and even four) separate parts that can be moved individually with the scroll
bars, so that you can keep different parts of the spreadsheet on the screen,
using the command Window = Split. The location of the pointer determines
how many pieces will show: if the pointer is in the top row, it will cause a ver-
tical split at that position; a horizontal split is made with the pointer in the
first column; you will get a four-way split when the pointer is somewhere
else. You can grab the dividing bars and drag them to change their positions.
To undo the split, use Window = Remove Split. Alternatively, you can
double-click on the tiny rectangular space just above the top arrow of the
vertical scroll bar to generate a split of the screen into a top and bottom part.
Again, the position of the split will be determined by the position of the
active cell, except when the active cell sits in the top row, in which case the
split is half-way down. Double-clicking on a dividing bar will undo the split.
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Similarly, double-clicking on the small rectangular space to the right of the
arrow in the right-hand corner of the horizontal scroll bar will generate a
split screen with a right- and left-hand part.

When you need to work with long columns, it is often useful to keep the
column headings visible. To do so, place the pointer in the cell below and to
theright of the area you want to keep; make sure that this cell is empty. Then
use Window = Freeze. When you now scroll through the column, the head-
ings stay in place. To undo, use Window = Unfreeze.

Printing

An important aspect we have not yet described so far is how to print, assum-
ing of course that you have a printer attached to the computer, and that it is
turned on. The simplest way is to click on the printer icon on the toolbar,
usually just under the View menu command. In our case, the spreadsheet is
somewhat too complicated for that, so we will use the mouse to select, from
the menu, the File Print Preview. This will show us the first page; by clicking
on the Next button we can see the next page; to return to page 1 click on
Previous. Clearly, the spreadsheet could use some cleaning up before we
print it. Close the preview (this time the Close button is on the icon bar) to
return to File, then click outside the menu to go back to the spreadsheet.

If the spreadsheet is just a little too large to fit on one page, you may want
to scale it down to fit the paper. If the spreadsheet is too long, activate the
row numbers (in the gray cells to the left of column A) which will highlight
the corresponding rows. Then right-click, select Row Height, and reduce the
row height appropriately. (You may have to reduce the font size to keep the
cell contents from being decapitated.) Likewise you can change the column
widths by highlighting the column letters, right-clicking to get Column
Width, and changing that to suit your needs. Incidentally, this is also an easy
way to scale figures displayed on the sheet, especially when you have several
of them and want to fill the page with them as efficiently as possible.

Say that your spreadsheet only contains a few long columns, so that
changing the column height would not be practical. In that case you may
want to reorganize the spreadsheet layout. Note where the page break
occurs, then go to the first cell past that page break in column A. (For the
sake of convenience we will call that cell A52, even though, on your spread-
sheet, the page break may not occur between rows 51 and 52.) Now go to cell
E20, deposit the instruction =A52, and copy this instruction to block
E20:G51. Now that the entire information is on page one, select Print from
the File menu. A Print dialog box will pop up, in which, under the heading
Page Range (near the bottom), you select Pages (rather than All) and then
specify from 1 to 1. Finally, click on OK to start the printing process.

Please don't forget that you also have a graph stored as Chartl; move to
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that chart (by clicking on its tab), and make the graph more presentable now
that you know how to do so, e.g., by using the French curve rather than
straight-line segments to connect the few widely spaced points, with Format
Data Series = Patterns = Smoothed Line. Then print the graph.

Help!

Excel is a rather complex program, that can be used at various levels of
sophistication. In this book we will mostly stay with the basic operations
common to most spreadsheets, although we will occasionally exploit some of
Excel’s specific capabilities, as when we use functions from the add-in menu
or special macros. Because printing manuals is expensive, and many users
do not consult them anyway, Excel has an extensive, built-in help library that
can be called while you are working on a spreadsheet. Call it by clicking Help,
then find your way to the topic you want. For example, let us assume that you
want to use the Analysis ToolPak, but cannot find it under Tools. Apparently it
was notinstalled. How would you find out how to install it?

In Excel 97 and later versions you would click on Help, then select
Contents and Index. This will give you three tabbed options; first select
Index, and type ‘Analysis ToolPak’ (without the quotes). Anumber of choices
appear, from which you can select ‘general information’. You are now offered
three options: Install and use Analysis ToolPak, Supplemental information
about statistical methods and algorithms, and Ways to analyze statistics.
Click on the first choice, and find out how to install the Analysis ToolPak. The
same information would be available from Ways to analyze statistics.

Say that you don’'t remember the name of the Analysis ToolPak, but instead
look under ‘data analysis’. You will find a choice labeled Data analysis tools in
the Analysis ToolPak, and from there the path to the information is the same.
Or assume that you have selected the Contents instead of the Index. Browse
the options (and use the vertical scroll bar to see more of them than can be
displayed in the window) till you come across something that might fit. In
this case, you will find the item ‘Analyzing Statistical Data’, which will again
lead you to ‘Install and use the Analysis ToolPak’. In other words, with a little
persistence you can find the required information almost no matter where
you start: there are many roads thatlead to Rome.

Similarly, in Excel 5 and 95, Help gets you to Microsoft Excel Help Topics
and to the Answer Wizard. Click on either one, and you will see four tabs:
Contents, Index, Find, and Answer Wizard. When you select the Answer
Wizard, type ‘data analysis’ in the top window, then select an appropriate
item from the list that appears in window 2. In this example, select ‘Tell Me
About Analyzing Statistics’. Or you type ‘analysis toolpak’, and find ‘How Do 1
Enable the Analysis ToolPak’. Even ‘How Do I Use the Analysis ToolPak’” will
getyou to the installation instructions.
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You could also have used Index, Find, or even Contents. Typing ‘data
analysis’ in the Index would get you there via data analysis tools = Analysis
ToolPak = Analyzing Statistics, which gives you a hypertext-like button to
Enable the Analysis ToolPak. With Find your trail might also lead to
Analyzing Statistics. And in Contents, a direct path to the required informa-
tion might be Retrieving and Analyzing Data = Statistical Analysis of Data =
Enable the Analysis ToolPak.

This is not to suggest that there are not an equal number of plausible
options that won't get you there: when you navigate without a road map,
some streets will turn out to be dead ends. But you get the idea: try a reason-
able keyword, and if that does not work try another, until you succeed. You
will usually find an answer faster than it would take to use the index in a
book.

For mathematical functions use the button labeled f, in the standard
toolbar; in Excel 95 it is called the Function Wizard; in Excel 97 the Paste
Function. Both will give you two side-by-side columns, one for Function
Category, the other for Function Name. Pick a category, then in that category
the name of the function you want to use. (Since there are so many functions
listed under, say, Math & Trig, you most likely will need to use the vertical
scroll bar to find your function.)

Once you have selected your function, you will not only find it described,
but you will also get help in placing the arguments. For example, when you
look under Math & Trig = SUMX2MY2, a function we will often use when
computing least-squares fits, you will get two windows in which you can
place the addresses of the two columns or rows you want to use for X and Y.

The case of the changing options

There is one aspect of Excel that initially may confuse you; it is the problem
of changing options, i.e., of menu items that appear or disappear depending
on prior action on the spreadsheet. While this can greatly enlarge the useful-
ness of the spreadsheet, it can be quite unsettling to the novice, hence this
alert. Below we will illustrate it with Trendline, a very useful feature of Excel
(to be described in more detail in chapter 2) that allows you to draw a
number of least-squares lines or curves through graphed data.

The shorthand instruction for using Trendline in Excel 95 might read
Insert = Trendline, but if you look in the pull-down menu under Insert you
may not find Trendline. The problem is that the Trendline option appears
only after you have activated the graph (by double-clicking on an embedded
chart, or by clicking on the tab of a separate chart). Even then, it shows but
cannot be used; for the latter, you must first select the particular data set in
the graph to which you want it to apply. Only then can you select Trendline
(or, for that matter, Error Bars).
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A similar situation applies to Excel 97. Here, Trendline is part of the Chart
menu, and the shorthand instruction mightread Chart = Trendline. But you
will usually not find Chart on the menu bar. It only appears there, instead of
Data, after you have activated the chart, and again becomes accessible only
after you have selected a particular data set.

In any case, consulting Help and asking for Trendline will give you a box
with precise road instructions. As long as you know the proper name of the
procedure, Help will get you there.

Importing macros and data

Spreadsheets are created to facilitate computation. Commonly used mathe-
matical operations (such as SIN, LOG, SQRT, and MINVERSE) are built-in as
functions, and some more complicated procedures (e.g., Solver, Random
Number Generation, Regression) are provided as macros. However, no
spreadsheet maker can anticipate the needs of all possible users, and Excel
therefore allows the introduction of so-called user-defined functions and
macros. In section 9.2d we will describe some user-defined functions, while
chapter 10 deals extensively with user-defined macros. However, beyond
the simple exercises of section 10.1, it makes no sense to enter long macros
by hand, and they are therefore provided in a web site from which they can
be downloaded and stored onto your own computer disk or diskette. The
web site also contains a sample file that is, likewise, larger than you might
want to enter manually.

Alternatively, you may have data or macros on a diskette, or receive them
as e-mail attachments. In all such cases, the questions are (1) where and how
to install the macros in Excel, and (2) how to enter the data in the spread-
sheet.

The macros find their home in a module that becomes part of the spread-
sheet. We therefore need to make the module first, then import the macros
into that module. The procedures are slightly different for earlier versions
(through Excel 95) and for more recent ones (starting with Excel 97), and are
therefore described separately. For the sake of simplicity we will assume that
the macros and data are stored in either a computer file (i.e., on a ‘hard’ disk)
or a diskette.

1 To make a module in Excel 5 or Excel 95, move the pointer to the tab at the
bottom of your spreadsheet, and right-click on it. A small menu will pop up.
Click on the firstitem, Insert, which will give you several options. Highlight
or double-click on Module, and click OK. You will now see a blank sheet,
with a tab carrying the name Modulel (or, if the spreadsheet already con-
tains modules, Module Nwhere Nis a sequence number Excel assigns auto-
matically).
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2 Ifyour macro is in the form of a text file on diskette, insert it into the diskette
drive. Go to the Open Fileicon (the second from the left on the standard
toolbar, depicting an opening manila folder) or select File = Open. In either
case you will see the Open dialog box. Click on the arrow on the right-hand
side of the window labeled Look in:, select the file location, such as
Systemdisk (C:) or 3} Floppy (A:), or whatever suits the configuration of
your computer).

3 Now highlight the name of the file, or go to the bottom of the dialog box,
click on the arrow in the window for File name, and type that name. Then go
to Files of type:, and select All Files (*.*). Push the Open button.

4 In Excel 97 or later versions, start from the spreadsheet with Alt + F11, then
use Insert = Module, File = Import File. The resulting Import File dialog
boxis equivalent to the Open dialog box in Excel 95, as described above
under points (2) and (3). Select the disk or diskette in Look in:, and proceed
asindicated above. Switch back to the spreadsheet with Alt+ F11.

5 Ineither case, the macros will now be stored in the module, where you may
see that they have interesting colors: the macro labels and comment lines
will show in dark green, the actual instructions in black and dark blue. Once
you see those colors (which are sometimes hard to distinguish, depending
on the monitor used) you can be sure that the spreadsheet has accepted
the text as genuine macro instructions, and that they are available for your
use.

6 Fordata, the approach is similar, except that these go directly into the
spreadsheet rather than in a module. Therefore, in Excel 95, delete step (1)
above, but proceed directly to steps (2) and (3), except that you now import
thefile called Data. Similarly, for Excel 97, there isno need to find the
module, and in fact the procedure is now the same for Excel 97 and Excel 95.
Make sure that the mouse pointer points to the top of an empty column or,
better yet, the left-top corner of an empty spreadsheet, so that the imported
data will not overwrite anything in the spreadsheet.

7 Usually (though not for our exercise data files), importing data into the
spreadsheet will involve the Text Import Wizard. This asks you about the
nature of the data file (e.g., whether and how the data are delimited, i.e.,
how the various data points are separated from each other) and then helps
you along. But that is beyond what we need to learn now; it may become rel-
evant if you want to import a long file with experimental data from some
instrument.

Differences between the various versions of Excel

This book was originally written for Excel 95 and Excel 97, but can also be
used with the subsequent Excel 98 and Excel 2000, and with the earlier Excel
5. Versions 1 through 4 are not recommended because they do not use VBA
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but, instead, use a different, much more restricted macro language. Even so,
only programs in chapters 3, 7, and 10 use such macros; all other chapters
should give no problems even with earlier versions of Excel. Similarly, users
of Macintosh computers can use it, with some minor modifications, pro-
vided they have Excel version 5 (for System 7) or more recent versions.

The mostimportant difference is that Excel version 5 runs in Windows 3.1,
whereas Excel 95 and later versions require at least Windows 95. There are
major differences between Windows 3.1 and Windows 95, but they hardly
affect Excel, which provides its own environment. As far as Excel is con-
cerned, the differences between Windows 95 and Windows 98 are rather
insignificant.

The differences between Excel 5 and subsequent versions are mostly
trivial and cosmetic. The look of several features and dialog boxes is some-
what different in the two versions. There are some minor changes in conven-
ience; for example, in Excel 5, cell notes (mentioned in section 1.9) are not
displayed automatically when you point to the cell. Excel 5 also has some-
what less extensive Help features, and provides less online VBA help.
However, none of these will seriously affect the spreadsheet exercises in this
book.

The differences between Excel 95, Excel 97, and Excel 2000 are even
smaller, except that Excel 97 introduced an improved Chart Wizard, which is
why we split the discussion in section 1.3. Starting with Excel 97, macros are
also stored in a quite different way, to be described in chapter 10. Other
major changes in Excel 97 and, especially, Excel 2000, include built-in facil-
ities to address World Wide Web sites, and the use of the Office Assistant,
both of which are of no consequence to the applications described in this
book. Starting with Excel 97, the spreadsheet has a higher capacity, of 65530
rows, and allows graphs to contain 32000 rather than 4000 points.
Furthermore, printing is made somewhat easier in Excel 97 and later ver-
sions, and creating dialog boxes has been simplified. Thanks to backward
compatibility, you can import Excel 95 spreadsheets into Excel 97, but of
course not the other way around.

For users of Macintosh computers the main differences (which are still
rather minor) stem from differences in mouse and keyboard. The Macintosh
mouse has only one button, so that the equivalent of right-clicking on a
Windows machine is achieved by the combination CTRL + click. Many oper-
ations performed on a Windows machine with the CTRL button instead use
the COMMAND button on the Macintosh keyboard, or sometimes the
OPTION or Apple key. The Microsoft Excel User’s Guide nicely juxtaposes
the corresponding Windows and Macintosh keystrokes where these are
different. But, again, these are only superficial, easily learned differences:
the underlying spreadsheets appear to be identical.
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Some often-used spreadsheet commands

To move around quickly in the spreadsheet (rather than with mouse or
arrow keys):

PageDown  Goes down one ‘page’ (typically a screenful of about 20 lines)
PageUp Goes up one ‘page’

Ctrl + Home Goes to the upper left corner of the sheet, i.e., to cell Al

Ctrl + End Goes to the bottom of the sheet

To move quickly to the end of a continuous column or row of numbers or
instructions:

EndT Goes to the top cell of the column
End —» Goestotheright-mostcell of the row
Endl Goes to the bottom cell of the column
End « Goesto the left-most cell of the row

To enter something (labels, numbers, formulas) in a cell, move the pointer
to that cell (using the arrow keys, or by moving the mouse and then clicking
on the cell), type what you want to enter, then either use the Enter key or
click to deposit the information in that cell.

All cell contents starting with a letter are considered to be labels, all cell
contents starting with a number are treated as data, and all cell contents
starting with an equal sign as formulas. Formulas often have a special
syntax, such as SIN(), where the brackets must enclose an argument, or PI(),
where the brackets should be left empty. Excel does not mind whether you
use lower-case and capital letters, but always displays them in the formula
window as capitals for better readability.

For copying data or formulas down short columns it is often convenient to
grab a handle and pull them down. For longer columns it is usually faster to
copy and paste.

Tocopy: Ctrl+c Placesactiveareain Clipboard, leaves original in

place.
To cut: Ctrl +x  Places active area in Clipboard, but erases the original.
Topaste: Ctrl+v Places contents of Clipboard in active area of the
spreadsheet.

When you want to copy the valuesrather than the formulas of cells or blocks
of cells, use special paste values instead of paste: following Ctrl + ¢ click on
Edit = Paste Special =, then click on Values = OK.

Tosave: Ctrl+s Savesitinthe same place from where it was opened.

To save a file in a different place, use Edit = Save As ... and specify the new
location before using OK or the Enter key, .
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Changing the default settings

In Excel, as in Windows, almost anything can be changed. It is useful to have
default settings, so that you need not specify everything every time you start
up Excel. Moreover, to the novice, it is also helpful to have fewer choices to
confuse you. However, when you become familiar with Excel, you may want
to make changes in the default settings to make the spreadsheet conform to
your specific needs and taste. Here are some of the common defaults, and
how to change them.

By default, Excel displays the standard and formatting toolbars. Excel has
many other toolbars, which you can select with View = Toolbars. You can
even make your own toolbar with View = Toolbars = Customize. An exist-
ing toolbar can be positioned anywhere on the spreadsheet simply by drag-
ging the two vertical bars at its left edge (when it is docked in its standard
place) or by its colored top (when not docked).

Many aspects of the spreadsheet proper can be changed with Format =
Style = Modify, including the way numbers are represented, the font used,
cell borders, colors, and patterns.

Many Excel settings can be personalized in Tools = Options = General.
Here you can specify, e.g., the number of files listed upon clicking on File,
and change the Standard font (e.g., from Arial to more easily readable serif
font such as Times New Roman) to perhaps a different font Size. Here you
can also set the Default file location (from C:\My Documents) and even
define another Alternate startup file location.

Under the View tab (i.e., under Tools = Options = View) you can toggle the
appearance of spreadsheet Gridlines on or off. Under the Edit tab (Tools =
Options = Edit) you can (de)select to Edit directly in the cell, which allows
you to edit in the cell (after double-clicking) rather than in the formula bar.
Here you can also Allow cell drag and drop or disallow it, and Move selection
after enter in case you prefer the cursor to stay put or move sideways rather
than move down one cell after each data, text, or formula entry.

Excel does not make back-up files by default. If you wish to change this,
use Files = Save As = Options and select Always create backup.

When you print with the Print button on the Standard Toolbar, you use the
default printing settings. File = Page Setup provides many alternatives,
including paper size and orientation, as well as margins.

In Excel 97 and later versions, browse in Tools = Customize to see (and
select) your Toolbars and their Commands. You can click on a command and
then use the button to getits Description.

Likewise, in Excel 97 and beyond, the default settings for graphs are acces-
sible after you activate a chart to make the Chart menu available. Now select
Chart = Chart Type, under Chart type pick your choice, such as XY(Scatter),
select a Chart sub-type such as with all data points connected by smoothed
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lines, and Set as default chart. Even better, you can define the format of the
default chart. Say that you make a number of logarithmic concentration dia-
grams, with pH from 0 to 14 as your horizontal axis, and pc from 10 (at the
bottom) to 0 (on top) in the vertical direction. Make such a graph, with axis
labels, then (while the chart is activated, so that the Chart button is accessi-
ble in the menu toolbar) click on Chart = Chart Type, select the Custom
Types tab, click on the User-defined radio button, then on Add. In the next
dialog box, specify its Name, give an (optional) Description, Set as default
chart, and exit with OK. Then, the next time you highlight a block and invoke
Insert = Chart you get the selected format just by pushing the Finish button
on step 1 of the ChartWizard. Or, faster, highlight the area involved, and type
Alt+1i, Alt+ h, Alt +f, or /+1i, /+h, /+ f. The details of the graph may differ
from those of the sample, but even so this can be a time saver.

Summary

In this introductory chapter you have encountered some of the basic manip-
ulations of Excel. The first time around you may feel overwhelmed by it, but
don’t worry: as you practice, you will quickly become familiar with the rules
of spreadsheets, and with their internal logic. A spreadsheet not only allows
you to perform repeated calculations (such as computing values for a sine
wave) and to print them as a graph, but to perform many much more sophis-
ticated operations, such as data analysis and mathematical simulation. The
main attributes of a spreadsheet such as Excel are:

1 Lay-out: the highly intuitive organization of a spreadsheet displays all
initial, intermediary, and final results in tabular form, making it very easy to
see precisely what is being done.

2 User-friendliness: when you perform an ‘illegal’ operation, such as dividing
by zero or taking the logarithm of a negative number, the spreadsheet does
notcome to a punishing halt but, instead, flags the problem area. Then it
goes on with its task, and performs the operation wherever it can do so.

3 Automatic updating: with the exception of macros and some functions, all
computations are adjusted automatically any time that you enter a new
number or instruction in the spreadsheet, thereby keeping it up-to-date.

4 Precision: all calculations are performed in so-called ‘double precision’, that
is, to a precision of about 1 in 10'5, even when only a few digits are shown.
Truncation and round-off errors are therefore seldom a problem in spread-
sheet calculations.

5 Graphing: a picture is often much more informative than a table of numbers.
The spreadsheet makes it very convenient to display data in graphical form.
Graphs are readily made. By placing them directly on the spreadsheet the
user can immediately see the results of the calculations. And you will not
need any other software to make publication-quality graphs.
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6 Competence: modern spreadsheets contain alarge number of functions,
thereby facilitating rather complicated calculations.

7 Dataanalysis: modern spreadsheets contain several convenient data-
analysis aids, such as Excel’s Trendline, a flexible linear least-squares tool,
and Excel’s Solver, a powerful multi-parameter non-linear least-squares
fitting routine. Both of these are described in detail in chapter 3, and are
used throughout the remainder of this book. Excel also contains a large
number of tools for statistical data analysis.

8 Flexibility: repeated tasks can easily be customized, and default settings
adjusted, to suit the user.

9 Expandability: starting with version 5, Excel has the added feature that the
user can write or import entire BASIC programs to perform even more com-
plicated tasks. Chapter 10 will discuss this capability in considerable detail
and with many examples.

In the next chapters we will illustrate some applications of spreadsheets to
common problems of analytical chemistry. Once you have become familiar
with the spreadsheet, you may want to use it for many other tasks, such as
for plotting your experimental data for lab reports as well as for publica-
tions, or in quite different areas, such as to visualize theoretical expressions
in physical chemistry. As with many modern computer tools, ultimately
your imagination is the limit.



PART Il: STATISTICS AND RELATED METHODS

CHAPTER 2

Gaussian statistics

Analyzing a number of observations, each subject to some experimental
error, in an effort to obtain a more reliable answer from a multitude of meas-
urements than can presumably be obtained from a single observation, is
part of statistics. For example, while the age at which you, my dear reader,
will die, is usually not well known in advance, the commercial providers of
life insurance need only know the averagelife expectancy of your cohort (the
group of persons of comparable age, gender, socioeconomic group, etc.) in
order to compute a profitable premium, on the assumption that they will
insure a large enough group so that the effects of early and late deaths will
cancel each other out.

The underlying assumption in statistical analysis is that the experimental
error isnot merely repeated in each measurement, otherwise there would be
no gain in multiple observations. For example, when the ‘pure’ chemical we
use as a standard is contaminated (say, with water of crystallization), so that
its purity is less than 100%, no amount of chemical calibration with that
standard will show the existence of such a bias, even though all conclusions
drawn from the measurements will contain consequent, determinate or
systematic errors. Systematic errors act uni-directionally, so that their
effects do not ‘average out’ no matter how many repeat measurements are
made. Statistics does not deal with systematic errors, but only with their
counterparts, indeterminate or random errors. This important limitation
of what statistics does, and what it does not, is often overlooked, but should
be keptin mind. Unfortunately, the sum-total of all systematic errors is often
larger than that of the random ones, in which case statistical error estimates
can be very misleading if misinterpreted in terms of the presumed reliability
of the answer. The insurance companies know it well, and use exclusion
clauses for, say, preexisting illnesses, for war, or for unspecified ‘acts of God’,
all of which act uni-directionally to increase the covered risk.
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In this chapter we will illustrate some properties of Gaussian statistics.
Such statistics are often (but by no means always) applicable to experiment-
al data. Examples where Gaussian statistics do not apply are the throwing of
dice (or, more generally, when we use a discrete number of trials and each
trial has a discrete outcome), which is described by binomial statistics, and
the disintegration of radioactive nuclei (for a continuous trial with discrete
outcomes) which obeys Poissonian statistics. However, for a sufficiently
large number of independent observations, all observations tend to
approach Gaussian statistics, which is why the Gaussian distribution is
often (including in Excel) but somewhat misleadingly called the normal
one. We will come back to the uses and misuses of Gaussian statistics in sec-
tions 2.8 and 2.9.

In a Gaussian distribution, errors of any size are allowed. The probability
that a measurement deviates from its ‘true’ value is assumed to depend on
the square of that deviation; a positive or negative deviation of the same size
is therefore assumed to be equally likely. Within Gaussian statistics, the
usual procedure to calculate the ‘best’ answer from a multitude of measure-
ments is called the method of least squares; it consists of minimizing the
sum of the squares of these deviations. However, since the true answer is not
known (if it were, we would not need statistics!) we usually substitute the
measured average for the true value, and then minimize the sum of
the squares of the differences between the individual observations and the
average of these observations. In this context, in using the term average, we
may simply mean the sum of all the measurements, divided by the number
of those measurements, as defined in equation (2.2-1), or some more
sophisticated quantity, such as a weighted average, in which some measure-
ments are given more credence than others.

In this workbook we will often use Gaussian ‘noise’ to simulate the meas-
urement imprecisions associated with experimental data, and it will there-
fore be useful to familiarize ourselves with such noise. This is the purpose of
the first spreadsheet exercise of this chapter.

Instructions for exercise 2.1

1 Open an Excel spreadsheet.

2 Point with the mouse pointer to the tab labeled Sheet1, and right-click to get the prop-

ertiesof the label. Click on Rename. In Excel 97, just type a new name, say ‘Gauss’, then
depress the enter key. In earlier versions of Excel, you get a Rename Sheet dialog box.
Replace the generic name Sheetl in the Name box by the newname, then click OK.

3 Now fill column A with data containing Gaussian noise. Click on Tools = Data

Analysis. In the resulting Data Analysis dialog box, double-click on Random Number
Generation. In order to find it, you may have to grab the scrollbar inside the dialog box
with your mouse pointer, and move it downwards.
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Place the mouse pointer over the down arrow inside the Distribution window, click on
it, then select the Normal distribution by clicking on it.

Below it, under the heading ‘Parameters’, click inside the window labeled Mean (a ver-
tical bar should appear in the window to show you that it is ready for your input), and
enter the value 10. Do notuse the Enter key, or depress the OK button; keep away from
them until you are done with the entire dialog box.

6 Move the pointer to the window defining the Standard deviation, and setitat 1.

7 Click on the round radio button for the Output Range, then specify it in the window to

10

11

12

13

14

15

theright of the label as A1:A10000. (If you wish, you may also fill the entire column A,
which contains 16 384 cells. In that case you can specify the range as either A1:A16384
or as $A:$A, which Excel interprets as the entire column A.)

Leave all other windows blank, and click on OK or press the Enter key. The computer
will now take some time to calculate 10 000 (or 16 384) data with an average value of 10
plus Gaussian noise of standard deviation 1. (It will show you that it is busy with the
message Calculating Random Number Generation ... on the status bar, just above the
Start button.)

Now that a data set has been generated, we will analyze it. To that end we will specify
sorting bins that define a range of data values. Place the value 6.2 in cell B3, in B4
place the instruction = B3 + 0.2, then copy this instruction all the way down to B41.
This will generate bins for counting how many data fall in the range <6.2, between
6.2 and 6.4, between 6.4 and 6.6, etc., with the last bin for data between 13.6 and

13.8. Although the average is 10 and the standard deviation is 1, we cast amuch

wider net, anticipating that there may be data well outsidethe range from 10 — 1 =9 to
10+1=11.

Now call the Histogram tool, which will count how many of the data fitin each of the
bins. To simplify matters we will first analyze the first ten data.

Select Tools = Data Analysis, and in the Data Analysis dialog box double-click on
Histogram.

In the Histogram dialog box specify the Input Range as A1:A10 (or of any other set of 10
adjacentdata, such as A469:A478), and the Bin Range as B3:B41.

Click on the radio button for the Output Range, and in its window specify the top
left corner of the histogram output as E2. Leave all other fields blank, and click
on OK.

The results of the analysis of the first 10 data will now appear in columns E and F:
column E repeats the bins, while column F lists how many of the analyzed data have a
value within the interval specified by the various bins. Any values greater than 13.8 will
belisted in cell F42 under ‘More’.

Verify that the total data countisindeed 10, e.g., by depositing in cell F1 the instruction
=SUM(F3:F42).
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16 Sincewe only consider 10 data, and sort them into 40 bins, the majority of these bins
will be empty (and therefore show a 0). Most of the remaining bins will containa 1,
while one or a few may show alarger number.

In order to compare the resulting frequency distribution in column F with
a Gaussian distribution, we recall that the latter is given by

pP= ! exp | — G x)?
N2 P | 202
where Pis the probability density, and P(x) dxis the corresponding probabil-

ity of finding a particular value in the range between x and dx when the
average isx and the standard deviation is o.

(2.1-1)

17 For the sake of comparing the data in column F with the prediction ofeq. (2.1-1), we
now depositin cell C3 the value 6.1, in cell C4 the instruction = C3 + 0.2, and copy this
down to cell C42. The resulting values are precisely 0.1 less than those in column B.
(Alternatively you can use the instruction =B3 — 0.1 in C3, and deposit the value 13.9
in cell C42.) We do this in order to specify the midpoints of the bin ranges, whereas the
Histogram routine uses the upper limits of their ranges.

18 In cells D3:D42 calculate the frequency of finding data in a given range as the product
of the total number of data considered (here: 10), the bin width (0.2), and the probabil-
ity P according to (2.1-1). For instance, the instruction in D3 should read =
(2/SQRT(2*PI()))*EXP(-0.5*(C3 — 10)/2) because 10 X 0.2=2, o =1 andx = 10.

19 In order to make a graph of columns C, D and E first highlight C3:D42 (use the Shift
key), then release the Shift key and depress the Control key, use the mouse to move the
pointer to cell F42, release Ctrl and re-engage Shift, and go up in column E with either
End T, Page Up, or with the T key to E3. The non-adjacent blocks C3:D42 and F3:F42
will now be highlighted, and therefore activated.

20 SelectInsert= Chart, and complete the ChartWizard. You should get a resultlooking
somewhat like Fig. 2.1-1, although the specific details will look different because every
data set is different. Note the discrete nature of the count, with frequencies of0, 1, 2, 3
etc. Not surprisingly, the agreement is quite poor: a highly discrete distribution such as
obtained here cannot be represented very well by a continuous expression such as
(2.1-1).

21 Nowrepeatthe same procedure for a 100-data set, such as A1:A100. Use the same bins
as before; the only changes you need to make are to specify in the Histogram dialog box
the Input Range A1:A100 and, in the comparison with (2.1-1), to change the multiplier
of Pto 100 X 0.2 =20 (instead of 2). Make these calculations in new columns. The result
should look like Fig. 2.1-2.
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Fig.2.1-1: Ten Gaussian data with mean 10 and standard deviation 1, sorted in 0.2-wide
bins.
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Fig.2.1-2:100 Gaussian data with mean 10 and standard deviation 1, sorted in 0.2-wide
bins.

22 The agreement between the data and equation (2.1-1) is still quite poor. However, it
clearly shows that quite a few data fall outside the average plus or minus one standard
deviation: for a sufficiently large sample, approximately one-third of all data will do so
when the fluctuations are Gaussian.

23 Thelarger the data set we examine, the better the agreement with (2.1-1) will be.
Convince yourself of this by using a 1000-data set, then a 10 000-data set. Figures 2.1-3
and 2.1-4 illustrate the type of graphs you might obtain. The fit between your ‘experi-
mental’ data and the theoretical expression becomes quite good when the sample is
sufficiently large!
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100
count (o5

6 8 10 12 value 14

Fig.2.1-3:1000 Gaussian data with mean 10 and standard deviation 1, sorted in 0.2-
wide bins.

6 8 10 12 value 14

Fig.2.1-4:10 000 Gaussian data with mean 10 and standard deviation 1, sorted in 0.2-
wide bins.

The above figures tell the story of statistics. When we consider a suffi-
ciently large data set, as in Fig. 2.1-4, the distribution fits the theory rather
closely. In the much smaller set of Fig. 2.1-1, the individual fluctuations
dominate. As the sample size increases, the individual fluctuations become
less visible, and equation (2.1-1) gradually becomes a better descriptor of its
aggregate behavior. Statistics typically apply to large data sets, but are not
meant to describe the behavior of individual data points, or small sets
thereof. If they are nonetheless pushed to do so, as in Fig. 2.1-1, they usually
fail miserably.
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Replicate measurements
When a measurement y is repeated N times under the same conditions, we

can calculate its average or mean value y as

V= (2.2-1)

2=

The standard deviation is a measure of the irreproducibility in the
average, again assuming that the experiment is repeated under the same
conditions. It is usually given the symbol ¢, and is defined as

o= E (y,,—y)z/(N— 1 2.2-2)

2

Its square o is called the variance. The next spreadsheet exercise will

illustrate the meaning of the standard deviation.

Instructions for exercise 2.2

1 Open an Excel spreadsheet.

2 Point with the mouse pointer to the tab labeled Sheet1, and rename it Average. (For
details, see instruction (2) of exercise 2.1.)

3 Depositthelabel ‘n’incell A1, and the label ‘data’ in B1.
4 In cell A3 depositthe number 1, and in cell A4 the number 2.

5 Place the pointer in cell A3 (it should be a heavy cross), depress the mouse button,
move the pointer to cell A4, then release the button. Both cells (A3 + A4) should now be
activated.

6 Grab the common handle of cells A3 + A4 (when the mouse pointer has the shape of a
plus sign) and drag the cells by this handle down to cell 302. This will establish
N-values from 1 to 300 in column A. Or: in cell A4 use the instruction =A3 + 1, and copy
this down to cell A302.

7 ClickonTools, then on Data Analysis, and in the Data Analysis dialog box select
Random Number Generation.

8 Inthe Random Number Generation dialog box that now appears, select ‘Normal’ as the
Distribution, 10 as the Mean, and 1 as the Standard Deviation. Furthermore, specify
the Output Range as B3:B302. Click OK.

9 Selectblock A3:B302, e.g., by first using the mouse pointer to activate a small block
such as A3:B6, and by then, while keeping the Shift depressed, keying in End followed
byl.



46 Introduction to statistics
13 . .
Sttt 14 0 . .
Q’t‘ IS
11 0 * ¢ %0 ’I 0. *
2 10 w NS
s P4 g
" 91 6’ ’0 x , ey
o | % ** ¢ 2
7 T T T T T i
0 50 100 150 200 250 300
rank number
Fig.2.2-1:300 replicate data with Gaussian noise.
10 SelectInsert = Chart, and use the ChartWizard to select an XY plot, showing individual

11

12

13

14

15

data points without a connecting line. Complete the graph; Figure 2.2-1 suggests what
itmightlooklike.

We notice that the data all cluster around aY-value of about 10, but that individual
points can lie quite a bit farther from that average value: occasionally a point will lie
more than 2 or 3 standard deviations from the average. That shows the true nature of
such a distribution; if we consider a sufficiently large number of such data, we will find
that about 68% of them lie within one standard deviation from the mean, but that the
remainder, about one-third of all points, lie further away.

Click on the numbers with the X- orY-axis, right-click, choose Format Axis, and select
the Font and Scale to your liking. In our example we have used 16 point regular Times
New Roman, and restricted the Y-scale to the range from 7 to 13, but please make your
own decisions. We have also deleted the series marker (which usually appears in a sep-
arate box to the right of the graph) by clicking on it to highlight it, and by then using the
Delete key to remove it.

Activate cell C4, and deposit in it the instruction = AVERAGE(B3:B5) which is equiva-
lent to the instruction = (B3 + B4 + B5) /3. Verify in an empty cell that the instruction
indeed calculates the average, then erase your verification lest it will show as an odd
pointin one of the graphs you will make.

Activate cell D4, and make it carry the instruction = STDEV(B3:B5), which calculates
the standard deviation according to eqn. (2.2-2). Again verify that STDEV indeed cal-
culates correctly, then erase that test.

Highlight the area C3:D5, grab its common handle, and pull that handle all the way
down to cell D302. Column C should now have 100 data, each the average of three suc-
cessive data points in column B, while column D will now contain the corresponding
standard deviations.
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Fig.2.2-2: Three-point averages of the data set of Fig. 2.2-1.
16 Take alookat the averages and the standard deviations: they will show considerable

17

18

19

fluctuations, even though all numbers were calculated from Gaussian noise with a
constant standard deviation.

The easiest way to ‘take a look’ at these averages and their standard deviations is, of
course, to plot them. Activate cell A3, then drag the pointer to A302, depress the Ctrl
key, move the mouse pointer over to cell C302, and drag the pointer to cell C3. This will
highlight the data in columns A and C you want to graph.

Click on Insert = Chart, and answer the ChartWizard to make the graph showing the
three-point averages. Plot it; it might look somewhat like Fig. 2.2-2.

Click on the chart, then on one of the data points in it, then right-click, and select
Format Data Series. In the resulting dialog box go for the Y Error Bars tab, under
Display select Both, and push the radio button for Custom. Then deposit in the two
boxeslabeled + and — the identical instruction: = AVERAGE!D3:D302, and use the OK
button to enter these instructions. You should now obtain a graph resembling Fig.
2.2-3,in which all three-point averages are specifically labeled with their correspond-
ing standard deviations.

Let’s take a moment to consider what we have so far. Although all data in
column B were generated with Gaussian noise, with a standard deviation of
1, we see that the three-point averages fluctuate rather wildly. Justlook at the
data in Fig. 2.2-3a (an enlargement of the first part of Fig. 2.2-3) around
n =64, where there are several sets of three consecutive data that lie close
together and therefore have quite small standard deviations, of the order of
0.1, so that the error bars of successive data triplets do not overlap at all. To
the right of these is a data triplet with a standard deviation of almost 2. And
as the averages of points 22 through 24 and 28 through 30 show, thisis not an
isolated occurrence; similar (though somewhat less dramatic) cases are
visible elsewhere in Fig. 2.2-3. You will, of course, have different data, but
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Fig.2.2-3: Three-point averages with error bars of + o for the data set of Fig. 2.2-1.
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Fig.2.2-3a: Detail of Fig. 2.2-3, with some points emphasized in color.
they will illustrate the same general phenomenon, viz. that statistics don’t
apply to small data sets, such as triplicates. This is the same point made in
exercise 2.1.
20 Activate cell E8 and let it calculate the average of the 10 consecutive datain B3:B12.

21
22

23
24

25

Similarly, in cell F8, compute the corresponding standard deviation.

Highlight block E3:F12, grab it by its handle, and copy it down to F302. You should now
have 30 averages of 10 points each, with their standard deviations.

Use columns A and E to make a graph, on a new sheet.

Add error bars to the averages plotted, using as before the Format Data Series dialog

box, where you select theY Error Bars tab, then specify the Error Amount under
Custom as = AVERAGE!F3:F302 in both directions, and compare with Fig. 2.2-4.

In column G calculate the averages of 30 consecutive data points, and in column H the
corresponding standard deviations. Plot the resulting thirty-point averages, with their
individual error bars. Figure 2.2-5 shows an example.
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Fig.2.2-4: Ten-point averages of the data set of Fig. 2.2-1.
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Fig.2.2-5: Thirty-point averages of the data set of Fig. 2.2-1.

Again we step back for a moment. By taking the average over a sufficiently
large number of data we see their statistics emerge: the ten-point averages
have more uniform values for the averages and the standard deviations,
while the thirty-point averages are a further improvement over the ten-point
ones, but still exhibit some variability. None of these averages is exactly
10.000, nor do the standard deviations have the value 1.000, but the trend is
clear: statistical averages do apply to these data provided the samples used
are sufficiently large, and they are the more reliable the larger the data set
that is used. A balance must be struck between the need for higher data pre-
cision and the time and effort needed to achieve it. In statistics, as in all
other aspects of quantitative analysis, we encounter the law of diminishing
returns: here, a twofold increase in precision usually requires a fourfold
increase in the number of data (and hence in the experimental time)
needed.
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26 Finally, calculate the average and standard deviation of all 300 data points. For the data

set shown in Fig. 2.2-1 the resultis 10.04 * 0.96, quite close to 10.00 = 1.00 we might
obtain for, say, a data set containing a million points. But there is no gain in taking that
many data: thirty points was plenty for this (synthetic, and therefore highly idealized)
data set to find the average as about 10 + 1, while three was statistically inadequate.

At the risk of being repetitive (which this exercise is all about anyway), let
us look once more at some of these data. (You will, of course, have different
data, but you will most likely have comparable regions from which you can
draw similar conclusions.) The data in B61:B63 just happen to be very close
to each other, and to the true average. (In this case we know the true average
tobe 10.00 because we have used a synthetic data set; in a more realistic situ-
ation the true average is not known.) The data in the next triplet, B64:B66, lie
even closer together, and therefore have an even smaller standard deviation.
However, that high average value of about 11, with its very small standard
deviation, would be quite misleading!

The triplet B70:B72 just happened to contain one fairly high reading,
12.79. Should we have thrown out that high point as an outlier? Absolutely
not: the high point is a perfectly legitimate member of this Gaussian distri-
bution. The conclusion we can draw from this or similar experiments is that,
even for such an ideal case of a synthetic Gaussian distribution of errors,
triplicate measurements are statistically inadequate to yield a standard
deviation. The only benefit of a triplicate determination lies in the value of
its average, which can be assumed to be somewhat more reliable than the
value of an individual measurement.

Since the value of any standard deviation computed from just three replicas
can vary wildly, such ‘statistical estimates’ have little scientific standing. A
sufficiently large number of observations is required to justify the use of statis-
tical analysis — otherwise we misuse statistics as an empty ritual, merely going
through the motions, and giving our results a semblance of statistical respect-
abilitytheydonotdeserve.Infact, onecan estimatetherelative standard devia-
tion of the standard deviation, which comes to 1/V/(2N-2) where N is the
number of repeat measurements used, see]. R. Taylor, An introduction to error
analysis, University Science Books, 2nd ed. 1997. Consequently the standard
deviation of a triplicate measurement has, itself, a relative standard deviation
0f50%! Anditwould require some 5000 repeat experiments toreduce thatvalue
to 1%. The moral of all this is: use statistics wherever their use is justified, and
thenusethemwell-butdon’tdegradethem by applyingthem, inappropriately,
tosmall datasets, orbyover-specifying the precision of the standard deviation.

A picture is worth a thousand words, which is why we have used error bars
to make our point. However, there is another, simpler way to demonstrate
that, for our limited sample, the standard deviations we obtain are only esti-
mates of the true standard deviation.
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27 Determine the smallest value of the standard deviations in the three-point samples
with the instruction = MIN(D3:D302), and for the correspondinglargest value with
=MAX(D3:D302). Likewise find the extreme values for the standard deviations of the
ten-point samples in column E and for the thirty-point samples in column H.

28 Record these values, then save the spreadsheet, and close it.

In our particular example we find for the 100 three-point samples a
minimum standard deviation of 0.12, and a maximum of 1.91, quite a
spread around the theoretical value of 1.00! (The specific numerical values
you will find will of course be different from the example given here, but the
trends are likely to be similar.) For the 30 ten-point samples we obtain the
extreme values 0.35 and 1.45, and for the 10 thirty-point samples 0.73 and
1.23. While taking more samples improves matters, even with thirty samples
our estimate of the standard deviation can be off by more than 20%. And
this is for by-the-book, synthetic Gaussian noise. From now on, take all
standard deviations you calculate with an appropriate grain of salt: for any
finite data set, the standard deviations are themselves estimates subject to
chance.

The propagation of imprecision from a single parameter

Experimental data are often used to calculate some other, derived quantity
F.When we have taken enough data to make a statistically significant esti-
mate of its standard deviation, one can ask what will be the resulting stan-
dard deviation in the derived quantity. In other words, how does the
standard deviation of the measured, experimental data Xpropagate through
the calculation, to produce an estimate of the resulting standard deviation
in the derived answer F? Such an estimate of experimental imprecision is
often called the ‘error’ in the answer, and the method considered below is
then called a ‘propagation of errors’. However, the true errors will almost
always be much larger, since they will also contain any systematic errors
(‘inaccuracy’, ‘determinate error’ or ‘bias’), including those due to inadver-
tent changes in experimental conditions when the experiment is repro-
duced at another time or place. In the example below, we will consider how
the standard deviation, which measures random error (and is therefore a
measure of the imprecision of the data rather than of their inaccuracy) prop-
agates through a calculation.

Simple rules suffice in a number of simple cases, such as addition and
subtraction (where the standard deviations add), or multiplication and divi-
sion (where the relative standard deviations add). Simple rules also apply to
a few transforms, such as exponentiation or taking logs, where the nature of
the variance changes from absolute to relative, or vice versa. However, those



52

Introduction to statistics

rules leave us stranded in many other cases, where we therefore must use a
more general approach.

Say that we measure the cross-section of a sphere, and then calculate its
volume. Given a standard deviation in the cross-section, what is the result-
ing standard deviation in the volume of the sphere? Or we might make a pH
reading, then use it to compute the corresponding hydrogen ion concentra-
tion [H*]. Again, based on the standard deviation of the pH measurement,
what is the resulting standard deviation in [H*]?

There are several ways to approach such problems. When you are uncom-
fortable with calculus, it may initially be the simplest to use algebraic
expressions or series expansion. For example, the volume V of a sphere,
expressed in terms of its diameter d, is (4/3)m(d/2)®=wd®/6. When the
measurement produces a diameter d=Ad, where Ad is an estimate of
the experimental imprecision in d, then the volume follows as VxAV=
m(d*Ad)3/6 = (m/6) X (d>+3d*Ad +3d(Ad)? = (Ad)?) = (7/6) X
(d®+3d*Ad) = (wd®/6) X (1 =3Ad/d) when we make the usual assumption
that Ad << d, so that all higher-order terms in Ad can be neglected. In other
words, the relative standard deviation of the volume, AV/V is three times the
relative standard deviation Ad/d of the diameter, a result we could also have
obtained from the above-quoted rules for multiplication, because %=
rXrXr.

Using calculus we can obtain the same result as follows: again assuming
that the deviations Ay are small relative to the parameters y themselves, we
have AV/Ad~dV/dd=d(wd?/6)/dd=3md?/6=3V/d or AV/V=3Ad/d. In
general, when we have a function F of a single variable x, then the standard
deviation orof Fis related to the standard deviation o, of x through

dF

This is where the spreadsheet comes in, because we can use it to compute
the numerical value of the derivative d F/dx even when you, my reader, may
be uncomfortable (or even unfamiliar) with calculus. Here is the definition
of the derivative:

. (2.3-1)

dF_ yimg BF_ jjp 20 - F) (2.3-2)
dx Ax—=0AX Ax—0 Ax

Consequently we can find the numerical value of the derivative of Fwith
respect to x by calculating the function Ftwice, once with the original para-
meter x, and once with that parameter slightly changed (from x to x + Ax),
and by then dividing their difference by the magnitude of that change, Ax.
When Ax is sufficiently small, this will calculate the value of dF/dx without
requiring formal differentiation. Here goes.
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Instructions for exercise 2.3

1 Open an Excel spreadsheet, and name it (by renaming its label) Propagation.

2 Depositthelabel ‘d="incell Al, ‘sd="in A2, ‘V="in A3, ‘dV/dd="in A4 and ‘sV="in A5,
where we use s instead of o.

3 Optional: if you want to spend the extra effort on appearance, activate cell A2, use the
function key F2 to select the editing mode, in the formula window highlight the letters,
then use the down-arrow next to the fontlisting (to the left of the formula window) to
select the Symbol font, click on it, then click somewhere in the spreadsheet area. You
can do the same for sVin A5, etc. Since such beautification of the text is more decora-
tive than functional, we will not spend time on it, but instead use equivalents such as s
for o, and Sfor >.

4 In cells B1 and B2 deposit numerical values for d and sd respectively.

5 Activate cell B1, and click on Insert Name Define. In the resulting Define Name dialog
box, the top window (under Names in Workbook:) will now show the d (otherwise type
itin), while the bottom window (under Refers to:) will show =PROPAGATION!$B$1
(and, again, make it so if it is not so). Click on OK. Similarly, give the (future) contents of
cell B2 the name sd. Note that Excel guesses the correct name (when already used in
the cell to the left of that being named) and thereby reduces the amount of typing you
need to do. Naming cells can only be done when we use absolute addressing of these
cells, i.e., when they represent constants.

In cell B3 place the formula = PI()*(dA3)/6.
In cell B4 now calculate the derivative as = (PI0)*((d + sd)~3)/6-B3)/sd.
In cell B5 calculate the final result, sV, as = ABS(B4)*sd.

O ® N o

In order to compare this with the theoretical result oy, = (dV/dd) oq we use cell B6 to
calculate AV = (3V/d) Ad. Convince yourself that the result in B6 is the same as that in
B5 aslongas sd << d. Note that, in cell B4, you have performed a numerical
differentiation without using calculus!

10 Save the spreadsheet, then close it.

As our second example, we will estimate the standard deviation in [H™]
when the concentration of hydrogen ions is calculated from a pH reading p
with a corresponding imprecision Ap. In order to see how the imprecision
propagates, we now use the relation [H*] = 10PH = 10-P=4P) = 10-P(1=4PP) =
1077 X 10%4PP, There does not exist a closed-form expression for 10=4PP
analogous to that which we used for (d + Ad)? in our earlier example, but
instead we can use the series expansion

a®=1+8In(a) + (8In(a)?/2! + (81n(a)3/3! + (SIln(a@)*/4! + - = 1 + SIn(a)
when § << 1
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where we will again assume that Ap/p is much smaller than 1, so that
104PP =1+ (Ap/p) In(10) and [H'] =107 X 10*4PP=10"7x 1+ (Ap/p)
In(10)]. Consequently the hydrogen ion concentration [H*] has a relative
standard deviation of (Ap/p) In(10), and an absolute standard deviation of
(Ap/p) X 107" X In 10 = [HT] X In(10) X Ap/pH.

Calculus again provides a much more general and direct approach to this
problem. The calculation from pH to [H*] converts the measured parameter
x (here: the pH) into the derived function F (here: [H*] = 10PH). We have
d(@®)/dx=—a* In(a) so that d([H])/d(pH) =d(10P%)/d(pH) =— 10PH x
In(10) =—[H"] In(10). Consequently, o5 = Id[H"]/d(pH)lo,y = [H"] In(10) X
OpH» and the resulting standard deviation in [H"] is Tpu X In(10).

Below we will again use the spreadsheet to bypass series expansion as well
as differentiation when we only need a numerical (rather than a general,
algebraic) result. When we deal with experimental imprecision, numerical
rather than algebraic results are usually all that is required.

Reopen the spreadsheet Propagation, and deposit the label ‘pH="in cell D1, ‘spH="in
D2,‘[H]="in D3, ‘dH/dpH="in D4 and ‘sH="in D5.

In cells E1 and E2 deposit numerical values for pH and spH respectively, and name
their contents.

In cell E3 place the formula = 10A-pH.
In cell E4 calculate the derivative as = (10A—(pH + spH)-E3) /spH.

In cell E5 calculate the final result, sH, as = ABS(E4)*spH, and compare this with the
theoretical result by calculating the latter, [H*] In 10 X o,y.

Save the spreadsheet again, and close.

The propagation of imprecision from multiple parameters

When the derived result is a function of several independent parameters,
each with its own experimental imprecision, computing the propagation of
such imprecision becomes more complicated when we attempt to do it with
algebraic expressions and series expansions. However, the answer remains
straightforward when we use partial derivatives, i.e., when we consider sep-
arately the effects of each of the input parameters. Given a function F(x;, x,,
X3, ..., xp) of Nvariables x;, where each x;has an associated standard devia-
tion o7, the resulting standard deviation orin the function Fwill be given by

N aF 2
=) (5) o (2.4-1)

i=1
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While the standard deviation oris the desired final result, since it has the
same dimension of the function F, the corresponding variances o? yield
somewhat simpler equations:

N (9F\?
2 2
— Rl 2.4-2

Again, in order to use these equations numerically, one need not know
how to take partial derivatives (although that certainly would not hurt), but
merely realize that the partial derivative of the function Fwith respect to x;is
defined as

LP‘_ lim F(xl’xz’ [EX) (xi+ Axi); ceey xN) - F(xl,xZ, ey Xy eey XN)
0X; Ax;—0 Ax;

(2.4-3)

Therefore, one can calculate the partial derivative of Fwith respect to x; by
calculating the function Ftwice, once with the original parameters and once
with just one of these parameters slightly changed (from x; to x; + Ax;), and
by then dividing their difference by the magnitude of that change, Ax;. When
Ax; is sufficiently small, this will calculate dF/dx; without requiring formal
partial differentiation. Below we will compare the calculus-based and
numerical method, using one of the examples given by Andraos (J. Chem.
Educ. 73 (1996) 150) as a test function, namely

F=log(xy+ z% - x/z3

where
aFlox=y/((xy+z31n(10)) — 1/z3
aFly = x/((xy+ z%) In(10))

dFloz=2z/((xy+ z? In(10)) + 3x/z*

Instructions for exercise 2.4

1 Againreopen the spreadsheet Propagation.
2 Depositthelabel x = ‘incell A7, ‘y="in A8, and ‘z ="in A9.
3 Incell B7 deposit a value for x, in B8 a value for y, and in B9 a value for z.

4 Likewise, in cells D7:D9 deposit the labels ‘sx =’, ‘sy =’, and ‘sz =’, and in cells E7:E9 the
corresponding values for the standard deviations in x, y, and zrespectively. The only
requirements are that the value for sx should be much smaller than that for x, and the
same applies for sy and sz. For example, you might use 4, 5, and 6 forx, y,and z, and 0.1,
0.2, and 0.3 for sx, sy and sz. Or use whatever other values suit your fancy, as long as the
standard deviations in a parameter are much smaller than the parameter itself. Use the
spreadsheet to find out what ‘much smaller’ means.
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5 Name cells B7:B9 and E7:E9.

10

11

12
13

14
15

16

17

In cell A10 deposit the label ‘F =’, and in cell B10 the formula = LOG(x*y + zA2) — x/zA3,
then name this cell E

Incell A11 deposit the label ‘dF/dx =, in cell A12 ‘dF/dy =’,and in A13 ‘dF/dz =/, in
order to denote terms in (2.4-3) such as d F/ o x;.

After these preliminaries we are now ready to calculate the standard deviation o
according to (2.4-3), using the given expressions for the partial derivatives.

In cell B11 calculate dF/dxas = y/ ((x*y + zA2)*LN(10)) — 1/z/3. Note how much easier
and more transparent it is to type the algebraic expressions rather than the corre-
sponding absolute cell addresses, i.e., xinstead of $B$7, y instead of $B$8 etc.

Likewise in B12 calculate = x/((x*y + z"2)*LN(10)) to compute dF/ 9y, and enter the
corresponding expression for 9F/dzin cell B13.

In cell A14 place thelabel ‘st dev =", and in B14 calculate the properly propagated esti-
mate of the standard deviation in Fas = SQRT ((B11*sx)A2 + (B12*sy)A2 + (B13*sz)A2).

Now we will make the equivalent calculation without using the results of
calculus.

First, add alabel (such as delx) and a corresponding value (say, 0.01) to the top of the
spreadsheet, and assign it a name, say delta.

Copy the contents of cell B10 to cell C11.

In order to compute the term 0 F/dx = [F(x + Ax,y,2) — F(x,y,2)]/Ax, edit the contents of
cell C11 as follows. Place a minus sign to the right of the contents of the cell, then copy
the expression LOG(x*y + zA2) — x/z/3, and paste it back after the minus sign. Then
replace x everywhere in the first half of the resulting expression by (x + delx). Finally,
place the entire expression inside brackets, and divide it by delx. It should now read =
(LOG((x + delx)*y + zA2) — (x + delx) /zA3 — LOG(x*y + z/2) — x/z"3) /delx.

Verify that you obtain the same result for 9 F/ 9x as before.

Also verify that you obtain the same result for d F/ 9xwhen you use different values for
delx, such as 1E-6, as long as these values are very much smaller than x. Try out for
yourself what values of delx are acceptable, and record your observations.

In asimilar vein, compute 0 F/dyas = (LOG(x*(y + dely) + zA2) — x/zA3 — LOG(x*y +
zA2) —x/zA3)/delyin cell C12, and in cell C13 calculate 0 F/dzas (LOG(x*y + (z +
delz)"2)—x/(z + delz) A3-LOG (x*y + zA2)—x/z"3) /delz.

Finally, compute the resulting standard deviation of Fin cell C14 as =
SQRT((C11*sx)A2 + (C12*sy)A2 + (C13*sz)A2), an instruction you can obtain simply by
copying B14.
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Compare your results in C11:C14 with those in B11:B14; they should be the same. (If
not, you either have made a mistake, or one or more of your values for delx, dely and
delz are too large.)

Save the spreadsheet, printit, and close it.

Note that steps 11 through 19 do not require you to use calculus in order to
compute the partial derivatives dF/dx, dF/dy, and dF/dz; the spreadsheet
does that for you, based on (2.4-3). It can always do this as long as it deals
with specific numerical values for x, delx, y, dely, z, delz, etc. The above
approach illustrates a calculus-free yet perfectly legitimate way to compute
the general propagation of standard deviations in any formula, no matter
how complicated, provided that the parameters x, y, z, etc. are mutually
independent. And it need not add much work because, especially for a com-
plicated formula, you will most likely already use the spreadsheet to calcu-
late the standard deviations anyway.

We will now carry the above to its logical spreadsheet conclusion. The
spreadsheet is there to make life easy for us in terms of mathematical
manipulations, and three-quarters of a page of instructions to describe how
to do it may not quite be your idea of making life easy. Touché. But this was
only the introduction: once we know how to make the spreadsheet propa-
gate imprecision for us, we can encode this knowledge in a macro. That is
what we have done, and have described in detail in chapter 10. The macro is
called Propagation, and if you have downloaded the macros from the
website (as described in section 1.13) you can now use that macro. Below we
illustrate how to use Propagation.

Return to the spreadsheet Propagate.
Call the macro with Tools = Macro = Macros.
In the resulting Macro dialog box, highlight Propagation, then push Run.

A sequence of input boxes will appear. The firstis labeled Input Parameters. Highlight
the block B7:B9 which contains these parameters. The address will appear in the
window of the input box. Push the OK button.

Similarly, highlight and enter E7:E9 as the Standard Deviations, and B10 as the
Function.

After you have entered the function, and pushed the OK button, you will see the propa-
gated imprecision appear in cell C10, in italics. Compare it with your earlier results.
That’s it, no mathematics, no manipulations, just enter the data and push the OK
button; the macro does the rest. Figure 2.4-1 shows the result, and the entire region of
the spreadsheet used.
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= 4 - sx= 0.1

y=5 sy= 0.2
7= 6 sz= 0.3
10 F= 1.729670 0.031503

Fig.2.4-1: The part of the spreadsheet used by the macro Propagate. The blocks B7:B9
and E7:E9, and the single cell B10, are used as input to the macro, while the result
appearsin C10.

If you want to test whether you can now propagate imprecision without
further hand-holding, try the second example given by Andraos, G= (1*
sin(26))/ g, assuming numerical values for », 6, and g, as well as for o, 0y, and

O'g.

The weighted average

Say that the age of awooden artifact from antiquity is determined by taking a
few samples of it, and subjecting these samples to radiocarbon dating. For
valuable artifacts, the number and size of the samples must usually be kept
as small as possible, and such minimal samples will typically yield individ-
ual results with different standard deviations. The question is then how to
combine the various answers from the individual samples to yield a single,
most probable age, plus an estimate of the corresponding precision. For
example, Arnold & Libby reported in Science 113 (1951) 111 that they had
used radiocarbon dating (the method for which Libby earned the Nobel
prize) to determine the age of wood from a single acacia beam in the tomb of
Zoser in Sakkara, Egypt. Three different samples from the same beam were
taken, and their analysis yielded the following ages (counted from 1951):
3699 = 770 years, 4234 * 600 years, and 3991 =+ 500 years. How to combine
these results into a single, most probable age?

Because their precisions are different, we will assign these three analyses
different weights. More specifically, we will weigh the individual measure-
ments according to the reciprocals of their variances, i.e., we replace (2.2-1)
by

N

S wy,

y=" (2.5-1)
Su

where we have introduced the individual weights w;=1/07. Note that

(2.2-1) is the special case of (2.5-1) for when all data have equal weights, in

which case these equal w;'s can be taken out of the summations, and then
cancel each other out in numerator and denominator, while (in the denomi-
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nator) the remaining sum of N terms 1 is equal to N. For the standard devia-
tion of the weighted average we have

Niwl(y, _.)7)2

N (2.5-2)
(N-DDw,

which, again, reduces to (2.2-2) when all weights wj are the same. In exercise
2.5 we will use the spreadsheet to calculate the best estimate of the age at
which that acacia beam was cut, and thereby stopped exchanging CO, with
the air (where the radioisotope '*C is continually replenished by cosmic
radiation).

It is often necessary to apply weights to statistical data. For example, in
epidemiological studies, the sample sizes of various studies of the same
phenomenon in different countries may differ widely, even if they are other-
wise identical. When such studies are subsequently combined, they should
then be accorded different weights, or the original data pooled and the sta-
tistics redone on the aggregate. Unweighted averages, such as discussed in
section 2.2, should only be used in two cases:

1 when we have reason to assume that the individual weights are the same, or

2 when we have no good means of expressing individual weights quantita-
tively, and therefore use constancy of weights as the best we can do under
the circumstances. The second reason seems to apply most frequently.

Instructions for exercise 2.5

1 Openaspreadsheet.

2 Inthe4throw, enter the columnlabelsy, s, w, wy, and wRR (for weighted Residual
squared).

3 Leave arow blank, and starting in row 6 deposit the experimental data, i.e., the ages in
columny, and the corresponding standard deviations in column s.

4 In cell C6 deposit the instruction = 1/B6/2, which will calculate the weight according
to w;=1/¢{. Copy this instruction down to cells C7 and C8.

5 In cell D6 calculate the product w;y;with = A6*C6, and copy this down to row 8.

6 Incells C1 and D1 deposit the labels Sw and Swy for Sum of weights wand Sum of the
products w; y;respectively. Below these labels, i.e., in cells C2 and D2, compute these
sums, e.g., in C2 enter the instruction = SUM(C6:C8).

7 Incell Al place thelabel y(av), and in B1 the label s(av), or some other name indicating
the standard deviation of the average.

8 Now calculate the average value of yaccording to (2.5-1) as = D2/C2. This is the best
estimate of the age of that wooden beam.
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A B C D E
1 y(av) s(av) Sw Swy SwRR
2 4012.56 232.066 8.5E-06 0.03396 0.3039
3
4 y S w wy wRR
5
6 3699 770 1.7E-06 0.00624 0.16583
7 4234 600 2.8E-06 0.01176 0.13621
8 3911 500 4E-06 0.01596 0.00186

Fig. 2.5: The spreadsheet used to calculate the weighted average age of an ancient
wooden beam dating from about 20.6 * 2.3 centuries BC.

In column E compute the weighted residual squared, i.e., in E6, as = C6*(A6 — $A$2)A2.

In cell E1 put the label SWRR for the Sum of the weighted Residuals squared, and in E2
calculate that sum as = SUM(E6:E8).

Finally, in B2, calculate the standard deviation of your answer according to (2.5-2) as =
SQRT(3*E2/(2*C2)). For alarge data set, we would have used the spreadsheet to calcu-
late N, but for just three data pairs that is more trouble than it is worth.

Your complete spreadsheet should nowlook like Fig. 2.5. The wood was cut some
4013 = 232 years before 1951.

Save the spreadsheet asWoodAge.

Least-squares fitting to a proportionality

In this and subsequent spreadsheet exercises, we will use the method of
least-squares to fit data to a function rather than to repeat measurements.
This is based on several assumptions: (1) that, except for the effect of
random fluctuations, the experimental data can indeed be described by a
particular function (say, a straight line, a hyperbola, a circle, etc.), that (2) the
random fluctuations are predominantly in the ‘dependent’ parameter,
which we will here call y, so that random fluctuations in the ‘independent’
parameter x can be neglected, and (3) that those random fluctuations can be
described by a single Gaussian distribution.

The assumption that the experimental ‘noise’ is restricted to a single,
‘dependent’ variable, greatly simplifies the mathematical problem, and can
often (though certainly not always) be justified. For example, time measure-
ments can often be made with such exquisite precision, even just using an
inexpensive digital watch, that in most measurements of experimental
parameters (such as absorbance or pH) versus time the fluctuations in the
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time measurements are negligible compared to those in the other measured
parameter(s).

We will first consider the proportionality y= ax, where we can measure y
as a function of x. In the absence of experimental or theoretical imprecision,
a single measurement would suffice, from which a could then be deter-
mined simply as a= y/x. However, such a measurement might be affected
strongly by any experimental ‘error’ in y, which is why it is usually preferred
to take and analyze a large number of measurements, rather than a single
one. Moreover, we will usually want to check whether the assumed propor-
tionality is a reasonable assumption, and therefore make measurements at
various x-values. The two requirements, of many data and of data at various
x-values, can be satisfied simultaneously by measuring y at a large number
of x-values. The assignment is then to calculate the most likely value (the
‘best’” estimate) of the proportionality constant a, within the context of the
assumption y= ax, from alarge set of data pairs y;, x;. It is here that the least-
squares method can be used. The least-squares method per se does not
address the question whether a proportionality is the correct assumption,
or whether some other model (say, a straight line with arbitrary intercept,
rather than one through the origin) would be better. To check whether the
assumed proportionality is obeyed we usually rely (1) on theoretical
models, which shape our expectations, (2) on direct (visual) observation of
the fit, and (3) on any trends in the residuals (y; — ax;), i.e., the differences
between the experimental data and the model. (Because we assume that the
terms x; contain no experimental errors, the terms ax; are supposed to
contain no experimental error either, and can therefore serve as the ‘model’
for y;.)

For the least-squares fitting of N experimental data pairs y;, x; under the
above conditions (where the index i denotes the ith measurement pair) we
have

N
pEA7
a="-—
S
i=1

as can be derived readily by minimizing the sum of the squares of the residuals
(y;— ax;) with respect to g, i.e., by setting d=(y; — ax;)?/da= 3d(y; — ax;)?/da=
S —2x;(y;— ax;) =—23x;y;+ 2a 3 x? equal to 0, and solving the resulting
equation for a. In order to provide a numerical estimate of the random fluctu-
ations in y; we can define a standard deviation o, for y, and a corresponding
variance ayz; the latter is given by

(2.6-1)

i(yi_ ax,;)?
2 im

o =T NZ1 (2.6-2)
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which can be compared with (2.2-2). For the proportionality constant a we
then find the variance o2 as

N
2 (yi - ax,)? 2
i=1 O-J’
= =— (2.6-3)
N N
(N=-DDxz Dx?
i=1 i=1
and a corresponding standard deviation o,.
In the following exercise we will first generate a set of noisy test data, then

calculate the necessary sums, and use these to compute q, oy and o, and
plot the data.

0.a2 —

Instructions for exercise 2.6

1
2
3
4

Open a spreadsheet, and name it Proportionality.
In cell Al deposit thelabel a, and in cell B1 the label na or noise ampl.
In cell A2 place a numerical value for a, and in cell B2 a value for the noise amplitude.

To name the contents of cell A2, first activate it, then click on the name box in the
formula bar (the barimmediately above the cell column labels A, B, C, etc.), type ‘@’ (its
name), and depress the enter key. Similarly name the contents of cell B2 as na.

5 Place thelabelsx, noise, and y in cells A4, B4, and C4 respectively.

6 PlacethenumbersO0,1,2,...,9in cells A6:A15.

7 Fill cells B6:B15 with Gaussian noise with zero average (or ‘mean’) and unit standard

10

11

12

13

14

deviation. (Reminder: such Gaussian noise can be found under Tools = Data Analysis
= Random Number Generation = Distribution: Normal, Mean = 0, Standard
Deviation = 1, Output Range: B6:B15 => OK.)

In cells C6:C15 calculate the product axusing the value named a (as stored in A2) and
the values of xin column A, plus the product of the noise amplitude na (stored in B2)
times the noise in column B. For example, the instruction in cell C6 might read = a*A6
+ na*B6 (or, when you don't use names, = $A$2*A6 + $B$2*B6).

In cells D4 through G4 deposit the labels xy, xx, RR, and y(calc).

In cell D6 calculate the product xy (as = A6*C6), in E6 compute x, and copy both down
torow 15.

In cell D1 through F1 place the labels Sxy, Sxx, and SRR respectively.

Now we calculate in cell D2 the sum 3xyas = SUM(D6:D15). Contrary to what an
accountant might do, we usually keep these sums at the top of the spreadsheet so that
theywill remain in sight regardless of the length of the data columns.

Likewise, in cell E2, compute the sum 312 as = SUM(E6:E15). Shortcut: activate cell D2,
copyitwith Ctrl + ¢, activate E2, and paste with Ctrl + v.

Enter some more labels: a(calc), sy, and sa in G1 through I1 respectively. For greater
clarity we will here explicitly distinguish the recovered value a,. from the initially
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assumed value a, just as we use .41 to denote the reconstituted data g, .x. And we
again label sums with S (for X)), and standard deviations with s (for o).

In G2 compute a, according to equation (2.6-1), i.e., as = D2/E2.

Now that we have found the least-squares estimate a., we can compute the corre-
sponding standard deviations. In cell F6 calculate (y- Yeaid? = (- deaicX)? as =
(C6-$G$2*A6)A2, and copy this down to F15.

In cell F2 calculate SRR as = SUM(F6:F15), and in cell H2 compute oyas = SQRT(F2/9)
in accordance with (2.6-2), since N=10so that N—-1 =9.

Vary the value of the noise amplitude nain cell B2, and verify that sy (i.e., gy) isarea-
sonably close estimate (usually within a factor of 2) of na. (On average it will track it
more closely when we have alarger number of data pairs, say 100 or 1000.)

In cell 12 compute o, according to (2.6-3) as = G2/SQRT (E2).

Comparesa (i.e., o) with (the absolute value of) the difference between aand a,;
again, sa usually tracks | a— a., .l to within a factor of 2.

In rows 6 through 15 of column G calculate yc,c = @calc X, then make a graph of columns
A, Cand G. Show the simulated ‘experimental’ points y of column C as markers, and
theleast-squaresline y,cin column G as a smooth line. You can do this by clicking in
the graph on a data point of one of these series, which will highlight them.

Excel has three built-in facilities for least-squares calculations, which
provide the same (and, if you wish, much more) information. The first,
LINEST, is a simple function. The second is the Regression macro in the
Analysis Toolpak, which is part of Excel but must be loaded if this was not
already done at the time the software was installed. The third (and often sim-
plest) method is to use the Trendline feature, which is only available once
the data appear in a graph. Later we will encounter yet another option, by
using the weighted least squares macro described in chapter 10. Truly an
embarrassment of riches! Below we will illustrate how to use the first three of
these tools. Table 2.6-1 lists their main attributes, so that you can make an
informed choice of which one of them to use.

In cell F3 deposit the instruction = LINEST(C6:C15,A6:A15,FALSE). The result is imme-
diate: cell F3 will contain the value of agyc.

The syntax of this line-estimating function is as follows: the first block (C6:C15)
specifies the array of y-values, the second block (A6:A15) defines the x-array, and
FALSE signifies that the function should not calculate an intercept (because the line is
supposed to go through the origin). The three pieces of information are separated by
commas. Note that LINEST is a function, i.e., it updates automatically whenever you
change an input value. The input arrays of x- and y-values cannot include empty cells.
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Click on the curve to activate it, then right-click, choose Format Data Series, Patterns,
and select, say, Line Automatic and Marker None or vice versa. Your plot might now
looklike Fig. 2.6-1.

Vary the noise amplitude in cell B2, and see how the recovered value a., varies with
the noise amplitude. Also verify that you recover ag,. = aand o, = 0 when the noise
amplitude is set equal to zero.

Itis always useful to look at the residuals, i.e., the differences between the data and the
fitted function; in the present example, the residuals are the differences y;— dcac x;. The
reason for this is that use of an incorrect model (such as fitting to, say, a linear or qua-
dratic relation rather than to a proportionality) often leads to a discernible trend in the
residuals, whereas random deviations do not. Therefore plot the residuals y— ycac = y—
Acalc X, asin Fig. 2.6-2.

Afourth, optional TRUE or FALSE statement in the LINEST instruction specifies
whether you want to see the standard deviations and other statistical information.
However, such auxiliary information requires additional space, which must be
reserved in advance, and makes the instruction somewhat more cumbersome to use.
We will illustrate such use in steps (23) through (27) of spreadsheet exercise 2.8.

Now for the Regression routine in the Analysis Toolpak. Select Tools = Data Analysis =
Regression, then specify Input Y Range: C6:C15, Input X Range: A6:A15, activate the
window for Constant is Zero, and set the Output Range: to J1. Click OK.

You will now see 18 lines of text and statistical data. Of interest to us are the value of
Acale, Which you will find near the bottom, under X Variable, Coefficient, and the value
of o,, whichislisted under X Variable, Standard Error. The value of o is not given as
such, butits square, the variance of y, can be found under Residual, MS. Verify that
these numbers are the same as those you computed. Because you specified Constant is
Zero, the Intercept is indeed 0. The remainder of the information shown we will leave
to the statisticians. Incidentally, the Regression routine does not update automatically
when you change input data, but must be invoked anew.

Finally, check that the standard deviation o, provides an estimate of the magnitude of
the difference between aand d .

Also check that you will get (slightly) different answers when you use the regression
routine without specifying that the Constant is Zero, in which case you fit to a linear
relation rather than to a proportionality.

In order to use the Trendline feature, you need to have the data in graphical form.
Fortunately you already made such a graph for instruction (21).

Click on a data pointin that graph. You may note that the menu item Data (in the menu
bar, to the right of Tools) has now been replaced by Chart. Now either right-click on the
data point, or click on Chartin the menu bar, and in either case use the resulting pop-
up menu to select Add Trendline. This will show the first page (Type) of the Add
Trendline dialog box.



2.6 Least-squares fitting to a proportionality 65

10
2
y-y' P
1 - .
*
¢ . P .
O T T T T
.
-1 1
°*
.
2
0 2 4 6 8 x 10

Fig. 2.6-2: The residuals of the plot of Fig. 2.6-1.

34 Forfitting data to aline, click on the top left panel labeled Linear. Switch to the Options
page, and select Set intercept = 0 for aline through the origin.

35 Alsoselect Display equation on chart, then click OK.

36 Youwill nowsee a heavyline drawn through the points, and the corresponding equa-
tion. By clicking and right-clicking on the line you can format the trendline, or clear it.
Likewise you can click on the equation for the line, then dragit to another location,
reformat it, or whatever.

37 Name and save the spreadsheet, then close it.
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Table2.6-1:
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Comparison of the various least-squares methods available in Excel. The first

three methods come with Excel, as does Solver. WLS is a weighted least-squares macro
provided with this book, as is the macro SolverAid which yields the standard deviations for
the parameter values provided by Solver.’
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LINEST + + + + + + + — - low
Regression + + + - + + + - - medium
Trendline + - - + + + - - high
WLS + + — — + + + — + medium
Solver +1 - - + + + + + medium

At this point it should be emphasized that the standard deviation o, pro-
vides an estimate of the goodness of the fit of the data to a particular mathe-
matical equation, in this case to the proportionality y= ax. Note that this is
quite different from an estimate of the (model-independent) experimental
reproducibility of a replicate measurement. It is somewhat unfortunate that
both measures are called standard deviations, and are denoted by the same
symbol, o.

There are many occasions where we can use the regression analysis tools
incorporated in Excel. On the other hand, as we will see in chapter 3, there
are also instances where we should not do so. Here we are merely getting
acquainted with the mechanics of using aleast-squares fit.

Least-squares fitting to a general straight line

The general equation for a straight line, y = g, + a;x, does not require that
the line through the data points go through the origin, as was the case with
the proportionality y = ax. A general straight line has two adjustable param-
eters, where g, is the slope of the line, and 4, its intercept with the vertical
axis. In this case, the least-squares method minimizes the sum of the
squares of the residuals with respect to both a, and a;. This yields the follow-
ing formulas for calculating the ‘best estimates’ a, and a, (where from now
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on we will delete the obvious subscript .5 Whenever there is little chance for
confusion) and their respective standard deviations:
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where for the sake of notational simplicity we have left out the indices i,
which always run from 1 to N, the number of data pairs entered. In this
example, the quantity N - 2 is the number of degrees of freedom, and in
general is equal to the value of N minus the number of constants derived
from the data (here two: ayand a;).

In the following spreadsheet we will use columns that extend beyond what
can be seen on the screen. Moreover there are so many parameters that we
will use two double rows of parameters above the actual columns of data. By
organizing the spreadsheet in this fashion we can keep all important infor-
mation within easy view on the monitor screen.

Instructions for exercise 2.7

1 Openaspreadsheet, and give it an appropriate name, such as Line.
2 Incells Al through C1 deposit the labels a0, al and na (or noise ampl).

3 Incells A2 and B2 place assumed numerical values for gy and a;, and in cell C2 a noise
amplitude.

4 Placethelabelsx, y, and noise, in cells A7, B7, and C7 respectively.

5 Place the numbersO0, 1, 2, etc. in column A, starting with cell A9. Extend the column to
some value N, say, 50.

The maximum column length Excel 95 can handle is 214 — 16384 entries; for Excel 97
itis 2'6 = 65536 entries. In either case, a spreadsheet with several such long columns
may calculate very slowly, depending on the speed of the processor used and on the
amount of available memory. For our purpose little is gained by using such long
columns, while much time is lost. Therefore keep the column lengths reasonably short.
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Fill cells C9:C58 (assuming here and in what follows that you use a column length of 50
data) with Gaussian noise with zero mean and unit standard deviation.

In cells B9:B58 calculate a simulated, noisy data set as ay + a, x plus noise, using the
values of gy and g, stored in A2 and B2 respectively, plus the product of the noise
amplitude nastored in C2 times the Gaussian noise generated in column C. For
example, the instruction in cell B9 might read = $A$2 + $B$2*A9 + $C$2*C9, or = a00
+a01*A9 + na*C9 when you use the names a00, a01 and na for the contents of A2, B2
and C2 respectively. (Names such as al or aal cannot be used because they are valid
addresses.)

In cells D7 through H7 deposit the labels xy, xx, y(calc), R, and RR respectively.
In cells D9:D58 calculate the products xy, and in E9:E58 compute x2.

In cells A4 through F4 place the labels Sx, Sy, N, Sxy, Sxx and denom, and in cell H4 the
label SRR, for the Sum of the Residuals squared.

Calculate in cell A5 the sum X.xas = SUM(A9:A1000). Note that the empty cells below
row 58 do not contribute to this sum.

Likewise, in cells B5, D5, E5 and H5 compute the sums 3y, 3xy, 2x2 and = (y — Yeaid) 2
respectively, simply by copying cell A5 to cells B5:H5.

In C5 deposit the instruction = COUNT (A9:A1000), which counts all numerical values
in the range specified. The advantage of using this instruction instead of specifying a
fixed value for Nis that it automatically adjusts when the size of the input data array is
varied, as long as the range specified (here rows 9 through 1000) is not exceeded. In this
way, the spreadsheet can be used over and over again. A disadvantage is that the
instruction will count every filled cell in its range, so that one must clear the range
before one can reuse it with a shorter data set, and must remember not to place any
otherdatainit.

In cell F5 calculate the denominator N3 x? — (2x)2 common to equations (2.7-1),
(2.7-2), (2.7-4) and (2.7-5), as = C5*E5 — A5/2.

Enter some more labels: a0(calc), al(calc), sy, sa0, and sal in D1 through H1 respec-
tively. Again, we distinguish between the initially assumed values of g, and a;, and
their recovered values dg ca1c and a; cac.

In D2 calculate the least-squares estimate dg cq1c of dp according to equation (2.7-1),
e.g., as = (E5*B5 — A5*D5)/F5.

Similarly, in E2 calculate a; cqc using (2.7-2).

Now that we have found the least-squares estimates for g, and a; we can calculate the
standard deviations for y, ag caic, and @y ca1c. In cell F9 calculate dg caic + a1, catc Xas =
$D$2 + $E$2*A9, in cell G9 y — Ycac as = B9 — F9, and in HI its square as = G972, then
copy all of these down to row 58.

Use (2.6-3) to calculate o, in cell F2 as = SQRT(H5/(C5-2)).
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Fig.2.7-2: The corresponding residuals.
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In cell G2 compute o, according to (2.7-4) as = F2*SQRT(E5/F5), and likewise calcu-
late o, in cell H2 based on (2.7-5).

Plotversus xthe simulated data points y of B9:B58 together with the computed least-
squares line y.,.in F9:F58, see Fig. 2.7-1.

Also plot the residuals y — y.4c Versus x, see Fig. 2.7-2.

Compare your results with those obtained with the LINEST function. We will here use it
in its full form, which will require that you highlight an otherwise unused block of cells,
2 cells wide and 5 cells high, starting with the top-left cell.

In the formula window of the formula bar, type the instruction = LINEST (B9:
B58,A9:A58, TRUE, TRUE). However, instead of depositing it with an Enter command,
use Ctrl + Shift + Enter, i.e., hold down Ctrl and Shift while you press the Enter key. This
isnecessary to insert the instruction in the 5 X 2 block.
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The top row of the block will now show the values of the slope and intercept, the
second row the corresponding standard deviations, the third will contain the square of
the correlation coefficient and the variance in y, then follow the value of the statistical
function Fand the number of degrees of freedom and, in the bottom row, the sums of
squares of the residuals. The function LINEST provides a lot of information very
quickly, albeit in a rather cryptic, unlabeled format.

To summarize the syntax of the argument of the LINEST() function, itis: (y-array, x-
array, do you want the intercept?, do you want the statistical information?)

If you only want the values of g, and a4, just highlight two adjacent cells in the same
row, while still using Ctrl + Shift + Enter. If you specify a block two wide but fewer than
five rows high, the values of a, and a, will be repeated in all rows. On the other hand, if
you assign too large a block, the results will be fine, but the unused spaces will be filled
with the error message #N/A.

Also compare your results with those from the Regression routine you can find under
Tools = Data Analysis = Regression. This routine provides even more statistical infor-
mation than the LINEST function, and labels it, but takes more time to execute and
does not automatically update itself when the input data are changed. Regression also
can make graphs.

This time, leave the box Constant is Zero blank. (For reasons that will become clear in
exercise 2.8, place the output from the regression routine in cell J13.) Locate the places
where Regression lists its estimates for ag calc, 1 caler (ryz, Og,and oy .

Verify that the difference between ay and gy ¢, is of the order of magnitude (i.e., within
afactor of two or three) of 0,9, and that the difference between a; and a, . is likewise
of the order of o,,;. That s, of course, the significance of these standard deviations: they
provide estimates of how close our ‘best values’ come to the true values, provided that
all deviations are random and follow a single Gaussian distribution.

Save the spreadsheet, and close it.

In the above examples, we started from a precisely known expression
such as y = a4 + a;x, added Gaussian noise, and then extracted from the data
the estimates gy ¢,1c and a; cq1c- This allowed us to judge how closely we can
reconstruct the true values of a, and a,. In practice, however, the experi-
menter has no such luxury, since the true parameter values are generally not
known, so that we will only have parameter estimates. In practice, then,
there is little need to distinguish between the true parameters and their esti-
mates, so that from now on the subscripts calc will be deleted whenever that
can be done without introducing ambiguity.

Finally, aword of caution. In science, we usually have theoretical models to
provide a basis for assuming a particular dependence of, say, y on x. Least-
squares methods are designed to fit experimental data to such ‘laws’, and to
give us some idea of the goodness of their fit. They are at their best when we
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have a large number of data points, justifying the statistical approach.
However, they do not guarantee that the assumed model is the correct one.
Always plot the experimental data together with the curve fitted through
them, in order to make a visual judgment of whether the assumed model
applies. And always plot the residuals, because such a plot, by removing the
main trend of the data, is usually more revealing of systematic rather than
random deviations than a direct comparison of experimental and reconsti-
tuted data. A plot of the residuals may show the presence of non-random
trends, in which case the model chosen may have to be reconsidered.

Least-squares methods are usually favored over more subjective methods
of fitting experimental data to a mathematical function, such as eyeballing
or using French curves. However, the least-squares method is not entirely
objective either: one still has to make the choice of model to which to fit the
data. Least-squares fitting of data to a function gives the best fit to that
chosen function. It is your responsibility to select the most appropriate func-
tion, preferably based on a theoretical model of the phenomenon studied.
Absent theoretical guidance, one is most often led by Occam’s parsimony
rule according to which, all else being equal, the simplest of several satisfac-
torymodels is considered preferable.

Looking at the data

It is always useful to inspect the data visually, as plotted in a graph, rather
than to just let the computer analyze them. The four data sets shown in Table
2.8-1 were carefully crafted by Anscombe (Am. Statist. 27#2 (1973) 17) to
illustrate this point. Below we will fit all four data sets to a line y= a, + a;x,
with the usual assumption that all errors reside in y.

Instructions for exercise 2.8

1

Recall the spreadsheet Line of the previous exercise. We will now make a copy of it to
use here.

Right-click on the name tab Line, then click on Move or Copy. This will open the Move
or Copy dialog box.

In this dialog box, click on Create a Copy, and in the window Before Sheet click on the
spreadsheet you want to copy (here: Line). Click OK.

Automatically, the new copy will be called Line [2]. Rename it Anscombe.

5 Because we will not need any artificial noise, we simply put the noise amplitude in cell

C2 to zero. The noise in C9:C58 then does not affect the analysis.

Enter the data from Table 2.8-1 in a block to the right of the region already used, e.g., in
J1:Q11. Note that columns for X are the same for the first three data sets, so that you can
copy them to save time and effort.
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Table 2.8-1: Four sets of x, y data pairs.

Dataset#1 Dataset#2 Dataset#3 Dataset#4
X y X y x y X y
10 8.04 10 9.14 10 7.46 8 6.58
8 6.95 8 8.14 8 6.77 8 5.76
13 7.58 13 8.74 13 12.74 8 7.71
9 8.81 9 8.77 9 7.11 8 8.84
11 8.33 11 9.26 11 7.81 8 8.47
14 9.96 14 8.10 14 8.84 8 7.04
6 7.24 6 6.13 6 6.08 8 5.25
4 4.26 4 3.10 4 5.39 19 12.50
12 10.84 12 9.13 12 8.15 8 5.56
7 4.82 7 7.26 7 6.42 8 791
5 5.68 5 4.74 5 5.73 8 6.89
7 Import the first data set into the data analysis region, e.g., into block A9:B19. To do this,

10

11

12

13

14
15

activate blockJ1:K11, copy it with Ctrl + c, activate cell A9, and paste using Ctrl + v.

Now erase all datain A20:H58, because these were not overwritten. Bingo! You will see
theleast-squares analysis of the newly reported data set in row 2. A quick check: make
sure that N in cell C5 shows the proper value, 11.

Note down the values of the parameters ag caic, a1, caler Ty Tagy AN 0, -

Verify your results with the Regression routine (which you can place, say, in cell J13),
and also note down some of the other statistical parameters, such as the correlation
coefficient (‘Multiple R’) and its square (‘R Square’).

Plot the data, and their residuals, On this Sheet. This will allow you to see all results
(two plots each from four data sets) simultaneously, on the very same sheet. In order to
accommodate eight graphs on one sheet, use the methods described in the second
paragraph of section 1.10.

Now analyze the second data set, by copying block L1:M11 to A9. Row 2 will immedi-
ately provide the new values for the parameters a, caic, 0y and oy, (although you might
hardly notice it, because they will be quite similar). On the other hand, the Regression
routine does not automatically update, and must therefore be called in again.

Since you have noted down the results of the earlier regression analysis, just override
it and write the new results over the old ones, in J13.

Note down the parameters, and plot the data and their residuals. Place the new graphs
close to the earlier ones.

Repeat this process until you have analyzed all four data sets.

List the numerical results obtained.
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The four data sets in this problem were selected by Anscombe (1973) to
have the same values for their slopes a, (= 0.50), their intercepts a, (= 3.00),
the sums of the squares of their residuals % (y - ycalc)2 (=1.53), their standard
deviations oy, (=1.11), Tay (=0.118),and Tap (=1.12), as well as their correla-
tion coefficients r (= 0.816). By all these criteria, then, they fit the same
equation of a straight line equally well. However, visual examination of the
graphs, or of the residual plots, yields a quite different answer: only set #1
reasonably fits a straight line. In other words, the statistical analysis in terms
of ‘summary’ statistics does not address the validity of the assumed model,
and can produce results regardless of whether or not the model is appropri-
ate. In the present case, the first data set reasonably fits the assumed model
of alinear dependence, the second set should be fitted to a parabola instead
of to a line, while the third and fourth sets both contain an intentional
‘outlier’. Direct observation of the graphs before the analysis, and/or of the
residuals afterwards, can often help us reject clearly inappropriate models.

The take-home message of this example is that a quick look at the original
data (and, for more subtle differences, a quick look at the residuals) is often
much more informative than the numerical values of the statistical analysis.
A glance at the graphs can reveal a trend in the deviations from the model,
and may suggest that the model used is inappropriate to the data, thereby
sending you back to reconsidering the theory behind the phenomenon
studied, or the method used to acquire the data. That theory may need to be
modified or extended before you can benefit from a statistical data analysis,
or a defect in the data acquisition method may have to be corrected. As is
said in computer jargon, ‘garbage in, garbage out) i.e., the quality of the
results obtained by any computer analysis depends on the quality of the
input data and, we might add here, on the appropriateness of the analysis
model used. If the input data are of poor quality, no amount of statistical
analysis can make them whole. Likewise, if the model used is inapplicable to
the data, statistics cannot help. Just imagine trying to fit the coordinates of
the numbers on a clock face to a straightline.

In short: it is seldom useful merely to analyze data without a thorough
understanding of what the model used means or implies, and without a
visual verification that the model is appropriate to the experimental data.
Mindless application of statistical rules is no guarantee for valid conclu-
sions. Always graph your data and their residuals; it may make you recon-
sider the experiment, or its interpretation.

What is ‘normal’?

So far we have used the Gaussian distribution as our paradigm of experi-
mental imprecision, because Excel makes it so readily available. The
Gaussian distribution has indeed become the norm in much of science, as
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Fig.2.9-1: The fraction fof molecules in an ‘ideal’ gas at a given speed v, in meters per
second.
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Fig.2.9-2: The fraction fof molecules in an ‘ideal’ gas at a given speed v, as in Fig. 2.9-1,
and (colored curve) its mirror image (mirrored around the maximum value of f) to
emphasize the asymmetry of this distribution.

reflected in the fact that it is often called the normal distribution. The reason
for its popularity, however, should be clearly understood: it is not that the
Gaussian distribution is always, or even most often, followed by experimen-
tal data. We usually do not take the time to test the nature and distribution of
the experimental imprecision, and the assignment is therefore more often
based on hope or faith than on experimental evidence. There are several
reasons that explain why the Gaussian distribution is so popular: it provides
a convenient mathematical model, and it is usually close enough to approxi-
mate the actual distribution of errors or experimental imprecision.
Moreover, a Gaussian distribution provides an optimistic estimate, because
the assumption of a symmetrical distribution makes the imprecision look
small. It also helps that a Gaussian distribution is quite compact: it has fewer
far-out points than, e.g., a Lorentzian distribution would have. However, the
following two examples should give us pause.
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The kinetic theory of an ideal gas leads directly to an expression for the so-
called root-mean-square velocity v of the gas molecules, viz.

v=V3kT/m=\3RT/M (2.9-1)

where k is the Boltzmann constant, T'is the absolute temperature, m is the
molecular mass, R is the gas constant and M is the molecular weight in
Daltons. The Maxwell-Boltzmann distribution also provides an expression
for the fraction of the gas molecules at any particular velocity,

o[ m 2/3 — mv?
f) =47v (ﬁ") exp[ SRT } (2.9-2)

Figure 2.9-1 shows that a plot of f(v) versus v according to (2.9-2) has the
general shape of a bell-shaped curve, and therefore resembles a Gaussian

distribution. However, a more careful comparison indicates that the curve
representing (2.9-2) is not quite Gaussian. Specifically, the distribution of
molecular velocities is asymmetrical, with a ‘tail’ at high velocities. This
asymmetry is more apparent in Fig. 2.9-2, where a colored line shows the
same curve in reverse, mirrored around its maximum. For a symmetrical
curve, such a mirror image would overlay the original curve; for an asym-
metrical curve, it emphasizes the asymmetry. The parameters used in Figs.
2.9-1and Fig. 2.9-2 are specified in the spreadsheet exercise.

Here, then, we have the simplest of theoretical situations (so that nobody
can argue that we did not take a statistically valid sample) involving random
thermal motion, and already we find that the velocities of the gas molecules
only approximately follow a Gaussian distribution.

‘Unfair,’ I hear you mutter under your breath, ‘velocities have a lower limit
of zero but lack an upper limit, so it is no wonder that they exhibit an asym-
metrical distribution.” True enough, but this also applies to many other
quantities, such as absolute temperature, mass, concentration, and absor-
bance. The point here is not why a number of distributions are decidedly
non-Gaussian, but thatthey are.

Instructions for exercise 2.9

1 Thesolid curve in Fig. 2.9-1 shows (2.9-2) for R=8.3143J mole ' K™! (1] = 1 m?kg
mole™' sec?K™), T=300Kand M=30Da (1 Da=1gmole™! = 102 kgmole™) so that m
= M Navogadro = 0.03/(6 X 10?%) = 5 X 107*° kg. The value of Mis appropriate for air
molecules: M =28 Da for N,, M= 32 Da for O,.

2 Openaspreadsheet.

3 Incell Al depositalabel, such asv.

4 In cell A3 deposit the value 0, in cell A4 the instruction = A3 + 0.5, then copy this
instruction and paste itin cells A4:A83. This will generate v =0 (0.5) 40, i.e., numbers in
the range from 0 to 40 with increments of 0.5.
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In column B calculate the corresponding values for f(v) as a function of v.

6 Byinspection, find the approximate location of the maximum in the curve; it should lie

10

11

12

closeto v=13.

Temporarily expand the v-scale around that maximum in order to get a better esti-
mate. In the present example it is sufficient to expand the scale between v = 12 and
v= 14 with increments of 0.1.

You will then see that the curve has a maximum close to v=12.9.

Make the intervals symmetrical around that maximum, e.g., by usingin A3 the value
0.4 instead of 0, so that column A now contains v= 0.4 (0.5) 40.4.

Copy the contents of column B for f(v) and special paste its values in column C, but
starting below where column B ends, i.e., in cell C85.

In A85:A136 compute 25.9 (— 0.5) 0.4, by depositing the value 25.9 in A85, and the
instruction = A85-0.5 in cell A86, and by copying this instruction down to row 136.

Highlight the block A3:C136, then plot the contents of columns B and C versus that of
columnA.

Our second example will show another reason why we should be careful
with the assumption of a ‘normal’ distribution. Consider the weight of
pennies. We usually assume that all pennies are born equal, but some may
experience more wear than others (reducing their weights somewhat) while
others may have been oxidized more (thereby increasing their weights).
There is no a priori reason to assume that the weight loss by abrasion will be
the same as the weight gain by oxidation (since abrasion and oxidation are
rather independent processes), and therefore there is no reason to assume
that the final distribution will be symmetrical, as in a Gaussian distribution.
But that is not the main point we want to make here. When you actually
weigh individual pennies, you will find that most of them weigh about2.5 g,
but once in a while you may encounter a penny that weighs well over 3 g. Say
you weigh 10 pennies, and their weights are as follows: 2.5136 g, 2.5208 g,
2.5078 g, 2.4993 g, 2.5042 g, 2.5085 g, 2.5136 g, 3.1245 g, 2.5219 g, and
2.5084 g. What weight should you report?

You might just use (2.2-1) and (2.2-2) and calculate the weight as 2.57 =
0.19 g. Or you might reason that the eighth measurement is so far off that it
should be excluded as an ‘outlier’, in which case you would obtain 2.511 *
0.007 g. The former result would seem to be the more honest one, because
the heavy penny does not look much different from the other ones, and
reweighing confirms the various weights. On the other hand, disregarding
the heavy penny yields a result that certainly ‘looks’ much better, because it
has a considerably smaller standard deviation. Which of these options
should you choose?

Neither choice is correct. Look more carefully at the pennies, and you will
find that the heavy one was minted in or before 1982, the lighter ones after
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that date. And if you were to dissolve the individual pennies in, say, concen-
trated nitric acid, and then were to analyze for their constituent metal ions,
you would find that the heavy penny contains mostly copper, while the
lighter ones are mostly zinc, which is a lighter metal, and therefore makes a
lighter coin.

Indeed, the US government switched over from copper to copper-clad
zinc when the value of a penny became less than the cost of the copper
needed to make it. The assumption that all pennies are minted equal is
therefore incorrect: pennies follow at least two different weight distribu-
tions, one for old, copper pennies, the other for the more recent, zinc ones.
And, yes, there are still others, such as the steel pennies issued during World
War II. But those you would have recognized immediately as different by
their color.

Mixing the two distributions yields arbitrary results, because the average
weight reflects what fraction of older pennies is included in the sample, and
that fraction may depend on the source of the pennies: did they come from
the bank (which usually issues new pennies), from your pocketbook, or from
your older sister’s penny collection? Arbitrarily throwing out the heavy ones
is also incorrect. The only correct approach is (1) to recognize that there is a
problem, (2) to identify its source (which in this case is relatively easy,
because the year of minting is printed on each penny), (3) to report that
there are two different types of pennies involved, and (4) to give the average
weights and the corresponding standard deviations for both distributions.
And if you don’t have the time, resources and/or energy to collect enough
old pennies to report a meaningful average weight for the heavy ones, at
least mention that your result is valid for recent pennies, and that an older
one was found to be much heavier.

Discussions of statistics often include a section on outliers. You have just
read such a section, although it did not have that label, and certainly did not
include a set of ‘criteria’ for outlier rejection. By definition, outliers are those
results that do not seem to fit within the assumption that all experimental
data obey a single, ‘normal’ distribution. Some outliers will result from out-
right errors, such as inadvertently exchanging the place of two numbers as
you note down a weight, or experimental artifacts, such as the effect of a
power glitch on the reading of an electronic instrument. The existence of
such outliers may tempt you to reject all outliers. Please resist that tempta-
tion: many outliers reflect perfectly respectable measurements, of a phe-
nomenon that just does not happen to follow a single, Gaussian
distribution. We have just given two examples of such behavior. The distri-
bution of molecular velocities in an ideal gas does not quite fit a Gaussian
distribution, but instead exhibits an asymmetric distribution. And the
penny weights show two distinct distributions rather than a single one. In
general, then, there is no justification to reject outliers without good cause,
and the mere fact that they are outliers, no matter how far off, is in itself
insufficient cause: by that criterion, the heavy penny would have been
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rejected. As a chemist, you may sometimes have to cook your chemicals, but
you should never cook your books. Do not let outliers make liars out of you.

After the above examples, the reader may well ask why it is that almost all
natural scientists routinely use standard deviations and other measures
based on a Gaussian distribution. And why these same assumptions are also
used in most of the remainder of this book. For the answer we return to
section 2.1, where we saw that the precise distribution of the experimental
deviations can be observed only when we take a very large number of repeat
measurements. We seldom take of the order of 10000 repeat measurements;
if we take only 100, we would not be able to tell from the data whether the
underlying distribution is precisely Gaussian or only approximately so, as
you will see by comparing Figs. 2.1-2 and 2.1-4. But this is an argument that
can easily be inverted: even for a quite large number of repeat measure-
ments, such as 100, the precise distribution is really immaterial. This is why
the Gaussian distribution, with its well-established formalism, is commonly
used, and justifiably so. As long as the actual distribution more or less
resembles a bell-shaped curve, it is usually not worth the quite considerable
effort required to establish and use a more appropriate distribution for each
particular system being studied, because (except for very large data sets) the
actual deviations do not yet adhere closely enough to such a distribution to
make a perceivable difference. However, there are times when it is danger-
ous to assume a single Gaussian distribution, namely when evidence to the
contrary stares us in the face, as it does in the case of outliers.

Poissonian statistics

In section 2.1 we already indicated that some types of measurements follow
other than Gaussian types of statistics. Here we will briefly illustrate
Poissonian statistics. These are in general called for whenever the experiment
is a continuous one (e.g., it measures some parameter as a function of time )
yet its experimental result is quantized, as it is, e.g., in the measurement of
radioactivity, in the opening and closing of ion-conducting channels in lipid
bilayer membranes, or in single-photon counting. What all these have in
common is that the outcome of the experiment is discrete rather than contin-
uous: aradioactive nucleus is either in its original state or has decayed, an ion
channelis either open or closed, a photon has either been counted or not.

The Poisson distribution describes the probability Py(#) that, in a time
interval 7, N discrete events (such as radionuclide disintegrations, openings
of a individual ion channels, or photon detections) will have taken place.
That probability is

(ADNe

Py() =N (2.10-1)

where A is thelikelihood of such an event occurring per unit time.
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lambda * tau

Fig. 2.10: The first five terms of the Poisson distribution (markers). The connectingline
segments are drawn merely to indicate which points have the same N-values.

As can be seen in Fig. 2.10 this is a decidedly asymmetrical distribution.
Moreover, since the outcome can only assume discrete values, the
Poissonian distribution is a collection of points rather than a curve. Yet
another difference between the Gaussian and Poissonian distribution is that
(2.10-1) contains only one parameter, A, whereas the Gaussian distribution
(2.1-1) has two: the average value x and the standard deviation o. The
average value (N) of the Poissonian distribution is

(NY= At (2.10-2)
while its standard deviation is
o=VAr=V(N) (2.10-3)

Consequently, knowledge of N, the number of observed events, automati-
cally implies the corresponding standard deviation. For instance, when 100
radioactive disintegrations have been counted, the standard deviation of
the result is V100 = 10, i.e., the result has a relative standard deviation of
10/100=0.10 or 10%, whereas 40000 events must be measured for the
answer to have arelative standard deviation of 0.5%. These matters are men-
tioned here primarily in order to illustrate that the standard deviation, even
of repeat measurements of the same basic phenomenon, is not always given
by (2.2-2).

How likely is the improbable?

We will now briefly consider a question that is posed with increasing fre-
quency in our society: how probable is the improbable? How likely is it that a
spermicide or a drug used during pregnancy causes a birth defect, that
power lines or portable phones cause cancer, or that working at a computer
monitor causes a miscarriage? While this matter can be explained without
benefit of a spreadsheet (as can almost any topic covered in this book) we
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will use the spreadsheet to illustrate combinatorics. To set the problem we
start with a verbatim quote from a short review by K. R. Foster entitled
‘Miscarriage and video display terminals: an update’ (Chapter 6 in K. R.
Foster, D. E. Bernstein, & P. W. Huber, Phantom Risk, MIT Press 1993):

‘The link between miscarriages and use of video display terminals
(VDTs) became a public issue around 1980 with the reports of clusters of
reproductive mishaps in women users of VDTs.’

‘All together, about a dozen clusters were reported. These included 7
adverse outcomes of 8 pregnancies at the offices of the solicitor general
in Ottawa; 10 out of 19 at the offices of the attorney general in Toronto; 7
of 13 at the Air Canada offices at Dorval Airport, Montreal; 8 of 12 at
Sears, Roebuck in Dallas, Texas; 10 of 15 at the Defense Logistics Agency
in Atlanta; 3 of 5 at Pacific Northwest Bell in Renton, Washington; and 5
in 5 at Surrey Memorial Hospital in Vancouver. The problems included
birth defects, spontaneous abortions, respiratory problems in the new-
borns, Down’s syndrome, spina bifida, and premature birth.

Despite attempts by health authorities to investigate the matter, the
clusters were never adequately explained. I have been able to locate
reports of a follow-up investigation by the US Army Environmental
Hygiene Agency of the cluster at the Defense Logistics Agency (Tezak
1981), and by the Centers for Disease Control (1981) of the cluster at
Sears, Roebuck. Both verified the existence of a cluster; neither estab-
lished any apparent link to the women’s use of VDTs.

The interpretation of a cluster is problematic. Any unexpected group-
ing of problems (a cluster) may indicate some problem of public health
significance. More commonly, investigation by health authorities of a
reported cluster fails to identify a problem that can be remedied by
public health measures. However tragic the outcomes may be to the
people involved, the grouping of cases may have been a statistical event
with no epidemiologic significance. Roughly one pregnancy in five ends
in spontaneous abortion (the reported rates vary widely, depending on
how early pregnancy is diagnosed); roughly 3 children in a hundred are
born with a major birth defect. Simple calculation will show that many
clusters will occur every year among the 10 million North American
women who use VDTs. The issue, so easily raised, took a decade to
resolve.’

Foster then goes on to describe the numerous studies aimed at proving or
disproving a causal relation between use of computer monitors by pregnant
women and birth defects in their offspring, especially the epidemiological
evidence. He concludes that, while ‘one can never achieve complete consis-
tency in epidemiologic studies’ ... ‘they certainly rule out the large increases
inrisk that some people inferred from the clusters.’

The question that will concern us here is the ‘simple calculation’ In other
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words, are the observed clusters to be expected (on the basis of the statistical
chances of spontaneous abortions and birth defects, and the number of
women involved), or do they need an adequate explanation? In order to find
out, we will, for the sake of the argument, assume that Foster’s data are
correct: that 20% of pregnancies end in spontaneous abortions, that 3% of
children born (of the resulting 80% of pregnancies carried to completion)
are born with a major birth defect (hence for a combined total of 20% + 0.03
X 80% = 22.4% of all pregnancies), and that the affected group consisted of
10 million North American women.

We first consider the simplest case: the five out of five women at Surrey
Memorial Hospital. When a single woman has a chance 0f 22.4% or 0.224 of a
problem pregnancy, the chance that two women will both have a problem
pregnancy is 0.2242 = 0.0502 or just over 5%. Likewise, the chance that three,
four, or five women will all have a problem pregnancy is 0.2243, 0.224%, and
0.2245, respectively. We use a pocket calculator or a spreadsheet to find that
0.2245=10.000564 or 0.0564%. When we subdivide the 10 million women
into 2 million groups of five, each group will have a chance of 0.00056 of
having five out of five problem pregnancies. In two million possible groups
of five women we therefore expect 2000000 X 0.000564 = 1128 of such clus-
ters to occur. In this light, it is not very alarming to find that one such cluster
hasbeen reported, when one may expect many more to occur every year just
on the basis of random chance.

The other examples are somewhat harder to calculate, because not all
women in the cluster suffered problem pregnancies. It is here that we must
use some combinatorics, and it is here that we will use the spreadsheet. For
our example we will focus first on the three out of five women at Pacific
Northwest Bell. We will call them Anne, Beth, Christine, Denise, and Elaine,
or A, B, C, D, and E for short. Since all we know is that three out of five expe-
rienced problem pregnancies, but not which ones, we must count the
various ways in which three of the five women can be involved. Here we go:
the ten possible combinations of three specific women out of the group of
five are

ABC, ABD, ABE, ACD, ACE, ADE, BCD, BCE, BDE, and CDE

The probability that three specific women out of five will have a problem
pregnancy (with probability 0.224) and two will not (with a probability of
1-0.224 = 0.776 for a problem-free pregnancy) will be (0.224)3 % (0.776)% =
0.000677 or 0.0677%. As we just saw, the probability that any three women of
the group will experience problem pregnancies will be ten times larger,
because there are ten different possible combinations of three in the group
of five women. Consequently, the chance is 10 X (0.224)3 X (0.776)%> = 0.0677
or 6.77%. Again assuming that we can make 2 million groups of five women
out of the 10 million female workers exposed to VDTs, we have a probability
of 2000000 X 0.0677, or more than one hundred thousand of such clusters
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each year, just by chance. Of course, not all of the ten million women orga-
nize themselves in groups of five, but the point is still valid: given the rather
large prevalence of problem pregnancies, the results for the five women at
Surrey Memorial Hospital were almost certainly a chance occurrence, and
should not be used to imply that VDTs caused the problem.

Now to the combinatorics. The integers specifying how many combina-
tions are possible, such as the number 10 above, can be expressed mathe-
matically. Here we will use an alternative, more graphical approach, called
the Pascal triangle. (Incidentally, this same logic is used in determining the
multiplicity of proton NMR lines for nuclei with spin % such as 'H and 3C.)
In the Pascal triangle, each number is the sum of the two numbers diago-
nally above it; the triangle starts at its top with a single 1. It represents the
coefficients of the various terms in (a+ b)"= a"+ na* b+ + b", where
b=1-a. The m™ coefficient can be expressed mathematically as n! /{m!
(n—m)!}, but the Pascal triangle will be easier to read for most non-
mathematicians. For n= 5, the spreadsheet gives the coefficients 1, 5, 10, 10,
5,and 1for5,4, 3,2, 1, and 0 problem pregnancies respectively.

Instructions for exercise 2.11

N 1 A W N =

10

Open a spreadsheet.

In cell Z1 deposit the number 1.

In cell B2 deposit the instruction = Al + C1.

Copy this instruction to cell C3, where it will read = B2 + D2.

Highlight block B2:C3, then grab its handle (at its right bottom) and drag it to cell C12.

Release the mouse, but keep the area B2:C22 highlighted. Now grab the handle again,
and dragit to cell X12.

Release the mouse, and click somewhere outside the highlighted area. That is it: you
have now computed all terms in the first 11 rows of the Pascal triangle!

If you want to compute more rows of the Pascal triangle, you need to use more than the
top 12 rows and 24 columns of the spreadsheet, while the seed (the value ‘1’ in cellW1)
must be moved to alocation further to the right in row 1. For example, move the seed to
W1 and copy the instruction from B2:C3 to C22, then to AR22, to get the first 21 rows.

The special method of copying the instruction in B2 to the rest of the sheet is used here
merely to keep the unused, interstitial spaces from filling up with zeroes, and thereby
cluttering up the screen. Verify that you will indeed get the same result, but with zeroes
in all the unfilled spaces, by deleting instruction (3), and by then simply copying the
instruction of cell B2 to block B2:X12.

Even when you follow the above instructions (1) through (7), there will still be quite a

few zeroes in the top of this table, which clutter it up. (Note that we are talking here
only about the appearance of things; the actual computation is so simple and so fast
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that we have nothing better to discuss!) Excel does not have an instruction to replace

these zeroes by blanks.

Fortunately, Excel 97 allows you to make them invisible (which amounts to virtually

the same thing) by selecting the command sequence Format = Conditional

Formatting. In the resulting dialog box, select Cell Value s ... equal to ... 0, then press
Format, under the ‘Font’ tab click on Color and select white (or whatever background
color you use), then click OK twice to exit the dialog box. Now all zeroes will be dis-
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played and printed in the background color, which will make them invisible. Sorry, this

handy trick is not available in earlier versions of Excel.

Now that we have the coefficients, we can return to the problem posed
earlier: how extraordinary are the reported clusters, or are they just what one
might expect on the basis of pure chance, with or without video display ter-
minals? The statement in the above quote that ‘the clusters were never ade-
quately explained’ suggests that such an explanation is required, whereas
pure chance neither requires nor has an explanation.

For seven out of eight we have the probability 8 X (0.224)7 X (0.776) =
0.000176, which must be multiplied by 107/8 = 1.25 million for the number
of possible groups of eight that can be formed from 10 million workers. The
resulting probability of observing such a cluster of problem pregnancies is
therefore 220 per annum.

For eight out of 12 we find, similarly, 495 X (0.224)8 X (0.776)* X 107/12 =
948; for seven in a cluster of 13: 1716 X (0.224)7 X (0.776)8 X 107/13 = 8156; for
10 out of 15: 3003 x (0.224)'% x (0.776)% X 107/15 = 179; for 10 of 19: 92378 X
(0.224)19 % (0.776)° X 107/19 = 1578. None of these are found to be rare
events, and they therefore do not require a special explanation in terms of
VDTs or other potential scapegoats. It is clearly the alarmist presentation of
the data (or, to put it more charitably, our tendency to infer a causal relation
even where none exists) that suggests that there is a problem. The combina-
tion of a high incidence of problem pregnancies (22.4%) and a very large
group of women is the reason that these seemingly rare events are, actually,
quite to be expected! Does his give VDTs a clean bill of health? Not necessar-
ily, since they would have to have a quite significant effect before that could
be measured above such a high background ‘noise’ of statistically expected
problem pregnancies. But, perhaps, the efforts of society could be directed
more profitably to bringing down the ‘normal’ rate of problem pregnancies,
instead of spending scarce resources on highly speculative, unproven effects.

Summary

In this chapter we have encountered some of the principles of statistics. In
the first spreadsheet exercise, we explored some properties of the Gaussian
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distribution, which is usually assumed to describe the distribution of
random fluctuations of measurements around their mean values, as long as
a sufficiently large number of such observations is considered. Likewise, we
saw in the second spreadsheet exercise that random noise can be averaged
out, but that doing so again requires a large data set, i.e., much redundancy.
One may not always be willing or able to collect such a large set of observa-
tions, nor would it always be worth the time and effort spent.

In practice, then, we often take a much smaller sample; as a consequence,
the calculated parameters, including their standard deviations, will them-
selves still be subject to random fluctuations, and therefore should be
treated as such rather than as precise values. If you determine the mass of a
precipitate from triplicate weighings, don’tlist the standard deviation of that
determination to five significant figures: it is most likely that the first figure is
already tentative.

In the next two sections we encountered the problem of propagation of
experimental imprecision through a calculation. When the calculation
involves only one parameter, taking its first derivative will provide the rela-
tion between the imprecision in the derived function and that in the meas-
ured parameter. In general, when the final result depends on more than one
independent experimental parameter, use of partial derivatives is required,
and the variance in the result is the sum of the variances of the individual
parameters, each multiplied by the square of the corresponding partial
derivative. In practice, the spreadsheet lets us find the required answers in a
numerical way that does not require calculus, as illustrated in the exercises.
While we still need to understand the principle of partial differentiation, i.e.,
whatit does, at least in this case we need not know howto do it, because the
spreadsheet (and, specifically, the macro PROPAGATION, see section 10.3)
can simulate it numerically.

In section 2.5 we introduced the concept of weighting, i.e., of emphasizing
certain data over others, by assigning individual weights inversely propor-
tional to the variance of each point. In section 3.4 we will return to this
subject, albeit with a somewhat different emphasis.

Section 2.6 illustrated the simplest example of least-squares fitting to a
function, namely that of fitting data to the proportionality y= ax. This is the
equation for a straight line through the origin, and has only one ‘adjustable’
parameter, the slope a. In section 2.7 we then considered the general
straight line with arbitrary intercept, y = gy + a,x, i.e., with two adjustable
parameters, of which the earlier examples, y=7y (= ay), and y= ax (= a;x),
are special cases. Again reflecting the statistical nature of a least-squares
analysis, both of these methods work best when there is a large redundancy
of input data, so that the experimental ‘noise’ is effectively averaged out as
long as it is random. In that respect, our radiocarbon dating example was of
marginal validity, and was used here only to illustrate the method.

We then emphasized the importance of looking at graphs of the data and
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their residuals, because such graphs can often show whether an inappropri-
ate model is used. The moral of this exercise is that least-squares analysis,
while very powerful in fitting data to a known relationship, cannot (and
should not) be used to help select the type of relation to be fitted. That infor-
mation must come from somewhere else, preferably from a sound under-
standing of the theory behind the phenomenon studied.

In section 2.9 we considered the usual assumption that random effects
follow a single, Gaussian distribution. We took a theoretical example of a
random distribution (and what better ‘random’ distribution could you get
than that from the theory of randomly moving ideal gas molecules?), so that
sampling error cannot be blamed for the result. We found what looks like a
Gaussian distribution, but is not quite one. Then we looked at an example
where an obvious ‘outlier’ is a perfectly legitimate member of another distri-
bution. The take-home lesson of that section is: the assumption that impre-
cision follows a single Gaussian distribution is just that, an assumption. It is
often a close approximation, but it is certainly no law of nature.

In section 2.10 we briefly considered another distribution, especially
important for stochastic observations such as made in radiochemistry and
electrophysiology, while in section 2.11 we took a quick look at the likeli-
hood of seemingly unlikely events.

In connection with these later sections it might be well to realize that the
role of statistics in chemistry is, usually, quite different from that in, say, epi-
demiology or sociology. In chemistry we typically start with a known rela-
tionship between a small (and typically known) number of parameters. We
then minimize the role of experimental fluctuations by collecting an abun-
dance of input data, and by using that large data set to determine the few
underlying parameters. The resulting data reduction lessens the effect of the
random fluctuations on the resulting parameters.

In the ‘softer’ sciences, the specific form of the relationship may not be
known or, worse, it may not even be known whether a relationship exists at
all. In that case, the question to be answered by statistics is not how to extract
the best numerical parameters from the data, but how to establish whether
or not a relationship exists in the first place. It is here that concepts such as
correlation coefficients become relevant. In quantitative chemical analysis,
there are few such ambiguities, since the causal relations are usually well-
established and seldom at issue. On the other hand, further statistical meas-
ures such as confidence limits, based on a (seldom experimentally
supported) presumption of a single Gaussian distribution, are more strongly
favoring a particular, mathematically convenient model than seems to be
realistic or prudent for the subject matter of this workbook, and thereby tend
to provide an overly rosy picture of the data. For this reason, statistical meas-
ures beyond standard deviations will not be considered here.

We started this chapter by considering life insurance, and we will now
return to this model. Life or death are, of course, binary options, while time
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is continuous. In principle, the appropriate statistics for life insurance are
therefore based on the Poissonian distribution. Gauss was hesitant to
publish his work on least squares, because he could find no fully satisfactory
justification for it — consequently, he only published what he had found after
Legendre had independently discovered and published it. In retrospect,
there is indeed a much better theoretical foundation for Poissonian statis-
tics, because we now know that mass is quantized, as are most forms of
energy, while time is not.

Fortunately, for a sufficiently large cohort, the Poissonian distribution
approaches the Gaussian one, a general limit more carefully described by
the central limit theorem of statistics. Because of the large individual fluc-
tuations in the human life span, insurance companies must operate with a
large number of subscribers. Under those circumstances they can use statis-
tics to set their premiums so as to provide a useful service to society while
also making a profit.

Clearly, the life expectancies of different groups are different: women tend
to outlive men, non-smokers on average live longer than smokers, etc. There
are clearly genetic as well as behavioral factors involved here: gender is
genetic, smoking is not. When the various subgroups are still sufficiently
large, their subgroup statistics are still meaningful, and their distinct life
expectancies can be established. Such statistical data are only valid within
the context of leaving all other variables constant.

What such statistics cannot do is predict how the average life expectancy
may change with changing circumstances (except retrospectively, which
hardly qualifies as a prediction). For example, despite the fact that life
expectancy is strongly linked to genetics (fruit flies on average have much
shorter life spans that people, while bristlecone pines tend to outlive
people), the life expectancies of people in the developed world have
increased dramatically over the past century, as the result of improvements
in the quality of drinking water, in hygienics, in the availability of sewers and
antibiotics, etc. Such changes primarily affect the bias of the measurements,
rather than their spread.

Statistics can only deal with effects that change the bias after they have
occurred. This is so because statisticians are only able to draw their conclu-
sions by keeping all other factors constant. When such other factors are not
constant, statistics loses its predictive power. From the very beginning of
statistics, this inherent limitation has confused some of its practitioners. For
example, Francis Galton, an early statistician and the developer of the corre-
lation coefficient, also coined the term eugenics, and believed that he could
prove statistically that some races were superior to others. He couldn’t, and
he didn't, but similar, essentially self-serving arguments, dressed up in sta-
tistical clothes to give them a semblance of scientific objectivity, regularly
reappear. For example, statistics showing a racial bias of IQ are sometimes
offered as ‘proof’ of the superiority of one race (typically that of its authors)
over another, implicitly assuming that societal race-dependent biases such
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as in education and in socioeconomic status are either absent or inconse-
quential. There may well be such genetically linked IQ differences, but care-
fully controlled experiments, in which the effects of environmental bias
were minimized, such as in studies of the IQ of German children of black and
white American GI’s, have so far failed to demonstrate them. The difference
in IQ between blacks and whites in the US is about 15%, similar to that
between Sephardic and Ashkenazic Jews in Israel, or between (white)
Catholics and (white) Protestants in Northern Ireland (T. Sowell, Race and
Culture, 1994). If you are interested in such matters, read The Bell Curve (R.].
Herrnstein & C. Murray, Free Press, 1994) and its rebuttal in The Bell Curve
Debate (R.Jacoby & N. Glauberman, eds, Times Books, 1995). The point here
is not the complex relation between IQ, culture, and race, but the unwar-
ranted over-extension of statistical inference.

In this chapter we have considered the random experimental fluctuations
that can be described meaningfully by statistics, thereby yielding estimates
of the precision of the experimental result, i.e., the repeatability of a particu-
lar experiment under precisely the same conditions. The real question one
usually would want to be answered is, of course, that of accuracy, i.e.: how
reliable, how close to the truth, is our answer? Unfortunately, this is a ques-
tion beyond the realm of statistics.

Little can be said in general about systematic error, and the consequent
emphasis in this chapter on the effect of random error might suggest that
thelatter is the more important. However, comparison of results of the same
experimental parameter as obtained by completely different methods
usually indicates the opposite, namely that systematic errors are typically
the more consequential ones. Statistics therefore should be applied, and
interpreted, with a good deal of humility. In no case should precision be mis-
taken for an estimate of accuracy.

The rate constant k of a first-order chemical reaction is the characteristic
parameter of that reaction rate. Such a rate constant has the dimension of a
reciprocal time, and one might therefore be tempted to assume that the
reaction is complete in a time 1/k. This is incorrect. The rate law for a first-
order reaction, say A — products, is [A] = [A],— exp [— k1], so that, far from
being completely consumed, more than one-third of A is still unreacted at
t=1/kor kt=1: [Al;=1/x = [Al ;= €xp[-1] = 0.37 [A];—¢. Now one could define
anew time, say 3/ k (after which the reaction is 95% complete, since exp[— 3]
=0.0498), 4.6/ k (after which it is 99% complete), or 7/k (after which it is
99.9% complete), but since the level of completeness (95%, 99%, 99.9%, etc.)
is essentially arbitrary, and would apply only to first-order kinetics anyway,
no such proposals have found favor in the chemical community. The char-
acteristic parameter k contains the information concerning the reaction
rate, and additional rate-related parameters are neither needed nor useful.
The characteristic parameter for experimental variability is the standard
deviation. Just as 1/k does not indicate completion of the reaction, the
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standard deviation does not indicate the outer limits of the experimental var-
iability. Alternative parameters can be defined in an attempt to more closely
indicate the expected outer limits of that variability. One such measure is the
so-called confidence limit, an unfortunate name that invokes associations
with confidence artists and confidence games. Confidence limits are useful
for indicating the imprecision in results calculated from a limited number of
replicate measurements. As we saw in section 2.2, the samplestandard devia-
tion of a small set of samples is highly variable, and is a poor estimate of the
populationstandard deviation of the underlying distribution.

The confidence limit starts from the estimated sample standard devia-
tion, and multiplies it by a factor ¢ that reflects both the number of measure-
ments made, and the acceptable probability. For example, for a sufficiently
large number of replicate measurements following a single Gaussian distri-
bution, a 95% confidence limit will correspond with 1.96¢, and indicates
that, for such a distribution, 19 out of 20 data can be expected to lie within
those limits. In that case the confidence limit is fo where t=1.96 and o'is the
calculated sample standard deviation. But if the standard deviation is based
on only triplicate measurements, = 4.3, and for duplicate measurements,
t=12.7, representing the much larger imprecision in the result of such a
small number of replicas. For 99% confidence limits one can expect to find
99 out of 100 data within those limits, again provided that we deal with a
single Gaussian distribution and take a sufficiently large number of
samples, in which case t=2.58. For triplicate and duplicate measurements
the corresponding values are t=9.92 and ¢ = 63.7 respectively.

The values of ¢ for a particular percentage and number of replicate data
are readily found in Excel with the function TINV (probability, number of
degrees of freedom), where the probability is the complement of the percent-
age (0.05 for 95% confidence limits, 0.01 for 99%, 0.001 for 99.9%, etc.), and
the number of degrees of freedom is one less than the number of replicate
measurements. The above results for the 99% confidence limits of 1000, 3,
and 2 replicate measurements are therefore obtained with the commands
=TINV(0.01,999), =TINV(0.01, 2), and =TINV(0.01, 1), respectively.

In this book we will not use confidence limits, primarily because they are
of limited usefulness in fitting experimental data to functions, but also
because there is no agreement on what percentage (95%, 99%, 99.9%, etc.) to
use, and the term suggests a non-existing connection with accuracy rather
than with mere experimental repeatability. Still, confidence limits do serve a
useful purpose in emphasizing that statistics based on small numbers of
measurements yield highly imprecise results.

As our final spreadsheet exercises of this chapter we will analyze experi-
mental data published some 140 years ago, reported by]J. D. Forbes in Trans.
Royal Soc. Edinburgh 21 (1857) 135, and quoted in S. Weisberg, Applied
Linear Regression, 2nd ed., Wiley 1985. Forbes suspected a relation between
the logarithm of the barometric pressure, in those days used to determine
altitude in the mountains, and the boiling point of water. The latter would be
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far easier to measure, since a (mercury) barometer was then a bulky, fragile,
and generally mountaineer-unfriendly instrument. He therefore deter-
mined the barometric pressure (in inches of mercury) and the boiling point
of water (in degrees Fahrenheit) at various high places in Scotland and in the
Alps. Tables linking barometric pressure to altitude already existed.

Boiling point Atmospheric Boiling point Atmospheric
of water pressure of water pressure
i/ °F p/mmHg i/ °F p/ mmHg
194.5 20.79 201.3 24.01
194.3 20.79 203.6 25.14
197.9 22.40 204.6 26.57
198.4 22.67 209.5 28.49
199.4 23.15 208.6 27.76
199.9 23.35 210.7 29.04
200.9 23.89 211.9 29.88
201.1 23.99 212.2 30.06
201.4 24.02

Forbes found that there is indeed a linear relation between the boiling
point £, of water and the logarithm of the barometric pressure p. Here are his
data; use them to derive an equation to calculate the barometric pressure p
from the boiling point ¢,. For the resulting imprecision in p assume that #,
can be determined with a standard deviation of 0.1 °E

Instructions for exercise 2.12

0 N & 1 W N R

Open a spreadsheet.

Deposit appropriate column headings, and enter the experimental data.
Add a column in which you calculate log p.

Plot the experimental data points of log pversus ,.

Use aleast-squares fit to find the relation between #, and log p.

In the graph made under (4) show the fitted line.

Also make a graph of the residuals.

Express pin terms of #, including estimates of the resulting imprecision.

As you go through this exercise you will, of course, come upon the one
point that does not seem to fit the line. Forbes agonized about this particular
point, but he did report it, even though he considered it “evidently in error”.
The best thing you can do is to include it as well, or to make two calculations,
one with and the other without the suspect point, and to list both results, in
which case you leave the choice whether to include or reject the ‘outlier’ to
the user.
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In this chapter we will describe some of the more sophisticated uses of
least squares, especially those for fitting experimental data to specific
mathematical functions. First we will describe fitting data to a function of
two or more independent parameters, or to a higher-order polynomial
such as a quadratic. In section 3.3 we will see how to simplify least-squares
analysis when the data are equidistant in the dependent variable (e.g., with
data taken at fixed time intervals, or at equal wavelength increments), and
how to exploit this for smoothing or differentiation of noisy data sets. In
sections 3.4 and 3.5 we will use simple transformations to extend the reach
of least-squares analysis to many functions other than polynomials.
Finally, in section 3.6, we will encounter so-called non-linear least-squares
methods, which can fit data to any computable function.

Multi-parameter fitting

We can expand least-squares fitting to encompass more than one depen-
dent variable. Here we will fit data to an equation of the form y= ay + a; x; +
a, x,. Please note that the method to be used is not restricted to merely two
dependent variables, but can in principle be applied to any number of x;-
values. In practice, the Regression routine of Excel can handle up to 16
different dependent variables. Typically, the different x; represent indepen-
dent parameters, although we will exploit the fact that this need not be so in
section 3.2.

In order to find expressions for the least-squares coefficients for this situa-
tion, we can form the sum of the squares of the residuals, SRR=2(y — ay —
a1x, — axx,)?, and then derive the values of gy, a;,, and a, by setting
d(SRR)/9ay =0, 3(SRR)/da, = 0, and d(SRR)/da, = 0. This yields three simul-
taneous equations that can be solved to yield closed-form solutions for aj,
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ay, and a,. However, the resulting expressions are fairly complicated, even
when written compactly in terms of three-by-three determinants:

ay =
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= Exlxz
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and only somewhat simpler expressions for the corresponding standard
deviations. Even on a spreadsheet, you would not want to evaluate these
when you would not have to. Fortunately, that is precisely the case: you don't
have to. This is so because the standard least-squares routine available in
Excel will work as readily with multiple x;-values as it does with one single x.

We therefore need to give only a very simple example to demonstrate how
this works.

Instructions for exercise 3.1

1 Open an Excel spreadsheet.

2 Inrow 1 enter thelabelsa0 =,al =, a2 =, and na =, and in row 2 some corresponding

numbers, such as 2, 3, 4, and 0.

3 Incell A4 deposit the labely, in cells C4 and D4 the labels x1 and x2, and in cell F4 the

label noise.

4 TIn cell A6 deposit the formula for y = ay + a;x; + a,x, + na*noise, where na stands for
the noise amplitude specified in row 2, and noisefor the Gaussian noise (with zero

mean and unit standard deviation) you will deposit in column E Copy this instruction

some distance down.
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Starting with row 6, in columns C and D deposit some numbers, say, 1,2, 3, ...and 1, 1,
2,2,3,3,...for x; and x, respectively. Make sure that the sequences x; and x, are not
linearly related, otherwise the problem will not have a unique solution, in which case
the program will fail and give you an error message.

In column E starting with cell F6, deposit Gaussian noise. (Select Tools = Data
Analysis, highlight Random Number Generation, click OK, select Distribution Normal,
Mean = 0, Standard Deviation = 1, click on Output Range, then click on the adjacent
window, specify the output range, and click OK.)

7 Make sure that columns A, C, D, and F have equal lengths.

8 Call the Regression: Tools = Data Analysis, select Regression, click OK, specify the

10

11
12
13

14
15

Input Y Range, the Input X Range, and the Output Range (butleave four lines below the
data columns empty for reasons that will soon become apparent), then click OK. You
will find the coefficients of the Intercept, and of the two X Values, together with their
standard deviations, here called Standard Errors.

Compare these results with your values of ay, a,, and a,.

Change the noise amplitude to a non-zero value, say 0.1, and repeat the Regression
analysis.

Later in this chapter you will encounter a weighted least-squares analysis
program. For the latter, the usual, unweighted least-squares analysis is justa
special case, with all the weights set equal to 1. Therefore you can also use
this weighted least-squares program, which you will need later in this
chapter anyway. It is organized differently, because it does not use an input
dialog box, but instead requires a fixed input format: the first column must
contain the y-values, the second the weights, the third (and subsequent)
column(s) the x-value(s). You can leave the weight column empty, or fill it
with 1’s, but you cannot leave it out. This is why, so far, you have left the B
column blank.

Highlight the block of data: the columns for yand w, as well as the two x-columns.
Select Tools = Macro = Macros, then activate WLS1 and press Run.

There you are: you should see the coefficients, and their standard deviations, right
under the data columns.

Compare the results of the two routines.

Save the spreadsheet as MultiparameterFit.
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Fitting data to a quadratic

We will now consider the special case of a multi-parameter least-squares
fitting in which the various x;’s form a power series, i.e., x; = X, X, = x2, etc.
We will illustrate this with a simple example, viz. fitting data to a parabola, y
= ay + a,x + a,x*. Again, the algebraic expressions are cumbersome:

St Xt Xty
ap=|2x* Xx* Jxy|[D (3.2-1)
>xt o dx Dy

a=>x* Dxy Dx D (3.2-2)

a=|>xy >x* >x|[D (3.2-3)

D=|>x* Dx* Dx (3.2-4)
>x* Dx N
and, again, the spreadsheet can handle this problem without any further
ado, as demonstrated by the following exercise. The spreadsheet achieves
this flexibility through the magic of matrices. If you are curious to see how

that works, look at the even more general Weighted Least Squares program
in chapter 10.

Instructions for exercise 3.2

1 Recall MultiparameterFit.
2 Compute the x,-values in column D to be equal to x,2.

3 Use Regression as well as the Weighted Least Squares macro WLS1 to calculate the
coefficients ay, a;, and a,.

4 UseTrendline Polynomial Order 2, using the Option to Display Equation on Chart.

5 Verify that all three routines indeed yield the same results.
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We note that this method can be used for any power law or sum thereof. It
can even be mixed with a multiparameter fit. For instance, one could use it
to fit y to a function such as ay + a;x,* + a, log x, + as\V x3, or whatever suits
your fancy. Keep in mind, though, that these various x-values are assumed to
be free of experimental errors, and that a substantial data redundancy is
needed when a large number of coeflicients needs to be determined.
Moreover, the parameters, though not necessarily mutually independent,
should at least be distinguishable: if you try to fit y=a e?** = a e® a®, no
computer in the world will be able to find unique values for a and ¢, because
there are infinitely many combinations of a and c that yield the same value
for a e. Finally, the larger the noise in the data, the less reliable the results
will be. And, of course, there must be a good theoretical reason to use such a
complicated model in the first place.

Least squares for equidistant data: smoothing and
differentiation

When experimental data are obtained automatically, by an instrument, they
are often equidistant in the dependent parameter, such as time, wavelength,
or magnetic field strength. Many more data points may be collected than are
really needed, but such data may need to be smoothed to remove instru-
mental noise; sometimes, they also need to be differentiated. In such cases,
fitting the data with a moving polynomial is very useful.

In this method, a low-order polynomial, such as a parabola, is fitted to a
small number of contiguous data. The (usually odd) number of data points
included must be significantly larger than the number of parameters defin-
ing the polynomial, i.e., when one fits the data to a parabola, y= a, + a;x +
a,x,, at least five but preferably many more data points should be included.
One then uses the fitted polynomial to calculate the smoothed y-value, or its
derivative, at the midpoint of the polynomial. And it is here that you will
appreciate using an odd number of data, because in that case the midpoint
coincides with an already existing x-value.

Subsequently, the point at one extreme of the data set is dropped, a new
point at the other end is added, and the process is repeated. In this way the
polynomial slithers along the entire curve. Because a low-order polynomial
is fitted to a still relatively small data set, the resulting distortion is often
small even though, in this case, we do not utilize any knowledge regarding
the shape of the underlying curve. The justifying assumption is that the data
do not exhibit structural features on the scale of the length of the moving
polynomial; if they do, then these features will be lost in the smoothing pro-
cedure.

As explained in chapter 8, the least-squares analysis for such an equidis-
tant data set (i.e., with constant x-increments) can be simplified to a set of
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multiplying integers. In a spreadsheet, least-squares smoothing or differen-
tiation are then very easy, as the following exercise will demonstrate. The
method has been discovered and rediscovered repeatedly; in analytical
chemistry it is usually associated with the names of Savitzky and Golay.
Tables of the multiplying numbers, often called convoluting integers, are
available in the Savitzky—Golay paper, Anal. Chem. 36 (1964) 1627 and its
correcting complement, J. Steinier et al., Anal. Chem. 44 (1972) 1906, as well
as in several textbooks (e.g., in Appendix B.6 of my Principles of
Quantitative Chemical Analysis). The principle of the method is explained
in section 8.5. Here we will use convoluting integers for 13-point smoothing
and 13-point differentiation, and will apply them to an artificially noisy
exponential of the form y = y, e .

Instructions for exercise 3.3-1

1 Openanewspreadsheet.

2 Inrow 1 depositlabels for y,, k, and the noise amplitude na, and in row 2 some corre-
sponding values, such as 1, 0.1, and 0.05 respectively.

3 Inrow4, starting with cell A4, deposit the labels t, y, noise, y + noise, smooth, deriv, and
k.

4 Fill column A, starting with cell A6, with the numbers0, 1, 2, ..., 50.

5 In cell B6 calculate yaccording to y = y, €™, and copy this down to B56. This will gener-
ate the theoretical function y, e .

6 In cells C6:C56 deposit Gaussian noise with zero mean and unit standard deviation.
7 Incell D6 calculate y = y, e + na*noiseto simulate a noisy exponential.

8 In column E we will compute a smoothed value of the noisy exponential, using a 13-
point moving parabola. Leave cells E6:E11 blank, because you cannot calculate a
smoothed value in the first (and last) 6 points of the data. In cell E12 calculate the
smoothed value as = (— 11*D6 + 9*D8 + 16*D9 + 21*D10 + 24*D11 + 25*D12 + 24*D13
+21*D14 + 16*D15 + 9*D16 — 11*D18)/143. The coefficients — 11, 0, 9, 16, 21, 24, 25,
24,21,16,9,0,and — 11 as well as the common divider, 143, are taken from a table of
convoluting integers. The above coefficients can also be found at the end of section
9.2b.

9 Copythisinstruction down to cell E50, again leaving six cells (E51:E56) blank. This
should calculate smoothed values of the function.

10 Plot the original, noise-free curve in B6:B56, the noisy one in D6:D56, and the subse-
quently smoothed one in E6:E56, all versus the time in A6:A56. Make sure to include
the missing points, otherwise these points appear time-shifted in the graph. The result
should look like Fig. 3.3-1.
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Fig. 3.3-1: Smoothing a noisy exponential curve. Top: to a noise-free curve (colored line)
was added Gaussian noise, thereby generating the solid data points. Bottom: a moving
13-point polynomial was then used to smooth the latter.

11 In F12:F50 calculate the derivative, using the convoluting integers — 6, — 5, — 4, — 3,
-2,-1,0,1,2,3,4,5,and 6, and the common divider 182 §, where §is the spacing
between adjacent x-values; here, 6 = 1. In other words, the formula in F12 should read
= (= 6*D6 — 5*D7 — 4*D8 — 3*D9 — 2*D10 — D11 + D13 + 2*D14 + 3*D15 + 4*D16 +
5*D17 + 6*D18)/182.

12 You could compare this derivative with its correct value by calculating the latter in
column G as — ky, e ™. Better yet, calculate kas the ratio of the derivative obtained and
its correct value, obtainable in cell G12 as = F12/B12. Copy this instruction down to
G50, also compute the average, = AVERAGE (G12: G50), and compare these results
with the value of kin row 2.

13 Save the spreadsheet as NoisyExponential.

The smoothing indeed removes some of the noise, but by no means all of
it. Moreover, it drops the beginning and end of the curve. If we had used a
longer polynomial of, say, 25 contiguous points, a smoother curve would
have resulted, but more points would have been lost at the curve extremes.
Moreover, use of a longer polynomial involves an enhanced risk of system-
atic distortion, since the method assumes that all those 25 contiguous data
points fit a parabola, which they do not quite. In general, the more points we
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use for smoothing, the smoother the result will indeed look, but the more we
risk distorting the underlying curve. With truly experimental data we cannot
see that so clearly, because we do not know the underlying curve. This is why
an experiment with artificial noise added to a known curve can be instruc-
tive.

A similar conclusion follows from a comparison of the calculated deriva-
tive with the correct one. The k-values obtained near the beginning of the
curve are obviously more reliable than those from the tail end, where any
theoretical decay is masked by the noise. Averaging all k-values is therefore a
bad deal, since it indiscriminately mixes reasonably good data with lower-
quality ones. In general, taking the derivative of noisy data is a quite
demanding test, except when we know specifics about the function that we
can exploit. In section 3.4 we will utilize the fact that the underlying curve is
asingle exponential to fit these same noisy data, using a least-squares criter-
ion, and thereby extract a reliable value of k. Then you will be able to judge
for yourself which is the better way.

The above example illustrates the quantitative limitations of so-called
‘blind’ smoothing or differentiating a curve with a moving polynomial. (The
term ‘blind’ refers to the fact that no information regarding the nature of the
underlying curve is used.) However, the method can be useful for qualitative
applications, such as smoothing a noisy curve in a graph. We will demon-
strate this in the next exercise, inspired by Press & Teukolsky (Comp. Phys. 4:6
(1990) 669), in which we simulate a spectrum containing Lorentzian peaks
of various widths, add Gaussian noise, and then filter the resulting curve.

Instructions for exercise 3.3-2

1 Openanewspreadsheet.

2 Incolumn A deposita heading (such as #) and, in A3:A1002, the integers 1 (1) 1000 to
simulate, say, equidistant wavelengths or wavenumbers.

3 In column B deposit Gaussian noise (Tools = Data Analysis = Random Number
Generation = Distribution Normal, Mean 0, Standard Deviation 1).

4 In column C calculate a noise-free simulated spectrum. For this you may want to use
Lorentzian line-shapes, which are of the formy = 1/[a(x — b)? + c], where bdefines the
x-value at the center of the peak. The spectrum simulated in Fig. 3.3-2 is the sum of five
such Lorentzians. For instance, cell C3 might contain the instruction = 1/($1$3*(A3 —
$J$3) + $K$3) + 1/($1$4*(A3 — $J$4) + $K$4) + - + 1/($I$7*(A3 — $J$7) + $K$7), where
the parameters g, b, and care listed in a parameter table in block I3:K7.

5 InI9depositthelabelna, and inJ9 its value.

6 InD3:D1002 calculate the sum of the noise-free spectrum and na times the noise of
column B.
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Fig.3.3-2: A simulated 1000-point spectrum with five well-separated Lorentzian peaks
of various widths, without (a) and with (b) Gaussian noise, and the noisy spectrum after
filtering with a 25-point smoothing polynomial of (c) first-order, (d) third-order, and (e)
fifth-order respectively. Parameters used for the simulated spectrum: a; = 0.001,

by =300, c; =1, a,=0.003, b, =600, c; =1, a3 = 0.01, b3 =750, c3 =1, a, = 0.03, by = 850,
¢y =1,a5=0.1, b5 =925, c5 = 1,na = 0.1. Curve (f) shows the fit of the same noisy data set
(b) after using Barak’s adaptive-degree polynomial filter for a 25-point moving polyno-
mial of order between 0 and 10.
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7 InH3:H7 depositthenumbers 1 through 5, and inI1:K1 the column headingsa, b, and c.

8 Deposit numerical values in block I3:K7. You may want to start with those listed in the

10

11

12

13

14

legend of Fig. 3.3-2, and then (after you have made the on-the-sheet graphs) vary those
parameters to your taste.

Make on-the-sheet graphs of C3:C1002 and D3:D1002 vs. A3:A1002.

We start with the simplest possible filter, one that merely averages a number of adja-
cent data to reduce the noise. Go to cell E15, and there deposit the 25-point averaging
formula = (D3 + D4 + D5 + ' + D27)/25. Copy this instruction down to E991.

Add a graph of the so filtered spectrum. For reference you may want to include in that
plot either the noise-free curve (as in Fig. 3.3-2) or the noisy one.

For the second filter, in cell F3, we use instead the formula = (— 253*D3 — 138*D4 —
33*D5 + 62*D6 +  — 253*D27) /5175, where we use the convoluting integers for a
cubic 25-point smoothing filter: —253, —138, —33, 62, 147, 222, 287, 342,387,422, 447,
462,467,462,447,422,387,342,287,222,147,62, —33, — 138, and —253. Note that
these numbers are symmetrical around the middle of the set. The corresponding nor-
malizing factor is 5175. Again, copy this formula to F991, and plot the resulting curve.

Finally, in column G, calculate a third filtered curve, this time using the convoluting
integers for a fifth-order 25-point smoothing filter: 1265, —345, —1122, —1255, —915,
—255,590, 1503, 2385, 3155, 3750, 4125, 4253, 4125, 3750, ..., —345, 1265. The normal-
izing factoris 30 015. Again plot the data.

Save as NoisySpectrum.

Figure 3.3-2 shows typical results. The simple first-order averaging filter,
panel (c) in Fig. 3.3-2, is most effective in reducing the noise, but also intro-
duces the largest distortion, visible even on the broadest peaks. This is
always a trade-off: noise reduction is gained at the cost of distortion. The
same can be seen especially with the narrower peaks, where the higher-
order filters distort less, but also filter out less noise. In section 10.9 we will
describe a more sophisticated filter, due to Barak, which for each point
determines the optimal polynomial order to be used, and thereby achieves a
better compromise between noise reduction and distortion.

Weighted least squares

The least-squares analysis we have encountered so far works with a special
class of functions, namely polynomials. (In chapter 2 we considered the sim-
plest polynomials, the functions y= a,, y = a;x, and y = gy + a,x; in sections
3.1and3.2weusedy=day+ a; X, + ay X, and y = ay + a, x + a, x? respectively.)
Many types of experimental data can be described in terms of polynomials.
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However, there are also many types of data that do not readily fit this mold. A
prime example is a single exponential: we saw in the preceding section that
fitting an exponential to a quadratic is not very satisfactory. Moreover,
invoking higher-order terms does not really help.

Consider the concentration of a chemical species reacting according to a
first-order irreversible reaction A — B with reaction rate constant k. In this
case the concentration of A is described by [A] = [A], exp(— kt) where [A] is
the concentration of species A, tis the time elapsed since the beginning of
the experiment (at = 0), and [A] is the corresponding initial concentration,
[A]y = [A]l;= o. Imagine that we follow the concentration of A spectrometri-
cally, and want to extract from the resulting data the initial concentration
[A]p and/or the rate constant k. In that case we must fit the exponential to a
polynomial. Using a least-squares polynomial fit, this is no simple task.

On the other hand, it is easy to fransform the exponential into a polyno-
mial, by simply taking the (natural) logarithm. This yields the equation of a
straight line, In[A] =In[A]y — kt, which is of the form y=ay + a,x with y=
In[A], ag = In[Aly, a; = — k, and x = t, the ‘independent’ variable. There is only
one minor problem: in analyzing In[A] =In[A], — kt instead of [A] = [A],
exp(— kf) we minimize the sum of squares of the deviations in In[A] rather
than those in [A]. When the dominant ‘noise’ in [A] is proportional to [A],
minimizing the sum of the squares of the deviations in In[A] would indeed
be appropriate. However, it will not be so when the magnitude of that noise
isindependent of [A]. In the latter case we can still use the transformation as
long as we include with each input value y; a weight wj; to transform the noise
aswell.

The weights depend on the particular transformation used. In general,
when the experimental data y are transformed to some new function Y (as in
the above example, where Y=1n y), the corresponding global weight w will
be given by

1

LU:W (3.4-1)

Weighted least-squares analysis is also called for when we must average
data of different precision. In section 2.5 we already encountered the need
for weighting of the experimental data when their individual standard devi-
ations are known. In that case the individual weights are simply the recipro-
cals of the variances of the individual measurements,

w=—; (3.4-2)

In general, then, there are two quite different reasons for using weighted
least squares: (a) global weights may be required when the data analysis
involves a transformation of the dependent variable, while (b) individual
weights are needed when we consider data of different (but known)
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precision. The variances of individual data are seldom known, which is why
the use of global weights is the more common. However, when both (a) and
(b) apply simultaneously, we have the general expression for the total
weights

1

W= dvidy? (3.4-3)

of which (3.4-1) and (3.4-2) are the special cases for equal variances o; or
constancy of dY/dyrespectively.

We saw in sections 3.1 and 3.2 that the mathematical expressions to fit
data to a multi-parameter function, or to a higher-order polynomial such as
a quadratic, can be quite daunting, but that they are readily accessible when
the spreadsheet has built-in facilities to do the least-squares analysis. Excel
does not have comparable built-in capabilities for weighted least-squares
analysis. However, it does have the facility to accept add-in programs coded
in a language Excel understands, VBA (= Visual BASIC for Applications),
and you may already have used the added Weighted Least Squares in sec-
tions 3.1 and 3.2. If you are curious how such an add-in program works,
consult chapter 10, where it is described in detail, including its complete
‘text’.

The example we will use below is again that of an exponential decay: y = y,
exp(— kt). We already generated such a signal, in NoisyExponential, without
and with added Gaussian noise. For the exponential y = y, exp(-kf) we have
Y=Inyand w=1/(dY/dy) = y%

Instructions for exercise 3.4

1 Recall NoisyExponential.

2 Add column headings in row 4 forY, w, t, yw, and ynw.

3 Incell H6 deposit ‘= LN(D6)’,in cell 16 ‘= D6/2’, and in cell J6 ‘= A6’, then copy these
three instructions down to row 56. (We here repeat the column for t in order to fit the
fixed format required by the Weighted Least Squares macro.)

4 Highlight these three columns, starting at H6 and extending it down as far as column H
contains numbers. At a given moment, noise will make ynegative, at which point Y
cannot be calculated, which will show as #NUM!. That point, and the data followingit,
cannot be used, because they are clearly biased towards positive values of y, without
the negative y-values contributing to Y.

5 Call theWeighted Least Squares routine (Tools = Macro = WLS1).

6 Also call the Regression analysis, and apply it to the same data set. (You could also use
the Weighted Least Squares analysis for this, after copying the values in columns H and
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J to, say, columns M and O, provided these are not used otherwise, and column N is
empty. If you were to do the unweighted analysis in the block starting at H6, you would
have to erase the data in column I, and you would overwrite the earlier results.)

In order to compare the results with the theoretical values in row 1, use the spread-
sheet to take the antilogs (= 10A...) of the coefficient and standard deviation of the
intercept, because both routines yield Y, = In y, rather than y .

In K6:K56 and L6:1L56 calculate the curves y,, and y,,,, for the weighted and unweighted
curves, each reconstituted with the parameters provided by the weighted or
unweighted least-squares fittings respectively, then plot these together with the data
in B6:B56 and D6:D56. They might look like Fig. 3.4.

Because no two sets of noise are alike, your plot will be different, but most
likely the conclusion will be similar: for this type of data, where the noise is
constant, a weighted least-squares fit is far superior to an unweighted fit. The
numerical data tell the same story: in this particular example, the weighted
least-squares fit yielded a slope — k of —0.0991 = 0.0036, and an intercept In
Yo=—0.0214 = 0.0224 so that y, = 0.952 * 5.3%, whereas the unweighted fit
gave — k=-0.1181 £ 0.0076, In y,=0.0800 = 0.1363 hence y,=1.20 = 37%.
However, the opposite conclusion would be drawn if the noise had been pro-
portional to the magnitude of the signal y, and you had not taken that into
account in the weights! You can use the spreadsheet to verify this yourself.
The moral of this exercise is that you need to know something about the func-
tion to which you fit (in order to use the correct transform), and about the
nature of the noise in your data, before you can get rid of most of it. And, as
always, the less noise you have to start with, the better off you are.

0 10 20 30 40 50|

Fig. 3.4: Fitting a noisy exponential curve (points) with unweighted (thin black line) or
weighted (solid blackline) least-squares fit. The underlying, noise-free curve (heavy
colored line) is shown for comparison.
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Another example of weighted least squares: enzyme kinetics

Enzyme kinetics provide a prime example of the applicability of weighted least
squares. Thereasonistwofold: (a) the experiments often have large experimen-
taluncertainties, and are thereforein need ofleast-squares analysistointerpret
them quantitatively, and (b) there are several methods to analyze the data, i.e.,
different ways of linearizing the theoretical expression. When unweighted
least-squares analysis is used, these different analysis methods yield different
results when operating on the very same experimental data! When weighted
leastsquares are used, all analysis methodsyield the sameresults.

The expression for the simplest form of enzyme kinetics was first given by
Henri (Compt. Rend. 135 (1902) 916), but is often named after Michaelis &
Menten (Biochem. Z. 49 (1913) 333), who investigated the same enzyme and
used the same equation. The expression is

Sv
V= k+s
where vis the initial rate of the enzyme-catalyzed reaction, Sis the concen-
tration of its substrate, v, is the maximum rate, and Kis a constant.

One popular way to rectify (3.5-1) is to convert it to the Lineweaver—Burk
form
1 1 K

o4t (3.5-2)
v v, Su,

(3.5-1)

so that a plot of 1/v versus 1/Syields a straight line with intercept 1/v,, and
slope K/ v,,. Another linearization, due to Hanes, is obtained by multiplying
all terms with S:

S § K
—=—+— (3.5-3)
vV Up Up

where a plot of S/vversus Syields a straight line of intercept K/v,, and slope
1/v,,. Typically, the determination of the initial rate vis the dominant source
of experimental uncertainty, and below we will use that as our starting
assumption. We will use a data set from M. R. Atkinson, J. E Jackson, & R. K.
Morton, Biochem. J. 80 (1961) 318, to illustrate the need to use weighted
least-squares analysis in such a case. The experimental data are as follows:

Concentration S of Initial rate vof nicotinamide-
nicotinamide mono- adenine dinucleotide formed,
nucleotide, in mM in micromoles

0.138 0.148

0.220 0.171

0.291 0.234

0.560 0.324

0.766 0.390

1.460 0.493
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The weighting factors needed for the above two cases are different. For the
Lineweaver-Burk plot we have y= v, Y=1/v, and therefore, according to
(3.4-1), w=1/(dY/dy)?2=1/(d(1/p)/dy)?=1/(1/y?»?=y*=v* whereas for
the Hanes plot we find Y= S/vso that w= 1*/S2.

Instructions for exercise 3.5

Open an Excel spreadsheet.
Enter the column headings S, v, 1/v,w, 1/S, S/v, w, and S.

Enter the data in the first two columns, labeled S and v.

B2 W N =

In the next columns, calculate 1/v, w= v, 1/S, S/v, w= v*/S? and copy S from the first
column.

5 Highlight the data in the third through fifth column, and click on Tools = Macro =
Macros = WLS1. The coefficients will appear below the data.

6 Similarly, highlight the data in the last three columns, and analyze them the same way.

7 The Lineweaver-Burk analysis yields slope K/ v,, and intercept 1/v,,. Use the next two
rows to convert this information into the parameters of interest, Kand v,,,. Here, K=
slope / intercept, and v,, = 1 / intercept.

8 Calculate the corresponding standard deviations, either by hand (using the rules of
error propagation through quotients, i.e., via relative errors) or (easier and less error-
prone) with the macro Progression. Note that Progression handles only one parameter
atatime, so that you must apply it separately to Kand v,,. Also note that the weighted
least-squares macro places the standard deviations under the coefficients, whereas
Progression puts them nextto the parameters.

9 Similarly, the Hanes analysis yields slope 1/v,, and intercept K/ v,,, from which you
again compute Kand v,,, and the corresponding standard deviations. Note that the
roles of slope and intercept are interchanged in the Lineweaver-Burk and Hanes plots.
Compare the results of the two approaches.

10 Copy the entire block down.
11 Modifythe just-copied block by replacing all weights by 1’s.

12 Nowrepeat the analysis. Forcing all terms w to 1 will of course yield the equivalent,
unweightedresults.

13 Compare what you got; it should look like Fig. 3.5.

The unweighted Lineweaver-Burk and Hanes plots yield differentanswers
even though they analyze the same data set. On the other hand, when we use
appropriate global weighting factors, both methods yield identical results,
as they should. Need we say more about the importance of proper weight-
ing?
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A B | ¢ | o | E | FfF | & | H |
1 |WEIGHTED: Lineweaver-Burk Hanes
2 S \ 1/v w 1/S S/v w S
3
4 0.138 0.148 6.7568 0.0005 7.2464 0.9324 0.0252 0.1380
5 0.220 0.171 5.8480 0.0009 4.5455 1.2865 0.0177 0.2200
6 0.291 0.234 4.2735 0.0030 3.4364 1.2436 0.0354 0.2910
7 0.560 0.324 3.0864 0.0110 1.7857 1.7284 0.0351 0.5600
8 0.766 0.390 2.5641 0.0231 1.3055 1.9641 0.0394 0.7660
9 1.460 0.493 2.0284 0.0591 0.6849 2.9615 0.0277 1.4600
10
11 Coeff.: 1.4709 0.8398 Coeff.: 0.8398 1.4709
12 St. Dev.: 0.0761 0.0559 St Dev.: 0.0559 0.0761
13
14 K= 0.5710 0.0481 = 0.5710 0.0481
15 vm = 0.6799 0.0352 vm = 0.6799 0.0352
16
17 [UNWEIGHTED: Lineweaver-Burk Hanes
18 S % 1/v w 1/8 S/v w S
19
20 0.138 0.148 6.7568 1.0000 7.2464 0.9324 1.0000 0.1380
21 0.220 0.171 5.8480 1.0000 4.5455 1.2865 1.0000 0.2200
22 0.291 0.234 4.2735 1.0000 3.4364 1.2436 1.0000 0.2910
23 0.560 0.324 3.0864 1.0000 1.7857 1.7284 1.0000 0.5600
24 0.766 0.390 2.5641 1.0000 1.3055 1.9641 1.0000 0.7660
25 1.460 0.493 2.0284 1.0000 0.6849 2.9615 1.0000 1.4600
26
27 Coeff.: 1.7085 0.7528 Coeff.:  0.8500 1.4603
28 St. Dev.: 0.3033 0.0782 St Dev.. 0.0596 0.0818
29
30 K= 0.4406 0.0906 K= 0.5821 0.0522
31 vm = 0.5853 0.1039 vm = 0.6848 0.0383

Fig. 3.5: Spreadsheet for the analysis of the data on the kinetics of nicotinamide
mononucleotide adenyltransferase by Atkinson et al., Biochem. J. 80 (1961) 318. The
results should beread as, e.g., on line 30: K= 0.4406 = 0.0906 for the unweighted
Lineweaver-Burk method, K= 0.5821 * 0.0522 for the unweighted Hanes plot, or, on
line 31, v,, = 0.5853 *+ 0.1039 for Lineweaver-Burk, v,, = 0.6848 = 0.0383 for Hanes.

Non-linear data fitting

So far we have seen that experimental data can be fitted to many functions,
such as a line, a polynomial, or (after transformation) an exponential.
However, there are many more functions for which this does not seem pos-
sible. For example, no way is known to fit y= a, exp(— k1) + a, exp(— k,f) by
using what is called a linear least-squares fit, where the term linearrefers to
the fact that the expression is linear in the coefficients, here a,, a,, k; and k.
(As we have seen, the expressions for y can be quite non-linear in the inde-
pendent parameter x; that is still considered a linear least-squares fit.)
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In order to overcome this limitation of linear least-squares fitting, i.e., its
restriction to a specific type of function, ingenious algorithms have been
developed to fit data to any function that can be described analytically,
using a single criterion, such as minimizing the sum of squares of the devia-
tions between the data and the model. Such routines use a variety of tech-
niques, often including a method of steepest descent as well as a
Newton-Raphson algorithm, to as it were ‘feel’” their way towards that criter-
ion. Excel has several such algorithms in its Solver. Below we will use several
examples to demonstrate both the power, and some of the limitations, of
using Solver.

Some kinetic data

First we will get acquainted with the method by applying it to a set of experi-
mental multi-parameter data from a paper on the kinetics of the thermal
isomerization of bicyclo[2.1.1]hexane by R. Srinivasan & A. A. Levi, J. Am.
Chem. Soc. 85 (1963) 3363, as quoted in N. R. Draper & H. Smith, Applied
Regression Analysis, 2nd ed., Wiley 1981). In order to reduce the tedium of
having to enter 38 data sets, we have used a smaller subset for this example,
leaving out all duplicate measurements as well as all data at 612 Kand 631 K.
The dependent variable yis the fraction of the parent compound remaining
after a reaction time of ¢ minutes, while T'is the temperature of the experi-
ment, in K. The data are as follows:

Reaction time ¢, in min
Temperature T,in K 15 30 45.1 60 90 120 150
600 0.949 0.900
620 0.938 0.877 0.827 0.787 0.696 0.582
639 0.808 0.655 0.425 0.309

You will notice that the temperature range investigated is rather limited,
and that not all possible time-temperature combinations were measured.
Still, the fractions range from 0.3 to 0.95, and there are enough data to work
on.

Instructions for exercise 3.6-1

1 Open an Excel spreadsheet.

2 Incells Al and A2 enter the labels a and b respectively.

3 Incells B1 and B2 depositinitial guess values; 0 and 0 will do for now.

4 Incell D1 deposit thelabel SRR.

5 In cells A4 through E4 place the labels time t, temp T, y(exp), y(calc), and RR.
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In columns A through C, starting in row 6, deposit the data. For example, the first data
set might read 60, 600, 0.949 in cells A6, B6 and C6 respectively, the next data set (in row
7) 120, 600, 0.900, and so on. Enter all 12 data sets.

In D6:D17 calculate values for the theoretical expression used by Srinivasan & Levi,
y=exp{—atexp[— b(1/T—1/620)]}.

In column E compute the squares of the corresponding differences, e.g., in cell E6 use
= (C6 — D6)A2.

In cell E1 deposit the instruction = SUM(E6:E12). This sum of the squares of the differ-
ences between the actual data and the model will be the quantity you will want to be
minimal.

Now callin the troops, with Tools = Solver. In the Solver Parameter dialog box, enter E1
in the top window, push the radio button with Min, and enter B1:B2 in the window
below it, so that you can read the box as ‘Set Target Cell E1 Equal to Min By Changing
Cells B1:B2’. Then push the Solve button.

You will see the numbers in B1 and B2 change, as well as the value of SRRin E1,

and those in columns D and E. After a while the program will come to a halt, announce
thatithas converged on a solution, and ask you whether it should keep that solution,
or put the starting guess values backin B1 and B2. You should find the result a =
0.00385, b= 2.66 X 10*. The value of SRR is 0.00165, down from 1.34 when aand b were
0.

You were lucky in your choice of initial guess values for ay and by. Try again, with ay = 1
and by = 0. Solver will again declare that it has converged on a solution, butit hasn’t:
the values of aand bhave not changed, and SRR is 6.84. If you look at the data in
columns C and D you will see why. For ay = 1, by = 0, the values for y,,. are quite low,
with all but two entries less than 107'%, and those two only 3 X 10~. Even these two
entries have very little influence on the difference (yex, — Yeale)® since the correspond-
ing values for y,y, are atleast 0.8, so that (0.8 —3 X 107)*~0.8> - 4.8 X 107" =
0.6399995, barely different from 0.8% = 0.64. Apparently, when Solver varies either a or
b, it finds insufficient change in the sum of squares of the differences, SRR, and inter-
prets this as evidence for having found a minimum! The tricky part here is not so much
that Solver fails, but that it sometimes (as in this example) announces its incorrect
result with the same aplomb as when it has succeeded. Computers can lie without
blushing.

Try again, this time with ay = 0.6 and by = 0. You might obtain a different result, such as
a=0.00467, b= 0.74, and SRR = 0.448. Judging by the value of SRR, this is not a very
close solution. The disturbing aspect of this observation is that @, = 0.7 or @, = 0.8 with
by = 0 will yield the earlier results, with the much lower value 0.00165 for SRR.

There are many other possible pitfalls in using Solver. For example, in the Solver
Parameters dialog box you may have noticed the Options button. Push it, and you get
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the Solver Options dialog box, which lets you select such parameters as Precision and
Tolerance, and also presents a number of choices. Change the Methods from Newton
to Conjugate, and try Solver again with ay = 0 and by = 0. You will get a = 0.00469,

b= 2.4 x 107, which s clearly an incorrect result judging from the corresponding
value of SRR, 0.45. And by selecting Quadratic Estimate, Central Derivative, and
Conjugate Method, youwill find a = 0.00428, b= 2.24 X 104, and SRR = 0.0098, close
butno cigar.

We now step back, and take a second look at the above problem. It should
not have been treated this way, by just unleashing a non-linear least-
squares routine as if we knew nothing about a and b. The experimental data
are most numerous for 620K, at which temperature the expression y=
exp{—atexp[— b (1/T—1/620)]} reduces to y= exp(— af). The data at 620K
can therefore be fitted with a weighted linear least squares to get the value
of a. (Even b might be found, e.g., from the observations at 60 minutes,
although that is more tenuous because there are so few data.) Only then,
with a good first estimate for a (and perhaps also for b), should we have
used Solver to refine the entire data set. In this way we minimize the risk of
incorrect answers. In the end we will still use Solver, since it will allow us to
include all experimental data in the analysis. In such an approach, non-
linear least-squares fittings are not seen so much as primary tools for brute-
force fitting, but more as aids in refining our answers. Try it out on the above
data set.

Copy the datain C8:C13 to F8:F13, and the label from C4 to F6.

In G8:G13 compute In(yexp), and in H8:H13 the corresponding weights (yexp)z. Label
these columns appropriately.

Copy the datain A8:A13 to 18:113, and the label from A4 to I6. You now have all data at
620K in the proper format for determining a.

Highlight block G8:113, and call Tools = Data Analysis = Regression = Constant is
Zero or, better yet, Tools = Macro = Macros = WLS0, which will yield a = 0.0039 =
0.0001.

You can now determine b as outlined above, or (since thatis a very small data set,
which might therefore not yield very reliable information anyway) return to Solver,
either by fixing a at 0.00386 or, preferably, by using the value found for a as its initial
estimate. (You can fix aby setting B1 equal to =— 115, and by deleting B1 from the list of
cells to be changed in the Solver Parameter window By Changing Cells, which should
now contain B2 only.) Either way you will find a= 0.0039 * 0.0001, b= 2.7 X 1074, and
SRR =0.0017.
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Since we are working in Excel, we should use its graphical facilities, and
plot the data. Ideally we would want to use a three-dimensional plot for
these data, but here Excel is not cooperative. Although Excel advertises that
it has 3-D plots, none of these are true XYZ plots. Instead, at least one of the
two independent axes is used to display categories rather than values. For
example, if you assign the x-axis the values 0, 0.1, — 0.3, 9 and 5, the plot
will show them as such, properly labeled, but in the above order, at equi-
distant intervals! This is just what you may want when plotting profits as a
function of the month, or of the geographic region, without having to
assign a rank number to each month or region, but for scientific applica-
tions it makes no sense. (But then, if it were not for its business appeal,
Excel would not be as powerful, as user-friendly, and as inexpensive as it is
now.) Still, you can use them as long as you have equidistant data.

Back to the question: how do we graph the data? Below is a possible solu-
tion.

Click on the number 8 in the left-most column of your spreadsheet, to the left of
column A. This will highlight the entire row 8. Right-click to get to the Properties, select
Insert, and left-click, to insert a new, blank row.

Do the same in row 15. You have now separated the data into three separate sets, one
for each temperature.

Now plot Yeyxp and yeqic Versus time z. Display the experimental data as points, and the
least-squares fit as aline. Note: make it a smoothline by clicking on thatline, and in the
resulting Format Data Series pick Patterns, then click on Smoothed Line.

In order to label the various data sets, click on the Formula Bar, and type T = 600 K.
Pressing the Enter key will now produce a box with this text in the graph. Use the
mouse to move it to the position you want for it. Make it bold, colored, change its letter
type, whatever. Then copy and paste it to get a duplicate, modifyittoread T = 620 K,
move it in position, etc. Your finished product might look like Fig. 3.6-1.

Save the spreadsheet as [somerization.

A double exponential

As our second example we will use the function y=a;, exp(— k9 + a,
exp(— k,f) to see more clearly, on a noise-free data set, some other limita-
tions of non-linear fitting.
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Fig.3.6-1: The unreacted fraction fof bicyclo[2.1.1]hexane during its thermal isomeriza-
tion, as a function of reaction time fand temperature 7. Experimental data (solid circles)
selected from R. Srinivasan & A. A. Levi, J. Am. Chem. Soc. 85 (1963) 3363. The curves
(colored lines) show the relation y = exp{—atexp[— b (1/T— 1/620)]} with a = 0.0038¢
s and b= 2.6, X 10* K as determined by least squares.

Instructions for exercise 3.6-2

1 Open an Excel spreadsheet.

Make a small parameter table, with the horizontal labels y(data) and y(fit), and the ver-
ticallabels al, k1, a2, and k2.

Use some numbers in the y(data) column (in Figs. 3.6-2 through 3.6-4 we have used a,
=9, k; =2, a,=0.02, and k, = 0.5, but feel free to use other values), and copy those
same numbers into the y(fit) column.

Below this parameter table make space for the label SRR, and for a place to put the
associated number.

Below this, start the actual data table with four columns, labeled t, y(data), y(fit), and
RR respectively.

6 Incolumn tplace the numbers0 (0.1) 10,i.e.,0,0.1,0.2,0.3, ..., 10.

7 Inthe second column calculate y = a, exp(— k; 1) + a, exp(— k,?), using the constants

deposited in the table under y(data).

In the next column make the very same calculation, but this time based on constants
from the next column in the table, labeled y(fit). (Since you have entered identical con-
stants in both columns of the table, you should also see identical numbers being calcu-
lated for the function.)

On the sheet, plot y(data) and y(fit) versus t. Since exponential functions are involved,
select the semi-logarithmic plotin the ChartWizard.
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For the time being set the four constants in the y(fit) column of the parameter table to
zero, which will make the corresponding data in the data table become zero as well.

Compute in the column labeled RR the square of the differences between correspond-
ing values in the second and third columns.

In the placereserved for the value of SRR calculate the sum of the datain the RR column.
Thiswill be your least-squares fitting criterion, to be used in Solver’s Target Cell.

Now call the Solver. Set Target Cell to the value of SRR, Equal to Min, and direct By
Changing Cells to the four values in column y(fit) of the parameter table. Under
Options again select Show Iteration Results.

See whether you can get a solution. Chances are you will get one, which will fit the
beginning of the curve, but notits tail end, see Fig. 3.6-2. In that case, the constants
found for both a’s and for both k’'s may be identical, with a; = a, equal to halfthe a-
value set for the dominant transient in your table.

Solver obviously found coefficients that fit the initial part of the curve, but
has problems with its tail end. Now look at the graph, and keep in mind that
its semi-logarithmic representation makes the tail end look much more
important than it is. In the region Solver fails to fit, the signal is so much
smaller than at the beginning of the curve that Solver is insensitive to the
resulting differences in RR.

Data such as those used here may originate, e.g., from a radiochemical
experiment involving two radioactive species, of which one decays with a
much shorter half-life than the other. In that case the characteristic decay
rate constant of the longer-lived species is often easier to find, by measuring
atlonger times, when the faster process has died out.

10

signal

0.1
0.01

0.001
0.0001 \\

-

0 2 4 6time8 10

Fig.3.6-2: A first attempt to fit a double exponential may fail to find the parameters of
the second exponential when the amplitude of the latter is much smaller than that of the
former. The colored parameters to the left of the graph are those adjusted by Solver.
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Fig. 3.6-3: Fitting the data in the restricted range 6 = t= 10 yields a good fit to the tail end
of the curve, while ignoring the initial part.

Since the data suggest that the second exponential is dominant att = 6, change the
instruction for the computation of SRR to restrict the sum of the squares of the residu-
alstotherange 6 =t=10.

Try Solver again, with all four parameters (al, k1, a2, and k2) in y(fit) set to zero, but
with Solver only adjusting a2 and k2.

You will now obtain a single exponential (a straight line in the semilog plot) which
yields a good fit to the tail end of the curve, while ignoring the initial part of that curve,
asillustrated in Fig. 3.6-3.

Now you may be ready to fit the entire curve, as follows. First, change the computation
of SRR back to encompass the entire curve, fromt = 0 to t = 10. Then use Solver to fital
and k1, butletit notadjust a2 and k2, which should stay as you had found them under
point 16. This makes it impossible for Solver to ignore the tail end, even though the
larger (initial) data make by far the larger contribution to SRR.

Chances are that you will now see a good fit develop for the entire curve. Figure 3.6-4

illustrates some intermediate stages you may encounter with Show Iteration Results.

Once you have obtained a reasonably good fit to both ends of the curve, use Solver one
more time, but only now let it adjust all four parameters simultaneously. Since it will
start with close estimates, it should now produce a good answer. You may have to
repeat Solver several times to get a value like that shown in Fig. 3.6-5.

The above clearly demonstrates that, in using Solver, starting with close initial esti-
mates can make all the difference.

Save as DoubleExponential.
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Fig.3.6-4: Three stages in the fitting procedure for the double exponential. The colored

data in the parameter table are those computed by Solver. The values of a, and k, were
fixed at the values found in Fig. 3.6-3, and the adjustable initial values were a, = k; = 0.
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Fig.3.6-5: The final fit of all data and all adjustable parameters. The resulting, extremely
small value of SRR reflects the absence of noise in this simulation.

It may be useful to keep in mind that this is a rather unusual example,
because very few other analytical measurements would have noise levels
such that they would allow the determination of a second component with
an amplitude of less than 0.5% of that of the major signal. In that respect,
radiochemical measurements are rather unique, because quanta released in
radioactive decay have such high energies that individual disintegrations
can be counted, in counts that are often virtually free of electronic noise.
Apart from the inherent randomness of radioactive disintegrations (see
section 2.10), the only ‘noise’ in such measurements is background radia-
tion, which usually can be kept extremely low by careful shielding.

The above examples clearly illustrate both the strengths and some of the
inherent limitations of a non-linear search routine like Solver. First its
strengths: it can often find a least-squares fit in situations where no linear
least-squares algorithm will apply. And it may even do so for multi-
parameter fits. Its main limitations are the following:

1 Solverneedsreasonably closeinitial estimates of the parameter values,
otherwise it can easily produce non-optimal results. If at all possible,
subject a subset of the data to alinear least squares analysis to get an idea of
atleast some of the parameter values. And wherever possible, use a graph to
see how close your initial estimate is, and follow the progress of the itera-
tions visually, even though that slows down Solver. Where this is not fea-
sible, as in multi-parameter fits, at least inspect the orders of magnitude of
the values in the two columns Solver compares: yex, and yeqic-

2 Evenif Solver finds the dominant features of a curve without much trouble,
some of its minor features may not make enough of a difference in the
fitting criterion (here: SRR) to matter, in which case they may be fitted
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poorlyifatall. Noise (which was mercifully absent in the second example,
to better illustrate this point) would only make matters worse: any noise in
theinitial data might easily be larger than the magnitude of the signal in the
tail end of the curve in Fig. 3.4. In such a case you must provide Solver with
separate, independent information, such as the value of k, in the last
example.

Note that these limitations make eminent sense once you understand
what Solver does, and are no different from those encountered when we
extract information from ordinary experiments, without computer. It is just
that we often come to expect too much of programs or of machines. Have
you ever seen a horse win a race without a jockey? Solver is like that: a very
competent program, that could be achamp —but only when you tell it where
to go, and how to get there.

False minima

Solver travels down a multidimensional surface in search of a minimum
value of SRR, just as water runs down a mountain under the influence of
gravity. Often, the water finds its way to the ocean, but sometimes it collects
in a lake without an outlet, and stays there. (Here, of course, the analogy
stops, because the water can get back into the cycle by evaporation. And, of
course, there are also lakes below sea-level.) The point is that a non-linear
least-squares method can find a false minimum, and get stuck there, in
which case you must help it to get out of that minimum. In fact, we already
encountered an example of such a situation in Fig. 3.6-2, and we will now
take a closer look at that case.

When we delete one of the four adjustable parameters from Solver, and
instead give it a fixed value, we can observe how SRR changes. Say that we fix
a; at a value that is slightly different from the one found, say at 5 instead of
4.5. If you apply Solver, not much will change, since a, can (and will) take up
the slack by assuming a value close to 4. In that case, neither k;, k,, nor
SRR changes. And when you fix the value of k; at, say, 2.5, the other three
parameters will all change, and SRR will increase. That is the characteristic
of a false minimum: in its immediate neighborhood, it yields the lowest
value of SRR. In order to find the good fit of Fig. 3.6-5 it was necessary to
force one of the parameters quite a ways off, as we did in Fig. 3.6-4.

The possibility of ending up in a false minimum should put you on notice:
don’tjust accept the answer of Solver as holy writ, and try whether other rea-
sonable initial conditions yield the same answer. And, always, compare the
Yeale data computed from the parameters found by Solver with the experi-
mental data (directly or, better yet, by plotting the residuals) to see whether
the parameters found make sense.
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Enzyme kinetics revisited

In the context of the analysis of enzyme kinetics it is sometimes stated that
one should always use a non-linear least-squares method for such data,
because the usual, unweighted least-squares fits depend on the particular
analysis method (Lineweaver-Burk, Hanes, etc.) used. We have seen in
section 3.5 that the latter part of this statement is correct. But how about the
former?

Instructions for exercise 3.6-3

W N O W

10
11

Return to the spreadsheet shown in Fig. 3.5.

In the empty space below it copy (in columns A and B) the values of Sand v, and relabel
them S(exp) and v(exp).

Add columns C through F with the following column headings: v(calc), RR, S(calc), and
RR.

Somewhere enter initial guess values for v,, and K, with their labels. In view of the data
listed just before Fig. 3.5, enter guess values of 0.5 for both; those values should be
close enough.

In column C compute vy from (3.5-1).
In column D calculate the square of the residuals, i.e., (Vexp— Veald) >
Find a place to calculate the sum of the squares of the residuals, SRR.

Unleash Solver, using SRR as its target, to be minimized, by changing the guess values
for v,,and S. Note the result you obtain.

So far, so good. Now we rewrite (3.5-1) as S = vK/ (v,,— v). Same thing, isn't
it? Mathematically fully equivalent.

In column E compute Sc,j from vey, and the initial guess values for v,,and S, which you
should of course set back to 0.5.

In column F calculate RR = (Sgg,— Searc)?, and then compute SRR.

Again use Solver to find the best values for v,, and Sby minimizing SRR. Note down
your result. Is it the same as obtained under (8)? Not quite.

So here we are: with an unweighted non-linear least-squares program we
encounter precisely the same problems as with unweighted linear least
squares. The problem lies in defining which experimental parameter
carries the dominant uncertainty, and selecting that parameter as the
dependent one. In the unweighted least-squares analysis we used S/vin the
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Hanes plot, and 1/vin the Lineweaver—-Burk plot, and they did not give the
same results. The weighting converted both to use v as the dependent vari-
able, and then they agreed, of course, and we obtain the same result with
the non-linear least-squares fit to (3.5-1). But when we use S as our depen-
dent variable, we get a different result with the non-linear least squares,
because we again compare apples and pears. And, of course, when we use
non-linear least squares on (3.5-2) we get the same result as with the linear
least-squares analysis of the Lineweaver-Burk plot, and non-linear least-
squares of (3.5-2) would yield the same answers as linear least squares
based on a Hanes plot.

The take-home message is the following. The spreadsheet makes it very
easy to use least squares, either linear or non-linear, so that the mechanics
of least-squares fitting are no longer a problem. But we will still get differ-
ent results depending on which assumption we make regarding the depen-
dent parameter. And that choice the spreadsheet cannot make for us. This
is where the intelligent judgement of the experimentalist comes in. Least-
squares analysis is non-trivial, not because its algebra is rather compli-
cated (it is, but the spreadsheet can take care of that), but because it
requires knowledge about the nature of the experimental uncertainties
involved.

This brings us to a final comment: it is very easy to modify the non-linear
least squares to include weighting, since the user determines the residuals.
We can include any weighting factors we want in our column with residuals,
thereby converting Solver to a weighted non-linear least-squares optimizer.
The important part is to include the proper weighting. For that we need to
know what is (are) the major source(s) of the experimental uncertainty. And
therein lies the problem: we are often too much in a hurry to find out where
the experimental uncertainty comes from. Unfortunately, without that
knowledge, we cannot expect to get reliable answers, no matter how sophis-
ticated the software used.

SolverAid

Solver does not provide estimates of the precision of its answers.
Fortunately, this limitation is readily remedied, because it is relatively
straightforward to write a macro that will compute the standard deviations
of the parameters found by Solver. Such a macro is fully described in chapter
10, and is there called SolverAid. Here we will merely illustrate how to use it
(assuming it has been installed), using as our example spreadsheet exercise
3.6-3 of the preceding section.
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12 Call SolverAid. It should be findable in Tools = Macros.

13 SolverAid will sequentially present three input boxes, one each for the parameters
Solver found, for SRR, and for the values of v.,.. Either highlight the corresponding cell
or cell block (which should be a contiguous vertical column), or enter the correspond-
ing address (or address range) in the window of the input box, then press the Enter key.

14 Thatis all. SolverAid will place the values for the standard deviations of the parameters
to the immediate right of those parameters if there is free or over-writable space there;
otherwise it will present the results in the form of a series of message boxes. SolverAid
will also provide the standard deviation of the dependent variable, in the cell to the
right of SRR.

Summary

In this chapter we have seen that unweighted least-squares analysis on a
spreadsheet is a cinch. When no standard deviations are required, the trend-
line (callable only from a graph) is very convenient. When standard devia-
tions are needed, the Regression analysis routine in the Analysis ToolPak can
be used. Both can be used for a line as well as for multi-parameter fitting,
and for fitting to a polynomial, with or without a requirement that the curve
goes through the origin. There is no need to struggle with equations such as
(3.1-1) through (3.1-4), or (3.2-1) through (3.2-4): the general software takes
care of it all. The above methods require no initial guess values for any of the
parameters to be determined.

For so-called equidistant data sets (where equidistance applies to the
independent variable), least-squares fitting is even simpler, and takes a form
tailor-made for an efficient moving polynomial fit on a spreadsheet, requir-
ing only access to a table of so-called convoluting integers, or software (such
as described in section 10.9) where these integers are automatically com-
puted.

When the data are transformed before they are fitted, a weighted least
squares is usually called for. Again, this is no big deal, since an add-in macro
is provided here for that purpose. It can even be used as a general-purpose
least-squares routine: when no weights are specified, unit weights are
assigned automatically, i.e., weighting is omitted. Moreover, because its
source code is provided in chapter 10, this program can readily be modified
to suit specific needs. For example, when more statistical parameters are
required, appropriate additional output statements can easily be incorpo-
rated in the macro. Again, a weighted least squares need no initial guess
values.

Finally we have seen how non-linear least-squares work. Excel provides a
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collection of competent, multi-parameter approaches in its Solver. When
linear least-squares fitting is possible, that should always be the first choice,
because it yields unambiguous answers, without the possibility of false
minima. On the other hand, many problems do not allow such a straight-
forward solution, in which case one may have to turn to non-linear least-
squares fitting. Non-linear least-squares algorithms use (very sophisticated)
trial-and-error methods, and therefore need initial estimates of the parame-
ter values they are asked to determine. The answer provided can depend on
the initial guess values given. Although it can therefore yield non-optimal
(and sometimes even completely incorrect) answers, it can be an extremely
powerful general-purpose tool when used with appropriate precautions.
Solver does not provide estimates of the precision of its results, but
SolverAid does. Table 2.6-1 summarized many of the salient aspects of the
various methods available in Excel.

In this and the previous chapter we have emphasized least-squares
methods. Because computers can facilitate their implementation, such
methods have become part and parcel of quantitative science. The empha-
sis must now shift to the appropriate choice of functions to be fitted, and to a
careful consideration of the nature of the experimental uncertainties.
Unfortunately, the latter topic is beyond the scope of this short book.






PART IlIl CHEMICAL EQUILIBRIUM

CHAPTER 4

The mass action law and its graphical representations

The fundamental law of chemical equilibria was formulated in 1864 by two
Norwegian brothers-in-law, the theoretician Cato Guldberg and the experi-
mentalist Peter Waage, and was refined by them and others in the following
decades; it is now known as the Guldberg-Waage or mass action law. It has
been amply confirmed in the time since it was discovered, and it can be
understood in term of thermodynamics; here we will simply state and use it.
When chemical species are involved in an equilibrium of the form

aA+ DB+ cC+ =pP+qgQ+ R+ (4.1-1)

then the mass action law specifies that there exists a fixed relationship
between the corresponding concentrations [A], [B], [C], .., [P], [Q], [R], ..,
and their stoichiometric coefficients g, b, ¢, ..., p, g, 1, ..., namely that the ratio

(PIPIQ]Y[R]"--

4.1-2
[A]*[B]?[C]® (4.1-2)

(or its inverse) is constant. Such a ratio is called an equilibrium constant,
because it specifies the relation between the concentrations of the various
participating chemicals at equilibrium. As far as the chemicals involved are
concerned, it is arbitrary whether we formulate such an equilibrium as in
(4.1-1) or, alternatively, as p[P]+ ¢IQ] + r[R] + -=alA] + b[B] + ¢[C] + -,
because chemicals neither know nor care how we write their equilibrium.
On the other hand, a specific way of writing may have mnemonic value for
us, humans. It is here that convention comes in. For acid-base equilibria in
aqueous solution, the area with which we will be mostly concerned in this
chapter, it is customary to define the equilibrium in terms of acid dissocia-
tion, whereby the acid loses one or more protons. The corresponding con-
stants are called dissociation constants. For instance, for the dissociation of
aweak monoprotic acid we write

121
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HA=H"+A" (4.1-3)
N
LTS w1

where K, has the dimension of a concentration, i.e., with the unit M. Where a
logarithm is taken, as in pH or pK,, the dimension is always deleted, but
standard dimensions are implied; in other words, the property is thought to
be divided by the same property in its standard state, with a numerical value
of 1.

In contrast, for equilibria involving the formation of complexes, we typi-
cally define equilibria in terms of the formation of such complexes, in which
case the constants involved are called formation constants. Here a typical
example would be

Ag*+ Cl"=AgCl (4.1-5)
_ [AgQl _
Ko~ agyiar] (410

By convention, solvation is usually left out of these expressions, on the
assumption (useful for dilute solutions, but not necessarily valid for concen-
trated ones) that the solvent concentration is so large that it is essentially
constant, and can therefore be included in the numerical value of the equi-
librium constant. Here we will follow this convention, and in aqueous solu-
tions we will therefore not distinguish formally between H,CO3 and CO,, or
between NH3 and NH4OH. Likewise, the hydrated proton will be repre-
sented simply by H*. Perhaps the most obvious example of this convention
is the autoprotolysis of water,

H,0=H"+OH" 4.1-7)

where, assuming [H,0] to be essentially constant, the equilibrium expres-
sion K, = [H*][OH"]/[H,0] is conventionally simplified to

K, =[H"][OH] (4.1-8)

In many experimental situations, one controls the total analytical con-
centration, C, i.e., the sum of the concentrations of the various possible
forms present. For example, we may weigh a certain amount of acetic acid
and/or sodium acetate, and dissolve it in a given amount of water, in which
case we know the total analytical concentration C= [HAc] + [Ac]. In situa-
tions like that it is often useful to define the concentration fraction of a par-
ticular species in the mixture. For the simple monoprotic acid defined in
(4.1-3) we have

[HA] [H']

AT THAI + AT H] + K, @19
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_ [A7] _ K,
T HAI+AT] HT+K,

an- (4.1-10)

where the right-hand form of the equations is obtained after substituting
the definition (4.1-4) of the dissociation constant, and where we have intro-
duced the formalism of labeling the concentration fractions with the
number of attached, exchangeable protons: 1 for HA, 0 for A™. The concen-
trations of HA and A~ then follow as

C,H*
[HA] = C,a, :[H+][7+I]< (4.1-11)
and
CuKy
[A7]=Chp= m (4.1-12)

It is convenient to treat bases as if they were acids. Consequently, instead
of describing NHj, or its hydrated form NH,OH, as dissociating into NH,* +
OH™, we consider NH, "as the acid, dissociating into H* + NHj. For a mono-
protic base B such as ammonia we therefore write

HB*=H*+B (4.1-13)
+
Kf% (4.1-14)
___HBY_ H]
AT B+ (B] [H]+ K, R
ap = g = [B] = Ku (4].—].6)

[HB']+[B] [H']+K,

Below we will show how such equilibria can be visualized in logarithmic
concentration diagrams. The corresponding spreadsheets are often very
useful for pH calculations.

Instructions for exercise 4.1

1 Openanew Excel spreadsheet.

2 Incell Al enter the label C =, and in cell A2 a corresponding numerical value, such as
0.1. Also deposit, in cell A4, thelabel Ka =, and a corresponding value in A5, such as
=10/ — 4.76, the K, of acetic acid. Name the contents of cells A2 and A5 (but use Ca,
conc, or some other name instead of the invalid name C).

3 Inrow 11, starting with cell A11 (and thereby leaving space near the top of the spread-
sheet for small diagrams), enter the labels pH, [H*], log[H*], [OH ], log[OH ], aHA,
log[HA], @A™, and log[A]. In order to type the symbol «, type an a, highlight it, then
select and enter the symbol font in the font box on the left of the formatting toolbar.
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In cell A13 deposit the value 0, in cell A14 the value 0.1, then highlight both, and drag
the common handle down to cell A153. Alternatively, in cell A14 deposit the instruction
=A13 + 0.1, then copy this down to row 153.

In column B calculate the corresponding values for [H'] (i.e., in cell B13 calculate =

10A—A13), and in column C compute the values oflog[H"], e.g., — A13 in cell C13.

Likewise, in column D, calculate the corresponding values of [OH ], e.g.,in D13 as
either = 10A(A13—14) or = (10~ —14)/B13, and in column E calculate the correspond-
inglogarithm, log[OH™] = pH—14.

7 Use (4.1-9) to compute , from K,and the corresponding value of [H"].

8 In column G calculate log[HA], keeping in mind that [HA] = C ags = C ;.

10

11

12

13

In columns H and I likewise compute the corresponding values for A~ and log[A™] on
the basis of (4.1-10).

We will now make two graphs commonly used in considering ionic equilibria. The first
of these is the distribution diagram, in which we plot the concentration fractions « as
afunction of pH. (In acid-base problems, pH will often be our dependent variable, i.e.,
will serve as our x-axis.) The distribution diagram is readily made by plotting columns
A, Fand H. (Remember: in order to highlight non-contiguous columns in Excel, first
highlight the first column, then release the shift key and depress the Ctrl key, move the
cursor to the next column to be highlighted, switch over to the Shift key, highlight the
second column, etc.)

Anchor the graph on cell B1, and specify an xyplot. Label the graph as a distribution
diagram, and label its axes as pH (with a range from 0 to 14) and alpha (range: 0 to 1).
Place this graph on the spreadsheet using the area otherwise occupied by cells B1:E10.
(Ifyou so prefer, make it on a separate chart, or do both.) The graph shows the regions
in which each of the species is dominant. At pH < pK,, the dominant species is HA,
whereas A” has the higher concentration at pH > pK,.

By changing the numerical values in A2 and A5 you can explore how the distribution
diagram depends on these two parameters. As can also be seen from (4.1-9) and (4.1-
10), the concentration fractions are independent of the total analytical concentration,
but they do depend strongly on the value of K,,. In fact, the point where the two curves
intersectis defined by pH = pK,; the two «’s there have the value 0.5. Table 4.1 lists
several acids and bases, and their pK,’s.

Another graph is the logarithmic concentration diagram. Its meaning is initially
perhaps somewhat less intuitive, because it uses a double-logarithmic scale, but it is
usually more informative because it shows minor as well as major concentrations;
moreover, it has very simple limiting slopes. The logarithmic concentration diagram is
obtained by plotting columns A, C, E, G and I. (In order to specify its range, start by
highlighting cell A31, then use Shift + End + { to cell 153, release the Shift key and
depress Ctrl, use the mouse to move the cursor over to cell C153, release Ctrl and
depress Shift, then go up with Shift + End + T, release Shift in favor of Ctrl, move to cell
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Fig.4.1 The top of the spreadsheet of exercise 4.1.

E13, switch back to Shift, then Shift + End + { to cell E153, and so on, until you have
highlighted all five columns.

Go to Insert = Chart etc. to make an xy graph. Using the mouse and the vertical slide-
bar on the right of the spreadsheet, move the cursor to the top of the sheet, and deposit
the chart symbolin cell F1. Plot the (vertical) log c scale from —10 (at the bottom) to 0
(at the top), the (horizontal) pH scale from 0 to 14. Alternatively you can use the

pc =—log cscale by clicking on the vertical axis, then on Format Axis, and selecting
Scale Minimum: 0, Maximum: 10, and check-markingValues in reverse order.

15 Ifyouwantthe numbers on the pH scale to show below the graph, double-click on the
figure, then on one of these numbers, then right-click on Format Axis. In the corre-
sponding dialog box, on the page Patterns, select to have the Tick-Mark Labels Low for
alog cscale, High for pc =—logc.

16 Print the first page of the spreadsheet containing the graphs (it should look similar to
Fig.4.1) or, when you made the graphs on separate sheets, print these. When you use
on-sheet graphs, you may want to reduce the widths of all columns in order to print it
all on one sheet of paper. You can do that as follows. First select the entire sheet, by
clicking on the gray rectangle where the row with the column labels ABCDEFG... meets
the column with the row numbers 1234567... Then use Format = Columns = Width

and enter an appropriate numerical value for Column Width.

17 Againvary the numerical values of Cand K, to see their effects. Note that Cmoves
some (though not all) curves up or down, while K, displaces the same curves sideways.
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Table 4.1: ThepK,-values for some monoprotic acids and bases.

acid pK, base pK,
aceticacid 4.76 ammonia 9.24
benzoic acid 4.20 aniline 4.60
butyric acid 4.82 benzylamine 9.35
dinitrophenol 4.11 butylamine 10.64
formic acid 3.74 ethanolamine 9.50
hydrofluoric acid 3.17 histamine 5.96
hydrochloric acid <-1 hydroxylamine 5.96
lactic acid 3.86 lithium hydroxide 13.6
nitric acid <-1 methylamine 10.64
nitrous acid 3.15 morpholine 8.49
perchloric acid <-1 1,10-phenanthroline = 4.68
phenol 9.98 potassium hydroxide 14.5
trichloroacetic acid 0.66 pyridine 5.23
trifluoromethylsulfonicacid <-1 sodium hydroxide 14.1

Use order-of-magnitude changes, since small changes hardly show on logarithmic
scales. Identify (and annotate as such) the four curves shown as depicting the loga-
rithms of the concentrations of H*, OH~, HA and A~ respectively.

The lines representing [H*] and [OH "] are straight, while those for HA and A~ are bent
yet contain two straight asymptotes. Verify mathematically (using (4.1-9) and (4.1-10))
and numerically (from the data in the spreadsheet, or by plotting the corresponding
asymptotes) that, for log[HA], these asymptotes are logCand log(C[H*]/K,) = logC —
logK, — pH, whereas those for [A7] are log(CK,/[H*]) =logC + logK, + pH, and logC
respectively. Incidentally, those asymptotes form the basis of the stick diagram, which
is easy to sketch, and very convenient for quick-and-dirty pH estimates when you
don’thave a computer handy, or when an approximate answer is all you need.

Save the spreadsheet as Monoprotic Acid.

For the single, monoprotic acids and bases in the above example, the dis-
tribution and logarithmic concentration diagrams are rather simple, yet
they clearly show the relative and absolute concentrations respectively of
the various species present. Such diagrams become all the more useful when
we consider more complicated systems, such as polyprotic acids and bases,
where it otherwise becomes increasingly difficult to envision what happens
as afunction of pH. We will do so in exercises 4.5 and 4.6.

As can be seen from Table 4.1, several acids have pK,’s for which only a
lower limit is listed, as <— 1. These acids are fully dissociated in water, and
are therefore called strong acids. Examples are HCI, HCIO, and HNOsj.
Likewise there are bases that are almost completely dissociated in water,
such as NaOH and KOH, as indicated by their large pK,’s. In this workbook
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we will consider these as fully dissociated, and therefore treat them as
strong bases.

Conservation laws, proton balance, and pH calculations

Imagine being asked to calculate the pH of a 0.1 M solution of acetic acid in
water. What principles would you use to find the answer to such a question,
and how would you go about it? Obviously, the pH will depend on how much
acid is used (0.1 M), and on the strength of the particular acid, i.e., on the
total analytical concentration C and the dissociation constant K,. Here is
how these numbers can be used to arrive at the answer.

We start with two types of general relationships, the law(s) of conserva-
tion of mass, and the law of conservation of charge. We then combine these
into one, the proton balance, which always can be derived from the conser-
vation of mass and charge but which, fortunately, often can be written down
merely by inspection. Combining the proton balance with the relations
already encountered in section 4.1 then yields the answer.

In terms of the specific example used in the preceding paragraph, the
mass balance requires that

[HA] +[AT1=0.1M (4.2-1)

where we will usually delete the dimension, which is fine as long as we
always use standard units, such as liters (but notmL!) for volumes, moles for
amounts, and moles per liter (M) for concentrations.

The charge balance ensures that the solution is macroscopically electro-
neutral, by counting all cations and anions per liter of solution, i.e.,

[H]=[A"]+[OH] (4.2-2)

In this particular example, we can also interpret (4.2-2) in a different way,
namely as a proton balance, an expression in which we specify which solu-
tion species have gained protons by comparison with the starting materials
(here H,O and HA) and which have lost protons. The proton balance focuses
on H™, the species of interest in pH calculations. Likewise, in complexation
equilibria, we will encounter an analogous ligand balance, and in electro-
chemical equilibria an electron balance.

In order to answer the above question regarding the pH of 0.1 M acetic
acid, we consult the logarithmic concentration diagram for a monoprotic
weak acid with C=0.1 M and K, = 10"*7% M, and find the pH for which (4.2-
2) is satisfied. Below we will use the spreadsheet to find that pH.

Alternatively we can use a stick diagram, which is a simplified version of
the logarithmic concentration diagram, to obtain a quick-and-dirty pH esti-
mate which, nonetheless, is usually correct to within 0.3 pH units. In the
present example, either method yields a pH of 2.88.
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We note that pH=2.88 is where, in the logarithmic concentration
diagram, the lines for [H*] and [A™] intersect. This is no accident: at this pH,
the proton balance [H] = [A7] + [OH ] can be approximated to [H*] =~ [A7],
because at the intersection of the lines for [H"] and [A~], [OH ] is more than
eight orders of magnitude (i.e., a factor of more than 100000000 times)
smaller than [A™]. That is good enough reason to neglect [OH ] with respect
to [A7]in the expression [A"] + [OH].

What would be the pH of 0.1 M sodium acetate? Again, we use the mass
balance (4.2-1), as well as a second mass balance, which specifies that

[Na®]=0.1M (4.2-3)

whereas the charge balance now must include sodium ions, and therefore
reads

[H*]+ [Na*]=[A"]+ [OH] (4.2-4)

Here, then, we have two mass balance equations plus the electroneutrality
condition; there is always only one electroneutrality condition, while the
number of mass balance equations depends on the number of non-
interconvertible ionic species present. Since all three conditions must be
met simultaneously, it is convenient to combine them in one expression,

[H*] + [HA] = [OH ] (4.2-5)

which you may recognize as a proton balance, starting from undissociated
H,0 and the fully dissociated salt NaA. To wit: H,O can gain a proton to
become (hydrated) H", A~ can gain a proton to become HA, and H,O can lose
aprotontoyield OH™.Inthis case, then, therequired solution is found as that
pH where (4.2-5) is satisfied: pH = 8.88. And, again, it corresponds to an
intersection in the logarithmic concentration diagram, since [H"] « [HA] so
that [H*] + [HA] = [OH ] for all practical purposes reduces to [HA] = [OH].
These matters are discussed in much greater detail in my Aqueous acid-base
equilibria and titrations, Oxford Univ. Press, 1999.

Instructions for exercise 4.2

1 Recall spreadsheet Monoprotic Acid.

2 Copytheinstructions in row 153 to row 155, then modify the instructions in cells G155

and 1155 toyield [HA] and [A™] instead of their logarithms.

3 Consider the standard form of (4.2-1), i.e., with all non-zero terms moved to the left-

hand side of the expression: [H*] —[A~] — [OH | = 0. Use cell J155 to calculate that left-
hand side of the standard form, which in this case would read = B155-1155-D155. The
proton condition corresponds to the pH that will make J155 zero.

4 The easiest way to find that pH is by using the Goal Seek routine of Excel. Select Tools

= Goal Seek; in the resulting dialog box you Set cell J155 To value 0 By changing cell



10

11

12

13

14

4.2 Conservation laws, proton balance, and pH calculations 129

A155, then click on OK. Bingo, the spreadsheet will have found the pH, and will show it
in cell A155.

Goal Seek is based on the principle of the Newton-Raphson algorithm, discussed in
more detail in section 8.1, which finds a first estimate by determining the slope of the
function, then extrapolates this to find the zero, uses this new estimate to obtain a
second estimate, and so on.

You can also use Goal Seek without first having made an elaborate spreadsheet table;
all thatis needed is a blank spreadsheet and a single, analytical expression in terms of a
single adjustable parameter.

To see that for yourself, somewhere else on the spreadsheet use three cells, which we
will here call cells a, band c. In cell aplace a reasonable guess value for the [H*]; this is
the value that will be adjusted to make the proton condition zero. The proton condition
in standard form should go in cell b, i.e., it should code for [H*] — [A7] — [OH™] = [H"] —
CK,/ ([H*] + K,) — 1074/ [H*]. The third cell, ¢, is merely for your convenience, to cal-
culate the pH from [H*]. Note that we here do not need to use any approximations.

Engage Goal Seek and Set cell bTo value 0 By changing cell g, at which point the answer
appearsin cell c.

The Newton-Raphson method often works, especially when the first estimate is close
to the final value. However, one can generate situations where it will either fail to yield
an answer, or produce an incorrect one. This is so because the Newton-Raphson
methodrelies on the derivative of the function at the estimate, which may differ sig-
nificantly from the derivative at the desired root. It may then be necessary first to use
an approximate method to obtain an initial estimate for the variable parameter. In the
present case, the Newton—-Raphson method will typically work as long as the initial pH
estimate is physically realizable for the given values of Cand pK,, in which case the
proton balance written in standard form is a monotonic function of [H*].

On your own, now find the pH of 0.1 M sodium acetate, based on the proton condition
(4.2-5) inits standard form, i.e., [H*] + [HA] — [OH7] = 0.

On thelogarithmic concentration diagram for 0.1 M acetic acid made in exercise 4.1,
note the above answers for the pH of 0.1 M acetic acid, and for 0.1 M sodium acetate,
and see whether they indeed correspond with an intersection of two curves.

Find the pH of 0.1 M NHj in water (the pK, of ammonia is 9.24, see Table 4.1), and that
of 0.1 M NH,CI. For NH3 and H,0, the proton balance is [H] + [NH,*] — [OH "] = 0; for
NH,Cl + H,Oitis [H*] — [NH3] — [OH"] = 0. Verify these proton balances, by deriving
them from the mass and charge balance relations, and by considering proton gains
and proton losses.

Also plot the corresponding logarithmic concentration diagram, and on it indicate the
pH values just calculated. Rationalize why they again correspond with specific inter-
sections, and note these on the plot.

Save the spreadsheet as Monoprotic Acid.
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Titrations of monoprotic acids and bases

In a typical titration, known volumes of a reagent of known concentration
are added to a known volume of a sample of unknown concentration, and
addition is continued at least until an equivalent amount of reagent is
added, at which point some measurable physical or chemical property indi-
cates that a so-called equivalence point has been reached. The unknown
concentration can then be calculated. Numerous properties can be used as
indicators; historically, the first equivalence point indicator was the obser-
vation that bubble formation (effervescence) upon addition of potassium
carbonate to vinegar would stop once the equivalence point had been
reached or passed. Nowadays, the progress of most acid-base titrations is
monitored either with a color indicator or, preferably, with a pH meter.

In a titration, then, the assignment is to determine the volume of the
titrant necessary to reach the equivalence point, while one measures the pH
(or a related quantity, such as the color of the added indicator) to monitor
how close one is to that equivalence point. It is therefore logical to express
the titration curve in terms of the titrant volume as a function of pH or [H"].
This approach, which will be followed here, leads to simple theoretical
expressions for the course of the titration, expressions that can all be
described in terms of a simple master equation, and that allow easy and
direct comparison with experimental data.

Alternatively one can try to express pH or [H*] as a function of titrant
volume, reflecting how the typical volumetric experiment is performed (by
measuring volumes) rather than what problem the titration tries to answer.
Unfortunately, this more traditional approach leads to much more compli-
cated mathematics, thereby hampering comparison between theory and
experiment. We will not use it here, since it is poorly suited to quantitative
analysis.

Below we will first consider monoprotic acids and bases. One of the sim-
plest titrations is that of a strong monoprotic acid, such as HCI, with a strong
monoprotic base, such as NaOH. Say that we titrate a sample of volume V, of
hydrochloric acid of unknown concentration C, by gradually adding strong
base of concentration C, the total volume of base added to the sample being
V,. Conservation of mass and charge then leads to the following expression
for the progress of this titration:

Vi Ca—A

V, Cp+A (4.3-1)
where we have used the abbreviation

A=[H*]-[OH ]=[H"] - K,/ [H'] (4.3-2)

with K, the ion product of water (of the order of 10714 M?), as defined in (4.1-
8). The derivation of (4.3-1) is so simple that we will briefly indicate it here
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for the above specific example of titrating HCl with NaOH. We start from the
charge balance equation

[H']+ [Na®]=[Cl"] + [OH] (4.3-3)

and then express [Na*] and [Cl7] in terms of the original sample concen-
tration C, and sample volume V,, and the concentration Cj, of the titrant
used:

[ClT]=C, V! (Va+ V) (4.3-4)
[Na*]=C, V! (V,+ V) (4.3-5)

where the dilution factors V,, / (V,+ V3) and V3, / (V, + V) take into account
the mutual dilution of sample and titrant. Substitution of (4.3-4) and (4.3-5)
into (4.3-3), and collection of terms in V, and V}, thenyields (4.3-1).

For the titration of single weak acid with strong base, such as that of acetic
acid with NaOH, we have instead of (4.3-1)

Vi Chap—A

= 4.3-
Vo. GCptA (4.3-6)

where the concentration fraction of A~ is defined in (4.1-10). Note that (4.3-
1) is the special case of (4.3-6) for ¢y = ap-=1, i.e., for K, » [H*]. Indeed, a
strong acid can be defined as one for which K,,» [H] for all physically realiz-
able values of [H*], a definition equivalent to stating that a strong acid is vir-
tually completely dissociated at all realizable pH values.

The derivation of (4.3-6) is equally simple: instead of (4.3-3) and (4.3-4) we
now use

[H*]+[Na*]=[A"]+ [OH] (4.3-7)
[AT]=Caay V! (V,+ V) (4.3-8)

and combine this with (4.3-5). Note that replacing [C1"] by [A"] only results
in the multiplication of C, by «g, so that multiplication of C, in (4.3-1) by a4
directlyyields (4.3-6).

For the titration of a mixture of acids with a single strong base, (4.3-6) can
be generalized to

Vb_EC“aO_A

M A 4.3-9
V, Cp+A (4.3-9)

where the summation extends over all (weak or strong) acids in the sample.
For the titration of a strong base with a strong acid we have

Vo G+A

4.3-10
V, C,—A ( )

and for the titration of mixture of bases with a single strong acid
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Va ECbal‘l'A

4.3-11
V, C,—A ( )

Finally, the titration of a mixture of acids with a mixture of bases leads to
therelation

ﬁ:zcaao_A

(4.3-12)
Va ECh (3] + A

while that of a mixture of bases with a mixture of acids is described by

v 2‘4@,&l +A
a_

Va_ (4.3-13)
Vi EC,, a,— A

Equations (4.3-12) and (4.3-13) are general relations for acid-base titra-
tions of monoprotic acids and bases, and specifically include the effects of
dilution of sample by the added titrant, and vice versa, through the dilution
factors V, / (V,+ V) and V;, / (V,+ V}) introduced in (4.3-4), (4.3-5) and
(4.3-8). Note, however, that any additional dilution (such as might result
from rinsing the inside of the titration vessel) is not taken into account. In
using the above equations, it is therefore advisable to flow in the titrant, by
making the tip of the buret touch the inside wall of the titration vessel,
rather than to add the titrant dropwise. Falling drops often lead to splashing
on the inside walls of the titration vessel, which then need to be rinsed
down. Moreover, the use of droplets can lead to large reading errors, since
halfa dropletleft hanging on a typical buret tip introduces areading error of
about 1/40 mL. Flowing in the titrant is done most conveniently while a
magnetic stirrer mixes the incoming titrant with the sample, but is more
difficult when titrant and sample must be mixed manually by swirling the
titration vessel.

Instructions for exercise 4.3

1 Recall the spreadsheet Monoprotic Acid.

In cell A7 depositthelabel Cb =, and in cell A8 a corresponding numerical value, e.g., 0.1.

3 IncellJ11 deposit the column headingVb/Va, and in cell J13 the formula = ($A$2*H13 —
B13 + D13)/($A$8 + B13 — D13), which you will recognize as (4.3-6).

Copy this formula so that it will be used in J13:J153.

5 Make a plot of V},/ V,, vs. pH, which will show the progress curve. Restrict the range of

V! V,from 0 to 2, in order to avoid the very large positive and negative values calculated
by the program at pH-values that are physically not realizable for the chosen values of
C, Cpand pK,.
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Fig.4.3-1: (a) The progress curve, and (b) the titration curve, for the titration of 0.1 M
aceticacid (pK,=4.7) with 0.1 M NaOH.

6 Inatitration curve we instead plot the pH versus V;,/ V,. In order to plot such a curve,
repeat the pH in column K (because Excel will automatically use the left-most selected
column for the horizontal axis), then plot J13:J153 versus K13:K153. Alternatively, make
a copy of the progress curve, double-click on it, then click on the data points. When
(some of) these are highlighted, go to the formula bar, and there exchange all A’s forJ’s,
and vice versa, and deposit this change with the enter key. Finally, change the axis labels
and titles around. This second method is more work, but does not require that column A
be repeated in the spreadsheet.

7 Some representative curves are shown in Figs. 4.3-1a and 4.3-1b, as they might show
when placed on the spreadsheet, in which case the actual calculations would of course
have to be displaced downwards in order to remain visible.

8 Experiment with different K,-values, such as 1,107,107, 107, 1078, and 107'° M. Also,
experiment for a given K, such as 10, with various values of C,and Cj, again changing
them by, say, two orders of magnitude to see the effects.

9 Save as Monoprotic Acid.

Schwartz and Gran plots

Progress and titration curves are, typically, S-shaped. For the precise deter-
mination of the equivalence point it is often useful to rectify those curves.
While this cannot always be done, rectification is possible for the titration of
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a single (weak or strong) monoprotic acid with a single strong monoprotic
base, or vice versa, and leads to the Schwartz plot. A somewhat simpler but
approximate rectification method yields the Gran plots. Here we will briefly
explore both.

We again start from the electroneutrality condition

[H] + [Na®] = [A7] + [OH] (4.3-7)
in which we now consider dilution:

Cbe _ Ca (e 7)) Va CaKaVa

H7) + VotV Vo+V, +IOH]= (Vat+ VR (H'] + Kp) +I10H] (4.4-1)
so that

AV, + V) ([H'] + Kp) + GV ([H*] + Kp) = C,K,V, (4.4-2)
(H*] + KV + AV + V) Cpb = CoKyVal Cp = Ko Vg (4.4-3)
which yields the Schwartz equation

H'1 V) =K, (Vg — V) (4.4-4)
in which the equivalence volume V,, is defined as

Veg=CaVal Gy (4.4-5)
and where

Vy = Vy+ (V,+ V) AIC, (4.4-6)

The equivalence volume is the primary goal of an analytical titration,
because it allows us to determine the unknown concentration C, from
(4.4-5) as

Ca=CypVeg !V, (4.4-7)

At any time during the titration, the volume V,, of the original sample is
known, as is the volume V; and concentration Cj, of the titrant used at any
time during the titration. Moreover, because the pH is monitored, A is also
known. Consequently, all terms on the right-hand side of (4.4-6) are known,
and so is V},. The Schwartz equation (4.4-4) therefore allows us to rectify the
entire titration curve simply by plotting [H*]V}’ versus V;,'. Such a Schwartz
plot yields a single straight line, with slope — K, and ending at the horizon-
tal axis precisely where V,’' = V,;, making it very easy to determine the
equivalence volume V,, while, as an added benefit, the slope of the plot
yields the value of K,. Note that (4.4-4) applies to weak and strong acids
alike; when the titrated acid is a strong one, the slope of the plot s (in theory)
infinitely steep, i.e., the graph shows a vertical line.

Often, the second part on the right-hand side of (4.4-6) can be
neglected, especially in the region just before the equivalence point, where
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A=[H"]—[OH] is small because, there, both [H*] and [OH ] are small.
Under those conditions, V},’ = V, so that (4.4-4) reduces to

HT1Vp=Ko(Veg — V) (4.4-8)

This is the basis of the first Gran plot, in which we make a graph of [H*]V},
versus V},. The approximate sign =~ is used in (4.4-8) because it is obvious by
inspection that (4.4-8) cannot be reliable over the entire range of the titra-
tion. For example, at the beginning of the titration, V;,= 0, which would lead
to K,V,, =0, clearly an incorrect result for any finite value of K,. Likewise,
(4.4-7) yields a physically imposible result past the equivalence point, where
(Veqg— V) is negative, so that [H*] K, would have to be negative, which it
cannotbe.

In a typical titration of an acid, the titrant is a strong base. In that case, the
titration curve pastthe equivalence point is quite similar to that of the titra-
tion of a strong acid with a strong base. For that situation, another Gran
plot is available, which actually is often the more useful one. We now start
from (4.3-1) which we simplify by using the approximation A = [H*] — [OH]
~—[OH"]. The result, V3, /V,~ (C,+ [OH 1)/(C,— [OH]), can then be re-
arranged to

[OHT] (Va+ Vi) = G Vi — G Vo= Gy (Vi = V) (4.4-9)

where we have again used the definition (4.4-5) of the equivalence volume.
Equation (4.4-9) is the basis for the second Gran plot, in which we plot
[OH™] (V,+ V) versus V. Because of the assumption A=—[OH™] the
second Gran plot is only useful past the equivalence point. In that range it is
often also convenientin the titration of polyprotic acids, where the Schwartz
plot and the first Gran plot are usually no longer applicable.

Instructions for exercise 4.4

1 Recall the spreadsheet Monoprotic Acid.

2 Inrows 13 through 153 of the next column, which will be either K or L depending on
what option you used in exercise 4.3 under (6), calculate V' /V,= V,/ V,+ (1 +
V! V2)(A | Cp), and next to it compute the quantity [H*] V;,'/ V,, then make the
Schwartz plot. It will save time and effort to scale both through division by the constant
V,, because you already have a column for V,,/ V.

3 Nextmake a column for the product [H*] V,,/ V,,, and use it to make a Gran1 plot.

4 Finally, in the next column, calculate the quantity [OH™] (1 + V,,/V,,), then use it to
make the Gran2 plotof [OH ] (1 + V,;,/V,) versus V;, / V,.

5 Thumbnail sketches of such plots are shown as parts of Figs. 4.5-1 through 4.5-3.

6 Save your work as Monoprotic Acid.
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Playing with theoretical expressions, as we do here, can sometimes be
misleading. No matter how good the theory, experimental data never quite
follow the theory, because of experimental uncertainties. It is therefore
useful to make the theoretical data somewhat more realistic, by the addition
of synthetic noise. For this we will use the Gaussian noise generator avail-
able in Excel. Keep in mind that such noise is again the ideal case, and that
real noise will usually not be as well-behaved. Nonetheless, adding Gaussian
noise is better than not adding any, and it can help us anticipate which

methods are ‘robust’ and which are so sensitive to noise that their use will be

‘of theoretical significance only’.

7 Recall the spreadsheet Monoprotic Acid.

8 Insert two new columns between those for V},/V,and V},'/ V,, and label them ‘noise’

10

11

12

13

and ‘(Vb/Va)n’ respectively.

In the noise column enter Gaussian noise (using Tools = Data Analysis = Random
Number Generation = OK = Distribution Normal, Mean = 0, Standard Deviation = 1),
and in the next column add a fraction defined by a spreadsheet constant na (for noise
amplitude) times this noise to the (V, /V,),, column.

Modify the spreadsheet code so that all columns to the right of the noise column refer
to the new (3, /V,), column rather than to V3, / V.

Likewise modify the charts to reflect the added noise. You can do this by first activating
the charts by double clicking. Then click on a data point to get the = SERIES instruc-
tion showing in the formula bar. Modify the corresponding instructions in the formula
bar to refer to the proper column, and finally use the enter key to deposit them.

You will notice that the Schwartz plot is somewhat more affected by the noise than the
Gran plots, but that all three are still quite serviceable as long as the noise amplitude is
not too large.

Save again as Monoprotic Acid.

The first derivative

Analytically useful acid-base titration curves are characterized by a rather
fast pH change near the equivalence point. This suggests that the location of
the equivalence point might be determined experimentally from that of the
maximum in its first derivative, d(pH)/d V}, or the zero-crossing of its second
derivative, d>(pH)/dV,2. The advantage of such an approach is that it does
notrely on any particular theoretical model, but instead exploits the charac-
teristic feature of the titration curve, i.e., its fast pH change in the region
around the equivalence point. The method does not even require that the
pH meter is carefully calibrated.
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Unfortunately, there are two reasons why taking the derivative of the
titration curve is usually not a recommended procedure for establishing
the equivalence point. (a) The theory of titration curves shows that the
equivalence point of a practical titration (i.e., one performed with a titrant
of real rather than infinite concentration) does not quite coincide with the
value of V,, where d(pH)/dVj is maximal. Fortunately, the resulting titration
error is usually small enough to be negligible. (b) Much more importantly,
taking the derivative of the titration curve greatly enhances the effect of
experimental noise, often making it necessary to filter the experimental
data first, which may introduce far greater titration errors. This sensitivity
to noise is aggravated by the fact that experimental fluctuations are typi-
cally largest in the region of the equivalence point, where inadequate
mixing speed, slow electrode response, and small buffer strength, can all
conspire to generate experimental errors. As we will see in section 4.6, it is
no longer necessary to consider the derivative to find an equivalence
point, but for the sake of completeness we will briefly describe this proce-
dure nonetheless. To this end we will use the Savitzky—Golay method you
may already have encountered in section 3.3 (where it was used for
smoothing rather than differentiation). This method requires that the data
are equidistant in the independent variable. Since our spreadsheet data are
based on constant pH increments, we will calculate the values of
d(pH)/d(V,/V,) as 1/{d(V,/V,)/d(pH)}, first with a moving five-point
parabola.

Instructions for exercise 4.5

1 Recall the spreadsheet Monoprotic Acid.

Addyetanother column, this one labeled ‘deriv’, in which you calculate the quantity

d(pH)/d(Vy/ V,) = 1/{d(V,/ V,)/d(pH)}. Because the derivative is computed at the mid-
point of a five-point polynomial, the first calculated point will yield a result for the third

pointin the column, so that the column with results will start two rows lower than the
column with input data, and likewise will end two rows earlier.

The instruction to be entered on the third row shouldread = 1/(—2*a— b+ d + 2*e)

where a, b, d, and erefer to the first, second, fourth and fifth cells in the column for
(V1 V). (There are two other factors that, fortuitously, cancel each other in this case

since their product is involved: a normalizing factor of 10, and the data spacing of 0.1 pH
units.) Copy the instruction down to the third-from-the-bottom row of this deriv

column.

Make a graph of d(pH)/d(V},/V,), versus V,/ V,. Display V},/ V,only between 0.99

and 1.01, and leave the vertical scale undefined (so that the spreadsheet can

scaleit).
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5 Varythe amplitude na of the noise, and observe the results. While the value of na will
also affect the progress and titration curves, and the Schwartz and Gran plots, you will
notice that it has a much more dramatic effect on the first derivative. In fact, the theoret-
ical shape of the first derivative is visible only for na < 0.001, whereas the linear
(Schwartz and Gran) plots barely show the effects of noise. At na = 0.01 the linear plots
are noisy but can still be used, especially when combined with a least-squares line, but
the derivative fails miserably to indicate the position of the equivalence point. At na =
0.03, only the Gran2 plot s still serviceable.

6 The derivative curve can be made less sensitive to noise by using a larger number of
points. Try this by using a thirteen-point (instead of a five-point) parabola, with the
coefficients —6a, —5b, —4c, —3d, —2e, — f, h, 2i, 3j, 4k, 5/and 6 m, where athrough m are
the first through 13" values in the row for (V},/ V,) . The proper scale factor in this case is
nolonger1,but182 X 0.1 = 18.2. Note thata 13-point parabola will calculate the
seventh point in the deriv column; you must therefore leave the first and last six points
open in the calculation (but still include them in defining the graph). As can be seen in
Figs. 4.5-1 through 4.5-3, arelatively small amount of random noise can dominate the
plot of the first derivative d(pH)/d V;, vs. V;, or, as shown here, of d(pH) /d(V},/ V) vs.
V1V, even when a 13-point moving parabola is used to calculate it.

Figures 4.5-1 through 4.5-3 show thumbnail sketches such as you might
embed at the top of your spreadsheet, for three different amounts of added
noise. In viewing these figures you should keep in mind that the added noise
is somewhat artificial, because it only affects the volume axis, and not the
pH axis. (If desired you can of course add noise to the pH data as well.)
Nonetheless it indicates that the Gran plot past the equivalence point (i.e.,
for a strong base) is the most robust. Note that noise of magnitudes such as
that shown for na=0.03 is experimentally completely unnecessary and
unacceptable, and is used here only to emphasize the point that the various
data analysis methods have quite different sensitivities to noise. Not every-
thing thatlooks good in theory works well in practice, and the spreadsheet is
agood tool to find this out.
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Fig.4.5-1: The progress and titration curves, the Schwartz and Gran plots, and the first
derivative of the titration curve, for the titration of 0.1 M acetic acid (pK, = 4.7) with
0.1 M NaOH, without Gaussian noise added, na = 0. The first derivative is computed

with a 13-point moving parabola.
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Fig.4.5-2: The progress and titration curves, the Schwartz and Gran plots, and the first
derivative of the titration curve, for the titration of 0.1 M acetic acid (pK, = 4.7) with
0.1 M NaOH, with some Gaussian noise added, na = 0.005. The first derivative is com-
puted with a 13-point moving parabola.
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Fig.4.5-3: The progress and titration curves, the Schwartz and Gran plots, and the first
derivative of the titration curve, for the titration of 0.1 M acetic acid (pK, = 4.7) with
0.1 M NaOH, with more Gaussian noise added, na = 0.03. The first derivative is com-
puted with a 13-point moving parabola.
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A more general approach to data fitting

The traditional way to finding the equivalence point, by observing when the
color of an indicator dye changes, is equivalent to associating that equiv-
alence point with a fixed pH, and monitoring when that pH has been passed.
In that case we typically use one drop to distinguish between being ‘before’
and ‘beyond’ the equivalence point, and our resolution will be determined
by the size of the drop used, which is usually of the order of about 0.05 mL.

The approaches we have discussed so far to determine the precise loca-
tion of the equivalence point use more than just one point, and are therefore
in principle less prone to experimental error. The Schwartz and Gran plots
rely on a linearization of the titration curve; unfortunately, for samples that
contain more than one monoprotic acid or base, linearization is no longer
possible, nor is it (in general) for polyprotic acids and bases. And as for the
alternative, we have seen that taking the derivative is easily overwhelmed by
experimental noise. Is there no more robust yet general way to determine
the equivalence volume with better precision?

Fortunately, there is such a method, which is both simple and generally
applicable, even to mixtures of polyprotic acids and bases. It is based on the
fact that we have available a closed-form mathematical expression for the
progress of the titration. We can simply compare the experimental data with
an appropriate theoretical curve in which the unknown parameters (the
sample concentration, and perhaps also the dissociation constant) are
treated as variables. By trial and error we can then find values for those vari-
ables that will minimize the sum of the squares of the differences between
the theoretical and the experimental curve. In other words, we use a least-
squares criterion to fita theoretical curve to the experimental data, using the
entire data set. Here we will demonstrate this method for the same system
that we have used so far: the titration of a single monoprotic acid with a
single, strong monoprotic base.

Despite its ‘trial and error’ nature, such a method is easily implemented
on a spreadsheet. We make two columns, one containing the experimental
data, the other the theoretical curve as calculated with assumed parameter
values. In a third column we calculate the squares of the residuals (i.e., the
differences between the two), and we add all these squares to form the sum
of squares, SRR. This sum of the residuals squared, SRR, will be our data-
fitting criterion. We now adjust the various assumed parameters that define
the theoretical curve, in such a direction that SRR decreases. We keep doing
this for the various parameters until SRR has reached a minimum.
Presumably, this minimum yields the best-fitting parameter values.
Incidentally, the third column is not needed when we use the command
=SUMXMY2 (experimental data, theoretical data).
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Instructions for exercise 4.6

1

1a

1b

Recall the spreadsheet Monoprotic Acid, and add a few more columns to it.
Alternatively, when the computer gets bogged down (as may happen when it has a rel-
atively small memory and/or low cpu frequency), start with a new sheet. In that case,
follow instructions (1a) and (1b); otherwise go directly to (2).

Open a new spreadsheet, label and assign spaces for the constants C,, Cp, K,, and K,,,
and for the noise amplitude N.

Enter columns for pH, [H"], V}/ V,, Gaussian noise, and (V,/ V,),, Calculate V,/V,
directly from (4.3-6) together with (4.1-10) and (4.3-2), then compute (V;/ V), from
V! V, by adding natimes the noise.

Now that we have a noisy data set (V},/ V,) , that we will consider as our ‘experimental’
data, make separate labels and spaces for the variables C,, and K,,to be used in the
theoretical curve. Also find a space for the label and value of the sum SRR.

In the next column, calculate a noise-free, theoretical curve, based on equations
(4.3-6), (4.1-10), and (4.3-2), and using C,,, Cp, K, and K,,,.. Label the resulting column
(Vp! V), where the subscript ¢stands for theoretical.

In a final column, labeled RR for residuals squared, calculate the squares of the differ-
ences between the data in corresponding rows in columns (V;/ V) ,and (V,/ V,) .

In the space reserved for the value of SRR, enter the sum of the squares of the differ-
ences between the ‘experimental’ curve (V},/V,) ,and the ‘theoretical’ curve (V},/V,),.

Before we are ready to do the ‘trial-and-error’ adjustment, we must make one
modification. This is necessary because our experimental data set is not very realistic,
in that it contains non-realizable, negative numbers, reflecting the fact that (V;,/ V) ,is
notreally a true experimental data set but has been generated artificially. We exclude
such non-realizable numbers by modifying the RR column using an IF statement. Say
that the V},/ V,data are in column C (or wherever V},/ V,is listed), the (V},/ V,) ,datain
columnE, and the (V,/V,),datain column E Then alinein, e.g., row 87 of column RR
should read = IF(C87 <0, 0, IF(B87 > Kw/Cb, 0, (E87-F87)A2)). This will add mere zeros
to the sum %, and therefore contribute nothing to it, whenever the data are outside the
physically realizable range. The upper limit specifies that [OH] cannot exceed Cp,.

Finally, in order to see what you are doing, plot on the spreadsheetboth (V},/ V,) , (as
data points) and (V,/V,),(as aline) versus pH.

With everything in place, enter some guess values for the variables C,, and K, (make
sure that they differ from C,and K,), and observe the plot as well as the value of SRR.
Now change one of the variables, see whether SRR increases or decreases, then change
it further in the direction of the decreasing SRR value until the change becomes minor.
(At this point you can take rather large steps, first perhaps by 0.1 in C,, or by one order
of magnitude in K,,,.) Then adjust the other variable. You will notice in the plot that the
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two variables affect the graph in mutually independent, orthogonal ways: C,, moves
the progress curve sideways, whereas K,, changes the height of the step. This makes it
easy to see in what direction to adjust the variables.

After thisinitial, crude adjustment, repeat the process with smaller increments, say by
0.01in C,, or by a factor of 0.1 in K. After that, a third round will yield a result to
within 0.001 in C,,and a factor 0of0.01 in K,,, most likely good enough to stop.

Examine the values of C,, and K, you have found; they should be rather close to their
theoretical counterparts, C,and K,. When you used a small value for the noise ampli-
tude na, the agreement should be quite good; there will of course be less agreement in
the presence of a significant amount of noise.

In practice, doing this least-squares minimization by hand may be inter-
esting once (and may then serve to illustrate the principle of the method),
but it pretty soon will become tedious. Fortunately, computer algorithms
have been designed to perform this search efficiently, and Excel contains
several of them.

Click on Tools = Solver to get the Solver Parameters dialog box. There, Set Target Cell:
to where you display the value of SRR, Equal to: Min Value, By Changing Cells: to where
you display the values of C,,, K, then select Options. This opens the Solver Options
dialog box, in which you select Show Iteration Results, then push OK to bring you back
to the earlier dialog box, where you now press Solve.

By having instructed Solver to show its iteration results, you can see the process as it
progresses. Whenever the Show Trial Solution box appears, press Continue to keep
going. When the Show Trial Solution box gets in the way of your graph, just pick it up by
its blue top edge and place it somewhere where it does not block your sight.

Chances are that you will notfind a satisfactory solution. How come? For the answer,
look at what we ask the program to do: to adjust C,, by 0.1, and K,, byless than 0.0001.
Since the program adjusts its step size to the largest variable that it must adjust, it will
grossly overshootits K, target any time, and therefore cannot find a solution!

Understanding the cause of the problem is, as usual, most of its solution. The problem
should disappear when we adjust pK,, instead of K, Indeed, it will, as you can verify
byinserting alocation for pK,,, referring to that location instead of to K, in the solver
dialog box, and entering the value of 10A-K,, in the space for K,,. When you now try
the solver, it will work like a charm! Figure 4.6 illustrates the method. Note that RR
reaches a minimum, but does not become zero.

In the above exercise we have on purpose used a rather excessive amount
of artificial noise in order to illustrate the method. The example shows that
this method deals quite competently with noise, even at levels where the
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Fig.4.6: Four successive stages in the automatic curve fitting of a very noisy progress
curve (na = 0.1) for the titration of 0.1 Mweak acid (C,= 0.1 M, K, = 2 X 10~ M) with

0.1 M NaOH. The initial guess values used in the fitting were C, = 0.25 M, K, =1 X107 M.
The spreadsheet parameters are shown to the left of the graphs.
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derivatives have collapsed completely, and the Schwartz and Gran plots are
no longer useful. In practice, a progress curve as noisy as the one shown
indicates faulty equipment or some other serious problem, and should
never be accepted! Even so, Solver recovered C, to within 0.3%. When na is
smaller, the errors in C, and K, are reduced proportionally. For a typical
titration of a single monoprotic acid or base, the concentration error in
using Solver is usually less than 0.1%, at which point the data-analysis
method itselfis no longer contributing to the uncertainty in the answer.

The above example used an artificial curve, but the same approach can be
applied directly to experimental data. Take a set of titration data, enter them
in the spreadsheet. (For convenience of displaying the data graphically on
the spreadsheet, enter the pH as the first column, the titrant volume V}, in
the next column.) Then calculate columns for [H"], (V;,/ V) ¢ and RR, and let
Solver do the rest. There are no special requirements on data spacing or
range; the higher the quality of the input data, the better the resulting values
for C,, and K,,. The only requirement is that the appropriate theoretical
modelisused.

An unweighted least-squares analysis such as illustrated here usually
suffices for chemical analysis, but for the most precise K,-values one might
want to use weighted least squares as developed by G. Nowogrocki et al.,
Anal. Chim. Acta 122 (1979) 185, G. Kateman et al., Anal. Chim. Acta 152
(1983) 61, and H. C. Smit et al., Anal. Chim. Acta 153 (1983) 121.

Buffer action

As we have seen in section 4.3, the pH of a sample being titrated usually
changes rapidly near the equivalence point, and much less so before and
after that point. In section 4.5 we paid attention to the steep part of the
curve, but we can also exploit its shallow parts, where the pH appears to
resist change. A quantitative expression of such pH-stabilizing buffer action
is the buffer strength, which is denoted by the symbol B, and is given by

B=[H"] + Cagay + [OH] (4.7-1)

where «; and ¢4 are the concentration fractions of the monoprotic acid and
its conjugate monoprotic base respectively, and Cis its total analytical con-
centration.

A closely related measure is the buffer index or buffer capacity 3, which is
the parameter originally introduced by Van Dyke. The two differ only by the
factorIn(10),i.e., the relation between Band Bis

B=BIn(10)~2.30 B 4.7-2)

Strong acids and strong bases are the most powerful buffers, but their
buffer action is restricted to the extreme ends of the pH scale. For a concen-
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trated strong acid, the buffer strength is simply [H*]; for a concentrated
strong base, itis [OH]. At intermediate pH values, weak acids and their con-
jugate bases must be used to provide buffer action.

The buffer strength for the aqueous solution of a single monoprotic acid
and its conjugate base follows from (4.7-1) as

CH']K,

— [+ -1 — g+
B=[H"]+ Capa; + [OH"] =[H ]+([H+]+Ka)2

+ [OH™] (4.7-3)

The product a @; has a maximum at pH = pK,, where oy = a; =%, so that
the product has the value %. For a single monoprotic buffer mixture (i.e., the
mixture of a monoprotic acid and its conjugated base), the pH in the region
of maximal buffer action, pH=pK,, can often be estimated from the
Henderson approximation

pH=pK,+pC,/ —pCy (4.7-4)

where C,’ and C,’ are the concentrations of acid and conjugate base (e.g.,
acetic acid and sodium acetate) used to make the buffer mixture, their
values being computed as if they were independent, non-interconverting
species. The corresponding buffer strength is

1/B=1/C, +1/Cy (4.7-5)

For a mixture of monoprotic acids or bases, the buffer strength is
B=[H"]+ Y Cagaj+[OH] (4.7-6)

where each pair of conjugated acid and base comprises one term in the
summation. So-called ‘universal’ buffer mixtures, such as those associated
with the names of Prideau & Ward and Britton & Robinson, are carefully
selected to allow the pH to be varied continuously with strong acid or base,
while still providing buffer action at each pH.

Instructions for exercise 4.7

1

Recall the spreadsheet Monoprotic Acid, or start a new one with columns for pH and
[H], and fixed locations for Cand K.

2 Make a column for B using (4.7-3).

Plot the buffer strength as a function of pH. Vary Cand K, and observe their effects.
Figure 4.7 illustrates such a curve, and emphasizes the contribution to Bof the buffer
strength by separately and in color displaying the quantity B— [H"] — [OH] = Caga;.
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Fig.4.7: The buffer strength of a single buffer mixture, C=0.1 M, pK, = 4.7. The black

curve shows the contribution to Bof C o ;.

Diprotic acids and bases, and their salts

So far we have only considered monoprotic acids and bases. Fortunately, the
corresponding relations for diprotic and polyprotic acids and bases are
quite similar. The relations for diprotic acids and bases will be given here,
while those for their polyprotic counterparts (with three or more dissociable

protons) can be found in section 4.9.
For a diprotic acid H,A such as oxalic acid we have

H,A=H"+HA"~
[H*][HA"]
Kp=—"r"—
! [HpA]
HA-=H™+ A%
_ [H][A?]
Kez ="

o [HoA] _ [H*]?
AT 2T A+ [HA T+ [A27] [H')2+ [HTK,, + K1 Ky

e [HA™] _ [H*1Ky
HATTU T HLAL + [HATT+ (A% [HY12+ [HY 1Ky + K Kee

_ [A27] _ KalKaZ
[HpAl + [HAT] + [A%7]  [H')?+ [HT]Ky + KK

apz- = ag

(4.8-1)

(4.8-2)

(4.8-3)

(4.8-4)

(4.8-5)

(4.8-6)

(4.8-7)

while we write for a diprotic base such as carbonate (where B* =C0;4*)
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H,B=H*+HB" (4.8-8)
Ko — [H"][HB] (4.8-9)
T [H,B] '
HB=H"+ B* (4.8-10)
[H*][B2"]
== 2 4.8-11
K, (HB | ( )
B [H,B] B [H*)? (4.8-12)
FHB=02 7 1 HL,B] + [HB ] + B2 ] [H'12+ [H']Ky + KyyKgz '
[HB ] [H'1K,
I = 4.8-1
CHBT =M T Bl 4+ [HB ]+ [B2] [H'12+ [H' 1Ky + Ky Ky (4.8-13)
[B27] KauKaz
=y = = 4.8-14
OB T Y07 [H,B) + [HB ] + B2 ] [H'1%+ [H']Ky + KKy ( )
Likewise, for Ca(OH), we can write
Ca?"+ H,0=H"+ CaOH" (4.8-15)
[H*][CaOH*]
Ku= Tc2t (4.8-16)
CaOH* + H,0=H"+ Ca(OH), (4.8-17)
[H"][CaOH),]
= ey 4.8-18
Kaz [CaOH*] ( )
B [Ca2+] B [H+]2
¥Ca*' =927 1Ca2%] + [CaOH | + [Ca(OH),] [H 1+ [H' 1Ky + KyKap
(4.8-19)
B [CaOH ] _ [H"1Ka
HCaOH" =1 = 102271 4 [CaOH '] + [Ca(OH),] [H 12+ [H' 1Ky + KKy
(4.8-20)
N o [Ca(OH),] _ KuKap
CalOm:=0"" 1Ca2%] 4 [CaOH "] + [Ca(OH),] [H']12+ [H']K, + Ku Ky
(4.8-21)

One of the advantages of using a formalism that treats acids and bases the
same (by considering bases in terms of their conjugate acids) is that it makes
it very easy to represent otherwise ambiguous species that can act as either
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acid or base, such as acid salts (e.g., bicarbonate) and amino acids. For
example, for an amino acid such as alanine, which we will represent here in
its protonated form as H,A™", we have

H,A*=H"*+ HA (4.8-22)
_ [H'][HA]
Ky = AT (4.8-23)
HA=H"+ A" (4.8-24)
K,= w (4 8-25)
_ [HA"] _ [H*)?
CHAT T 2T AT+ HA + (A7) [HT 12+ [H' K, + KKy (4.8-26)
QA= @y = [FIA] = (H) Ky (4.8-27)
HAT T HAT + [HAL+ A7) [HT)2+ [HY 1Ky + KK '
ap- = ag A ] = KaKep (4.8-28)

THAT]+ [HAJ+ A7) [H'12+ [H Ky + KaKe

Please note that equations (4.8-5) through (4.8-7), (4.8-12) through (4.8-
14), (4.8-19) through (4.8-21), and (4.8-26) through (4.8-28) are identical
when the concentration fractions are written merely as a,, ;, and oy, where
ayis the concentration fraction of the fully protonated form (H,A for a dipro-
tic acid, HA*for a diprotic amino acid, H,B?*for a diprotic base), «, that of
the fully deprotonated form, while «; is the concentration fraction of the
intermediate form. For the buffer strength of the solution of a diprotic acid
and/or its conjugate bases we then have

B=[H"] + Claza; + aqag + 4asag) + [OH] (4.8-29)

which can be compared with (4.7-1) for a monoprotic acid and/or base.
When the pK,’s differ by 3 or more, the overlap between the two dissociation
processes is small, in which case the term 4a,«q in (4.8-29) can be neglected,
so that the system can be approximated as behaving as two separate
monoprotic acids, each of concentration C but with pK,; and pK,, respec-
tively.

For the titration of the fully protonated form of a diprotic acid with a
strong monoprotic base we have
Vi Calag +2a9) — A

4.8-30
V, Cp+A ¢ )

where C, (a; +2a,) denotes the number of moles of protons that are
removed from the fully diprotonated acid. For the intermediary form (the
acid salt, the basic salt, or the neutral or zwitterionic form of an amino acid)
we likewise have
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Table 4.8-1: ThepK,-values for some diprotic acids, bases, and aminoacids.
Acid or base pK. pKyp Amino acid pKa pKep
carbonicacid 6.35 10.33 alanine 2.35 9.87
catechol 9.40 12.8 asparagine 2.14 8.72
fumaric acid 3.05 4.49 glutamine 2.17 9.01
hydrogen sulfide 7.02 139 glycine 2.35 9.78
8-hydroxyquinoline 4.9 9.81 isoleucine 2.32 9.75
maleic acid 1.91 6.33 leucine 2.33 9.75
malic acid 3.46 5.10 methionine 2.20 9.05
malonic acid 2.85 5.70 phenylalanine  2.20 9.31
oxalic acid 1.25 4.27 proline 1.95 10.64
phthalic acid 2.95 5.41 serine 2.19 9.21
piperazine 5.33 9.73 threonine 2.09 9.10
salicylic acid 2.97 13.74 tryptophan 2.35 9.33
sulfuric acid <-1 1.99 valine 2.29 9.72
v, C - —-A
Vo _ Calag =) = A (4.8-31)

Va Cp+A

Similarly, the titration of the fully deprotonated base with a strong mono-
protic acid is described by
Va_ Gplag +2a5) +A
Vi C,— A
and the titration of the intermediary, half-deprotonated base (or, depending

on your point of view, the half-protonated acid) with a strong acid by

&_ Cb(az - C(o) + A
A C,— A

(4.8-32)

(4.8-33)

Instructions for exercise 4.8

1 Openanew spreadsheet, Diprotic acid.

2 Adiprotic acid has two dissociation constants. To reflect this, make labels and assign

spaces for C,, Cy, K,,, K1, and K,,. Either use numerical values for K,;; and K, that cor-

respond to a given diprotic acid (of which several are shown in Table 4.8-1), or use your

imagination. In the latter case, just make sure that K, < K,; (i.e., pK,;; <pKy»).

3 Make columns for pH, [H*], [OH ], denom, a, a3, and «g, where denom represents the

common denominator [H*]?+ [H] Ky + Ky K.

4 Plot the distribution diagram.

5 Change the chart to single-logarithmic, and plot the logarithmic concentration

diagram for C=1M, and/or
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Change the chart to double-logarithmic, and plot a,, «;, and «qversus [H ], which will
also produce the logarithmic concentration diagram for C=1 M.

Make a column for the buffer strength B, then plot Bvs. pH.

8 Make a column for the progress curve, V,/V,, for the titration of the diprotonated form

10
11

12

13

with strong acid.
Plot the resulting progress curve, V;,/ V,versus pH.
Also plot the corresponding titration curve, pHvs. V,,/ V.

Add a column of noise, as well as space for a noise amplitude parameter na. Fill the
column with Gaussian noise of zero mean and unit standard deviation.

In the next column, (V},/V,),,, add natimes that noise to V,,/ V,. This will simulate
‘experimental’ data. Then add the adjustable variables C,,, K,,;, and K,,», and with
these (aswell as K, and Cp) calculate the corresponding theoretical data (V;/V,),,.

Use Solver to recover close approximations for the values of C,, K;;, and K,,, by start-
ing from different initial values for C,,, K,,;, and K4, with, say, na= 0.01. Keep in mind
that you should vary the pK,’s rather than the K, ,-values themselves. Then try different
numerical values for C,, K, K, and na, and observe what happens.

Polyprotic acids and bases, and their salts

In order to extend the discussion to polyprotic acids and bases, we first con-
sider a triprotic acid such as orthophosphoric acid,

HsA=H"+ HoA~ (4.9-1)
Ky = % (4.9-2)
H,A"=H"+ HA?*" (4.9-3)
Kep = %&Iﬁﬁ (4.9-4)
HAZ=H"+ A% (4.9-5)
K= %@:] (4.9-6)
QA = A3 = [ (Al

H,A] + [H,A™] + [HA27] + [A37]
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_ (H']® (4.9-7)
[H*13 + [H"12Kyy + [H 1Ky Kop + Koy KaoKg '
s [H,A"]
HA T2 HGA] + [HpA 7] + [HAZ ] + [A%]
_ [H+]2Ka1 (4 9-8)
[H*13 + [H 12Ky + [H 1Ky Kgp + Koy Koo Ko ’
o [HA?]
CHAT T M AT + [HpA ] + [HAZ ] + (A3
_ [H+]Ka1Ka2 (4 9_9)
[H*13 + [H 12Ky + [H 1Ky Kgp + Koy Ko Ko '
- [A37]
HA T 0T AT + [HLA ] + [HAZ ]+ [A3]
_ KarKazKas (4.9-10)

[HP + [H?Kq + [H'1Ka Kz + K KeaKas
For a general n-protic acid we have, analogously,

_ H' 1K Ky - Kym (4.9-11)
Oy = HT]"+ [H+]"_1Kl T [H+]"_2K1K2+ -+ K Ky K, ’

where m=1, 2, ..., n,and where we have deleted the ain K, in order to make
the notation somewhat more readable.

The buffer strength of a triprotic acid, as a function of its total analytical
concentration and of pH, is given by

B= [H+] + C(a3a2 + [67Xe5] + a1 + 4a3a1 + 4&2&0 + 9a3a0) + [OHi] (49‘12)

where the coefficients 1, 4, and 9 of the alpha products are the squares of the
differences between the indices of these alpha’s. Indeed, (4.7-5), (4.8-25),
and (4.9-12) can be generalized for an arbitrary n-protic buffer to
B=[H1+C> > (j— i)’ aja;+ [OHT] (4.9-13)
i=0 j=i+1

Again, when the pK,’s are well-separated, the terms with coefficients
higher than 1 can usually be neglected. For a mixture of k different (non-
interconvertible) buffers, their individual contributions should be added,
ie.,

ny np
B=[H'1+> C> > (j— i) ayaj+ [OHT] (4.9-14)
k i=0 j=i+1

For the titration of the triprotonated acid with a monoprotic strong base
we have



154 Acids, bases, and salts

ﬂ _ Ca(az + 20(1 + 3&0) - A

4.9-15
V., C,+A ( )
or, in general,
Vi, C,F,—A
=t 4.9-16
Vo GCp+A ( )

where F,= a, + 204 + 3¢y for the titration of the acid, F,= a; + 2ay — a3 for
that of the diprotic salt (as in monosodium phosphate), and F, = ¢y — 2a3— a5
for the titration of the monoprotic salt (e.g., disodium phosphate), all the time
using a strong monoprotic base as the titrant. Similarly, we have, for the titra-
tion of a fully deprotonated triprotic base with a strong monoprotic acid,

Vu GFp+A

4.9-17
V, C,—A ( )

with F, = a; + 2a, + 3a3, For the equivalent titration of the monoprotic salt
we have, likewise, F, = a, + 2a3 — ag, and for the titration of the diprotic salt
with, say, HCl, F,= a3 — a; — 2« For tetraprotic, pentaprotic, hexaprotic
etc., acids, (4.9-16) remains valid but the expression for F, must be
extended; similarly, (4.9-17) applies in general to all bases titrated with a
single, strong monoprotic acid although the definition of F,, must reflect the
particular base.

The above expressions can be generalized further to encompass an arbi-
trary mixture of acids, titrated with any mixture of bases, or vice versa, in
which case they take the form

C,F,— A
Vi
JZE aa (4.9-18)
Va D CF,+A
and
CpFp+ A
V. b
JZE (4.9-19)
Vo D CF,—A

respectively. These, then, are general master equations for acid-base titra-
tions. Their availability makes it possible to use the general data fitting
method described in section 4.6 to analyze any acid-base titration.

Instructions for exercise 4.9
1 Either open a new spreadsheet, Triprotic acid, or extend the spreadsheet you made in
Section 4.8.

2 The new spreadsheet should store C,, Cp, K, and three K,-values. Again, select either
literature values for a triprotic acid, or use made-up numbers, as long as K,; > K5 > K3.
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It should have columns for pH, [H*], [OH ], denom, and four alphas. Here, denom
should be the common denominator of (4.9-7) through (4.9-10).

Plot the resulting distribution diagram.

5 Plotthe correspondinglogarithmic concentration diagram for C= 1 M by using a single-

logarithmic scale. Note how the slopes of the various acid species vary between — 3 and
+ 3, and change every time the lines pass a pH value equal to a pK,,.

Make a column for the buffer strength B, and plot this quantity as a function of pH.

7 Make a column for the progress V,/ V, of the titration, and plot the resulting progress

and titration curves.

Add Gaussian noise, and make columns for (V,/V,),, and (V,/V,),respectively, where
the latter column requires a set of guess values for the acid concentration and its pK’s.

See under what conditions use of Solver can recover a reasonably close value of the acid
concentration, and ofits pK’s.

Activity corrections

Our treatment of acid-base equilibria so far has been based on the mass
action law, i.e., on the constancy of the equilibrium constants. Comparison
with experiment shows that this relatively simple model is by and large
correct, just as it would be essentially correct to say that the earth rotates
around the sun according to Kepler’s laws. If one looks much closer, one will
find that it is not quite so, but that the influence of the moon must be taken
into account as a small correction if a more precise description is required.
In fact, there is a hierarchy of corrections here, starting with the influence
of the moon, then that of the planets, and eventually that of all other
heavenly bodies. Although it might appear to be a hopeless task to include
an almost endless number of stars and galaxies, in practice the list of
effects we need to include is restricted by the limitations on the experimen-
tal precision of our measurements, and a simple hierarchy of corrections
suffices for all practical purposes. A similar situation applies to acid-base
equilibria.

The mass action law formalism, through its equilibrium constants, takes
into account the interactions of the solvent with the various acids, bases,
and salts; these certainly are the dominant effects, comparable to Kepler’s
law in the above analogy. However, the formalism of the mass action law
does not explicitly consider the mutual interaction of the solute particles,
nor the effect of these solutes on the concentration of the solvent. Activity
coeflicients fhave therefore been introduced in order to incorporate such
secondary effects; they are individual correction factors that multiply
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concentrations, somewhat analogous to the individual weights w intro-
duced in least squares methods (see section 3.4).

The hierarchy of corrections starts with long-range effects, which are
noticeable even in rather dilute solutions, where the average distances
between the interacting particles are relatively large. The interactions are
then predominantly coulombic, resulting from the mutual attraction ofions
with charges of opposite sign, and the corresponding repulsion of ions with
charges of the same sign. Interestingly, although an ionic solution is electro-
neutral, the attractive and repulsive forces do not quite compensate each
other, but result in a net attraction, just as they do in an ionic crystal.
Fortunately, this effect depends only on the charges involved rather than on
the chemical nature of the solutes, and therefore can be described in rather
general terms, as is done in the Debye-Hiickel theory.

The dominant parameter in the Debye-Hiickel theory is the ionic
strength I, defined as

1
I=— 2c; 4.10-1
ZZZ, C; ( )

where z;is the ionic valency, and c; the ionic concentration. This definition is
such that, for the simple case of the solution of a single, strong 1,1-elec-
trolyte, the ionic strength is equal to the salt concentration (just as, for a
single, strong, concentrated monoprotic acid, the buffer strength is equal to
its concentration). To a first approximation, the Debye-Hiickel result is

—0.52z2V1
logﬁ:ﬁ (4.10-2)

which describes the deviations from ‘ideal’ behavior (as described by the
mass-action law) in dilute (= 1 mM) solutions quite well.

In more concentrated solutions, additional mutual interactions must be
considered, which can only be described in terms of ion-specific parame-
ters. We will not do that here, but instead use an expression that, again, does
not require any species-specific parameters, yet tends to yield a reasonably
good description for the average behavior of more concentrated solutions
(even though it may not represent any particular solution very well). This is
the so-called Davies expression,

VI
. — .2 — -
log fi=— 0.5 z; <1+\/1 0.31) (4.10-3)

which, again, is restricted to ions, because log f; = 0 hence f;= 1 when z;= 0,
i.e., for neutral species.

It is convenient to separate the ionic valency z; from the remainder of
(4.10-3), which we do by rewriting (4.10-3) as

3 VI
log f=—0.5 (1 v 03 1) (4.10-4)
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or
f= 10-0-5(VIIa+VD1-03 13} (4.10-5)
with

log f;=z?log f= logfzi2 (4.10-6)

After these formal preliminaries we will now describe how activity correc-
tions should be applied. In order to do so, we must distinguish between (a)
the role played by the activity coefficient in equilibrium calculations, and (b)
the particular measurement technique used. Below we will consider these
various aspectsin turn.

(a) Activity coefficients must be included in the definitions of the equilib-
rium constants, such as K, and K,,. However, they should not be incorpo-
rated in the mass and charge balance equations, or in the related proton
balance, since these are purely bookkeeping devices in terms of particle
densities, i.e., concentrations. Consequently, the influence of activity cor-
rections on distribution and logarithmic concentration diagrams is rela-
tively simple, as they only affect the pK-values used.

(b) Then there is the effect of the experimental method. Electrochemical
methods, such as using a pH electrode, yield values that are approximately
equal to the ionic activity (i.e., the product of concentration and activity
coefficient) of the sensed species rather than its concentration, whereas
most other analytical methods (such as spectrometry) directly respond to
concentrations. Therefore, when dealing with electrochemical measure-
ments, we must make an additional activity correction for the measured
quantity. Since the pH can be measured either electrometrically or spectro-
metrically, we will leave the pH scales in these diagrams in terms of concen-
trations, and only apply activity corrections when we specifically deal with
electrometricpH measurements.

Finally we note that, in the Davies approximation, the value of log f
depends only on the ionic strength of the solution, and that f; is always 1 for
neutral species. The mathematical analysis of acid-base measurements can
therefore be simplified by performing them at constant ionic strength,
which can be achieved for all practical purposes by adding a sufficiently large
excess of non-participating, so-called inert electrolyte, such as LiClO,, In
that case, all activity coefficients can be considered to be constant during the
experiment, which simplifies the data analysis.

We are now ready to put the various pieces together. First the general cor-
rection of the equilibrium constants. Here we use (4.10-5) and (4.10-6) to
find the corrected, thermodynamic equilibrium constants K * as illustrated
below for a few examples:

t_ [HTIf [AT]f- :f+f— K.=f2K 4.10-7
[HA]ﬁ) ﬁ) a f a ( : )

HA=H"+A" K,
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where f, = f_ = f;since (+ 1)2= (- 1)2=1,and f=1;

I Bl _fifo e _

it t_ _
HB=H"+B K, HB I, f (4.10-8)
H,0=H"+ OH" Ku'=[H"f [OH7If. = f.f-Ky=[?K, (4.10-9)

. [Hf (HATIf _f Fx
HaA=H"+ H,A K, o B AT fs K, = 2K, (4.10-10)
3 2: 1 HBAﬁ) f() 1 f 1

T+ 2— t_ [H+]f+[HA27]f2* :f+]§* — f4 _
H,A"=H"+ HA' K, TEA Y CF Kp=f*K, (4.10-11)
where f,_= f*;

+ 3

HAZ=H"+ A3 Ka3’=—[H VA V- _Soh- Ks=f°Ks  (4.10-12)

HA*"f, e
wheref, =f*andfy;_=f%sothatffy_/f,_ =ff%/ f*=fS.

Most tables of equilibrium constants list values for K/, as obtained by
extrapolation towards I — 0, but the spreadsheet calculation requires the
uncorrected K,;’s. Below we will indicate how to make the activity correction.

Instructions for exercise 4.10

1 Startanew spreadsheet, Activity correction.

2 Make or copy the spreadsheet for the titration of a triprotic acid, with storage spaces
for C,, Cy, K,,, and three K,-values, and with columns for pH, [H*], denom, and V,/ V.
(This spreadsheet can also be used for a monoprotic or diprotic acid, by setting the
unused K,’s to values smaller than 10724, i.e., the pK,’s to values larger than 24.)

3 Selectliterature values for orthophosphoric acid for the various K,;s.

4 Firstletus assume that the ionic strength is constant at, say, 0.1 M. Note that this can
only be realized when C,is much smaller than 0.1 M, so that the ionic strength can be
determined by an inert electrolyte in excess.

5 Make columns labeled I and f. In the first enter a constant, say, 1. In the second column
calculate the value of faccording to (4.10-5).

6 Make new columns for (denom),and (V},/ V,), (where tnow stands for thermody-
namic) which are similar to the earlier ones except that you should use K, /f?instead
of K1, Ko/ f* instead of K5, and K3/ f® instead of K.

7 Plotboth theuncorrected and the corrected progress curves, V;,/ V,and (V},/V,);, asa
function of pH.

8 Inorder to plot the corresponding titration curves, copy (using Paste Special = Values)
the column for (V;,/V,),below that for V;/V,, and make a second, double-length
column for pH to the right of the existing data in the spreadsheet to facilitate plotting
the pH versus (V,/V,) and (V},/ V,),. Plot the titration curves.
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Progress curve, 0.1 M H;PO,
with 0.1 M NaOH

Titration curve, 0.1 M H;PO,
with 0.1 M NaOH
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Fig.4.10: Progress and titration curves for the titration with 0.1 M NaOH 0f 0.1 M
orthophosphoric acid (top) and citric acid (bottom) respectively, calculated with

(colored open circles) or without (black solid circles) taking into account activity correc-

tions according to the Davies equation. Electrochemical pH detection is assumed

(i.e., with a glass electrode), as well as the absence of other salts, so that the
ionic strength varies during the experiment. Equilibrium constants used: for
orthophosphoric acid pK,,* = 2.15, pK,,' = 7.20, pK,3" = 12.15; for citric acid
PKa'=3.13, pKy,' = 4.76, pK,s' = 6.40.
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We must apply an additional correction when the pH is determined electrochemically;,
in which case the measured pH is approximately —log f[H"]. In that case the second
column for pH should be converted accordingly.

When the ionic strength is not kept constant, its value changes during the
titration, and must be calculated. We first compute I from the uncorrected
data. In principle, the results must thereafter be recalculated based on the
corrected parameters. Fortunately, since we deal here with a rather minor
correction, such an iterative approach is seldom needed, and a single pass
almost always suffices.

Insert a column computing the ionic strength Ito the left of the column for f. For the
calculation of the ionic strength of, say, the titration of C,M H;PO, with C, M NaOH,
use

I=%{[H"]+ [Na'] + [OH7] + [H,PO,7] + 4[HPO,*] + 9[PO,> 7}
=B{H'+C,V},/ (V,+ V) + K,/ [HT]
+ ([H"2 Ky + 4 [H"] Ky Ky + 9 Ky Ky Kag) C, V,, [ (denom X V, + V) }
Use these values for I to calculate fin the next column.

Plot the corresponding progress and titration curves, with and without activity correc-
tion, for orthophosphoric acid.

Do the same for citric acid. All you have to do here is to change the three values for K;
through K3 to those for citric acid, and plot new graphs.

Figure 4.10 (on the previous page) illustrates the resulting progress and
titration curves for orthophosphoric acid and citric acid respectively,
showing both the uncorrected (black) and corrected curves (color) for the
case in which the ionic strength is not controlled, and the pH monitor is an
electrode. These are examples to showcase the effect: with triprotic acids the
activity corrections are rather large since trivalentions are involved. Even so,
the effect is still relatively minor. This is why activity corrections are seldom
made. Note that the values of the equivalence volume are not affected at all.
This is true in general, since the definition of Vg in (4.4-5) contains no
factors subject to activity corrections. The same applies to polyprotic acids
and bases, and to mixtures.

In the cases illustrated, the ionic strength varied during the titration.
When the ionic strength is kept constant, the only changes in the curves are
a constant shift in the pH scale (assuming electrochemical pH detection)
plus separate shifts for the various pK,’s. This is the reason why it is often
wise to leave the pK,-values to be determined by the data-fitting algorithm,
even though they could have been preset with literature values.
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A practical example

Atthe end of this chapter devoted entirely to acid-base equilibria it is appro-
priate to show a practical example. Titrations are usually restricted to rela-
tively concentrated solutions, and are therefore unsuitable for, say, trace
analysis. However, the precision, ease of use, and low cost of titrations can
make them the method of choice when the concentrations to be analyzed
are sufficiently high, and the measured acid-base properties can be related
to valuable information. The example to be used below comes from Finland,
where silage is routinely analyzed this way, with some 35000 titrations per-
formed annually at the Valio Finnish Cooperative Dairies Association in
Helsinki. Careful analysis of an acid-base titration curve, inexpensively
obtained with automated equipment in a matter of minutes, can provide
quantitative information regarding the amounts of total amino acids, of
lactic and acetic acid, of total soluble nitrogen, and of reducible sugars, all
from a single titration! In northern countries, the dairy industry heavily
relies on such analyses for quality control, since poor silage preservation
can lead to flavor defects in both milk and cheese during the period in which
the cattle are fed indoors.

Since this example uses a rather large data set, we will import it rather
than copy it into the spreadsheet by hand, which would be an error-
prone waste of time. The data can be downloaded from the website,
http://uk.cambridge.org/chemistry/resources/delevie After downloading,
store them as a data file on your hard disk or on a diskette. These data were
kindly provided by Dr. M. Heikonen of Valio Ltd, and pertain to the analysis
of a 5.0 mL sample of silage press-juice diluted with about 10 mL of water to
a total sample volume of 15.0 mL, titrated with 1 M NaOH at a rate of about 3
mL/min; the total titration took about two minutes. The first column repre-
sents the pH, the second the titrant volume, in microliters. Adjacent data in
the two columns of each line (representing pH and V}, respectively) are sep-
arated by commas, i.e., in computer jargon, they are comma delimited, a
method of data storage that avoids problems due to deleted zeros and other
variations in number of digits per data point.

The following introduction to the spreadsheet exercise is a simplification
of the discussion in T. Moisio & M. Heikonen, Animal Feed Sci. Technol. 22
(1989) 341. The titration curve of silage press-juice is shown in Fig. 4.11-1. It
shows three distinct regions: between pH 2 and pH 5 the carboxylic acid
groups of amino acids are deprotonated, as well as weak acids such as lactic
and acetic acid, so that the pH increases only gradually. There is much less
buffer strength between pH 5 and 8, where the pH rises more rapidly. The pH
range from 8.5 to 10.5 involves the neutralization of amines and ammo-
nium, and can be taken as a measure of the available nitrogen. At pH values
above 11, reducing sugars are titrated, and the buffering action of the titrant
becomes important. All in all, this titration curve lacks prominent features,
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Fig4.11-1:The titration of 15.0 mL of diluted silage press-juice with 1.0 M NaOH.

and therefore does not appear very promising for quantitative analysis. On
the other hand, it contains information on three crucial quality criteria, viz.
the concentrations of acids, protein degradation products, and sugars, and
can be obtained quickly, inexpensively, and (equally important) with high
precision.

It is possible to refine the above analysis, because the (literature values of
the) pK,’s of amino acids mostly lie in the range from 1.9 to 2.4, while those
of lactic and acetic acid are 3.86 and 4.76 respectively. These numbers are
sufficiently far apart to allow their separate numerical analysis. Because of
activity effects on both the equilibrium constants and the pH measure-
ments, the precise values of the pK,’s depend on the ionic strength of the
sample, and it is therefore best to treat the pK,’s as adjustable parameters,
that are allowed to vary within rather narrow pH ranges. Here, then, is the
analysis protocol we will follow initially. We will consider five separate
ranges, one each for the amino acids (pH 1.9 to 2.7), lactic acid (3.4 to 4.0)
and acetic acid (4.4 to 5.0), plus one for total nitrogen (8.8 to 10.8) and one
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for reducing sugars (11.3 to 11.9). We will confine the pK,-values to their
respective ranges. The equation to be fitted follows directly from (4.3-9) as

CaKu/ (H'] + K) + CppKpp/ ((H 1+ Kpp) + - — [HT] + K,/ [H*]

Vo= Vax Cp+ [H] - K,/[H]

(4.11-1)

where V,, Cp,, and K, are constants.

Instructions for exercise 4.11

1 Openanew spreadsheet.

Enter labels for the adjustable parameters conl, con2, con3, con4, con5, Kal, Ka2, Ka3,
Ka4, and Ka5, and the corresponding values of pKal, pKa2, pKa3, pKa4, and pKa5.
Anticipating our repeated use of Solver it is convenient to group the concentrations,
K,’s,and pK,’s together, e.g., by putting the labels and values of each category in separ-
ate columns. For example, put all concentration labels in column A, all corresponding
data in column B, all labels Ka in column C, their numerical values in column D, all
labels pKa in column E, and in column F their values. Compute the K,’s from their pK,
-values: K;; = 107PX@ etc. Also make a space for the sum of the squares of the residuals,
SRR.

Name five sample concentrations, conl through con5, and assign them identical
initial guess values, somewhere between 0.05 and 0.1 M. Similarly, name the K,’s, and
assign the corresponding pK,’s values 2.3, 3.7, 4.7, 9.8, and 11.6 respectively.

In row 10 enter the following column headings: pH, Vb(exp), [H'], Vb(calc), R, and RR.

5 Place the mouse pointer in cell A12 to identify where the data to be imported should be

placed.

Ifyou have stored the data file on a diskette, insert it now into its drive.

7 SelectFile = Open. In the resulting Open dialog box, push the triangular button to the

10
11

12

right of the top window (labeled Look in:) and select the (floppy or ‘hard’) drive con-
taining the datafile.

Select the data file SilagepH and follow the instructions of the Text Import Wizard. The
data are comma-delimited, therefore use Delimited, and as delimiter specify a
Comma. The data should appear in your spreadsheet after you use the Finish key.

Now that you have imported the data, back to their analysis.
First, in column C calculate [H*] from the pH in column A.

In column D calculate Vj,using (4.11-1),i.e. onrow 14 as = Va*(con1*Kal/ (B14 + Kal)
+ -+ + con5*Kab5/(B14 + Ka5)-B14 + Kw/B14)/(1 + B14-Kw/B14), since C,= 1.0 M.

In column E compute the residuals, i.e., the differences between the values of Vi,exp
and Vj, c,c and, in column E the squares of these residuals.
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Fig.4.11-2: The progress curve, and the residuals, before data fitting. Parameters to be
varied are shown in color. The initial values of all concentrations have been set to
0.07 M.



13
14

15

16

17

18

19

20

21

4.11 A practical example 165

Calculate the sum of those squares of the residuals, i.e., SRR.

On the spreadsheet, plot V}, ey, and Vj, ca1c versus pH. You may want to use a heavy black
line for Vj, ey, and a thinner, colored line for Vi, ¢4, in which case you will see how the
latter will nestle in the experimental curve once you achieve a good fit.

In a separate graph, also plot the residuals R versus the pH. At this point your charts
may look like Fig. 4.11-2, except that we have incorporated copies of some of the top
lines of the spreadsheet columns to show the various parameters involved.

Invoke Solver with Tools = Solver, and in the Solver Parameters dialog box instruct the
computer to Set Target Cell to the address of SRR, Equal to Min, By Changing Cells
B1:B5 (if thatis where you put the five C,’s).

Push the Add... button, which will invoke the Add Constraint dialog box. This has three
windows; in the first window type A2 (or whatever is the address of Cal), in the middle
window select the > = sign, and in the right-most window type 0.

Depress the Add button, and repeat for C,,, etc. until all five concentrations have been
constrained to positive values. Then depress the OK button, which will get you back to
the Solver Parameters box.

Now you are ready: depress Solve to start the non-linear least-squares fitting process.
When Solver is done, accept its results. Figure 4.11-3 illustrates them.

The fit may not please you, even though SRR will be about an order of magnitude
smaller. The fitis especially poor in the middle range of pH values, where the program
has little flexibility, since there are no pK,-values between 4.7 and 9.8.

Itis possible to get a somewhat better fit by letting the pK,-values roam within narrow
ranges, but this will not cure the poor fit at neutral pH, and the improvements in SRR
are marginal.

At this point, then, we must make a choice: either we stick with a sim-
plified model of silage, in terms of just five components, or we jettison the
specific model and see whether we can obtain a much improved fit by incor-
porating more pK,’s. From the chemical analysis we already know that the
silage press-juice contains (in order of decreasing concentration) leucine,
alanine, glutamic acid, y-aminobutyric acid, valine, glycine, lysine, proline,
serine, and aspartic acid. Of these, y-aminobutyric acid has a pK, of 4.1,
while glutamic and aspartic acid have second pK,’s of 4.4 and 3.9 respec-
tively. Efforts to characterize all these amino acids in terms of a single pK,
will only be approximate at best. Similarly, the dominant protein degrada-
tion products, again in order of decreasing importance, are tyramine, cadav-
erine, putrescine, histamine, tryptamine, and phenylethylamine, with pK,
values between 9.8 and 10.7, while the pK, of ammonia is 9.2. It is also useful
to look at the residuals in Fig. 4.11-3. These show trends rather than random
noise, and therefore suggest that it may be worthwhile to add a few more
terms in the expression for V;,
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Table 4.11-1: The concentrations C, (in mM), the values of pK,, and the logarithm of the value
of SRR, obtained for the various iterations on the data.

Iteration #1 #2 #3 #4 #1 #2 #3 #4
Car = 89 97 89 75 pKa = 23% 245 240  2.05
Cp= 67 83 76 72 pKp = 3.9* 4.01 3.78 3.34
Cus= 51 20 35 pKaz = 4.8* 4.92 4.34
Cu= 30 18 19 pPKu = 6.87 6.64 6.26
Cos = 17 14 pKys = 8.42 791
Cu= 102 92 72 66 PKys = 9.8* 9.59 9.58 9.27
Car = 30 33 pKyr = 10.77  10.20
Cas = 88 129 153 79 pPKis= 11.6* 11.90 12.26 11.68
pK, 14.0*  14.0* 14.0* 13.49
= 1* 1* 1* 0.68

log SRR = 01 -12 -23 -—-35 *:values fixed

22

23

24

25

26

In view of the complex nature of the sample, and the apparent data
quality, we will now explore what can be gained by adding several adjustable
C,-K, combinations to our analysis, letting their pK,’s float within non-
overlapping ranges. We will also account for activity effects by introducing
an adjustable activity coefficient f, by modifying the instructions in column
C to represent [H'] as 10"/ and by letting pK,, float as well. Below we will
see how far this approach will carry us.

In the spreadsheet, add the concentrations Ca6 through Ca8, and the labels and values
for the corresponding Ka’s and pKa’s.

Introduce another adjustable constant, f, and modify the calculation of [H"] in column
C, and that of the various pK’s, as described in section 4.10.

Extend the instruction for Vb in column D to incorporate the three additional concen-
trations and equilibrium constants.

Return to Solver, extend the range of concentrations by changing the right-most
number in the By Changing Cells from 5 to 8, then add D5:D8 for the pKa’s, and finally,
again separated by a comma, add the addresses of pKw and f. Quite a laundry list!

In the Solver Parameters dialog box, press Add... to get the Add Constraint box, and use
it to set both lower and upper limits on the values for the pKa’s. Constrain pKal to >=
1.9 and, with a separate instruction, <= 2.7. Similarly constrain the other pKa’s to their
properranges: 3.2 =pKa2 =4.0,4.2<=pKa3 =5.0,6.0=pKa4=7.0,7.8 =pKa5=8.6,
9.0 <pKa6=9.8,10.0 = pKa7=<11.0,11.2 =< pKa8 < 13.0, and 13.0 = pKw =< 14.6. Then
go back to the Solver Parameters, and restart the curve fitting process using the Solve
button.
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The entire optimization uses a single criterion, minimizing the sum of
squares of the residuals, SRR. As is readily seen from Table 4.11-1, SRR
decreases by about an order of magnitude every time we add more adjust-
ability to the curve-fitting procedure. This is so because we deal here with
adjusting to the precise shape of the curve, not with noise reduction. Note
that the values obtained for the various concentrations change from one try
to another, indicating that these are fitting parameters rather than true
chemical concentrations.

As illustrated in Figs. 4.11-4 through 4.11-6, one can indeed obtain a very
close fit to the experimental data. While we have now abandoned any pre-
tense of a simple one-to-one correlation with specific chemicals in the
sample, we stand to gain substantially in usefulness of the analysis. In order
to do so we must keep in mind the real purpose of the analysis, which is to be
able to screen out spoiled silage, and perhaps even to suggest adjustments
in order to prevent future spoilage. For that we do not need a precise correla-
tion with specific chemicals, rather illusory anyway in such a complex
sample. Instead, we need a correlation with silage condition as judged by
other methods.

Comparison of such results with those of chemical analyses of a selected
number of silage samples makes it possible to express the concentrations of
amino acids, lactic acid, acetic acid, and reducing sugars, as well as the total
nitrogen content, in terms of linear combinations of the eight computed
C,’s. This, in turn, can be used to find a correlation with the quality of the
silage. Such a correlation was indeed established: good silage should have a
moderate concentration of lactic acid, and a much smaller concentration of
acetic acid. Moreover, it should have little protein degradation, i.e., most
soluble nitrogen should be in the form of amino acids. While the numerical
values obtained for these concentrations from the titration curve are impre-
cise and somewhat interdependent, precision is not what is ultimately
important here: good quality control typically deals with ranges of accept-
able or unacceptable values rather than with single numbers. On the basis of
such ranges, simple criteria of silage quality were formulated. The titration
is readily automated, and can provide virtually instantaneous analyses of
the samples in terms of these general criteria, which can then be used to
advise farmers.

In the Moisio-Heikonen paper another, more elaborate but also more
time-consuming data-analysis method was used — as detailed in Fresenius J.
Anal. Chem. 354 (1996) 271 — but that is immaterial here. It is with fast and
inexpensive methods such as these that enough samples can be analyzed to
maintain a consistently high quality of the dairy products during the winter
months.

You, reader, may well wonder why so much space is devoted to this partic-
ular example. The reason is simple: the availability of computers has
changed the practice (though perhaps not yet the teaching) of analytical
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Fig.4.11-4: The progress curve, and the residuals, during intermediate stages of the
curve fitting. The fitted parameter values are shown in color.
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chemistry. For example, in a method called near-infrared analysis (or NIR
for aficionados of alphabet soup) a very similar approach is used: the
spectra can be obtained quickly and with high precision, but are not easily
interpreted in terms of specific chemical features. But they can be correlated
with practically useful properties, such as the protein and water content of
grain. Consequently, a consistent quality of flour can now be maintained
even though the wheat derives from different soils, and growing conditions
fluctuate from year to year.

Similar analyses are now common in the quality control procedures of
many consumer products, such as beer and wine, coffee, fruit juice, and
infant formula, where consistency is demanded even though the quality of
the raw starting materials may vary with source and season. This is chemical
analysis at its best, and the above example is emphasized here because it
clearly illustrates this type of approach, which in general combines precise
measurements with sophisticated numerical analysis to produce practical
results.

Summary

In this chapter we have encountered the most important analytical aspects
of acids and bases: (a) their individual speciation, as described by the mass
action law, and as reflected in the distribution and logarithmic concentra-
tion diagrams, (b) their buffer action, and (c) their neutralization, as
exploited in acid-base titrations.

In the past, much efforthas been expended on finding the precise location
of the equivalence point, using either differentiation of the titration curve,
or its linearization. In our discussion of acid-base titration, we have used as
our point of departure expressions for the progress of the titration rather
than those for the titration curve itself. This was done primarily for mathe-
matical convenience, since it is much more straightforward to express V},/V,
explicitly in terms of [H'] than to achieve its converse. By insisting on
solving for [H*] as a function of titrant volume, the traditional approach
caters to the experimental procedure of volumetric analysis rather than to
the real analytical problem addressed by it: how large a volume of titrant
must be added in order to reach a given equivalence point, as defined by its
pH or proton concentration, and as indicated by a color change or a pH
reading. Parenthetically, since the traditional approach leads to rather
intractable mathematics, it is also a poor choice of teaching tools if clarity
and simplicity rather than obfuscation are our goals.

The availability of a master equation for acid-base titrations, and of con-
venient non-linear least-squares curve-fitting methods such as incorpo-
rated in Excel’s Solver, have made the determination of the unknown
sample concentration(s) relatively easy: a spreadsheet is all that is required
for such an analysis. Of course, there is no guarantee that all component
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chemicals and their individual concentrations and pK,’s in a complicated
mixture can always be resolved; that can only be expected for those concen-
trations and pK,’s that significantly affect the titration curve. This is illus-
trated in Fig. 4.10: even for a single acid such as orthophosphoric acid, the
third pK, can easily be missed, since its effect on the titration curve is often
quite small.

The exercises with added simulated noise demonstrate the differences in
robustness of the various data-analysis methods. Clearly, differentiation is
easily affected by noise. Of the linear plots, the Gran2 plot is the more
robust, because it uses that part of the titration curve that is determined
largely by the strong base (or acid) typically used as titrant. In principle, the
Schwartz plot is more linear than the Gran1 plot; in practice, it is also more
sensitive to noise, at least to the type of volume noise we have simulated
here, so that the linearity advantage disappears. For simple titration curves,
non-linear least-squares data fitting appears to be the most robust of the
methods discussed; it is also the most generally applicable of these
methods. While non-linear least-squares methods are not always trouble-
free, they seem to work well here, apparently because the progress curve is
always monotonic.

We then encountered activity effects, the skunk at the party, because when
activity effects must be taken into account, the mathematical description of
acid-base equilibria becomes more complicated. Fortunately, activity
effects do not change the equivalence volumes, which is the main reason why
activity corrections are seldom made in analytical applications. On the other
hand, when the primary goal of the titration is the precise determination of
the pK,-values, activity corrections can usually be restricted to mere
changes in the pK,-values by making the measurements at constant ionic
strength.

Finally we have seen in section 4-11 how acid-base titrations can be used
in practice, even without any preliminary separations or sample clean-up,
and what trade-offs are made in such analyses. This example illustrates a
rather radical departure from the traditional emphasis on titrations as
methods of high precision. As illustrated in Table 4.11-1, even when precise
concentrations of well-defined chemical species cannot be derived from
such complex mixtures, they nonetheless can be made to yield very useful
quantitative information.

As our last exercise of this chapter we will fit data to a small segment of a
titration curve. It is, of course, poor analytical practice to use only part of a
curve, but we will use it here merely to demonstrate the general power of
computer fitting of experimental data. We will use data, given by
Papanastasiou et al. in Anal. Chim. Acta 277 (1993) 119, for the titration with
0.1 M NaOH of a 50 mL sample containing both formic and propionic acid.
The authors show the entire titration curve in their Fig. 6, but in their Table 6
only list numerical values for the buffer region of the curve. Nonetheless,
19 low-noise data pairs are given, while the solution involves only four
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parameters: the concentrations of the two monoprotic acids, and their acid
dissociation constants. Therefore, the problem is well-defined, and is readily

solved.

pH Vb pH Vb pH Vi pH Vi
3.639 1.00 4.050 1.80 4.432 2.59 4.860 3.52
3.727 1.17 4.133 1.97 4.545 2.84 4.932 3.67
3.800 1.31 4.207 2.12 4.638 3.04 5.036 3.87
3.888 1.48 4.278 2.27 4,710 3.20 5.107 4.01
3.975 1.65 4.34 2.42 4,778 3.35

Instructions for exercise 4.12

i A W N R

10

11

Open a spreadsheet.

Deposit labels for four columns, one each for pH, [H*], V;, and Vb,calc-
Copy the above data in the appropriate columns.

In the column so labeled, calculate [H*] from the pH as [H*] = 107PH,

Depositlabels and initial guess values for the following constants: C;, G, K, and K5,
where 1 and 2 denote the two monoprotic acids.

With these values, calculate in the column for V}, ¢4 the appropriate expression for the
titration of a mixture of two monoprotic acids.

Also deposit alabel for SRR, the sum of the squares of the residuals, and compute it
from the data in columns Vj, and Vj, .5 with the function = SUMXMY2.

Manually adjust the guess values to obtain an approximate fit between the experimen-
tal and calculated values.

The stage is now set for using Solver. Use it to minimize the value of SRR by letting it
adjust the values of C;, G,, K;, and K.

Now extend the columns for pH, [H'], and Vi, calc to compute the remainder of the
curve, up to pH 11, and compare your results with those in the above-quoted paper.

Even though the agreement between experimental and computed data should already
be very good, it is of course possible to refine these data by taking activity effects into
account, as was done by Papanastasiou et al. Try it. In this case, the ionic strength Iis
simply given by I= [Na*] + [H"]. For a fair comparison with the results of
Papanastasiou et al. delete the Davies term —-0.31from the expression for the activity
coefficients.



CHAPTER 5

Quantitative chemical analysis involves many types of ionic equilibria other
than those between acids and bases, and the present chapter samples some
of them. The formation of metal complexes takes place in homogeneous
solution, and strongly resembles acid-base chemistry. In extraction, two
different solvents are used, but both solutions are still homogeneous.
Problems of solubilityand precipitationinvolve two different physical forms
of the compound of interest: one dissolved, the other a solid phase.
Electrochemical equilibria also involve at least two phases, of which one is
an electronic conductor, typically a metal, and the other an ionic conductor
such as an aqueous solution. Despite these differences in their physics, we
will encounter much analogy in the mathematical description of these equi-
libria, which is why the present chapter is best read after chapter 4.

Complex formation

The formal description of the equilibrium between a 1: 1 complex of a metal
ionM and aligand L and its constituent parts,

M +L=ML (5.1-1)
traditionally uses the formation constant

o IMLI
7 ML)

(5.1-2)

where, for the sake of simplicity of notation, we have deleted all valencies.
The dimension of such a formation constant is M}, conveniently indicating
that we deal here with a formation constant rather than a dissociation con-
stant (with the dimension M). This is one of several good reasons (another
one is the ease of checking equations for their proper dimensionality, a most
efficient way to catch many errors) to keep the dimensions of equilibrium
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constants rather than remove them through the introduction of standard
states.
We will define the concentration fraction of metal ions without attached
ligand as
(M] 1 1/ Ky

MTEOT M+ ML 1+ KLl (L] + 1/K;

(5.1-3)
and the corresponding concentration fraction of metal ions complexed with
oneligand as

g o ML KL
LT M ML 1+ KL L]+ 1K

(5.1-4)

where we present the right-most forms of (5.1-3) and (5.1-4) to emphasize
the analogy with the acid-base formalism, with [L] taking the place of [H'],
and 1/ Ky that of K,,.

The progress of the titration of a solution of volume V}; and concentration
Cy of metal ions with a volume V; of titrant solution containing a concentra-
tion Gy of free ligand L then follows as

i _ CMaML + [L]

5.1-5
Vu G- (Ll (5.1-5)

where [L] is the concentration of free ligand. This is fully analogous to the

progress of the titration of a weak base with a strong acid,

E_CbaHB'FA
V, C,—A

Instructions for exercise 5.1

1

Open a new spreadsheet. Place the labels Cm, Cl, and sixlabels Kfin cells A1 through
H1, so that we can explore the effect of changing K.

In row 2 enter some corresponding numerical values, such as 0.1, 0.1, 0, 1, 100, 10* (as
1E4 or = 1074; 1074 is treated as if it were text), 10, and 108.

3 Inrow4 enter the labels pL, [L], and sixlabels V1/Vm.

4 Incolumn A, starting in row 6, place the pLvalues 0 (0.1) 10, i.e., ranging from 0 to 10

with increment 0.1, and in column B compute the corresponding values of [L] = 107PL,

In cell C6 calculate 14/ Vj;according to (5.1-4) and (5.1-5). In order to make it easy to
copy this instruction to the adjacent columns, use the formula = ($A$2*C$2*$B6/(1 +
C$2*$B6) + $B6)/($B$2-$B6), containing the partially absolute addresses C$2 and $B6.

Copy this instruction from C6 to the entire block C6:H106. Bingo!

7 Plotall these curves V;/Vy;versus pL. Figure 5.1-1 illustrates the result you should

obtain with these parameter values. (Points are used to avoid the pesky vertical line
due to physically unrealizable values calculated for pL=1.)

(4.3-11)
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Fig.5.1-1: Some progress curves for the titration of a metal ion with aligand forming 1: 1
complexes with that metal ion. Numerical values used: Gy = G, = 0.1 M, and (from left
toright) Ky= 0 and 1 (almost overlapping), 102,10 105, and 10 M™%,

We see that only complexes with formation constants of the order of 10°
M~ or more will lead to titration curves with a sufficiently steep change in pL
near the equivalence point (at Gy Viy / Gy Vi, = 1) to be useful for volumetric
analysis. None of the common monodentate ligands, such as the halide
anions (CI, Br7, I) or the pseudohalides (CN~, SCN~, N37), form such strong
complexes, nor do the carboxylic acid anions (such as acetate) or ammonia
(NHj3). However, in section 5.2 we will encounter special ligands, the che-
lates, that do form sufficiently strong 1: 1 complexes.

Many metal ions don’t stop at binding one ligand, but can surround them-
selves with several ligands, often up to four or even six. The maximum
number of ligands usually depends on the ionic valencies of metal ion and
ligand, on the coordination number of the metal ion, and on steric consider-
ations. The latter are most pronounced for complexes of relatively small
metal ions with rather bulkyligands.

Apart from the use of formation constants rather than dissociation con-
stants, the formation of such poly-ligand complexes is quite analogous to,
say, a phosphate anion binding up to three protons, and can likewise be
described in terms of stepwise equilibrium constants. However, one should
keep in mind that stepwise formation constants K; start counting from the
‘bare’ metal ion, whereas stepwise dissociation constants such as K,’s start
counting from the most highly ‘complexed’ species: Ky, for the chloride
complexes of ferrous ions applies to the equilibrium Fe?"+ Cl-=FeCl",
whereas K, for phosphoric acid pertains to HsPO,=H™* + H,PO,".

An ion such as Fe?*can bind up to four chloride anions, or up to six thio-
cyanates. The formal description for the formation of such complexes is
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ML)
K= v (5.1-6)
[ML,]
Ks» :m (5.1-7)
_ [MLg] ]
3 MLy (L] (5.1-8)
etc., so that
[ML] = K¢y [M] [L] (5.1-9)
[ML,] = Ky, Ky, [M] [L]? (5.1-10)
[ML3] = Kpy Ky Kp3 IM] [L]3 (5.1-11)

and so on, while the corresponding concentration fractions « are given by
ap=[M] /{[M]+ [ML] + [MLy] + [MLg] + -~} =1/ denom (5.1-12)
ay = [ML]/ {IM] + [ML] + [ML,] + [MLg] + -} = Ky [L] / denom (5.1-13)

as = [MLy] / {[M] + [ML] + [MLy] + [MLg] + -} = K, K} [L]?/ denom

(5.1-14)
az = [MLg] / {[M] + [ML] + [ML,] + [ML3] + -} = Ky Ky, K3 [L1*/ denom
(5.1-15)
and so forth, where the common denominator is given by
denom =1+ Ky [L] + Ky Ky, [L1? + Kpy Kpp Kpg [L]® + (5.1-16)

8 Inrow 1replace thelabels Kf by Kf1, Kf2, Kf3, Kf4, Kf5, and Kf6.

9 Inrow 2 enter some corresponding numerical values. For example, for the six thio-

10

11

12

13

14

cyanato complexes of Fe(III) we have Ky; = 10'9%, Ky, = 10%%2, Kp3 = 10741, Kpy =
1071, Kp5 = 10717, and Kpe = 107! respectively.

In row 4 replace the labels Vl/Vm by denom, [M], [ML], [ML,], [ML;], and [ML,], and
add two more: [ML;], and [MLg].

In column C calculate denom as given by (5.1-16) or, more compactly,as =1 + Kpy [L]
(1 + Ko [L] (1 + Kpg [L] (1 + Kpg [L] (1 + K5 [L] (1 + Kpg [L]))))).

In column D calculate [M] = oy Gy where oy is given by (5.1-12).

In column E calculate [ML] = a; Gy, and likewise compute [ML,], [MLg], etc. in the next
columns. Again, this can be simplified by coding, e.g., cell F6 as = C$2*$B6*E6, which
can then be copied to G6 through K6.

Make the distribution diagram by plotting [M], [ML], [ML,], etc. vs. pL (= — log[SCN])
while setting Cy; equal to 1, and compare your graph with Fig. 5.1-2. Note that, in this



5.1 Complex formation 179

0.8

0.6

0.4

0.2

0

2 0 2 4 pL 6

Fig.5.1-2: The distribution diagram for the thiocyanato complexes of Fe(III) as com-
puted with Kpy = 109, K, = 1029, Kp3 = 1074, Kpy = 107!, Kp5 = 107%7, and Kp =
107151, The number of attached thiocyanate ligands L is indicated with each curve.

Fig.5.1-3: The logarithmic concentration diagram for the thiocyanato complexes of
Fe(III) for Cy; = 0.1 M. The equilibrium constants are the same as in Fig. 5.1-2.

case, the species Fe*, Fe(SCN), ", Fe(SCN),~ and Fe(SCN)g>~ are the more important
ones.

15 Make the correspondinglogarithmic concentration diagram by using a semi-logarithmic
frame and any value for Cy. Again, Fig. 5.1-3 shows the type of result you can expect.

16 Save the spreadsheet as Complexation, and close.
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In the example shown in Fig. 5.1-2 there is relatively little differentiation
between the various Kf-values. Moreover, none of the complex formation con-
stants are particularly large. This is typical for metal complexes, and it is the
reason that these equilibria are not very useful for volumetric analysis.
However, we will see in section 5.3 how such equilibria can be exploited in
metal-selective extractions.

Chelation

Although there are many examples of the formation of 1 : 1 complexes, their
application in volumetric analysis is mostly restricted to those between
metal cations and chelating ligands, which are complexing agents that,
upon complexation, surround the metal ions and thereby satisfy all (or
almost all) of its coordination positions. Typically, those coordination posi-
tions are then occupied by metal-oxygen or metal-nitrogen linkages, the
coordinating groups being primarily carboxylic acids and amines.

The prototype of such a chelating ligand is EDTA (for ethylene diamine
tetraacetic acid) which forms strong 1 : 1 complexes with many divalent and
trivalent metal cations. EDTA has four carboxylic acid groups and two amino
groups, and is therefore a hexaprotic acid, but its complex formation is due
almost exclusively to its fully deprotonated anion, Y*~. This brings in the pH,
since the latter regulates the fraction ay, of EDTA that is fully deprotonated.
In this case, then, the ligand concentration in solution, [L] = [Y*),is given by
Gy ayy, where Cyis the total analytical concentration of EDTA, and ay, is a
strong function of pH, see Fig. 5.2. We can rewrite (5.1-2) as

[ML]
K= 5.2-1
T MIGyayo 62D
which can be recast as
,_ [ML]
Kf = MICy (5.2-2)

provided that the pH is kept constant. The parameter K{ = Kra yj is called a
conditional formation constant, because it is indeed a constant on condi-
tion that the pH is kept constant, in which case ay, is also constant. Of
course, the value of K¢ depends (through ay,) on the pH.

Equation (5.2-2) is a useful form for the EDTA complexes of metal ions
such as magnesium and calcium that are rather strong bases, and therefore
have little tendency to form hydroxides. However, many other metal ions
that can be titrated with EDTA will often form hydroxy complexes, and these
are usually titrated in the presence of complexing agents that keep hydrox-
ide formation at bay. In that case, the expression for the conditional forma-
tion constant must take such complex formation of the metal ion into
account as well, and then reads Ky = Kyayy apmo , Where ayyg is the fraction of
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Fig.5.2: The fractional concentrations « of the various forms of EDTA as a function of pH.
The fractional concentration ay, of the chelating species Y*~ has been highlighted in color.

the metal not bound to either EDTA or the added complexing agent. The
quantity aye will depend on the concentration of the added ligand, and so
will the conditional constant K.

Below we will determine the pH-dependence of ay,, which determines
the feasibility of a successful EDTA titration.

Instructions for exercise 5.2

1 Openanew spreadsheet.
2 Place thelabels Cm, Cy, and Kal through Ka6 in cells A1 through H1.

3 Inrow 2 enter some values for the concentrations Cy; and Cy, and use the following acid
dissociation constants for EDTA: K;; = 1M, K, = 1071*M, K3 =10"2"M, K, = 10728 M,
Kg5=10"%""M, and K6 = 107'*1" M.

4 Inrow4 enter the labels pH, [H], denom, a6, a5, a4, a3, a2, al, and a0.

5 IncolumnA, startingin row 6, place the pH values 0 (0.1) 14, and in column B compute
the corresponding values of [H'] = 107PH,

6 In column C calculate the denominator of (4.9-11), i.e., [H"16+ [H']° K, + [H]* K,; K2
o 4 Ky Kyp Koz Ky Ko Kog = [H18 (1 + (Kp /[HY]) (1 + (Ko/ [HT]) (1 + (Ka/ [H']) (1 +
(Kaa/ TH™]) (1 + (Kgs/ THT]) (1 + (Kag/ [H1))))).

7 Incolumns D through J compute the concentration fractions « of the various protona-
tion forms of EDTA, see (4.9-11). Again, you can simplify the coding by using
ag = [H"18/denom (= $B6/6/$C6), a5 = K, ag /[H'] (= C$2*D6/ $B6), which can then
be copied to F6:J6.

8 Plotall these concentration fractions in a semi-logarithmic plot versus pH, so that the
resulting graph will be double-logarithmic, as in Fig. 5.2.
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The progress of the titration of a metal ion M with EDTA is analogous to
(5.1-4) and (5.1-5) except that Ky must be replaced by Kf = K ayy, i.e.,

Vy _ Cuamy + [Y]

5.2-3
WM Gy — [Y] ( )

_ Kl KpaylY]
1+ K/ Y] 1+ KpayolY]

oy (5.2-4)
which shows how we can manipulate chelation equilibria by changing the
pH. For a satisfactory EDTA titration we have, just as in section 5.1, log
K¢ = 6. By using so-called metallochromic indicators, or a mercury elec-
trode, one can monitor [Y*] = ay, [Y] during the titration, analogous to how
one uses acid-base indicators or a glass electrode to follow [H*] during an
acid-base titration.

Extraction

In extractions one typically uses two solvents that have only limited mutual
solubility, so that they form two separate phases. Typically, one solvent is
polar (such as an aqueous solution), the other non-polar. Few ions will be
extracted into the non-polar solvent, but neutral complexes will be, and this
is often the basis for ion extraction. For example, only the neutral species
Fe(SCN)3 will be extracted into a non-polar phase from among the ferric
thiocyanates illustrated in Fig. 5.1-2, even though Fe(SCN); is only a minor
species in aqueous solution.

Two parameters are used to characterize extractions. The more funda-
mental one is the partition coefficient, K, which describes the concentra-
tion ratio of the species common to both solvents, such as (Fe(SCN)3 in the
above example:

_ [Fe(SCN)slorganic (5.3-1)

P [Fe(SCN)B] aqueous
When we define the volume ratio as
v= Vorganic /Vaqueous (5.3-2)

the mass fraction of Fe(SCN); extracted by equilibrating a sample of volume
Vaqueous With a volume V4qnic 0f extractant will be

“ o [Fe(SCN)3] organic Vorganic - UKP
organic [Fe (SCN)3] aqueous Vaqueous + [Fe (SCN) 3] organic Vorganic l + UKP

(5.3-3)

while the fraction remaining in the original sample is its complement,
Maqueous = 1/ (1 + vK,).
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A more practical parameter is the distribution coefficient D, which gives
the correspondingratio of the total analytical concentrations,

G i
— _—Fe(ll),organic
D Fe(I1),organic (5.3-4)
CFe(III),aqueous

The ligand concentration affects the fraction of ferric ions that is in the
form of the neutral complex Fe(SCN)3; on that basis one might want to use a
thiocyanate concentration of about 2.5 M (pL =—10g[SCN] =—0.4), where
[(Fe(SCN)3] goes through a maximum in Fig. 5.1-2. Indeed, Fe(Ill) can be
extracted into oxygen-containing non-polar solvents such as diethyl ether
or isobutyl alcohol, and can then be determined spectrometrically in that
solvent.

In the spreadsheet exercise we will calculate the distribution of Fe(III)
based on the data of Fig. 5.1-3. The parameter involved in the extraction is
UK, where the volume ratio vdepends on the experimental protocol, and K,
on the nature of the extractant used.

Instructions for exercise 5.3

Recall spreadsheet Complexation.

In cell I1 place the label vKp, and in cell 12 a numerical value for it.

3 Modify the instruction for denom in column C by multiplying the term involving

(Fe(SCN)3 by (1 + vK,). For example, the instruction in cell C6 might now read (with the
modification printed in bold) = 1 + $C$2 + B6*(1 + $D$2*B6* (1 + $E$2*B6*(1 + $I$2 +
$F$2*B6*(1 + $G$2*B6*(1 + $H$2*B6))))).

Change thelabel in G4 to read [ML3]aq, and in K4 and L4 add the labels [ML3]org and D
respectively.

In column K calculate [(Fe(SCN)3lorganic = VK, [(Fe(SCN) 3] aqueous Where vKp is stored in
$1$2 while [(Fe(SCN)3laqueous is found in column G.

In column L compute D; in L6 this can be done as = K6/SUM (D6:K6).

7 Add the curve for [(Fe(SCN)3] organic to the graph of Fig. 5.1-2. You can do this as follows:

8
9

highlight K6:K116, and copy it. Now go to the graph, activate it, and paste. If necessary,
click on the new curve until itis highlighted, right-click to get the Format Data Series,
and format it to your taste.

Plot the resulting distribution diagram. Figure 5.3-1 shows an example.

Also make a graph of D versus pSCN, see Fig. 5.3-2.

Note that Fe(SCN); is only a minor constituent of the set of ferri-
thiocyanate complexes, yet that is sufficient for an extraction. For the (rather
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Fig.5.3-1: The distribution diagram of an aqueous solution of Fe(III) in thiocyanate in
equilibrium with an organic extractant, with the parameter values of Fig. 5.1-2, vK,, = 10,
and pL =—1og[SCN].
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Fig.5.3-2: The corresponding distribution D of Fe(III) between the organic and aqueous
phases; pL =—log[SCN].

low) numerical value of VK, used in Figs. 5.3-1 and 5.3-2, and with extraction
from 1 M NH,SCN, D is only about 0.7, and four successive extractions
would be needed to remove at least 99% of Fe(III) from the aqueous phase.
(One extraction would leave 30% or 0.3, hence four successive extractions
willleave (0.3)* = 0.008 or 0.8%.)

Often, metals are extracted at low pH, in order to prevent the (often irre-
versible) formation of poorly soluble hydroxy complexes and polymers.
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Thiocyanate extractions are therefore often performed in 0.5 M HCl, i.e., ata
pH of 0.3. Furthermore, the acid used to enforce such a low pH may intro-
duce competing ligands, such as CI". In that case, we must also consider the
acid-base equilibrium of thiocyanate (HSCN has a pK, of 0.9) and the pos-
sibility of the formation of neutral ferric complexes of mixed ligand compo-
sition.

Solubility

So far we have used concentration as an open-ended variable, but it has an
upper limit: each dissolved species has a solubility, above which the solvent
can accommodate no more of it. While the solubilities for many salts are of
the order of 0.1 to 10 M, they are sometimes much lower, and may then be of
analytical use. In water, the solubility of ions is usually much higher than
that of neutral compounds, in which case the solubility of salts can be
described in terms of the equilibrium between the salt and its constituent
ions. For example, for barium sulfate the equilibrium BaSO,=Ba?" + SO,*
can be described in terms of the equilibrium constant K= [Ba%*] [SO,%7] /
[BaSO,]. When solid BaSQ, is present, the solution is saturated with BaSOy,,
so that [BaSO,] can usually be considered constant, in which case we can
define the solubility product Ky, = K[BaSO,],

Ky = [Ba®>*] [SO,27] (5.4-1)

The application of relations such as (5.4-1) is often so straightforward that
it does not require a spreadsheet. However, complications may arise when
one or more of the ionic species involved also participates in other equilib-
ria. In this example that might occur when the pH is so low that the forma-
tion of HSO,~ must be considered. In that case (5.4-1) must be combined
with K, = [H'] [SO,27] / [HSO,] and with the applicable mass balance rela-
tions. When this leads to an equation of third or higher order, the
Newton-Raphson method (Excel’s Goal Seek) or a non-linear least-squares
search (Excel’s Solver) may be employed to find the solution. Although
either can be used for such a one-parameter problem, Solver is often the
more convenient one because it allows the user to set constraints (such as
that the sought concentration cannot be negative), and thereby to avoid
non-physical answers.

In our spreadsheet exercise we will consider a textbook example, the solu-
bility of HgS as a function of pH, in a solution in equilibrium with solid HgS
that contains no other sources of mercury and sulfur. HgS is quite insoluble,
with a reported solubility product of 5 X 10°*M?2. The case is complicated by
the fact that the two participant ions, Hg?"and S%-, are both involved in
acid-base equilibria. For Hg?"these are the successive formation of three
hydroxy complexes HGOH*, Hg(OH),, and Hg(OH);", for S>~ the consecutive
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protonations to HS™ and H,S. Consequently we must first formulate the
problem to make it suitable for spreadsheet solution.
The two basic relations are the solubility product

= [Hg*"1 [S*] (5.4-2)
and the mass balance
[Hg2+] + [HgOH+] + [Hg(OH),] + [Hg(OH)37] = [H,S] + [HS] + [S%7] (5.4-3)

In order to reduce the mathematical complexity we express the fractional
concentration of Hg2+ in terms of [OHT] and the relevant formation con-
stants, i.e.,

, (Hg?"]
g2t =
Hg" 7 [Hg?*] + [Hg(OH) '] + [Hg(OH),] + [Hg(OH)3 ]
1
"1+ Ky [OH | + K5y Krp[OH 12 + Kr Kpp Kpg[OH 13 (5.4-4)
1+ Kl 1+ Kp1 Kol 17+ K1 Kpa K3 ]
Likewise, we write for the fractional concentration of $%-

_ [S*7] _ KaKaz
S T IH,S) + [HS 1+ [S27] [H 2+ [H 1Ky + KKep (5.4-5)
so that (5.4-3) can be rewritten as
H 2+ 2—
[Hg ]:[S ] (5.4-6)

apg?+ Qg2

By combining this with (5.4-2) we can now eliminate either [Hg?*] or [S?7],
and obtain explicit solutions for either species, as in

24 = [S*Japge+ _ Koomg+
ag?- [Hg* " Jag2-

[Hg (5.4-7)

from which it follows that

[Hg?*] = Koong: _ KS" (H'J? + [H'] Kot + K Koo} (5.4-8)
asz- KaKa{l + Kn[OH ] + Ky K [OH 1%

This is an explicit expression for Hg2+] in terms of [H*] and [OH™], ready

for spreadsheet evaluation. Moreover, we can use it to calculate all other
species involved, through

[HgOH™] = Ky, [OH"] [Hg*"] (5.4-9)
[Hg(OH),] = Ky, [OH™] [HgOH ] (5.4-10)
[Hg(OH)37] = K3 [OH"] [Hg(OH),] (5.4-11)

[S*] = Ky / [Hg?*] (5.4-12)
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[HS7] = [H"] [S?7]/ Ky, (5.4-13)
[H,S] = [H'] [HS™]/ K (5.4-14)

Finally, the solubility Sy, of mercury is defined as the total analytical con-
centration of all mercury species in the saturated solution. Assuming that
the concentration of dissolved HgS is negligible, we have

Sug = [Hg?*] + [HgOH ] + [Hg(OH),] + [Hg(OH)5] (5.4-15)

which, according to (5.4-3), is equal to Sg = [H,S] + [HS™] + [S%7].

Instructions for exercise 5.4

1

Open a new spreadsheet.

2 Place thelabels Ks0, Kal, Ka2, Kf1, Kf2, and Kf3 in cells Al through F1.

In row 2 enter corresponding literature values, such as Ky = 107°3M?, K; = 107"-%2M,

KaZ — 10_13'9M, Kﬂ — 1010.6 M_l, I(fz — 1011.2 M_l, and I(fB — 10—0.9 M_l.

Inrow 4 enter the labels pH, [H], pOH, [OH], pHg, pHgOH, pHg(OH)2, pHg(OH)3, pS,
pHS, pH2S, and pS(Hg), where the latter terms denotes the solubility of mercury (which
in this case happens to be equal to that of sulfur).

In column A, starting in row 6, place the pH values 0 (0.1) 14, and in columns B, C, and D
compute the corresponding values of [H*] = 10", pOH = 14 — pH, and [OH] = 10P°H,
In columns E through L calculate the negative logarithms of the concentrations of
[Hg?*], [HgOH ], etc. using (5.4-8) through (5.4-15).

Plot the corresponding logarithmic concentration diagram. It should resemble Fig.
5.4-1.

A diagram as complicated as Fig. 5.4-1 requires some explanation. At low
pH, the two dominant species (apart from H* and OH") are Hg”and H,S; in
the double-logarithmic representation used, the lines representing them
coincide. In the range between pH 8 and 13, the dominant species are HS™
and Hg(OH), . In the middle range, at pH’s between 4 and 7, the dominant
species are H,S and Hg(OH), , but at no pH are they Hg?*and S?”! The solu-
bility (colored line) of both mercury and sulfur is minimal in this middle pH
range, and even there does not get below 8 X 102° M, more than seven
orders of magnitude (or, more specifically, a factor of 25000 000) larger than
the square root of K. While both Hg(OH) *and Hg(OH)4™ are of little conse-
quence for the solubility, all other species (including Hg(OH),) are crucial at
one pH or another.

It is instructive to see what happens when, e.g., the equilibria involving
the hydroxy species are deleted. This is readily simulated in the spreadsheet
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Fig.5.4-1: The logarithmic concentration diagram for HgS. The colored line shows the
solubility S of mercury and sulfur.
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Fig.5.4-2: The logarithmic concentration diagram for HgS calculated on the erroneous
assumption that Hg?"* does not form hydroxy complexes.
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by setting Ky Kras and Krstoa sufficiently small value, say = 10720, (Just
setting them equal to zero gives trouble, since the spreadsheet will then try
to take the logarithms of zero concentrations.) The result is shown in Fig.
5.4-2. Such an (incorrect) diagram predicts that the solubility decreases at
high pH, whereas the opposite occurs; in fact, the solubility calculated at pH
14 in Fig. 5.4-2,4 X 1027 M, is eleven orders of magnitude less than the value
calculated in Fig. 5.4-1, 4 X 1076 M! This clearly shows that one needs to
have good information about the various chemical species involved before
reliable predictions can be made. And that is precisely where we want to be:
limited by real, chemical data, not by the mathematical means to manipu-
late them. The latter can be relegated to a spreadsheet.

Precipitation and dissolution

The equilibrium formation and dissolution of precipitates can be illustrated
with silver chloride. Ag*forms a series of chloro complexes, at least up to
AgCl2". In the presence of solid AgCl the formal description is most readily
characterized by the following formalism:

AgCly =Ag" +CI- Ko =[Ag'] [CI]
AgCly =AgCl Ky = [AgCl]

AgClg+ ClI=AgCl,” Ky = [AgCl,7] / [CI]
AgCl + 2Cl"=AgCl3*" K = [AgCl3%] / [ClT]?
AgCl + 3CI"=AgCl,*" Ky =[AgCL3/ [CI]3

where the constants K; are overall formation constants rather than the step-
wiseformation constants Ky we have used so far. The two types of formation
constants can be interconverted by

K = Ky Kfl Kfl =Kq !/ Kyo
K2 = Kgo Kpy Kpa Kpy = Kso | Ky
K3 = Ky Kfl Kfz Kf3 K/3 = K3/ K2
K4 = Ko Kfl Kfz Kf3 Kf4 Kf4 =Ksa ! K3

With the above soluble species, the solubility of silver is given by
Sag = [Ag"] + [AgCI] + [AgCl,7] + [AgCl*] + [AgClL*]
=K,/ [CI"] + Kj; + K, [ClT] + K3 [CIT]% + K, [CIT]3

= Ky {1/ [CI'] + Kpy + Kpy Kpa [CI7] + Kpy Kpp Kp3 [C]% + Ky Kpp Kpg Kpg [CIT]3
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We are now ready to plot a logarithmic concentration diagram of all silver
species as a function of pCl. We will first make such a diagram for a solution
in equilibrium with solid AgClI.

Instructions for exercise 5.5

1 Openanew spreadsheet.

Place the labels pKs0, pKs1, pKs2, pKs3, and pKs4 in cells A1:E1.

N O nn » w

®

In row 2 enter the literature values pKo = 9.75, pK; = 6.05, pK;, = 4.13, pK3 = 3.3,

pK,, = 3.6.

Inrow 4 enter the labels pCl, pAg, pAgCl, pAgCl2, pAgCl3, pAgCl4, and pS.

In column A, starting in row 6, place the pCl values —2 (0.1) 10.

In column B calculate pAg from pAg = pK;, — pCl.

Likewise use pAgCl = pKy;, pAgCl,” = pKy, + pCl, pAgCl3% = pKj, + 2 pCl, and pAgCl,3-
= pKi3 + 3 pCl to compute the values in columns C through E
Calculate pS = — log{107PA8 + 10PA8Cl 4 1(~PAECI2 | 1 (-PABCI3 4 ] (-PABCI4}

9 Plotthe correspondinglogarithmic concentration diagram. It should resemble Fig.

5.5-1.

The diagram of Fig. 5.5-1 illustrates the fact that the formation of com-
plexes such as AgCl,~, AgCl;?", and AgCl,3" leads to a quite high silver solubil-
ity in concentrated chloride solutions. (The effect is exaggerated here by
extending the calculation to pCl =— 2 or [CI'] = 100, a rather unrealistically
high value.)

Note that we made the assumption that the solution is at all times in equi-
librium with solid AgCl. However, it quite often happens that the actual
amount of precipitate is relatively small. For example, when we use a
silver/silverchloride electrode, the AgCl is usually a thin, chocolate-brown
coating on an otherwise shiny silver wire. In that case it does not take a large
volume of a concentrated chloride solution to dissolve the AgCl, at which
point the diagram is no longer applicable. (For that very reason, never refill a
silverchloride reference electrode with simple NaCl or KCI solution, but
instead use solutions presaturated with AgCl.)

How do we represent the solution when a precipitate can form or dissolve?
We need one piece of additional information, namely the total analytical
concentration of silver when all precipitate is dissolved. (This depends both
on the amount of precipitate and on the volume of solution, but we only
need the resulting analytical concentration in the absence of precipitate.)

Say that the amount of silver present in both solution and as a solid is such
that the solution would have a concentration of 1 mM if all the precipitate
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Fig.5.5-1: The logarithmic concentration diagram for the chloro complexes of Ag(I) in
an aqueous solution equilibrated with solid AgCl. The colored line shows the silver solu-
bility Sag- Note that, in this case, the solubility of the “insoluble” neutral species, AgCl, is
quite substantial; between a pCl of 2 and 3 it is the dominant component of the silver
solubility Syg.

were dissolved. Then the precipitate will be present only in the range where
the silver solubility (the colored line in Fig. 5.5-1) falls below 1 mM. Outside
that range, all silver is dissolved, predominantly as Ag*and AgCl at low chlo-
ride concentrations, and as poly-chloro complexes at high chloride concen-
trations.

Now we are ready to make the corresponding logarithmic concentration
diagram. We will use the IF statement of the spreadsheet to determine
whether or not a precipitate will be present, and let the calculation self-
adjust accordingly.

10 Inrow 1, starting with F1, add anumber of new labels: pCmax, Cmax, Kf1, Kf2, Kf3, and
Kf4. (In the Kfformalism it is easier to use Kfrather than pKz.)

11 InF2 place a maximum value for pC, i.e., its value in the absence of any precipitate. In
G2 calculate the corresponding value of pCyay, i.€., = 10A-F2.

12 Inrow4 enter the following additional column labels: denom, pAg, pAgCl, pAgCl2,

pAgCl3, pAgCl4. Yes indeed, the latter labels duplicate earlier ones, but don’'t worry

about that.
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In column H calculate [CI] from pClin column A.

In column I compute the common denominator (as in section 5.1) as if it were simply a
case of complex formation, without precipitation. For example, cell 16 might contain
the instruction = 1 + $G$2*H6*(1 + $H$2*H6*(1 + $1$2*H6* (1 + $J$2*H6))).

In column J calculate pAg. Cell J6 might read = IF(G6 > $F$2,B6, — LOG($F$2/16)). Or,
in normal English: ifpSexceeds pCy.y, (in which case Sis smaller than C,,,), then
keep the earlier answer (from column B), otherwise calculate pAg as
—log(Cax/denom) where G, is the total analytical concentration in the precipitate-
free solution, see (5.1-12).

Likewise, in column K, compute pAgCl, using in K6 the command =

IF(G6 > $F$2,C6,— log($F$2*$G$2*H6/16)).

Similarly, calculate pAgCl2, pAgCl3, and pAgCl4 in columns L:N.

Plot the corresponding logarithmic concentration diagram, using columns A, H, and J
through N. Compare with Fig. 5.5-2.

Vary the value of pS;,a¢in cell F2 and observe what happens. When the amount of solid

AgClistoo small to reach pKj; in the solution volume used, no precipitate will form at
any chloride concentration, as illustrated in Fig. 5.5-3.

%) 0 2 4 6 pCl 8 10

Fig.5.5-2: The logarithmic concentration diagram for the chloro complexes of Ag(I) in
aqueous solution, in the presence of a limited amount of silver. In this example, the total
amount of silver would take a 10 mM solution (pS,ax = 2) if it were all dissolved.
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Fig.5.5-3: The logarithmic concentration diagram for the chloro complexes of Ag(I) in
aqueous solution, when the amount of silver is too low to exceed the silver solubility at
any chloride concentration. In this example we have set pSyax = 6.

Precipitation titrations

The formation of precipitates can be used as the basis of a titration.
Interestingly, the formal description of the progress of a precipitation titra-
tion resembles that of the titration of a strong base with a strong acid, and
we will use the next few lines to show how this comes about. Imagine that a
sample volume V; of an iodide-containing solution of concentration Cg is
titrated with a volume V; of the titrant solution containing a concentration
C, of a soluble silver salt such as AgNOj; . For the sake of simplicity we will
ignore the formation of poly-iodo complexes of silver, which are inconse-
quential to the titration, and whose inclusion would not much change our
conclusions. The mass balance relations for iodide and silver will then be

(1] + [Agl] + Pagi = C; Vs ! (Vi + V) (5.6-1)
[Ag"]+ [Agl + Pag = C, V[ (Vs + V) (5.6-2)

where P, is the concentration of iodide or silver removed by the precipita-
tion of Agl. By subtracting (5.6-2) from (5.6-1) we eliminate Pyg and obtain

- [Ag"] = (G Vs— GV (Vi+ V) (5.6-3)

from which we derive the progress equation
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V,_GHIAgT ) —[17] _ G+ [Ag"] — Koag/[Ag"]
Vi C—IAg"1+ 171 C—[Ag"]+ Koag/[Ag"]

(5.6-4)
which is indeed fully homologous with the progress of the titration of a
strong base with a strong acid,

V. GCp+[H']-[OH"] Cy+[H"]-K,/[H']
V, C,—[H'1+[OH7 C,—[H']+K,/[H"]

(4.3-10)

Instructions for exercise 5.6

Open a new spreadsheet and give it a name.
Place thelabels Ct, Cs and Ks0,Agl in cells A1 through C1.

Deposit plausible values for C;and C;in A2 and B2 respectively, and in cell C2 place the
literature value of Ko agr, 8.3 X 10717 M2,

Inrow 4 enter the labels pAg, [Ag], and Vt/Vs.

5 Incolumn A, starting in row 6, place the pAg values, starting with —log(Ct), using 0.1

increments, to say —log(Ct) + 20, and compute the corresponding values of [Ag*] in
column B. (Tying the pAg scale to pC;avoids having an artificial near-horizontal line in
the graph at physically unrealizable pAg values.)

6 In column C calculateVt/Vs using the right-hand side of (5.6-4).

7 Plot theresulting progress curve of V;/ V,vs. pAg.

8 Now we will indicate how you can convert a progress curve into a titration curve

10

without reorganizing the spreadsheet. Highlight the progress curve. In the formula box
you will then see the formula for that curve, such as = SERIES (,'Fig5.6'!$A$6:$A$206,
'Figh.6'!1$C$6:$C$206,1). The name ‘Fig 5.6’ identifies the name of your spreadsheet,
and may of course be different in your case; if you have not yet given the spreadsheet a
name, it will just be ‘Sheet 1.

In the formula box, now replace the two A's by C’s, and vice versa, so that the revised
formula will read = SERIES(, 'Fig5.6'!$C$6:$C$206, Fig5.6'! $A$6:$A$206,1). Depress
the enter key.

This is all that is needed to exchange the x- and y-axes of the plot! You will now have the
titration curve, apart from some necessary re-scaling and re-labeling to clean up the
graph. Figure 5.6-1 shows what the result maylook like.

Just as a pH electrode can monitor [H*], a silver electrode can report on
[Ag™]. This titration is therefore not only theoretically, but also experimen-
tally fully analogous to that of a strong base with a strong acid.

Because the solubility products Ky for Agl, AgBr, and AgCl are suffi-
ciently different, it is possible to titrate a mixture of halides with silver,
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14 0040 2323 e
15 0032  1.925
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Fig.5.6-1: The top of the spreadsheet computing the titration curve for the titration of
0.1 Miodide with 0.1 M silver. The equivalence point has the coordinates V,/ V;=1,
pAg =—Y2log Ko agr =—0.510g(8.3E-17) = 8.04.

simultaneously determining their individual concentrations. We therefore
extend the spreadsheet calculations to simulate such a curve.

For the titration of a mixture containing G; M iodide and Cg, M bromide
the mass balance equations read

(7] + [AI] + Pagr = G Vs / (Vs + V) (5.6-5)
[Br] + [AgBr] + Ppgpr = Cpr Vs/ (Vi + Vi) (5.6-6)
[Ag"] + [AgI] + [AgBI] + Pagi + Pagsr = G,V / (Vs + V) (5.6-7)

The P’s can again be eliminated by subtraction, whereupon we obtain
(7] + [Br] — [Ag"] = (G + G Vs — C, V) (Vs + V) (5.6-8)
which leads directly to the expression for the progress of the titration

Vi G+ G+ I[Ag ] —[1I7]—[Br]
Ve  G—IAg']+(I"]+[Br]

_ Gt Gt [Ag"] — (K ag T Kepage) / [Ag"]
Ci— [Ag"] + (Koag + Koaged) / [Ag"]

(5.6-9)

When the titration starts, Agl is precipitated, because it is much less
soluble than AgBr. The initial part of the titration is therefore described by
(5.6-4). As more silver nitrate is added, more silver iodide precipitates, until
almost all iodide has been precipitated, at which point the silver concentra-
tionincreasesrapidly. At a given moment (which in this case will occur before
the titration curve reachesits first equivalence point) silver bromide starts to
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precipitate, and the formal description of the titration switches from (5.6-4)
to (5.6-9), since thelatter appliesin the presence of both solids, Agl and AgBr.

The switch-over from one equation to the other will occur when the
product [Ag"] times [Br] exceeds Ky agp- The value of [Ag™] is directly avail-
able on the spreadsheet, in column B, and the value of [Br7] is given by Cg,
times the dilution term V/(V;+ V}),i.e., [Br] = Gy, /(1 + V;/ V). Again, V;/ V
is already on the spreadsheet, in column C.

The spreadsheet representation of the titration will now involve switching
from one equation to another, as soon as the product [Ag*] [Br] exceeds the
value of Ky agg,- In this case, then, the titration curve really consists of separ-
ate pieces, not for reasons of mathematical convenience but as the direct
consequence of the formation of a new precipitant phase. In the spread-
sheet we can accomplish this change-over between the two formalisms by
using IF statements. Note that it is still a completely straightforward calcula-
tion, without any circular reasoning.

Inrow 1 change thelabels Ct and Cs into C(Ag) and C(I) respectively, and enter the
additional labels C(Br) and Ks0,AgBr in cells D1 and E1 respectively.

Inrow 2 enter an appropriate value for Cg,, and the literature value for K aggr ,
5.2 10713 M2,

In cell D4 enter the column label Vt/Vs once more.

Now comes the working part. In cell D6 enter the following instruction: = IF(B6 <
$E$2*(1 + C6)/$D$2,C6,($B$2 + $D$2 + B6-($C$2 + $E$2)/B6)/ ($A$2-B6 + ($CS$2 +
$E$2)/B6)). This is longhand for ‘if [Ag™] < Kg,agn:/ [Br], use (5.6-4), otherwise use
(5.6-9)’. Copy the instruction all the way down to row 206.

Go to the graph, and click on the curve until you get it highlighted, at which time its
formula will reappear in the formula box. In it, change the C’s into D’s to make the
formularead = SERIES(,’Fig5.6'!$D$6:$D$206, Fig5.6'! $A$6:$A$206,1). Depress the
enter key. Done.

The above treatment can be extended to mixtures including chloride. In
the presence of all three precipitates, Agl, AgBr, and AgCl, the expression for

the progress of the titration becomes

Vi G+ G+ Ca+[Ag' -1 —[Br]—[Cl]
Vs C;—[Ag"1+ 171+ [Br 1+ [Cl7]

_ GGt Cat [Ag"] — (Kepagt T Ksoagnr + Koo age) / [Ag"]
Ci— [Ag"] + (Ko agt + Kooagnr + Keoagc))/ [Ag]

The description of the entire titration curve requires switching from (5.6-4)
to (5.6-9) to (5.6-10) depending on the value of [Ag*]. The spreadsheet

(5.6-10)
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Fig.5.6-2: The composite titration curve (colored line) for the titration of 0.1 M iodide +
0.06 M bromide + 0.13 M chloride with 0.1 M silver nitrate in the presence of an anti-
coagulant salt. (In practice, these titrations are often performed on much more dilute
solutions, typically about 1 mM.) The black lines show the titration curves for iodide, see
eq. (5.6-4) and Fig. 5.6-1, and for iodide + bromide, eq. (5.6-9). Open circles show the
equivalence points.

will again do this, automatically and ungrudgingly, when we use nested IF
statements.

Add thelabels C(Cl) and Ks0,AgCl to row 1, and corresponding values to row 2. The lit-
erature value for Ky agc1is 1.8 X 107 M2,

Inrow 4 enter another label Vt/Vs, this time for column E.

Now comes the crowning glory: a nested IF statement. It will read, in words: if [Ag™] <
Kg,agnr / [Br7], use (5.6-4), otherwise if [AgT] < Kg,agc1/ [CIT], use (5.6-9), otherwise use
(5.6-10). This is not unlike a BASIC statement If... Then...Elself...Else... So here goes.
In cell E6 deposit the following instruction: = IF(B6 < $E$2*(1 + C6)/$D$2,C6,IF(B6 <
$G$2*(1 + D6)/$F$2,D6,($B$2 + $D$2 + $F$2 + B6 — ($C$2 + $E$2 + $G$2)/B6) / ($A$2
— B6 + ($C$2 + $ES$2 + $G$2)/B6))). Copy this instruction down to row 206.

Go back to the graph, activate the curve, and in the formula window change the
column from D to E. Enter this change. You should now see a curve such as the colored
one in Fig. 5.6-2.

When the halide titrations are performed without additives, the transi-
tions between the various curve segments are often much less sharp than
described here. This is a consequence of co-precipitation of AgBr in Agl, and
of AgCl in AgBr, because these salts can form solid solutions and/or
mixed crystals. Such co-precipitation can be suppressed by the presence ofa



5.6 Precipitation titrations 199

coagulating agent such as aluminum nitrate (J. Motonaka, S. Ikeda, and N.
Tanaka, Anal. Chim. Acta 105 (1979) 417), in which case the experimental
titration curve indeed follows the theoretical one, and shows sharp breaks at
the same places where the formalism switches from one equation to
another.

In principle one could use the break points in the titration curve as
approximations of the equivalence points, although these points do not
quite coincide with the true equivalence points; moreover, co-precipitation
(if not suppressed) often leads to a blurring of those points. At any rate, it is
usually a better practice to avoid reliance on single points in a titration
curves for the precise determination of the equivalence volumes, because
such single readings are inherently rather vulnerable to experimental uncer-
tainty.

One can of course fit experimental data to the entire, theoretical curve
with a non-linear least-squares routine such as Solver. In this particular
case, however, the direct, non-iterative method of using Gran plots provides
a valid, simpler alternative. As illustrated below, such plots are quite linear,
analogous to the Gran plots for the titration of strongacids and bases.

For the first part of the titration, when the only solid present is Agl, we start
from the exact expression (5.6-4) for the progress. As long as there is still
excess iodide present, [Ag*] << [I7], in which case (5.6-4) reduces to V,/ V=
(G — [N/ (Cy+ [I7]), which we combine with C, Veq1 = Vs G to

I (Vi + V)= C (Ve — V) (5.6-11)

In the region between the first and second equivalence points, we can
often neglect the terms [Ag*] and [I'] in (5.6-9), which then reduces to V;/ V;
=~ (G + Gg,— [Br7]) / (C,+ [Br7]). Upon combining this with the expression for
the second equivalence point, C; Vg = V; (G + Gg,), we obtain

Br] (Vi+ V)= C(Vege — V) (5.6-12)

Likewise, between the second and third equivalence points, we can often
neglect the terms [Ag™], [I7], and [Br7] in (5.6-10), in which case we can write
Vil Vi= (G + Gy, + C — [CIT]) / (C;+ [CIT]). Since the third equivalence point
isgiven by C; Vo5 = V(G + Gy, + Ccy), we obtain

[CITT (Vi + V) = C(Vegs — V) (5.6-13)

Finally, beyond the third equivalence point, neglect of [I'], [Br-]and [C]]
leads to

[Ag"] (Vi+ V) = Cy (V= Vi) (5.6-14)

So here we have a set of four Gran plots, three of the Granl type, and one
Gran2, that are easy to apply and (as already indicated above) unusually
linear, see Fig. 5.6-3. Note that these Gran plots are all of a similar type: a plot
of [Z] (V;+ V) versus V;, or as shown here as [Z] (V;/ V) versus V,/V,, where
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Fig.5.6-3: The four Gran plots for the titration of a mixture of iodide, bromide, and chlo-
ride with a soluble silver salt in the presence of a coagulating agent, as in Fig. 5.6-2.

(Z]=[I"]= Ksﬂ,AgI/[Ag+]r [Z] =[Br] = KsO,AgBr/ [Ag+], [Z] = [Cl_] = KsO,AgCl/
[Ag'], and [Z] = [Ag*] respectively.

20 Add afourth column to the spreadsheet, and in it calculate [Z] (V;/V+ 1), where [Z] is
either Kyo/[Ag'] for one of the silver halide salts, or [Ag*] itself.

21 Plot [Z] (V;/ Vi + 1) of column D versus V;/ V;of column C for the various definitions of
[Z]: Ko agr ! IAg], Koo agne / [AZ"], Ksoagc1/ [Ag ], o1 [Ag"]. Alternatively, if you want to
graph all four Gran plots simultaneously, as in Fig. 5.6-3, you will need to make a
column for each of them.

22 Savethe spreadsheet.

The von Liebig titration

A venerable and very interesting titration, first described by von Liebig in
1851, is that of cyanide with silver. For obvious reasons you will not find it in
any undergraduate laboratory manuals, but it is a good titration on which
to practice your theoretical skills. It differs from the halide titration dis-
cussed in the preceding section in that the soluble complex Ag(CN)," is
formed first, upon addition of half the equivalent amount of silver. Only
when more silver is added will the sparingly soluble AgCN precipitate. The
entire sequence is therefore a complexometric titration followed by a pre-
cipitation titration. Just this qualitative description might be enough to
scare the fainthearted, but you, my reader, are by now a well-seasoned
spreadsheeter, and you will encounter no unsurmountable problems in
this challenge.

For the first part of the titration, i.e., as long as no solid AgCN has formed,
we consider the cyanide complexes. At the beginning of the titration,
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cyanideisin great excess, and poly-cyano complexes may contribute signifi-
cantly to the titration curve. We will therefore include them in the formal
description. On the spreadsheet we do not need to make guesses as to what
approximations to make, assumptions that can only be justified by a com-
plete analysis anyway.

Silver forms cyano complexes up to Ag(CN),3; moreover, CN~ can be
protonated to form HCN. Therefore we will consider the mass balance equa-
tions

[CN7] + [HCN] + [AgCN] + 2[Ag(CN), 7] + 3[Ag(CN)3%] + 4[Ag(CN) ]

= GVl (Vs+ V) (5.7-1)

[Ag'] + [AgCN] + [Ag(CN),7] + [Ag(CN)3?] + [Ag(CN) 2] = C,V,/ (Vs + V)
(5.7-2)

and subtraction of (5.7-2) from (5.7-1) leads to
[CN7] + [HCN]-[Ag"] + [Ag(CN),7] + 2[Ag(CN)3*] + 3[Ag(CN) 4>

= (CVs=C V) I (Vs+ V) (5.7-3)

Substitutions of the type

[Ag'] = C,Viang: [ (Ve + V) (5.7-4)
and
[HCN] = [H*] [CNT] / K, (5.7-5)
thenyield
Vi G—-ICNT]Q+ [H*]/K,) (5.7-6)

Vi G +ICNTI(1+ [H1/K,)
where

Fr= apgen t 2aagen,~ T 3aagony,2~ T 4aagien),®-

_ Kn[CN™] + 2Kp Ky [CN ™12 + 3Ky Kpp Kpg[CN ™ 1° + 4Kpy Ky Ky Kpy[CN 1
1+ Kt [CN7] + Kpy Kpa[CN71% + Kpy Ky Kp3[CN 712 + Ky Ky Kp3 Ky [CN ]
(5.7-7)

Equations (5.7-6) and (5.7-7) describe the progress of the titration as long
no precipitate is formed. As soon as solid AgCN appears in the titration
vessel, we must instead use the analogue of (5.6-4) which, in this case reads

_ G~ [CNTI(1 + [H']/K,) + [Ag"] — [Ag(CN)], "] — 2[Ag(CN)]5* "] — 3[Ag(CN)]4* 7]

Cs+ [CNTI(1 + [H']/K,) — [Ag*] + [Ag(CN)], ] + 2[Ag(CN)]32 "] + 3[Ag(CN)1,37]

_ G+ (AT — (1+ [HY1/K, + Kip) Kyo/ [Ag ] — 2K3/ [Ag ™1 — 3K,/ [Ag™ 13
T G- [AgT]+ (1 + HT)/ K, + K Koo/ 1Ag*] + 2K/ [Ag 12 + 3K,/ [Ag ?

(5.7-8)
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where we have used the abbreviations Ky, = Kyo K¢y Krp, K3 = Ko® Kpy Krp K3,
and K = K;o* Kr1 Kra Kz Kpy = K3 Ky Ky . The switch from (5.7-6) to (5.7-8)
occurs when [Ag*] as given by (5.7-4) equals Ko/ [CN7].

Instructions for exercise 5.7

1 Openanewspreadsheetand giveitaname, e.g., von Liebig.

In the top row place labels for C;, C;, [H], K,, Ky, through Ky, , as well as Ky, K3, and
K,.

Deposit plausible values for C;, C;, and [H*], and enter the literature values
K,=6.2x107""M, Kp; =8.3 X108 M, K, =4.2 X 10" M, K3 =5.0M ™,

Ky =0.074 M, and Ko = 1.2 X 1071 M2, Furthermore, calculate the numerical values
of K3 and K. Computing these here, once, rather than on every row of the spreadsheet,
will speed up the calculation. Whether or not this has a noticeable effect will, of course,
depend on the hardware used.

Enter labels for columns p[CN], [CN], denom, Ff, Vt/Vs, [Ag], denom*, Vt/Vs*, and pAg.

5 Letp[CN]range from 0 to 22 with increments of 0.1. In the next column, calculate the

corresponding values for [CN7].

In the column labeled denom compute the denominator of (5.7-7), e.g., in cell C6 as
=1+ $E$2*B6*(1 + $F$2*B6*(1 + $G$2*B6*(1 + $H$2*B6))). Alternatively you might
want to name the individual constants, and refer to them by those names.

In the next column calculate Ffas given by (5.7-7), so that cell D6 might contain

= ($E$2*B6*(1 + 2*$F$2*B6*(1 + 1.5*$G$2*B6*(1 + (4/3)*$H$2*B6)))) / C6.

8 Use (5.7-6) to calculate V;/ V,in the column with that label.

10
11

12
13

In the next column compute [Ag*], while at the same time testing whether solid AgCN
can form. Since apg; = 1/denom and V;/ (Vs + V) = (V,/ V) / (1 +V,/ Vi), the instruction
might use the followinglogic: if C, X (V;/Vy) / (denom X (1 + V;/V;) is smaller than

Ko /[CN7],use C, X (V;/ V) | (denom X (1 + V;/ V), otherwise use K,/ [CN7]. Or, in
spreadsheet code for row 6: = IF ($B$2*E6/(C6* (1 + E6)) < $I1$2/B6,

$B$2*E6/(C6*(1 + E6)), $1$2/B6).

Now calculate the denominator of the right-most form of (5.7-8).

Calculate V;/ V*, for which you use either the earlier-computed values (as long as no
solid AgCN is formed), or equation (5.7-8). An easy code for the latter uses V;/ V* =
(Cs+ C;,— denom*) / denom*.

In the next column, calculate pAg from [Ag*].

Plot pAgversus V;/ V;. Figure 5.7-1 shows what type of result you can expect.
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Fig.5.7-1: The (colored) titration curve for the von Liebig titration of 0.1 M cyanide with
0.1 M silver, using the equilibrium constants given in the text. The black curve shows
how the complexometric titration curve would have continued if somehow the precipi-
tation of solid AgCN could have been prevented. Open circles show the equivalence
points.

Analysis of experimental data can again be based on the break point in
the potentiometric curve, or on the first appearance of a visible precipi-
tate, both of which yield close approximations to the first equivalence
point. Moreover we can use the first derivative of the potentiometric
curve, Gran plots, or a non-linear least-squares fit of the experimental
data to the theoretical model for the entire curve. It is clear how to do the
overall fit, since we have just generated the theoretical curve. Below we
will briefly examine the Gran plots.

In order to reduce the first, complexometric part of the curve, defined by
(5.7-6) and (5.7-7), to a simple Gran plot, we must neglect the contributions
of AgCN, Ag(CN)gz‘, and Ag(CN) . to the curve, in which case we obtain

[CNTT (1 + [H'/Ky) (Vs+ V) =2C; (Vogu — Vi) (5.7-9)

For the second part of the curve, we can either neglect all species other than
Ag(CN),™ (before the second equivalence point) or all cyanide-containing
species (beyond that equivalence point) and obtain the Gran-plot approxima-

tions
Ko Ko (Vs+ V) 1 A" = C; (Ve — V) (5.7-10)
[Ag] (Vi + V) = C (Vi — Vego) (5.7-11)

14 Calculate and plot the Gran plots according to (5.7-9) through (5.7-11). Your curves
should look similar to those of Fig. 5.7-2.
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Fig.5.7-2: Gran plots for a von Liebig titration of 0.1 M cyanide with 0.1 M silver, using
the equilibrium constants given in the text.

The initial (colored) part of the titration curve in Fig. 5.7-1, and its
(black) continuation, show that the complexometric titration curve is
quite asymmetrical, the result of the initial involvement of the tri-cyano
and tetra-cyano silver complexes. For that first part of the von Liebig titra-
tion, the Gran plot (which neglects those complexes) is noticeably curved,
see Fig. 5.7-2. However, the next Gran plots are quite linear, reflecting the
fact that, once AgCN starts to precipitate, Ag(CN),™ is really the dominant
species until the second equivalence point, and so is Ag™after that second
equivalence point has been passed. Consequently, for a Gran-plot analy-
sis, the second equivalence point would be much better suited, even
though that will require the use of about twice as much silver in each titra-
tion.

The graphical representation of electrochemical equilibria

Traditionally, electrochemical equilibria are explained in terms of thermo-
dynamic cell potentials. However, in electroanalytical applications, such a
description is of little use, because one almost always uses a non-
thermodynamic measurement, with a reference electrode that includes a
liquid junction. It is then more useful to go back to the basic physics of
electrochemistry, i.e., to the individual interfacial potential differences that
make up the total cell potential. This is the approach we will use here.

There are two types of interfacial potential differences: equilibrium and
non-equilibrium potentials. (From now on we will use ‘potential’ as short-
hand for ‘potential difference’. Potentials of individual phases cannot be
measured, but some potential differences can be.) The equilibrium poten-
tials can again be subdivided into two categories: electron transfer and ion
transfer potentials. The metal/metal ion potentials can be considered as
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either of these: we can look at a silver electrode in contact with an aqueous
solution of silver nitrate as a system that allows the reduction of Ag*to Ag®
and its reverse, the oxidation of Ag0 to Ag™, or as the transfer of a silver ion to
and from the Fermi sea of metal ions and conduction electrons that make up
ametal. Here, and in section 5.9, we will be concerned with electron transfer
potentials. The potentials of a glass electrode, and of a fluoride electrode, are
examples of ion transfer potentials, while the silver electrode illustrates a
metal/metal ion electrode.

In all these cases of equilibrium potentials, the formal description is
similar, and is based on the Nernst equation. For the transfer of n electrons
between the oxidized species O and its reduced counterpart R, the Nernst
equationreads
nfE= nfEOR"Jrlog% (5.8-1)
where f= F/ (RTIn(10)), or about 16.9V ~! at room temperature; its recipro-
cal, 1/f, then has a value of about 0.059 V. We write the Nernst equation in the
above form to emphasize its homology with the mass action law for a weak
monoprotic acid,
pH= pKa+10gM (5.8-2)

[HA]

Indeed, by introducing the definitions
h=107E k=107Eox (5.8-3)
we can rewrite (5.8-1) in a form that is fully isomorphous with (5.8-2), viz.

[0

5.8-4
R] ( )

ph=pk+log

Consider, for example, the redox equilibrium Fe®**+ e~ =Fe?". When we
define the total analytical concentration of iron in solution (regardless of its
oxidation state) as C, it follows from the Nernst equation that the fractional
concentrations of Fe3*and Fe?"are

h k
ek Rk 689
which are isomorphous with the acid-base relations
+
[H] ay = Ka (5.8-6)

AT+ K, H']+K,

So far we have restricted the discussion to that of a single redox step, from
Fe(II) to Fe(II), and a monoprotic acid-base system, but the analogy can be
carried much further. For example, the aqueous redox behavior of vanadium
involves the oxidation states V2*, V3%, VO?*, and VO3, all separated by
the stepwise addition or extraction of one electron. This is fully analogous to
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a triprotic acid H3A in which each form can be converted into its conjugate
forms by the stepwise addition or extraction of single protons.

The vanadium redox chemistry involves protons, since we have the equi-
libria

V3 + e =V2" (5.8-7)
VO2T+2H +e =V3"+ H,0 (5.8-8)
VO,"+2H"+ e =V0O?"+ H,0 (5.8-9)

and this is reflected in the corresponding Nernst equations, which read

1 [V3+]
E= Ey3+ flog (5.8-10)
1, [VO*f[H'Y2 . 1, [VO?]
EZE%43+}IOgWZEV43+ }log V3] (5.8-11)
1 [VO,*1[HT]2 . 1 VO, "]
E= E\°/54+}10g[\27072+]: EV54+ }log [VO§+] (58-12)
where
- 2
EV43_EV43+f10g[H 1°= EVy3— fPH and
2
Evs4—Ev54+flog[H ] E%54_}pH (58—13)
We now define
h=107E k=107  k=107E%w  k;=107Ew (5.8-14)
so that
h3
L= .8-1
N e, + hlyky + Ky Kok (5.8-15)
12k,
WV TR 1k + hkk, + kKo (5.8-16)
hk, k,
L= .8-1
WO = 15 12 ke ey + Kok (5.8-17)
-~ kikoks
C(VOZ _h3+h2k1+hk1kz+k1k2k3 (58 ].8)

which can be compared with the analogous relations for a triprotic acid,
(4.9-7) through (4.9-10). Below we will exploit this close analogy between
redox and acid-base behavior to make logarithmic concentration dia-
grams.
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Fig.5.8-1: The logarithmic concentration diagram for Fe?* /Fe3* at C = 0.01 M, calcu-
lated with Efe3p = 0.770V.

Instructions for exercise 5.8

1 Openanewspreadsheet.

AN U &~ W N

~

Enter in the top row the labels C, f, and k, and below them the values for C, f= 16.904,
and k= 107E° = 101 — (B2¥0.77).

Inrow 4 place the labels fE, h, log[Fe2 +], and log[Fe3+].
In cells A6:A406 deposit values for fEas —10 (0.1) 30.
In column B compute the corresponding values of = 107E,

In column C calculate log [Fe?'] = log (Ca ges+) =log (hC/ (h + k)). Similarly, in column
D, calculate log [Fe**] =log (kC/ (h + k)).

Plotlog[Fe**] and log[Fe®*] versus fE. Figure 5.8-1 shows such a graph.

8 For the vanadium redox system use a similar lay-out but including the pH and with

10

three k-values, representing (inV) E9s, =— 0.255, Ey,3 = 0.337 — 2 pH/f, and Eys4 =
1.000 — 2 pH/f.

In order to simplify the coding, you may also want to use a separate column to
compute the common denominator in (5.8-15) through (5.8-18), in which case the
labels in row 4 might read fE, h, denom, log[V(II)], log[V(II)], log[V(IV)], and
log[V(V)].

Calculate the logarithms of the various concentrations (again assuming the absence of
complexingligands) and plot them versus fE for several pH-values. Figure 5.8-2 shows
an example of such a plot.
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Fig.5.8-2: The logarithmic concentration diagram for the vanadium redox system at
C=0.01 M and pH = 0 (colored lines) and pH = 1 (blacklines), calculated with
E93,=—0.255V, ES;3= 0.337V, and E9s,= 1.000V.

Note that we can consider the potential of a solutionin the same way as we
do the pH of a solution. The potential is defined by the presence of an oxi-
dized and a reduced form of a redox couple, just as the pH is defined by the
presence of an acid and its conjugated base. The potential is there regardless
of whether we measure it or not, and therefore does not rely on contact with
any electrodes. The potential of a solution should be no more mysterious
than its pH, except that we happen to have a sense for acidity in our taste
buds, but not one for potential. Still, we can imagine the pH of soil or blood
without tasting it, and it should be no different for its potential. Of course,
any direct measurement of the potential of a solution requires electrodes,
but the potential can also be calculated from the concentrations of the redox
partners when these are otherwise known or measurable, just as the pH can
be calculated from, say, the spectrum of a solution containing pH-sensitive
‘indicator’ dyes.

In a number of cases, redox intermediates are rather unstable, and the
equilibria are best described in terms of multi-electron transfers although,
mechanistically, they most probably involve sequential one-electron trans-
fers. A prime example is permanganate, MnO,~, which in neutral solution
can be reduced to MnO, with an uptake of three electrons, and in acidic
solution to Mn?*according to

MnO, +8H"+5e =Mn?"+ 4 H,0 (5.8-19)

The Nernst equation then takes the form
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Fig. 5.8-3: The logarithmic concentration diagram for the MnO,~/Mn?" couple at
C=0.01 M and pH = 0 (colored line) and pH = 1 (blackline), calculated with
ESn72 = 1.51V.

1 [MnO, J[H"]® 1 [MnO[]
E= EMn72+5f gW EMn72+5f W (5.8-20)
where
8
Entnz2= Efinz2 + flog[H*] El?/[nn_gpr (5.8-21)
In this case we then have
mc
[Mn®*] = P (5.8-22)
_ k°C
[MnO4 ] :W (5.8-23)
where
k=107 Emzs = 107 Evnro +8PH/5 (5.8-24)

The factors 5 multiplying fin the Nernst equation, and in the exponents of
(5.8-23) and (5.8-24), reflect the ‘simultaneous’ exchange of five electrons.

11 Take a new spreadsheet, or modify the existing one, in order to calculate and plot
thelogarithmic concentration diagram for the permanganate/manganousion
couple, with C = 10 mM, and E ;= 1.51Vat pH =0, 1, and 2. Figure 5.8-3 shows two
ofthese.
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Matters are slightly more complicated for dichromate, Cr,0,27, a
common oxidant which is reduced according to
Cr,0.2 +14H"+6e=2Cr*" + 7H,0 (5.8-25)
because of the dimeric nature of Cr,0,2". In this case we have

1 [Cr,02 1[H] 14 1 [Cr,0.27]

E=Egr63+6—flog ]2 =E;r63+5—flog o2 (5.8-26)
Eéres = E2 +ilog[H+]l4=E° —EpH (5.8-27)
Cr63 Cr63 6f Cr63 6f .
and
C=2[Cr,0,27] + [Cr®"] (5.8-28)
_ 6+ 31 / 6+
[Cr*']= 1P+ PV I+ 8EC (5.8-29)
8K5
b+ 4K5C— >V Kb +
[Crzof*]:h BC= PV +8C (5.8-30)
8Kk5
k= 107Eces = 107 Elws + 14PH/6 (5.8-31)

It will save many spreadsheet exponentiations to store in the top row of the spread-
sheet the value of k® = 1075/E°*8PH jnstead of k = 10-/E°+1.6pH,

Take a new spreadsheet, or modify the existing one, to calculate and plot the logarith-
mic concentration diagram for the dichromate / chromous ion couple, with C=1mM
and E,43=1.36VatpH=0,1,and 2.

In this calculation you will encounter problems caused by the finite word length of the
computer. Usually you are shielded from such problems by the ‘double precision’ of

modern spreadsheets, but that is not enough for equations (5.8-29) and (5.8-30).

For example, for h® < 8k®C, we may reformulate (5.8-29) as [Cr**] = a{V/(1 + 8C/a) —

1}, where a = (h/ k)®. While this is mathematicallyidentical to (5.8-29), it is computa-
tionally different, because h/kremains much larger than either h or kalone. Once you
have calculated [Cr3*], you can find [Cr,0,%7] from (5.8-28).

At potentials Ethat are much more negative than E * or, more precisely, for 8 k8C << h®,
you can use the series expansion \/(1 +8)=1+8/2—8%/8+ 63/16 — - toreduce (5.8-
29) to [Cr¥*"] =~ C— 2 K8C?/ h® + 8 k'2C3/ h'? — - and, subsequently, again compute
[Cr,0,%7] from (5.8-28).
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Fig. 5.8-4: The logarithmic concentration diagram for the Cr,0,%7/Cr®* couple at
C=0.01 Mand pH =0 (colored line) and pH = 1 (blackline), calculated with
E%63=1.36V.

Note that the limiting slopes in Fig. 5.8-4 for [Cr® ] are0and — 3, and + 6
and 0 for [Cr,0,%7], reflecting the fact that the reduction of Cr,0,?" takes up
six electrons, while the oxidation of Cr**involves only three electrons.

We end this section with a caveat: what we have discussed so far are equi-
librium properties, but many electrochemical systems are slow, in which
case they are kinetically controlled. Equilibrium considerations specify
what is possible, if the kinetics are fast enough; kinetics determine what is
actually observable. When a redox process involves the breaking or making
of chemical bonds, it is usually a slow process. Permanganate is one of the
few exceptions, and even there, pure permanganate will react very slowly,
but the reaction is speeded up considerably by catalysis from trace amounts
of Mn2*. But dichromate illustrates the limitation: in practice, it does not
quite follow the above prediction.

Redox titrations

Because of the close analogy between acid-base and redox behavior, it will
come as no surprise that one can use redox titrations, and also simulate
them on a spreadsheet. In fact, the expressions for redox progress curves are
often even simpler than those for acid-base titrations, because they do not
take the solvent into account. (Oxidation and reduction of the solvent are
almost always kinetically controlled, and therefore do not fit the equilibrium
description given here. In the examples given below, they need not be taken
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into account in the range of potentials covered.) Although the number of
useful redox titrations is limited by the requirement that they proceed with
reasonable speed (at least comparable to that of adding titrant to the
sample), those systems that do go fast enough often yield very sharp equiv-
alence points, and are easily analyzed either by a total fit of the progress
curve, or with Gran plots.

As our first example we will consider the titration of Fe(IT) with Ce(IV). For
the sake of simplicity we will neglect all complexes other than with the
solvent, i.e., we will assume that the species involved are the aquo-ions Fe?™,
Fe3", Ce®*, and Ce**. The oxidation of Fe?*to Fe3"consumes one electron,
which can be provided by the reduction of Ce**to Ce3*.

As with acid-base titrations, the mathematical description starts with the
conservation of mass. For Fe?Tand Fe3"we use (5.8-5) plus a dilution correc-
tion, since sample and titrant dilute each other during the titration.
Consequently, when we titrate Fe>*with Ce*" we have

hC,V, kC.V.
Fe2+ - "~s's Fe3+ - s=s's 5.9-1
[ ] (h+ k) (V,+ V) [ ] (h+ k) (Vs+ V) ( )
hC,V, k,.C,V,
sty nlVy avy . KGVe i
N S A B T A TN 6-9-2)
h=107E k= 10 ERes2 k,= 107 ECess (5.9-3)

To this we must add a condition representing the conservation of charge.
With acid-base titrations we saw that this was most readily done by invoking
a proton balance; here we will likewise use an electron balance, i.e., an
accounting of electrons consumed and electrons generated. In the present
example, each Fe?* oxidized to Fe®" has released one electron, and each
Ce** reduced to Ce®* has accepted one. Therefore, assuming that we start
with only Fe?*and Ce**, we can write the electron balance as

[Fe3*] = [Ce3*] (5.9-4)

Substitution of (5.9-1) and (5.9-2) into (5.9-4) then leads directly to the
expression for the progress curve

V,_ Coaper _ Gkl + k)
‘/S CtaCefH Cth(h + ks)

(5.9-5)

Finally, the equivalence point is given by [Fe?*] = [Ce*"] or h = Vkk;.

The above formalism (R. de Levie, J. Electroanal. Chem. 323 (1992) 347) is
similar to that of the titration of a weak acid with a weak base, or vice versa,
see section 4.3, except that the terms in A are absent. However, this analogy
only concerns the formalism, not the actual steepness of the titration. Redox
titrations typically have a much wider span than acid-base titrations, and
can therefore be quite steep.
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Instructions for exercise 5.9-1

1 FEither open a new spreadsheet, or modify the one used in exercise 5.8.

N

Enter in the top row the labels Cs, Ct, f, ks, and kt, and below them numerical values for
C,and C;, f=16.904, k,= 107" and k,= 10717/,

In row 4 place the labels fE, h, and Vt/Vs.
Starting in row 6 of column A, deposit values for fEas 5 (0.1) 35.
In column B compute the corresponding values of h = 107/,

In column C calculate V;/ Viaccording to (5.9-5).

N O 1 W

Plot the progress curve, V;/ Vvs. fE, and the titration curve, fEvs. V;/ V;. Figure 5.9-1
shows such a graph.

The corresponding Gran plots use either h or 1/h, which are both func-
tions of the dimensionless potential fE during the titration, just as Gran
plots in acid-base titrations use [H] and 1/[H"], both functions of the
dimensionless acidity function pH. Indeed, & relates to fE in precisely the
same way as [H'] relates to pH: h=107F and [H'] = 10P!, Specifically, in
redox titrations, Granl plots are graphs of hV,vs. V; (or, in dimensionless
quantities, hV,/ k,V;vs. V;/ V), while Gran2 plots use 1/ hor k,/ hinstead.

8 Calculate hV,/ k,V,, then plot it versus V;/ V.
9 Similarly, calculate and plot k;/ hversus V;/ V;.

35

E/0.059

25 +

15 +

0 1 VJ/V, 2

Fig.5.9-1: The titration curve for the titration of 0.01 M Fe?"with 0.01 M Ce**, calculated
With E®e3, = 0.771Vand E2ey3 = 1.7V.
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Fig.5.9-2: The Gran plots for the titration curve of Fig. 5.9-1. The Gran functions are
hV,/ kgV,for Granl, and k,/ hfor Gran2.

Figure 5.9-2 illustrates such Gran plots. They are quite linear, and are
therefore well-suited for least-squares fitting of a line in order to find the
equivalence point. The conversion from the measured quantity E to the
derived quantity & is usually the major source of errors in such an analysis; a
weighted least-squares fit is then called for, with weights proportional to K.
For the Gran2 plot we likewise use 1/ hwith weights 1/ 2.

For the titration of V2*with Ce**we combine (5.9-2) with

Ve = re (5.9-6)
(H® + WPk, + hickey + kykpkes) (Vi + V)
2k, C,V,
\[3Jr = 1%sVs .
[(V37] (13 + R2ky + hiyky + kykoks) (Vo + V) (5.9-7)
hile, k, C,V,

2+ = 16205V ]
Vo™ (h® + WPk + hikey + kykpkes) (Vi + V) (5.9-8)
[VO,*] = eakes GV 50

(B3 + R2ky + bk + kykoks) (Vo + V)

where the vanadium species originate from the sample, and Ce**is the
fitrant. You will recognize (5.9-6) through (5.9-9) as derived from (5.8-15)
through (5.8-18) by the incorporation of the dilution term Vy/ (Vi + V;). The
electron balance nowreads

[V3*] + 2 [VO?¥] + 3 [VO, "] = [Ce3"] (5.9-10)
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because it takes one electron to oxidize VZ*to V37, two electrons to oxidize
V2*to VO?*, etc. The progress equation now reads
Vi Cylays+ + 2ayg2+ + 3avo,*)  Cyh+ k) (Wky + 2hkyky + 3Ky kaks)

vV, Coace+ T Ch(IP + Rk + hiyky + Kykaks) (6.9-11)

where k; through k; are defined in (5.8-13) and (5.8-14).

Instructions for exercise 5.9-2

N O i1 W

Open a new spreadsheet, or modify one used earlier.

Enter in the top row the labels Cs, Ct, pH, f, k1, k2, k3, and kt, and below them numerical
values for C,, C;,and pH, f=16.904, k; = 10%2%/ f, = 1070337/ +2pH o, — 1(-1-000/+2PH 314
ky= 10717,

Inrow 4 place the labels fE, h, and Vt/Vs.

Starting in row 6 of the first column, place values for fEas —10 (0.1) 35.
In the second column compute the corresponding values of h =107
In the third column calculate V;/ Vaccordingto (5.9-11).

On the spreadsheet plot the progress curve, V;/ V;vs. fE, and the titration curve, fEvs.
V;/V;.To make the latter, either (1) enter a second column for fEto the right of that for
V1V, and use these to make a new chart, or (2) click on the first graph, copy and paste it
with Ctrl + ¢, Ctrl + v. In the copy, highlight the curve, then exchange the letters identify-
ing the two columns in the formula box, and enter. Clean up by adjusting the axis scales
and labels.

Figures 5.9-3 and 5.9-4 show such graphs.

You will recognize how easy it is to represent these titration curves: a
formulasuch as (5.9-11) isreadily derived, and it takes only three columns to
plot it. Fitting experimental data to such a curve is equally simple: add your
experimental data, calculate the sum of the squares of their residuals, and
use Solver to minimize that sum. You can also use (5.9-11) to derive several
Gran plots by retaining only one of the three alpha’s in (5.9-11) and simplify-
ingitaccordingly. Instead of fEyou may want to use E, in volts. We have used
fEin order to emphasize the analogy with pH measurements: one unit of fE
is precisely equivalent to one pH unit: about 59 mV at room temperature.

In the above examples we moved from one sample, Fe?", to another, V2,
by replacing (5.9-1) by (5.9-6) through (5.9-9). In our final example of this
section we will use another titrant, and illustrate how to generate the
progress or titration curves for, say, the titration of Fe?*or V2" with perman-
ganate in acidic solution. In that case, all you need to do is to replace (5.9-2).
Adding dilution terms to (5.8-22) and (5.8-23) yields
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Fig.5.9-3: The progress curve for the titration of 0.01 MV?* with 0.01 M Ce**at pH 1.
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Fig.5.9-4: The titration curve for the titration of 0.01 MV 2* with 0.01 M Ce**at pH 1.
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5 5
M= G Z;‘)C(tg:+ vy MO TG Ilcctf)c(t\‘f V) (6:9-12)
k,= 107 Evnz2 = 107 ENnz2 +®/9pH (5.9-13)
while the electron balance for the titration of Fe?*will read
[Fe3*] =5 [Mn?**] (5.9-14)
or, for the titration of V2™,
[V3*] + 2 [VO?**] + 3 [VO, "] =5 [Mn?"] (5.9-15)
so that the progress of these titrations will be given by
Vi Ciape+  Cky(R° + k) (5.9-16)

V. 5Capmz-  5CH(h+ k)
or

Vi Cilaws+ + 2ayo2+ + 3avo,) G + k) (WP ky + 2hkyky + 3k kypks)

‘/S chtaanJr 5Cth5(h3 + h2k1 + hk1k2 + klkgk:)))

(5.9-17)

respectively. While it is unavoidable that the algebra gets a little messy when
there are more species involved, the general form of the progress equation
remains the same. It is therefore straightforward to extend the present for-
malism to other redox systems, and to fit their redox titrations as long as they
exhibit equilibrium behavior.

Redox buffer action

The simultaneous presence of the oxidized and reduced form of a redox
couple can stabilize the redox potential of a solution, just as the presence of
an acid and its conjugate base can stabilize the pH. The formalism (R. de
Levie, J. Chem. Educ. 76 (1999) 574) is quite similar to that of section 4.7,
except that there are no terms for the oxidation or reduction of the solvent,
because these are typically non-equilibrium processes which, moreover, are
insignificant in the usual range of potentials considered. By analogy to (4.7-
1) we write, for the redox buffer strength B of a one-electron redox couple
Ox + e =Red, such as Fe?" + e =Fe?"or Ce** + e =Ce3",

B= Caoxtped (5.10-1)

where Cis the total analytical concentration, C= [Ox] + [Red]. Because Cagy
= [0x] and Cageq = [Red], we can rewrite (5.10-1) as B= CCagyapeq / C= [OX]
[Red] / ([Ox] + [Red]) or
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1 1 1
B [Red ' [0x] 6102

For the VO, */VO?* /V3* /V?*system the redox buffer strength is analogous
to (4.9-12),

B= C(avog ayo2+ T ayg2+ ay3+ + ays+ aye+ + 4av0; ay3++ dayge+ ay2+

+ 9avoér on2+) (510-3)
which reduces to
B= C(ay2+ ay3+ + ay3+ ayg2+ + ayg2+ avog) (5.10-4)

when the various standard potentials E° and conditional potentials E* are
sufficiently far apart. In that case, a simple relationship such as (5.10-2)
applies in each buffer region, i.e., the range of potentials around E° or E*,
justas the acid-base buffer region occurs at pH = pK,,. Note that the numeri-
cal coefficients 1, 4 and 9 in the products of the alpha’s are the squares of the
numbers 7 of electrons involved in the transition from one form into the
other, just as they are the squares of the number of protons involved in (4.9-
12).

For permanganate the intermediate redox states are not stable, and we go
almost directly from MnO,~ to either MnO, (in neutral or basic media) or
Mn?* (in acidic solutions). In that case the general expression reduces to

B= 9CaMn04, aMnOZ (5.10-5)
9 1 1

B [MnO,] " [MnO,]

(5.10-6)
for the three-electron step at neutral or basic pH, or, at low pH, for a five-
electron transition,

B 225C’C(MHOI(CZMHZJr (5.10-7)

25 1 1
o -+ 2+
B [MnO; ] [Mn“"]

(5.10-8)

All redox titration curves we have discussed here are independent of the
total analytical concentration C of the redox couple. (This is not always the
case: in the Cr,0,27/Cr3* couple the reduction of one Cr,0,2~ generates two
Cr¥Tions, which leads to a concentration-dependent redox titration curve.)
Therefore, the above expressions precisely give Cy/In (10) times the first
derivative of the progress curve of the corresponding redox titration. You can
convince yourself that this is so in exercise 5.10-1.
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Instructions for exercise 5.10

1 Gobackto the spreadsheet used for exercise 5.9-1.
2 Add two columns, one labeled Bs, the other 2.3Csderiv.

3 In column Bs calculate the buffer strength using (5.10-2), i.e., based the formula
Cshkg/ (h + kg)?.

4 In column 2.3Csderivcompute C;/In(10) times the first derivative of the progress curve.
Calculate latter with the same simple formula used in section 4.5, i.e., the derivative
dy/dxatrow iis equal to (-2y;_»— i1 + ¥i+1 T 2Yi+2)/(108), where the data spacing §is
0.1sothat106=1.

5 Plot the two resulting curves versus fE. Figure 5.10-1 shows what such a curve should
looklike.

6 Similarly extend exercise 5.9-2 to include two columns, labeled Bs and 2.3Csderiv
respectively.

7 Calculate B;from (5.10-4) as Cih { k;/ (h+ kp)? + kol (h+ k2% + ks/ (h + k3)?}.

8 Inthe next column compute Cy/In(10) times the first derivative of the progress curve, as
under instruction (4).

9 Again plot these two curves of redox buffer strength as a function of the dimensionless
potential fE, and compare your results with Fig. 5.10-2.

The redox buffer strength serves the same role for the potential of a solu-
tion as the acid-base buffer strength serves for its pH. In both cases it is
assumed that the corresponding equilibria are established quickly on the
time scale of the experiment. With redox equilibria, which often involve
bond breaking, this condition is less often met than with acid-base equilib-
ria, where fast establishment of equilibrium is the norm.

0.003
B
0.002 -

0.001 -

0 1 I 1
5 10 15 20 E/0.059 25

Fig.5.10-1: The redox buffer strength of a strongly acidic aqueous iron solution of 0.01 M
analytical concentration, calculated from (5.10-1) or by differentiation of the progress
curve (5.9-5); the two agree to within 2%.
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Fig.5.10-2: The redox buffer strength of an aqueous vanadium solution of 0.01 M analyt-
ical concentration at pH = 0, calculated from (5.10-3) or by differentiation of the
progress curve of Fig. 5.9-3. Again the two agree to within the computational accuracy of
the differentiation algorithm used.

Summary

In this chapter we have applied the methods of chapter 4 to ionic equilibria
other than those between acids and bases. Of course, complexation, extrac-
tion, solubility, precipitation, and redox equilibria may also involve
acid-base equilibria, which is why we treated acid-base equilibria first. The
examples given here illustrate that the combination of exact theory with the
computational power of a spreadsheet allows us to solve many problems
that occur in quantitative chemical analysis, and to analyze experimental
data accordingly. Even quite complicated titrations, such as the multi-
component precipitation titrations, the von Liebig titration, and redox titra-
tions involving many species and complicated stoichiometries, can be
handled with ease.

Again, we have not included activity corrections, because (both didacti-
cally and computationally) these are best added afterwards whenever such
corrections are required. The principles involved are the same as those
explained in section 4.10: activity corrections apply to the equilibrium con-
stants (such as K, K and k) but not to the mass and charge balance rela-
tions and their derivatives, such as a ligand balance or an electron balance.
Furthermore, electrometric measurements must be corrected for activity
effects, but spectroscopic measurements should not be. At any rate, as the
example of HgS in section 5.4 illustrates, the proper chemistry of including
allimportant species is always far more important than the proper physics of
making activity corrections.

The reader may wonder why the discussion in this chapter is restricted to
ionic equilibria. Are there not many other equilibria, not involving ions, sol-
ubilities of non-ionic compounds, electrochemical processes involving
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neutral species, etc.? The reasons for focusing exclusively on ions are (1) that
the formalism of equilibria is often more complicated when ions are
involved, therefore making them more in need of spreadsheet computation,
and (2) that many equilibria involving neutral species are established so
slowly that their kinetics must be taken into account. Such slow processes
are often of little analytical value, and they therefore fall outside the reach of
this book. However, chapter 9 discusses one aspect of slow reaction rates
where spreadsheets can be helpful, namely in the simulation of reaction
kinetics.

Non-equilibrium behavior may also affect some ionic reactions. In our
examples we have therefore emphasized processes involving substitution-
labile ions rather than substitution-inert ones. Problems of slow kinetics are
especially common with ionic redox reactions, in which case equilibrium
considerations indicate what is theoretically feasible, but not necessarily
what is truly factual. This is why so many quantitative electrometric
methods are based on either silver or mercury, two metals on which the
metal/metal ion equilibrium is usually established so rapidly that the
underlying kinetics can be neglected in routine analytical measurements,
and on platinum, where the same applies to many electron transfer
processes between soluble redox couples.






PART IV INSTRUMENTAL METHODS

CHAPTER 6

This short chapter contains a somewhat disparate collection of topics, com-
monly treated in either quantitative or instrumental chemical analysis. They
illustrate a variety of methods, but their order is of no particular importance.
The reader should therefore feel free to pick and choose from them, in any
order.

In the first examples, spectrometry is used as an excuse to revisit some of
the problems and methods encountered in earlier chapters, such as the
determination of the pK, of an indicator dye, and multicomponent analysis.
We also illustrate the still little-known absorbance-absorbance diagrams.

We use chromatography as our pretense to simulate the action of a diffe-
rential equation. In a second chromatographic exercise, we show how the
van Deemter plot can be linearized.

Our example in polarography illustrates how a spreadsheet can be used to
simulate a rather complex curve, in this case reflecting the interplay
between the Nernst equation, Fick’s law of diffusion, and drop growth. The
first two factors also play a role in cyclic voltammetry, where we introduce
semi-integration as an example of deconvolution.

Spectrometric pK, determination

Spectrometry can be used to determine the pK, of a weak acid. Here we will
show this with a data set that is already more than 60 years old, at the same
time illustrating that the quality of the data usually depends much more on
the experimental care taken in obtaining them than on the availability of the
latest instrumentation.

The data were taken from H. von Halban & G. Kortiim, Z. Elektrochem. 40
(1934) 502. Weighed amounts of 2,4-dinitrophenol were dissolved in car-
bonate-free water, and were compared by differential spectrometry with
similarly weighed solutions of the same dye in 5 mM NaOH, in which

223
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Table 6.1-1: The total analytical concentration C of 2,4-dinitrophenol in
water, and the resulting concentration [A-] of 2,4-dinitrophenolate as
measured by differential spectrometry.

C/uM [AT]/pM C/uM [AT]/pM C/uM [AT]/pM
701.5 204.9 358.3 136.3 180.1 87.70
677.3 200.7 353.3 135.0 153.6 78.85
618.6 190.0 285.2 118.0 136.4 72.75
598.7 186.5 262.1 111.8 122.6 67.58
550.5 177.5 239.5 105.6 114.4 64.38
441.8 155.1 212.8 97.83 92.45 55.41
399.1 145.7

2,4-dinitrophenol is fully dissociated. The measurements were made at
436 nm, where the acid form has negligible absorption. The temperature was
controlled at 25 °C, the dye and the water were carefully purified, and the
glassware was meticulously cleaned. The measurements were made in a sta-
tionary cuvet; the various solutions were entered and removed by flushing.
The resulting experimental data are listed in Table 6.1-1.

Instructions for exercise 6.1

Open a new spreadsheet.

Enter column headings for C, [A7], o, K,;, I % pK, and pKy calc-

Enter the data for Cand [A7] (in M, not uM!) from Table 6.1-1.

Calculate as [A7]/C, K, as o*C/(1 — a), \V/Ias V[A7], and pK,as —logKk,.

i » W N =

With a linear regression (e.g., Trendline, or Tools = Data Analysis = Regression) obtain
the value of pK, extrapolated to infinite dilution.

(=)}

Compute pK, cqic based on the least-squares parameters found.

7 Plotthe original data as well as the least-squares line through them. The plot should
look more or less like Fig. 6.1-1.

Note that we can use a linear extrapolation because, at the low ionic
strengths of these solutions, the Debye-Hiickel limiting law is quite suffi-
cient. If all experimental data were of this quality, we could have pK,-values
listed to three significant decimal places!
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Fig.6.1-1: The pK,-values calculated from the data (open circles) and the straight line
drawn through them by least-squares, extrapolated (thin colored line) to yield the
‘infinite dilution’ value.

Multi-component spectrometric analysis 1

According to Beer’s law, the measured absorbance of a solution of a single
light-absorbing species is directly proportional to its concentration. For a
solution containing a mixture of absorbing species, the measured absor-
bance is then simply the linear combination of the absorbances of all
species in that solution, each measured at the same wavelength. When the
different species in the mixture have different spectra, we can do a multi-
component analysis and extract the concentrations of the individual
species.

For a mixture of two species, the minimum requirement would be to make
measurements at two wavelengths; for a mixture of three, at least three
wavelengths mustbe used, etc. Here we will show how Beer’s law can be used
to determine the concentrations of four species by making absorbance
measurements at four different wavelengths. As our example we will con-
sider the mixture of ethylbenzene and the three xylenes in cyclohexane;
we will use infrared absorption data listed in R. P Bauman, Absorption
Spectroscopy, Wiley 1962 p. 408, and reproduced in Table 6.2-1.

We notice that the wavenumbers have been chosen judiciously, in that
each compound has a significant absorbance at one of these, while contrib-
uting relatively little at the other wavenumbers. Indeed, the four compo-
nents have absorption peaks at precisely one of these wavenumbers, and the
mixture shows four almost baseline-separated absorption peaks, one for
each component. This, then, is an ‘ideal’ example, of which the solution is, at
least in principle, quite straightforward: we need to solve four simultaneous
equations in four unknowns.
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Table 6.2-1: The absorbances (per gram of compound in 50 mL cyclohexane)
of ethylbenzene and the three xylenes, at the wavenumbers listed in the first
column, and (in the last column) the absorbance of a test mixture of these
compounds, all as measured in cyclohexane.

Wavenumber  ethyl- o-xylene m-xylene p-xylene  unknown
/em™ benzene mixture
696.3 1.6534 0.0 0.1289 0.0641 0.07386
741.2 0.5524 4.7690 0.0668 0.0645 0.22036
768.0 0.1544 0.0 2.8542 0.0492 0.08676
795.2 0.0768 0.0 0.0968 2.8288 0.07721

We now denote the various wavenumbers by the index 7, and the concen-
trations of the four species in the mixture by the index j. We have four equa-
tions of the type

X1=a110+ 126+ a13C+a14C (6.2-1)
Xp=0p 1 CL+ UppCrt+ Gp3C3+ GpaCy (6.2-2)
X3=03,1C1+a32Cy+ A33C3+ (34 Cy (6.2-3)
Xg=04CF A2C+ Ay3C3+ Ay4Cy (6.2-4)

where the x; represent the absorbances of the mixture at the four wave-
numbers i, each divided by the optical pathlength b through the solution.
The terms a;; are the measured absorbances of the pure reference com-
pounds at those same wavenumbers, and the ¢;’s are the concentrations of
the four components in the mixture, i.e., the concentrations to be deter-
mined by the experiment. These four equations can be written much more
compactly, in terms of matrix notation, as

X=AC (6.2-5)
where X and C are vectors, and A is a matrix,
X1 a1 Gyp a3 Oyga (4]
X ayy Opp dp3 Upy Co
X=|"2|, A=| "2t T2z T3 T2Al C= (6.2-6)
X3 as) dg2 d33 O34 %]
X4 gy Ogp Qg3 Og4 Cy

Using the rules of matrix algebra (which are briefly reviewed in section
8.9) we left-multiply both sides of (6.2-5) by the inverse of A,

A"'X=A"'AC=IC=C (6.2-7)

(where A~! A =1, the unit matrix) so that we can immediately obtain the
desired result C, which contains the concentrations in the mixture, simply
from C = A~!X. The spreadsheet will do the mathematics for us.
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Instructions for exercise 6.2

1 Openanew spreadsheet.

In cell B4 deposit alabel for the matrix A, in cell B11 alabel for the matrix A~ 1 inF4 place
alabel for the vector X, and in F11 a label for the vector C.

In A6:D9 enter the numbers from the middle four columns of Table 6.2-1, in the order in
which they appear there, i.e., with 1.6534 in cell A6, and 2.8288 in cell D9.

In F6:F9 enter the numbers from the last column of Table 6.2-1, i.e., starting with
0.07386 in F6, and ending with 0.07721 in F9.

Now that the experimental data are in place, here comes the matrix algebra.

Highlight A13:D16, then type = MINVERSE(A6:D9), and press Ctrl + Shift + Enter (i.e.,
hold down the Control and Shift keys while depressing the Enter key), in order to inform
the spreadsheet that you intend this formula for the entireblock. You will see the inverse
matrix appear in that block.

Now highlight F13:F16, type = MMULT (A13:D16,F6:F9), and again depress Ctrl + Shift
+ Enter to enter this instruction in the highlighted block. That’s it: F13:F16 now contains
the four sought concentrations.

In order to validate your answer, in H6 compute the absorbance at 696.3 cm™ as =
A6*$F$13 + B6*$F$14 + C6*$F$15 + D6*$F$16.

Copy this instruction to cells H7:H9. What do they show?

For your information: the ‘unknown’ mixture had been made up from the
pure components, and contained 0.420, 0.398, 0.271, and 0.248 g/50 mL of
ethylbenzene and of ortho-, meta-, and para-xylene respectively. The (rela-
tively small) differences between these numbers and your results in F13:F16,
of less than = 2.5%, are not caused by computational errors, but instead
reflect uncertainties in the measured absorbances. Although the infrared
absorbances are listed in Table 6.2-1 to three or four digits, they were (con-
servatively) rated as most likely good to * 5% only.

Also for your information: in 1962, when Bauman wrote his book, neither
personal computers nor spreadsheets were available, and he commented on
page 411 of his book that calculating the inverse matrix A~! “represents
roughly an hour and a quarter of work, including checking”. Thank you, per-
sonal computer; thank you, spreadsheet.

Multi-component spectrometric analysis 2

In the preceding section we determined the concentrations of four chemical
substances by making measurements on the unknown mixture and on four
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single-component standards at four different wavelengths. Four measure-
ments are clearly the minimum requirement for determining four unknown
concentrations. While use of the minimum number of wavelengths may
save some time, it makes the results critically dependent on the quality of
the measurements, because it leaves no margin for experimental error. It is
therefore preferable to determine the entire spectrum of the mixture (or,
more precisely, measure a large number of absorbance data over a fairly
wide range of wavelengths), to be compared with the corresponding spectra
of the single components, each of course obtained under otherwise identi-
cal conditions in the same solvent. Here we will illustrate this approach for a
simulated mixture of three different species. As you will see, generating the
synthetic spectra will take more time than analyzing them!

To keep things simple, we will use Gaussian curves to generate our mock
spectra, but you are welcome to modify the instructions by substituting
other shapes, or even by ‘drawing them by hand’ by entering numbers.

Figure 6.3-1 illustrates three such made-up spectra, and the spectrum of a
mixture of arbitrary amounts of these three. It does not matter that the spec-
trum of the mixture does not show much structure.

Instructions for exercise 6.3

1 Openanewspreadsheet.

3

In cell Al depositlabel ampl =, in A2 the label center =, and in A3 the label width =.
CopyAl:A3 and paste itinto cell A4.

In some out-of-view place like N10:Q40, enter some Gaussian noise (using Tools =
Data Analysis... ® Random Number Generation, OK = Distribution: Normal,
Mean = 0, Standard Deviation = 1, Qutput Range: N10:Q10, OK).

In cell G1 deposit the label na =, and in H1 its value, say 0.005.

5 In cells C1:C6 deposit some numbers, such as 0.7, 470, 2000, 0.4, 600, and 500. Right-

align them.

In row 8 deposit the labels wavelength, unknown, spectrum 1, spectrum 2, and spec-
trum 3.

Fill A10:A40 with the numbers 400 (10) 700 representing the wavelengths of the visible
region of the spectrum, in nanometers.

For the time being, skip column B, and in C10 deposit the

instruction = C$1*EXP(— (($A10 — C$2)A2)/C$3) + $H$1*010.

Highlight cell C10, go to the formula box, there highlight the part

(C$1*EXP(— (($A10 — C$2)A2)/C$3)), copy it with Ctrl + c, then go to the end of that
same instruction, add a plus sign, and paste it in.
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Fig.6.3-1: Three made-up spectra of pure species (top), and that of their mixture.

10 Inthe partof the instruction justadded, replace the numbers 1, 2, and 3 by 4, 5, and 6
respectively, so thatitreads = C$1*EXP(-(($A10-C$2)/2)/C$3) + $H$1*010 +
C$4*EXP(— (($A10 — C$5)A2)/C$6). Depress the Enter key.

11 Copythe modified instruction down to row 40.

12 Make a graph of C10:C40 vs. A10:A40. You will recognize the values of $C$1 and $C$4 as

the amplitudes, $C$2 and $C$5 as the center wavelengths, and $C$3 and $C$6 as
determining the peak widths.

13 Place a set of constants (different from those in C1:C6) in D1:D6.

229
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14 Copy the instruction from cell C10 to cell D10, then copy it to row 40.

15 Plot the resulting spectrum #2 as D10:D40 versus A10:A40. Alternatively you can high-
light D10:D40, copy it with Ctrl + c, activate the inner frame of the figure made under
point (11), then paste the new curve in with Ctrl + v.

16 Repeatsteps (13) through (15) to generate a third fantasy spectrum in column E. If you
feel like it, you can of course make these spectra more varied, e.g., by letting one have
only one absorption peak, while another gets three or more. Suit your fancy.

17 Now you are ready to simulate the spectrum of the ‘unknown’ mixture. In cell B10
deposit the instruction = 0.3*(C10 + $H$1*010) + 0.2*(D10 + $H$1*P10) + 0.45*(E10
+ $H$1*Q10) + 0.005*N10 to simulate the spectrum of the unknown.

18 Plot the simulated ‘unknown’ spectrum.

You are free, of course, to pick three characteristic wavelengths, and to
solve the resulting three simultaneous equations. The added noise will then
(rather strongly) affect your results, but you will have no way of knowing by
how much. The method illustrated below is not only much less sensitive to
noise, but also provides error estimates and, most importantly, is much
easier to implement. Of course it uses matrix algebra, just as you did in
section 6.2, but that will be completely invisible to you, the user. The entire
analysis comes prepackaged with the spreadsheet.

We will use the standard linear least squares routine, with column B as the
dependent variable y, and columns C, D, and E as the independent variables
X1, X, and x3. After all, the absorbance of the mixture, Ay ixures 1S given by
Beer’slaw as

Amixture = b (a1 €1 + G 3 + a5 C3) (6.3-1)

where b is the optical path-length, the a;’s are the absorbances of the indi-
vidual species i, and the ¢;’s their concentrations in the mixture. Since the
spectra of the individual species represent b times the a;s, the entire
problem has only three unknowns, ¢, ¢,, and c3. The a;’s of course are func-
tions of the wavelength, as is Apixtures Which is why we have entire columns
for them. But the whole problem is simply one of a multiple-parameter
fitting, which we already encountered in section 3.1. (Now you understand
why we initially left column B free, so that we could fit the standard format of
theregression routine.) So here we go.

19 Select Tools = Data Analysis...= Regression, OK = Input Y Range: B10:B40, InputX
Range: C10:E40, Qutput Range: A44, OK). Now sit back, itis done, the problem is
solved. You will find the results in B61:C63. The intercept should be insignificant, i.e.,
smaller than its standard deviation.
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20 Print out the results, together with the concentrations assumed in the simulation, for
various amounts of added noise (as selectable in H1).

In the above example, using the data illustrated in Fig. 6.3-1, we find
¢ =0.305 * 0.004, ¢, =0.198 = 0.005, ¢; = 0.453 =+ 0.008. You will recognize
that these results are all right on target. Moreover, when we make the noise
amplitudes zero, we recover the exact numbers we had put in, 0.3, 0.2, and
0.45 in our example. Clearly, the uncertainty is purely the result of the added
noise, introduced on purpose to simulate more realistic data. Because this
method uses 120 data points, much of the random noise will now cancel.

You will have noticed that you spent much more time setting up the
problem (by generating phantom spectra) in exercise 6.3 than you spent
solving it. In practice, you will of course use existing spectra, generated by a
spectrophotometer. In that case, the analysis merely requires that you
import the data arrays in the proper order (unknown mixture first, reference
spectra of pure compounds next), and then invoke the Regression analysis.
Itreallyis that simple.

The absorbance-absorbance diagram

When a compound has a spectrum that is a complicated function of pH (or
of some other variable, such as a ligand concentration), as the result of suc-
cessive protonation (or complexation) steps, as in Fig. 6.4-1, we first need to
establish how many species are involved in the optical behavior. To this end it
is often useful to analyze the set of spectra in terms of an absorbance-absor-
bance diagram. In such a diagram we plot the absorbance at one wavelength
against that at another wavelength, at constant optical pathlength b and
total analytical concentration C of the absorbing species, using the pH (or
pX) as the implicit variable. The resulting plot consists of a series of con-
nected, near-linear line segments, one fewer than the number of different
species formed. The points where the extrapolated linear sections intersect
yield the absorbances of the intermediate species at the two wavelengths
used, see Fig. 6.4-2. Midway between these special points we have A= (A; +
Aj+1)/2 or pH = pK,. The book by J. Polster and H. Lachmann, Spectrometric
Titrations (VCH, 1989) contains a number of fine examples of such dia-
grams. Below we simulate an absorbance-absorbance diagram in order to
introduce the reader to this interesting method.

We will use as our example a weak diprotic acid, H,A. We will label the
three species by the number of attached, dissociable protons, i.e., H,A will
be denoted by the subscript 2, HA™ by 1, and A% by 0. The corresponding
concentration fractions «a,, @, and ¢y are given in (4.8-5) through (4.8-7)
respectively. Furthermore we denote two different wavelengths by ' and ”
respectively, and associate different molar absorptivities with each species.
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Fig.6.4-1: The absorbances A’ and A” as a function of pH.
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Fig.6.4-2: The corresponding absorbance-absorbance plot. The special points (ay”, ay'),
(", ay"), and (a,", a,') are shown and labeled in color.

We then have

A mixture = (@' a2 + @y o + ag' ') bC

- ([H+]2612' + H'1Kna' + KuKeay'

[H'12+ [H'1Ky + Ku Ky >bC (6.4-1)

A/Imixture — (aznazu + alual// + 610"010") bc

- ([H+]2az" + [H'1Kua" + KuKapay”

[H')?+ [H Ky + Ky Ko )bc (6.4-2)
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We now plot A’ pixeure VETSUS A’ mixiure S a function of [H*]. We could con-
sider the resulting plot in terms of mathematics, but here we will take the
less rigorous approach of merely illustrating it, using the spreadsheet. Since
the total analytical concentration C and the optical path-length b must be
kept constant, they can both be set to unity; they will only affect the scale of
the resulting plots, not their shape.

Instructions for exercise 6.4

1
2

O 0 N o un1

10

Open a new spreadsheet.

In cellsAl and A2 place the labels a,” = and a,” = respectively, and right-align them.
Similarly, in cells C1:C2 deposit the labels @, = and a,” =, in cells E1:E2 the labels gy’ =
and ay” =, and in G1:G2 the labels K,; = and K, =.

In cells B1 and B2 deposit the values 0.5 and 0.25,in D1:D2 0.8 and 0.6, in F1:F2 0.2 and
0.1,andin H1:H2 = 10~ — 3 and = 10” — 5.4. Left-align them.

You may wonder why we select these specific numbers. They are roughly those that can
be read from the data on phthalic acid at 286 and 290 nm respectively, as published by
R.Blume etal., Z. Naturforsch. 30B (1975) 263 and in the earlier-mentioned book by
Polster & Lachmann on Spectrometric Titrations, and reproduced, for those without
easy access to the original sources, on page 503 of my Principles of Quantitative
Chemical Analysis. If you prefer to use other numbers, by all means feel free to use your
own; the method does not hinge on the specific numbers used.

Inrow 4 deposit the labels pH, [H*],A’, and A”.

In A6:A86 calculate the numbers 0 (0.1) 8.

In B6:B86 compute the corresponding values of [H*].

In C6:C86 use (6.3-1) to calculate A’, the absorbance at 286 nm.
In D6:D86 likewise compute A”, at 290 nm.

PlotA’ and A" versus pH, see Fig. 6.4-1.

PlotA” versus A’, compare Fig. 6.4-2.

This example is a close image of the experimental data at 290 and 286 nm
for phthalic acid, as published by R. Blume et al. and Polster & Lachmann.
Upon extrapolation, the two straight-line segments will intersect in the point
(ay", a1"). Such absorbance-absorbance plots are superb diagnostics of the
number of species involved, especially when the analysis uses several differ-
ent wavelengths. The plots require high-quality data at constant total analyt-
ical concentration C, which are most readily obtained by titrating the
solution with a much more concentrated titrant (to keep dilution effects neg-
ligibly small) or by using (dilution-less) electrochemical titrant generation,
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and by circulating the test solution through a stationary, firmly seated cuvet.
Removing and reinserting a cuvet is almost always a prescription for low-
precision absorbance measurements. Extrapolation of the linear parts of the
plot yields values of the absorbances a," and a,’ of the monoprotonated
species.

Chromatographic plate theory 1

Chromatography is the most versatile chemical separation method we have
available at present. In it, a mixture is separated into various components on
the basis of differences in the speed at which these components move
through a chromatographic column. What differentiates their speeds is that
the column slows them down by one mechanism or another. Many different
retarding effects can be exploited, based on such diverse molecular proper-
ties as solubility, charge, size, adsorption, or biochemical affinity. Here we
will consider partition chromatography, which is based on differences in
(solvation) energy.

In a chromatographic column there are always two phases: one moving
(the mobile phase), the other stationary. The mobile phase can be either a
gas or a liquid, and chromatographies are often characterized on that basis
as either gas or liquid chromatography. The stationary phase can be a wall
coating or, in a so-called packed column, a coating on and inside porous
particles. Here we will model the continuous column as composed of a large
number N, of very small sections or “plates”. We will describe the continu-
ous motion of the mobile phase as proceeding in discrete installments, in
which the mobile phase from one plate displaces that from the next plate,
and then stays in place long enough to establish local equilibrium.

The centerpiece of our model is the partition coefficient K, = c,/c,,, the
equilibrium constant that describes the equilibrium distribution of a chem-
ical species between the two contacting phases. Here cis the concentration
in the stationary phase, and c,, that in the mobile phase. Just as in the treat-
ment of extraction in section 5.3, we now define a mass fraction in the
mobile phase, u, as

_ CpUm 1
CmUm + CVs 1+ K, v5/ vy,

" (6.5-1)
where v and v, are the plate volumes of the stationary and mobile phase
respectively. In each plate the ratio v,and v, is the same, as is K}, so that we
can consider p as our primary model parameter.

Now consider the total mass m,, ; of the chemical species considered in
plate p at time . It is composed of two parts: the mobile phase in that plate
contains the fraction w of the total mass m,;, i.e., u m,, ;, while the stationary
phase holds a mass (1 — u) m,,. Likewise we have a mass u m,, , in the
mobile phase just upstream from plate p.
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We now move the mobile phase from plate p — 1 to plate p while, simulta-
neously, moving the mobile phase in plate p to plate p + 1. The total mass in
plate pattime ¢+ 1 will then be

My, 1= W My_y ¢+ (1 — @) my (6.5-2)

which you will recognize as a recursion formula. We will use (6.5-2) to
describe the separation process in partition chromatography, in which the
chemical species traveling down the column hops in and out of the station-
ary phase. Since the sample will move through the column only when it
resides in the mobile phase, the more time it spends in the stationary phase,
the slower it moves through the column, and the longer will be its retention
time 7, i.e., the time it takes that species to travel the entire length of the
column. We will assume that the mobile phase moves with a constant linear
velocity through the column (which is correct for a liquid, but must be cor-
rected for the compressibility of gases and vapors when these constitute the
mobile phase) and therefore spends a fixed time 7 in each plate. We will
measure the elapsed time ¢in units of 7.

Instructions for exercise 6.5

1 Openanew spreadsheet.

2 Incell Al deposit thelabel u=, and in cell A2 a corresponding value between 0 and 1
(because wis a fraction).

3 Incell B4 place thelabel p=, and enter thelabels 1, 2, 3, etc. in cells C4, D4, E4, etc., all
the way till Z4. Of course you will only enter the first two, and will let the spreadsheet
put the other numbers in place, by dragging them sideways by the handle. Tricks that
work vertically also work horizontally.

4 Incell A5 place thelabel t/ 7= in the left-most corner of the cell.

5 Incell A6 deposit the value 0, in cell A7 place the number 1, in cell A8 the instruction
=A7 + 1, and copy this down till row 206. This will be our time scale, i.e., the numbers
in column A will be our simulated times #/7.

6 In cell C6 deposit the instruction = $A$2*B5 + (1-$A$2)*C5 expressing the recursive
relation (6.5-2).

7 Copy thisinstruction to the entire block C6:Z2206. Since you have not yet introduced
any sample into the model, the entire block will show zeros.

8 Finally, introduce your sample by overwriting the instruction in cell C6 with the
number 1, equivalent to injecting your sample at the end of the column connected to
theinjection port. Bingo! The spreadsheet fills, showing the distribution of the species
in the various plates (each plate being represented by a separate column) and at differ-
ent times (in the rows, with time increasing as you move down). The top of the spread-
sheet (except for cells E1:H2) will now look like Fig. 6.5-1, with numbers that depend
on the value of u used.
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O,

ot

0.8 1.00  48.00 24.00 6.95 23?88
p= 1 2 3 4 5 6

0 1 0 0 0 0 0

1 0.2 0.8 0 0 0 0

2 0.04 0.32 0.64 0 0 0

3 0.008 0.096 0.384 0.512 0 0

4 0.0016 0.026 0.1536 0.410 0.4096 0

5 0.00032 0.0064 0.0512 0.2048 0.4096 0.32768

6 0.00006 0.00154 0.01536 0.08192 0.24576 0.39322

7 0.00001 0.00036 0.00430 0.02867 0.11469 0.27525

Fig.6.5-1: The top of the spreadsheet, except for the contents of cells D1 through H2.

9 Sofar the spreadsheet is just as useful as a chromatograph without a detector: we have
yet to find out when and how much of the sample emerges from the column. Do this by
enteringin cell AA6 the instruction = $A$2*Z6, which represents the amount of
material u my, ,moving out of the last plate, p = N, at time ¢. You will recognize the
above instruction as corresponding to the absence of a stationary phase in the detector
‘plate’.

10 Plot AA6:AA206 versus A6:A206. This will be the chromatogram (provided the detector
response is proportional to the amount of material that passes it) of a species that
travels with a mobile mass fraction w through a column containing N, plates.

11 Now make a composite chromatogram, showing how the elution differs for various
mixture components that have different values of . In order to organize such a plot,
label cells AB4 through Al4 with values for . in the sequence 0.2 (0.1) 0.9.

12 Highlight the datain AA6:AA206, copy that column with Ctrl + c to the clipboard, high-
light the appropriate target cell in row AB6:AI6, then use Edit = Paste Special = Values
to copy the valuesin column AA to the column for that particular value of u.

13 Change the value of 1 in A2, copy the resulting values from column AA to their proper
places, then plot them. Figure 6.5-2 shows an example of such a graph for just three
values of u.

14 For each elution curve, note the time tat which the maximum amount of sample
passes the detector. You can find the maximum valuein a given column by scanning
them visually or, easier, by letting the spreadsheet do it for you with an instruction
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Fig.6.5-2: Three simulated chromatograms, for . = 0.2, 0.5, and 0.8 respectively.

such as = MAX(AE6:AE206). In order to find the corresponding timeuse the instruction
= MATCH(MAX(AE6:AE206), AE6:AE206,0) which has the syntax MATCH (value to be
found, array to be searched, in what order), with commas to separate the three different
pieces of information. This will find the (integer) value of ¢/rwhere the curve has a
maximum. When the maximum lies between two integer ¢/7-values, it will pick the
time associated with the higher value; when the two values near the maximum are
identical, as in Fig. 6.5-2, it will pick one of them. We will use the resulting ¢/7-value
(which is only good to *+ 0.5) as arough, first estimate of #,/. That is good enough for
now; in section 6.7 we will see how t,/rshould actually be determined.

Use these data to plot the estimated value of #,./7versus 1/ u. This should resultin a
linear graph through the origin, i.e., a proportionality.

16 Save the spreadsheet for further use in subsequent sections.

Why do we get this proportionality between #,and 1/u? Consider again the
mechanism: the sample moves only when it is in the mobile phase, so that it
will emerge from the column after a retention time ¢, = t,,/ u, where t,,is the
time needed for the pure mobile phase itself to travel through all N, plates in
the column (so that #,,/ 7= Np), and u is the fraction of time that the sample
spends in the mobile phase. The value of ¢,, can often be estimated by injec-
tion of a compound that is not or barely retarded; in gas chromatography,
methane is often used as such.

We now consider the entire column rather than a small section thereof, as
was done in the plate model. Let the column contain a total volume V;of sta-
tionary phase, and a total volume V,, that can be occupied by the mobile
phase. Since the column is uniformly coated or “packed”, the ratio V,,,/ Vywill
be equal to the ratio v,,/v; we used earlier for a single plate. Therefore the
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fraction of time that the sample spends in the mobile phase, u, can also be
expressed in terms of these macroscopic, directly measurable volumes,

because
1 1
= = 6.5-3
R K 0/ v, 1+ K,V /V, 6.5-3)
Upon combining (6.5-4) with ¢, = t,,/ n we obtain
ty=ty (1 + K, VI V;) (6.5-4)

and after multiplication by the volume velocity v (e.g., in mL/s) of the mobile
phase, sothat V,=vt,and V,,= vt,

V=V, (1 + K, Vy/ V) = Vi + K, Vg (6.5-5)

which expresses the retention volume V. in terms of the void volume V,, of
the column, the volume V; of stationary phase in the column, and the parti-
tion coefficient K,,. Equation (6.5-5) is the basic law of partition chromatog-
raphy, and is often rewritten as

V/ =V,— V=K, V, (6.5-6)

where V,’ is called the adjusted retention volume, which is here seen to be
directly proportional to both K, and V;. The linear relation you observed
‘experimentally’ in the results of the simulation was nothing but the combi-
nation of (6.5-3) and (6.5-4).

The velocity v has the dimension of volume per time; v=V,,/t,,. We can
also define a linear velocity v’ defined as v’ = L/t,,,= N,H/ t,, = H/ 7, where L
is the column length, and H is the corresponding length of a single plate; H
stands for ‘height’. For a vapor, these velocities vary with pressure along the
column, and are usually referred to the column outlet; for liquids, which are
essentially incompressible, vand v’ are constant throughout the column.

The notion of a chromatographic ‘plate’ comes from the oil refinery, where
distillation columns indeed have identifiable platforms or plates. However,
a continuous column has no such discernible subdivisions. Still, the model
defines a plate as a column segment of such length that it corresponds, on
average, with one equilibration of the sample between the mobile and the
stationary phase. We will come back to this matter in sections 6.8 and 6.9. In
practice, the ‘number of theoretical plates’ is an empirical quantity, deter-
mined from the shape of the chromatographic peak. Typically, one plate cor-
responds with a column length of the order of 0.1 mm. Note that a relatively
small number of plates N, suffices to simulate the characteristic chromato-
graphic behavior of individual peaks, even though any self-respecting chro-
matographic column will have thousands of theoretical plates. As we will see
in section 6.6, a large number of theoretical plates is needed for the parti-
tion-chromatographic separation of compounds with very similar K,
values.
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There is something amazing about the above simulation: all it takes to
represent the equilibrium distribution of the sample in the column, in any
plate and at any time, is one simple recursion formula, (6.5-2), repeated over
the entire array C6:2206. Even the expression for the mass passing the detec-
tor comes from that same equation, merely by deleting the term represent-
ing the (absent) stationary phase in that detector. The entire process can of
course be described mathematically, which in this case will yield a response
similar to a binomial distribution, see below. However, the molecules know
no mathematics, and merely follow the simple rules of probability that
determine their partitioning behavior. Likewise, the simulation uses no
higher math, but finds the same result through the repeated application of
the simple recursion formula for partitioning between a stationary and a
mobile phase.

Chromatographic plate theory 2

The same logic that leads to the simulation of the previous section can of
course be used to obtain a closed-form expression for the chromatographic
peak. As derived by, e.g., Fritz& Scottin J. Chromat. 271 (1983) 193, and again
assuming (as in section 6.5) unit sample size and detector sensitivity, we
have

(t/r—1)
(t/7— t,/D\ L,/ 7— D1

t/r (1 _ M)(t_tm)/T

(/D!

‘m t/r 1 _ )\ ({t/7-Np)
= 1 b 6.6-1
¢ t- NNt T (6.6-D

where fis time, £,, = 7N, is the time it takes a non-retained species to elute
from the column, and w (equal to 1/(1 + k) in the notation of Fritz & Scott) is
the mass fraction in the mobile phase.

A major advantage of (6.6-1) over a simulation is that the equation can
generate results for a variety of conditions. This is especially useful for large
numbers of plates and correspondingly long elution times, where the simu-
lation becomes unwieldy; the equation has no such limitations. However,
for large times ¢ there may be a computational problem with the numerical
evaluation of (6.6-1), because the factorials can quickly grow too large for
the spreadsheet. At that point, the spreadsheet will show the error message
#NUM! rather than the hoped-for numerical result.

The culprit is digital overflow, a problem discussed in section 8.12, where
we also describe a way to bypass it. Our remedy is based on the observation
that the quantity described in (6.6-1) is always well within the capabilities
of the spreadsheet (after all, the total area under the curve is 1, and the
peaks are not all that narrow), while individual terms in its numerator and
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denominator may lead to overflow. The trick, then, is to avoid calculating
those individual terms, and instead compute the logarithms of the individ-
ual terms in (6.6-1), to combine these to form the logarithm of (6.6-1), and
only then to exponentiate to find its direct value. Below we will first show
that the results of the simulation indeed coincide with the predictions of
(6.6-1).

Instructions for exercise 6.6-1

1 Reopenthe spreadsheet of exercise 6.5.

2 Incell AB7 deposit the instruction = LN(A7), and in cell AB8 the command
= AB7 + LN(A8). Copy the latter instruction down to the bottom row (306) of the com-
putation. This will calculate the values of In ().

3 Now compute the binomial coefficients (#/7— 1)! / [(#/7 — N,)!(N, — 1)!] in cell AC30
as = EXP(AB29 — AB6 — $AB$29). Copy this down. Note that we startin cell AC30, i.e., at
=t

4 Calculate the detector output in cell AD30 with = AC30*($A$2/A30)*
(1/$A$2 — 1)~ (A30 — 24). Again copy this down.

5 Compare the resultin column AD with the simulated detector response in column AA.
A simple way to do so is to calculate the sum of squares of the differences, using the
instruction = SUMXMY2(AA30:AA306,AD30:AD306). This will show the complete coin-
cidence between simulation and theory, i.e., with differences of the order of the compu-
tational and truncation errors of the spreadsheet.

So far we have considered a single compound traveling through the
column. Any separation by partition chromatography must involve at least
two different compounds, with different values of K,, otherwise the parti-
tioning process cannot distinguish between them. For realistic values of
Vi/ Vy, and for Kj-values differing by less than a few percent, we usually
need a far larger number of plates than we can simulate realistically on a
spreadsheet. We will use (6.6-1) to calculate chromatograms of binary mix-
tures for 10 to 1000 plates, whereas the spreadsheet can only hold 256
columns.

For an analysis of the chromatographic separation of a binary mixture we
will again assume the same, constant linear flow rate v'=L/t,= H/~
throughout all plates, as one can expect with a non-compressible mobile
phase.
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Instructions for exercise 6.6-2

1 Openanew spreadsheet.

2 Incells Al and B1 enter labels N and N! respectively.

3 Incells B3 and B4 enter labels for u and N, and place some corresponding values (e.g.,

0.9 and 10) in cells C3 and C4.

In cell A7 deposit the number 0, in cell A8 the instruction = A7 + 1, and copy this
instruction down to row 2007.

In cell B7 deposit a zero, in cell B8 the value LN(A8), in cell B9 the instruction

= A8 + LN(A9), then copy this instruction down to row 2007.

In cell C4 you have specified a value for N,,. Skip (starting with row 7) the first N, cells in
column, i.e., for N,,= 10 startin cell 17, and there compute the function (6.6-1) as

= (EXP($B16 - $B7 — $B$16))*(C$3/$A17)*(1/C$3 — 1) A$A17 — C$4).

Copy this instruction down to row 157; going down much further makes little sense for
this particular parameter choice.

8 Plot C7:C157 versus A7:A157 to show the resulting peak position and shape.

9 Copy the value for N, from cell C4 to cell D4, and in cell D3 deposit a different value of

10

11

12

13

14

15

16

u, suchas0.8.

Copy cell C17 to cell D17, and then down column D to row 157. Note that the dollar
signs in the instruction in cell C17 do not protect the C, so that the copied instruction
will work without further modification in column D.

Highlight D7:D207, copy it (with Ctrl + ¢), then activate the inner frame of the graph
you made under point (8), and paste (Ctrl + v) the new data into the graph.

In column E calculate the sum of the two signals, i.e., in cell E7 deposit = C7 + D7, and
copy this down to row 157.

Following the procedure under point (11), copy and paste E7:E157 into the graph.
Differentiate by line width and/or color between the total detector response E7:E157
and its individual components, C7:C157 and D7:D157.

You should now have a graph that resembles the left-hand part of the top panel in Fig.
6.6-1.

Now repeat this for the same values of w but different values of t,,, keeping in mind that
you should start the computations atrow 7 + N,,, i.e., at row 32 for N, =25, etc. When
you copy the instructions from column C into the new columns, make sure that the
middle term in the exponential is set to $B7 in the first row of that calculation. And
that, in plotting the data, you always start from row 7.

Asyou calculate for larger N),-values, you must start further down in the spreadsheet,
and you should also extend the computation further. For example, for N, = 100, you
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Fig.6.6-1: Calculated chromatograms for two sample components, with u = 0.9 and
n = 0.8 respectively, and their combined response (in color), for various values of the
number N, of theoretical plates, as indicated with the curves.

start at row 107, and you might want to calculate the response through row 207; for
N, =1000, start in row 1007, and compute all the way down through row 1507. Of
course, the horizontal scale of the graph must be adjusted to this longer range. Figure
6.6-1 illustrates how this can be done by splitting the display into two parts.

17 Atsome point the factor exp [In (#/7)! — In (#/7— N,)! — In N, !] will become too large, and
the spreadsheet will warn you with #NUM!. But now you know the trick: merely change
theinstruction to yield exp [In (#/7)! — In (/7 — Np)! - In (Np)! + (/7) In p + (t/7— Np) In
(1 — w)], and continue. You can of course use this form everywhere in the spreadsheet.

For the rather large differences in u-values (u; = 0.8, u, =0.9) shown in
Fig. 6.6-1, baseline separation requires almost 500 plates; to resolve peaks
with a smaller difference in u, a larger number of plates will be needed.
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Fortunately, most columns contain many thousands of plates, and can
therefore separate compounds that differ only little in their u-values.

The above example illustrate that a separation between two compounds
requires two factors: (1) that their retention times are different, and (2) that
the resulting peaks are sufficiently narrow so that, despite their different
retention times, they do not overlap appreciably. Consequently, both peak
position (as defined by ¢, or V,) and peak width (as characterized by o,) are
important for a chromatographic separation. Retention times are propor-
tional to N, whereas peak widths are (approximately) proportional to \/Np.
This is why, everything else being the same, larger values of N, yield better
peak separations.

Peak area, position, and width

We now return to the simulated curves, in order to show how to extract the
area, position, and width from a chromatographic peak. Several simple
methods are available for symmetrical peaks (and even more for a special
subset of these, Gaussian peaks), but since chromatographic peaks are often
visibly asymmetric (and in that case obviously non-Gaussian), we will here
use a method that is independent of the particular shape of the peak. Itis a
standard method that, in a chromatographic context, is described, e.g., by
Kevraetal.in J. Chem. Educ. 71 (1994) 1023.

Let the detector response as a function of time ¢ be described by the func-
tion f(#). The area Aunder the response curve can then be computed as

A=ff(t)dt (6.7-1)
0

while the time at which the peak goes through its maximum, and the peak
width o, follow from its first and second moments about the origin.
Specifically, the first moment yields the retention time #,.as

3

ftf(t)dt

0

t,=x7:% tfo)de 6.7-2)
f fode

and the variance o2 of the peak is given by

® 3

2
ftzf(t)dt ftf(t)dt

2_ B g (L] ? _
o2=" _ Aft fde <Aftf(t)dt) 6.7-3)
f foyde f fode | o 0
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The area under a chromatographic peakis routinely calculated by integra-
tion, through (6.7-1), and is used here to verify that the integration works;
since we “injected” 1, we should obtain an area of 1.00. It is often advocated
that the value of . be read off directly from the chromatographic peak, as the
value of t at the peak maximum, but this is correct only for symmetrical
peaks. In general, for symmetrical and asymmetrical peaks alike, it is better
to use (6.7-2) instead.

Likewise, it is sometimes advocated that the standard deviation o of the
peak be determined as half its width at 60.7% of its maximum peak height,
implying a Gaussian peak shape. A far worse suggestion is to draw tangents
to the peak at that height, and extrapolate these tangents to determine the
difference of their intercepts with the baseline, which difference is then
taken to be 4. Integration based on (6.7-3) is more generally applicable,
more accurate, and more precise, and should therefore be used whenever

the chromatogram is available in digital form.

Instructions for exercise 6.7

1 Reopen the spreadsheet of exercise 6.5.

We will now use the three columns AB through AD that we had kept open for later use.
(Ifyou did not do that, highlight the column labels AB through AD, right-click, then in
the resulting menu click on Insert to insert three new columns.) We will use the first
column to compute the area Ausing (6.7-1), the second to find ¢, with (6.7-2), and the
third to obtain ¢? from (6.7-3).

In cells AB7 through AD7 deposit the instructions = (AA6 + AA7)/2, = (A6 + A7)*AB7/2,
and = (A6 + A7)*AC7/2 respectively, and copy these down to row 205, where

(A6 + A7)/2 represents the average value of time tin this interval.

In cell AB3 compute the peak area A by trapezoidal integration, with the

instruction = SUM(AB6:AB205).

Likewise, in cell AC3, calculate the retention time ¢, with = SUM(AB6: AB205) /AB3.

6 Use cell AD3 to compute o,,z as = SUM(AB6:AB205)/AB3 — (AC2)A2.

Verify in cell AC4 that the product of u and ¢,/ ris indeed constant using the
instruction = A2*AC3, and in cell AD4 compute the number of theoretical plates from
(6.5-10) as = AC3*(AC3 — 24)/AD3A2.

Copy these results to the top left corner of the spreadsheet, so that you can readily
change n and read the results. For example, in cells D2 through H2 place the instruc-
tions = AB3, = AC3, = AC4, = SQRT(AD3), and = AD4 respectively, and label these
appropriately, as illustrated in Fig. 6.5-1.

Make a table of 4, 1,/ 7, ut./7, op, and N, as a function of u for u-values ranging from 0.2
through 0.9.
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These numerical examples indicate that the plate model predicts both
ty= ptynand oy, = 1. (¢, — t,,)/ Np. This latter result suggests that the number of
theoretical plates can be obtained experimentally from
N, = i~ fm) (6.7-4)

Op

The numerical agreement between simulation and (6.7-4) is quite good,
but not perfect. Below we illustrate how we can obtain more complete agree-
ment by using a better integration algorithm, such as a Newton-Cotes inte-
gration described in section 8.7.

10 Change theinstructionin cell AB8 to = (7*AA6 + 32*AA7 + 12*AA8 + 32*AA9 +
7*AA10)/90, and copy this instruction down the column.

11 Likewise change the instructions in columns AC and AD. For instance, the instruction
in cell AC8 should read = (7*A6*AA6 + 32*A7*AA7 + 12*A8*AA8 + 32*A9*AA9 +
7*A10*AA10)/90, while the instruction in cell AD8 should instead have terms with
7*AB6N2*AAG etc.

12 Gotothetop left corner of the worksheet, change the value of win cell A2, and tabulate
your results as a function of u as they will appear in cells D2:H2. The new data will
reflect theimproved integration accuracy.

Determining the number of theoretical plates

For a sufficiently large number of theoretical plates, the closed-form plate
theory result (6.6-1) for the chromatographic curve can be approximated by
the Gaussian distribution

1 —(t—t)? ln =)
o\/ZTEXp[ 25 ] b= 7T N, (6.8-1)

Instructions for exercise 6.8

1 Reopenthe spreadsheet of exercise 6.6-2.
2 Highlight the column headingE click on it, and in the resulting menu select Insert.

3 Inthe new cell F3 copy the value for . from cell C3, and likewise copy the value of N,
from C4 to F4. In cell F5 deposit the value for o2 as = F4*(1 — F3)/ (F3*F3).

4 Incell F17 deposit = (1/SQRT(F$5*2*PI()))*EXP(— ($A17 — F$4/F$3)*
($A17 — F$4/F$3)/(2*F$5)), and copy this down to row 157.



246 Spectrometry, chromatography, and voltammetry

0.30

0.20 ~

0.10 A

0.00

20 25 30 35 time 40

0.04

0.03 ~

0.02 ~

0.01 -

0.00
1000 1100 1200 1300  time 1400

Fig.6.8-1: Theoretical partition chromatograms (open circles) for u = 0.9 and u= 0.8 (as
indicated with the curves), for N,, = 25 (top panel) and N,, = 1000 (bottom panel) respec-
tively. The Gaussian curves (colored) are calculated from (6.8-1).

5 PlotC7:C157 and F7:F157 versus A7:A157, identifying one data set as discrete points, the
other as a continuous curve.

6 Repeat the above for some other values of uwand N,

7 Figure 6.8-1 illustrates what you might find.

The agreement between the theoretical result and a Gaussian curve is
fairly poor for N, =25, especially for u-values close to 1 (where the plate
model predicts quite asymmetrical peaks), but it is already quite good for
N,=1000. For columns with many thousands of theoretical plates, it is
clearly justified to treat the resulting peaks as Gaussians, with the values of ,
and o,asdefined in (6.8-1).

There are several independent factors that can cause broadening of chro-
matographic peaks, and the resulting variances o? are additive. For example
we may have
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o= 0',,2 +of+oltof+ol+a? (6.8-2)

where o describes broadening when the sample is not injected as a suffi-
ciently narrow plug, o + o2 + 32 represent the peak broadening effects of
tortuosity, diffusional, and interfacial kinetics considered in the van
Deemter equation (see section 6.9), and o2 is any extra-columnar peak
broadening, such as that due to a non-zero detector volume.

Of the variances listed in (6.8-2), the contribution from slow phase trans-
fer kinetics (o2) is directly proportional to the flow rate of the mobile phase
through the column, whereas diffusional broadening (o) is inversely pro-
portional to that flow rate. The contributions of these two terms can there-
fore be distinguished, as described in the next section. The magnitude of o,
can be kept small by proper instrument design, and that of o? by proper
experimentation. We can therefore obtain N, by measuring o? with an
assumption-free method based on (6.7-3), and by then subtracting esti-
mates for all non-negligible terms beyond o-,,2 in (6.8-2). Finally, we can use
(6.7-4) to obtain N, from o,? through N, = ¢, (t,— ct,,)/ 0, Unfortunately
this is arather elaborate procedure.

But here we must tread with some caution. Despite its venerable place in
the development of chromatography, there is an obvious problem with
applying plate theory to chromatography, because actual chromatographic
columns do not contain discrete, identifiable plates. Alternative models
have been used that do not involve the assumption of discrete plates, but
instead start with an infinitesimally thin slice of the column to obtain a diffe-
rential equation describing chromatographic behavior. Such models may
differ from the present approach in assuming that the mobile phase does
not move uniformly through the column, but that only a fraction of the
mobile phase moves on. Such models predict a Gaussian peak with the same
retention time t, but with a different peak width o, and lead to a different
expression for N, viz. N= (/o) 2.

Which expression should one use, 0% = ¢, (t,— t,,)/ N, or o = 1,/ N2 The
expression for o, clearly represents band broadening by the partitioning
process, in which only a fraction of the sample transfers to the stationary
phase, so that the sample spreads out over many plates. This is most readily
seen by considering what happens with a non-retained sample: when
t,= t, plate theory predicts 02,, =1, (t;— tm)/ Np=0, i.e., a sample that does
not partition into the stationary phase should show no corresponding
broadening. On the other hand, in continuum models that ascribe the
broadening to a partially stagnant mobile phase, all samples are affected,
independent of their partition coeflicients. This leads to broadening even
for non-retained compounds, i.e., for ¢, = t,,

Which model better describes the experiments? The answer to this ques-
tionisnotyet clear, and may well depend on the type of column used. A valid
criterion would seem to be that a constant value is found for either N, or N
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for members of a homologous series of compounds chromatographed at the
same time on the same column, after correction for the other peak-
broadening effects. There are too few experiments of this type in the litera-
ture to support one model or the other, and it may not even be an either/or
question: the flow of mobile phase in a packed column cannot be uniform,
and even in a capillary column it will exhibit a Poiseuille profile. Ultimately,
the usefulness of mathematical models to describe experimental data must
be determined by experiment. Sections 6-5 through 6-8 are mainly meant to
illustrate how much a spreadsheet can help one evaluate the consequences
of amathematical model.

Optimizing the mobile phase velocity

Chromatography is a dynamic process; in practice, equilibrium between the
mobile and the stationary phase (as assumed in plate theory) is seldom
established. In principle, equilibrium might be approached by moving the
mobile phase slowly enough, but in that case all peaks may broaden because
the sample stays so long in the column that thermal motion (diffusion)
might spread them out. This is especially the case in gas chromatography;,
because of the considerable molecular motion in the vapor phase, where the
mean free path between collisions is much larger than in solution. On the
other hand, when the mobile phase moves too fast through the column,
there may not be enough time for establishing partition equilibrium of the
sample molecules between the stationary and mobile phase. For a practical
separation, the optimum speed v of the mobile phase is therefore a compro-
mise, going fast enough to keep diffusional broadeningat bay, but not so fast
that interfacial transfer kinetics (i.e., the lack of equilibrium) become domi-
nant. That balancing act is described by the van Deemter equation

H=A+B/v+ Cv (6.9-1)

where His an abbreviation for the “height equivalent to a theoretical plate”.
The parameter A is often associated with the tortuosity of a packed column
(in which case one would set A= 0 for a capillary column), B reflects diffu-
sional broadening, and Cthe kinetic (i.e., non-equilibrium) behavior, that s,
the finite rates of interfacial processes. While closed-form expressions for B
and C can be derived, all three parameters in (6.9-1) are usually treated as
adjustable parameters. In order to express Hin terms of directly measurable
quantities one often uses

H=L/N, (6.9-2)

where L denotes the length of the column, and N, the number of plates it
contains. We have seen in section 6.8 that there is some question whether
to use N= t,(t, — t,,)/0* or N,=t,%/¢% but in the present context this is
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immaterial. Either definition will do, or any other practical definition of the
reciprocal of the square of the peak width, the parameter we want to minimize.

The van Deemter equation contains three adjustable parameters, A, B,
and C, while Hand vare the observable parameters: vis calculated from the
measured linear carrier velocity at the column exit (in gas chromatography;,
after correction for the pressure-dependent compressibility of the gas in the
column), and H is found from the peak shape and position. It will not take
you long to figure out that (6.9-1) can be fitted to a second-order polynomial
of the form Y= Ay + A, X+ A, X% when we make the following substitutions:
Y=H v, X=1v, Ay=B, A, = A, and A, = C. Therefore, a linear least-squares
routine can be used. The only remaining question concerns the nature of the
experimental uncertainties.

Of the experimentally accessible parameters, the column length and the
retention time ¢, (or the retention volume V;) can usually be determined
with sufficient precision. The same applies to the mobile phase velocity v.
The weakest link is usually the peak width, which yields o, because the peaks
are typically quite narrow. When the peak width wy, = ¢V (8 In2) is taken
from a strip-chart recorder (as was done in much of the older work, before
computers or microprocessors were used), the line-width of the recorder
trace may be a significant part of the peak width. Similarly, when o was esti-
mated by drawing tangents to the peak, the relative uncertainties in the
resulting value are often considerable. We therefore assume that the major
source of experimental uncertainty lies in ¢. Since His proportional to 62, so
that 0H/9ox\V H, a weighted second-order least-squares routine is indi-
cated, with weights given by w=1/{0Y/d0,}*>=1/{9(Hv)/dc,}? = 1/Y. Note
that we only need the relative weights w, because multiplying all weights by
an arbitrary constant is inconsequential to the result. We therefore use the
proportionality « to avoid much unnecessary algebra.

As our example we will use data taken from Fig. 1a of a paper by R.
Kieselbach in Anal. Chem. 33 (1961) 23, which shows H as a function of v
for air, butane, and cyclohexane, flowing through a gas-chromatographic
column (1 m long, 6 mm inner diameter) packed with 35-80 mesh Chromo-
sorb coated with 10% Dow-Corning 200 silicone oil. The carrier gas was
helium, the column was kept at room temperature, and a thermistor was
used as the detector. Table 6.9-1 lists the data as estimated from the graph.

Instructions for exercise 6.9

1 Openanew spreadsheet.

2 Enterlabels for vand Hin row 4, and enter the corresponding data from Table 6.9-1 for
airin A6:B21. This completes the data entry stage.

3 For the data analysis, enter additional labels in row 4 for Y, w, X, and XX.
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Table 6.9-1: The height equivalent to a theoretical plate, H, as a function of
the linear, pressure-corrected mobile phase velocity v for air, butane, and
cyclohexane for a 1 m long, 6 mm ID glass column packed with 35-80 mesh
Chromosorb coated with 10% DC-200, using He at room temperature as the

mobile phase.
vicms?'  H/cm vicms?  H/cm v/icms?'  H/cm
air  butane air  butane cyclohexane
2.14 0.417 0.201 16.7 0.071
4.20 0.226 0.120 18.8 0.066 0.094 2.46 0.161
7.02 0.142 0.093 18.8 0.075 0.101 4.76 0.090
9.20 0.104 0.087 21.6 0.065 0.101 8.64 0.075
11.5 0.099 0.077 21.6 0.069 0.108 11.0 0.073
13.8 0.076 0.082 26.6 0.075 0.108 13.8 0.069
16.3 0.060 0.089 26.6 0.085 0.115 16.1 0.083
16.3 0.071 0.092 31.6 0.069 0.134 18.5 0.082
0.5
H/cm
0.0 % T
0 20 v/ems?! 40

Fig.6.9-1: The experimental data for air (circles), butane (squares) and cyclohexane
(triangles) together with the curves fitted through them.

In columns C through F compute Y= Hv, w=1/Y, v, and V2 respectively.

5 Highlight C6:F21, and call the weighted least-squares routine. It will deposit the results
for Ay through A, in D22:F22, with the corresponding standard deviations below it, in

row 23. This completes the analysis stage.

Label column G for H,,,, and in it compute Has Ay/ v+ A; + A, .

7 Plot the experimental data points (from columns A and B) together with the line calcu-

lated in column G. This completes the graphing stage.

Repeat the same procedure for the data for butane and cyclohexane. Figure 6.9-1 shows
you what the results should look like.
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In this example, a numerical fit of the data is perhaps overkill, because the
optimal flow rate can be estimated directly from the graph. Its precise value
isnot crucial, and one might even elect to use a velocity that is slightly higher
than optimal, thereby trading a small amount of extra peak broadening for a
considerably shorter analysis time.

Polarography

Polarography is an example of voltammetry that is quickly disappearing
from the undergraduate laboratory, the victim of what Foster, Bernstein, &
Huber have aptly called a Phantom Risk (MIT Press, 1993). Atroom tempera-
ture, mercury (melting point —39°C, boiling point +357°C) is a rather
innocuous liquid metal with a high surface tension (which makes its spills
difficult to clean up, since it causes mercury droplets to form non-wetting,
highly mobile spheres) and a very low vapor pressure (0.0012 Torr or 0.16 Pa
at 20°C). However, when mercury is heated, its vapor pressure becomes
considerable, at which point it can do much neurological harm, eventually
leading to mad-hatters disease. Another nasty one is when mercury is freely
discarded, in which case bacteria can convert it into the highly poisonous
methylmercury, the cause of Minamata disease. Fortunately, use of elemen-
tal mercury at room temperature, in a well-ventilated room, with distillation
and recycling of used mercury rather than disposal into the sink, is quite
harmless both to the experimenter and to the environment.

A polarographic experiment involves recording a current-voltage curve
on a mercury electrode immersed in a test solution. The electrical circuit is
completed by a reference electrode (and, usually, a separate ‘auxiliary’ elec-
trode), but these are of no consequence to the discussion to follow.

A typical mercury electrode is made from a mercury reservoir, some con-
necting tubing, and a glass capillary, often some 25 cm (about 10”) long and
5mm (0.2") wide, with an internal diameter of about 0.1 mm. Under a hydro-
static pressure of about 1 atmosphere (from some 75 cm of mercury head)
the liquid metal flows through the vertical capillary at a rate of the order of a
milligram per second. It forms a near-spherical droplet at the bottom end of
the capillary, held together by interfacial tension. Eventually, as mercury
continues to flow into the droplet, its weight will become too large for the
interfacial tension to carry, the droplet will fall off, and the process will start
anew; typical drop times range from 5 to 15 seconds. Since electrical contact
with the drop is made through the capillary, the measurement is always
made on the drop that is still attached to the capillary. The entire assembly is
called a dropping mercury electrode, where ‘dropping’ pertains to the
mercury, not to the glass capillary.

In chapter 5 we have used the Nernst equation in terms of the solution
concentrations. That was permissible because, in potentiometry, the cur-
rents are negligible, so that there is no perceptible difference between the
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interfacial concentrations and those in the bulk of the solution. However,
when there are substantial currents flowing through the electrode, as in
voltammetry, the interfacial and bulk concentrations are no longer the
same, in which case the Nernst equation shows its true nature as a locallaw,
describing the relation between the potential and the interfacial concentra-
tions, as long as the electron transfer is fast enough.

The relation between the interfacial and bulk concentrations depends on
mass transport, most often by diffusion (i.e., thermal motion) and/or con-
vection (mechanical stirring). Often a stationary state is reached, in which
the concentrations near the electrode can be described approximately by a
diffusion layer of thickness 6. For a constant diffusion layer thickness the
Nernst equation takes the form
E=E°+%log% (6.10-1)
where i and 7 are the limiting currents associated with reduction and oxi-
dation respectively. Equation (6.10-1) describes the stationary current—
voltage curve and, also, the envelope of the polarographic current-voltage
curve. The limiting currents are the characteristic features of (6.10-1): when
the potential is sufficiently far from E° the currents are simply the limiting
currents, i.e., they are completely determined by the speed at which the
redox reagents can reach the electrode interface, or its products be removed
from it. We can invert (6.10-1) so that it expresses the current /in terms of the
potential E, as

.1 exp[nF(E— E°)/RT)+1
"~ exp[nF(E— E®/RT] +1

(6.10-2)

In polarography, not enough time is available for the diffusion layer to
reach its stationary thickness. Instead, the current per unit electrode area
decreases with the square root of time, the signature time-dependence for
diffusion. On the other hand, the area of the growing drop expands, propor-
tional to the two-thirds power of drop age 7 (i.e., time elapsed since the pre-
vious mercury drop fell off). These two counteracting effects, diffusion

3 combine to

-1/2 X

currents per area proportional to 7~'/2, and area growth as 72
yield polarographic current-time curves with a time dependence of 7
728 = 71/6 asexpressed in the Ilkovié equation.

Finally, since polarography involves mercury, which often solvates metals
as amalgams, there can be a significant difference between the potential E°
of standard tables and the appropriate value of E° for an amalgam-forming
metal. Polarography therefore uses so-called half-wave potentials E;,,
instead of standard potentials E°. All the above effects are incorporated in
spreadsheet exercise 6.10.
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Instructions for exercise 6.10

S W N =

Open a new spreadsheet.
Inrow 1 deposit labels for Ey 5, 7 77'/6,7 +7'/%, F/ RT, and the starting potential Ejp;,.
Inrow 2 place corresponding numerical values, such as — 0.6, 0, — 1,40, and — 0.3.

Inrow 4 place column headings for # (time), E, 7 (drop age), and i The subscript fon
the current identifies this current as a faradaic current, i.e., one associated with
electrochemical reduction or oxidation, as distinct from the charging current we will
encounter soon. For reither use ‘tau’ or type a ‘t’, then highlightit, select Format =
Cells, in the resulting Format Cells dialog box, select Fonts, then in the window for Font
select Symbol, and press OK. If your spreadsheet shows the Formatting toolbar, the
same can be accomplished simply by clicking on the arrow to the right of the Font
window, and selecting the Symbol font in the left-most window of the Formatting
toolbar instead.

In cell A6 place a very small number, such as 1IE—10. The reason why we do not start
with 0 will become clear with instruction (9).

In cell A7 calculate = A6 + 0.2, and copy this down to cell A806.

7 Incell B6 refer to E;,; by depositing the instruction = $E$2.

8 Incell B7 calculate the gradually changing potential as = B6 — 0.002, and copy this

10

11

down to row 806. This will generate a 1.6 volt scan of the applied potential. (In polaro-
graphy the potential is typically scanned towards more negative potentials during the
recording of a polarogram.)

In cell C6 simulate the drop age ras = A6-INT(A6). This yields an output running from
0 (or, more precisely, 1E — 10) to 0.9, thereby simulating the drop age 7. If we had
started in A6 with 0, the value of rmight occasionally run to 1.0, as the result of round-
off errors in the values in column A. We prevent this by using in cell A6 a starting value
such as 1E — 10, significantly larger than the accumulated round-off errors yet still
insignificantly small for our calculations.

In cell D6 deposit the instruction for the faradaic current is = ($B$2*EXP($D$2*(B6 —
$A$2)) + $C$2)*C6/(1/6)/ (EXP($D$2*(B6 — $A$2)) + 1). You will recognize this as
(6.10-2) times the time-dependency 7.

Plot iversus E. For both axes, select Values in Reverse Order on the Scale page of the
Format Axis dialog box. For the position of the scales use the options in the Format Axis
dialog box, on the Pattern page under Tick-Mark Labels. For Reverse Order you should
select to place them High.

Usually the current—voltage curves are recorded on a strip-chart recorder,
which cannot follow the rapid fall of the current when the mercury droplet
falls off. This effect can be mimicked by selecting a larger value for A6, say 0.04.
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The sensitivity limit of polarography is typically around 1 and 10 pM, and
is determined by the charging current i.needed to charge the continuously
changing electrode interface. This current is proportional to (E— E,) Cr~'/3,
where E,is the potential of zero charge, and the integral capacitance Cisto a
first approximation independent of both potential and redox chemistry.
Upon closer examination we find that the integral capacitance is
often about a factor of 2 larger at E> E, than for E< E,, reflecting the fact that
solution anions can typically approach the electrode closer (because they
tend to be less strongly hydrated) than cations. We can readily incorporate
such a charging current, which should be added to the earlier-computed
faradaic current i to yield the total current i.

In cell F1 place thelabel C, and in G1 the label Ez.
Enter numerical values for these, such as 0.1 and — 0.4 respectively.
In cells F4 and G4 enter labels for i, and irespectively.

In cell F6 store the instruction = IF($B6 > $G$2,2*($B6-$G$2)*$F$2
*C6/ (—1/3),($B6-$G$2)*$F$2*$C6A (— 1/3)), in G6 calculate the algebraic sum ir + ic,
and copy both down to row 806.

Plot F6:F806 vs. B6:B806 and G6:G806 vs. B6:B806. Your graphs should resemble those
of Fig. 6.10-1.

At higher concentrations of the electroactive species, adsorption of com-
ponents of the redox couple, coupled with the fluidity of the liquid-liquid
interface, may lead to mechanical streaming of the solution at the interface,
generating a polarographic maximum. Charging currents and polaro-
graphic maxima typically limit classical polarography to concentrations of
the electroactive species between 102 and 1075 M.

Most applications of polarography involve metal ion analysis, where only
one valence state is present in solution, such as T1*, Cd?*, Pb?", or Zn?*.
However, that is not always the case: one can analyze Fe?*and Fe®*simulta-
neously by polarography, in a complexing solution such as made with
oxalate, in which case the polarogram shows (at E< Ej,) a limiting reduc-
tion current 7 due to the reduction of Fe3*to Fe?",and (at E> E;;») a limiting
oxidation current i for the oxidation of Fe?>*to Fe?*. We simulate this in Fig.
6.10-2.

It is possible to exploit the difference in the time-dependencies of i¢(pro-
portional to £/6) and i, (proportional to £™1/3) to separate the two (J. N. Butler
& M. L. Meehan, J. Phys. Chem. 69 (1965) 4051), and thereby to push back the
lower limit somewhat. However, instrumental refinements such as square
wave polarography (G. C. Barker & I. L. Jenkins, Analyst 77 (1952) 685) and,
pulse polarography (G. C. Barker & A.W. Gardner, Z. Anal. Chem. 173 (1960)
79) are much more efficient in doing so, and are therefore the methods of
choice for concentrations between 107° and 10~ M.
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Fig.6.10-1 Top: the simulated faradaic current i; for a one-electron reduction at a half-

wave potential of — 0.7 V. Middle panel: the simulated charging current i. . Bottom

panel: the total simulated polarographic current i = iy + i.. Parameters used: E;;, =— 0.7,
i 77Y6=0,7 r7Y6=—1, F/RT=40,C=0.03, E,=—0.4.
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Fig.6.10-2: The simulated polarogram for a one-electron redox couple with a half-wave
potential of — 0.3V. The concentrations of the reduced and oxidized forms of the couple
are directly proportional to their respective limiting currents, i and i .

Finally we expand the simulated polarogram by the inclusion of a second
reduction wave. This is easy because, in the absence of chemical interac-
tions between the electroactive species, the polarographic currents are
strictly additive.

Enter a positive value in B2 and observe the resulting curve for i¢ vs. E. Figure 6.10-2
illustrates such a polarogram.

Highlight the row number 3, right-click on it, and click on Insert. This will insert a new
TOowW.

In the new row 3 enter numerical values for a second substance and its polarographic
characteristics, e.g., Ey, = — 0.7,7 7Y6=0,andi rV6=—0.4.

Copy the instruction from D7 to E7, then extend it to read = ($B$2*EXP($D$2*(B7 —
$A$2)) + $C$2) *C7A(1/6)/ (EXP($D$2*($B7 — A$2)) + 1) + ($B$3*EXP(2*$D$2*($B7 —
$A$3)) + $C$3)*$C7A(1/6)/ (EXP(2*$D$2*($B7 — $A$3)) + 1) (for an added two-
electron reduction wave, n = 2).

Plot the resulting polarogram, which should resemble Fig. 6.10-3.

When you compare graphs such as these with real polarograms of
‘reversible’ reductions (in electrochemistry, the term ‘reversible’ is meant to
convey that, except for mass transport, equilibrium rather than kinetic
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Fig.6.10-3: The simulated polarogram for a one-electron redox couple with a half-wave
potential of — 0.3V plus a two-electron reduction of another species with a half-wave
potential of — 0.8 V. Again, all concentrations are directly proportional to their respec-
tive limiting currents.

considerations determine the shape of the observed behavior) you will see
that they are quite close representations. The message is that you can now
simulate almost any curve for which you have an appropriate theoretical,
closed-form description. And then you can use that simulation to design
and/or test your analysis protocols.

Linear sweep and cyclic voltammetry 1

Most metals are solid at room temperature, in which case polarography
(based on the reproducible formation and detachment of mercury droplets)
cannot be used. When we apply to a stationary electrode the same experi-
mental method (of recording the current resulting from scanning the
applied voltage as a linear function of time) we obtain a current-voltage
curve thatis called alinear sweep voltammogram. Except when itis applied
to microelectrodes, such current-voltage curves do not resemble polaro-
grams (without the fluctuations in the current caused by the growth and fall
of the mercury droplets) but exhibit a current maximum where a polaro-
gram might have shown a S-shaped polarographic wave. When the direction
of the voltage scan is subsequently traced in reverse, the resulting curve is a
cyclic voltammogram.

The direct mathematical analysis of a linear sweep or cyclic voltammo-
gram is much more complicated than that of a polarogram, because the
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rates of the electrochemical reactions (indirectly, through their dependence
on potential), as well as the rate at which material can reach the electrode,
are then time-dependent. (In polarography, the scan rate dE/dt, where Eis
the applied potential and tis time, is so small that its effect on the electrode
reactions can be neglected; in linear sweep and cyclic voltammetry, much
higher scan rates are typically used.) The resulting current-voltage curves
can either be compared with theoretical models obtained by digital simula-
tion, or they can be transformed into the shape of the corresponding polaro-
gram (without those drop-caused fluctuations), which can then be analyzed
by existing methods.

The currently available digital simulation packages make simplifying
assumptions regarding the dependence of the rates of the electrode reac-
tions on the applied potential, which they take to be exponential. The trans-
form methods do not make such assumptions, and are therefore sometimes
preferable. In this section we will illustrate how we can use the transform
method to simulate a linear sweep voltammogram and a cyclic voltammo-
gram. And in section 6.12 we will illustrate how to apply the transform to
experimental data.

The complicated time dependence of the faradaic current is caused by
mass transport, specifically by diffusion. (The other forms of mass trans-
port, convection and electromigration, can both be kept negligibly small:
convection by not using the method close to, say, a construction site,
machine shop, or other source of mechanical vibrations; electromigration
by using an excess of an otherwise inert electrolyte.) Oldham (Anal. Chem.
41 (1969) 1121; 44 (1972) 196) showed that a linear sweep voltammogram
obtained on a planar electrode can be transformed into the corresponding
polarogram by a method called semi-integration. Conversely, a polaro-
graphic wave can be transformed into the corresponding linear sweep
voltammogram by the inverse operation, semi-differentiation. Strictly
speaking, the transforms given here work only for planar electrodes with
negligible edge effects (so that planar diffusion applies everywhere), in the
absence of (or after correction for) charging current i.. (Note that the charg-
ing current on a stationary electrode is due to the changing potential dE/djt,
whereas at a dropping mercury electrode it is primarily caused by the chang-
ing electrode area dA/dt.)

We start from the stationary current-voltage curve (6.10.2) for a solution
that contains one oxidizable electroactive species (so that 7= 0), which we
write in dimensionless form as

exp[nF(E— E°)/RT)

i
7 explnF(E— E/RT] +1 6.11-1)

For alinear sweep voltammogram, the applied voltage is a linear function
of time, E= E, + vt, where v = dE/dt is the sweep rate, in V s~1. We then use
the macro SemiDifferentiate to find the corresponding shape of the linear
sweep voltammogram.
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Fig.6.11-1: The dependence of the current ratio (6.11-1) (black) and of its semi-
differential (blue) on time ¢ (left) and potential E (right).

Instructions for exercise 6.11

Start a new spreadsheet.

In the top two rows of the spreadsheet, enter labels and values respectively for the time
increment Az, the sweep rate v, the potentials E; and E,, the standard potential E®, and
the values of nand F/ RT, suchas At=0.001,v=0.02, E; =0, E; = 0.5, E°=0.25, n=1,
and F/ RT = 40.

Below those (and separated by an empty row) enter labels for time #, potential E, and
dimensionless current i /i;y,.

In the columns below these labels, enter values for ¢ (from 0 to 25 in increments of

0.05), the corresponding values for E= E; + v (from 0 to 0.5 in increments 0f 0.001),
and values of i/ij;;, calculated from (6.11-1).

5 Call the SemiDifferentiate macro, and reply to the input boxes.

6 Plot the resulting curve, together with i/i;,, as a function of

7 Also plot the resulting curve, together with i/i,,,, as a function of E. The two plots

10

should be identical when the voltage axis from E; to E, has the same length as the time
axis from 0 to | E, — E|/v.

Figure 6.11-1 illustrates the types of plot you should have made.

For the simulation of a cyclic voltammogram we retrace the potential after
we have reached its final value, E,, so that E=E, + vt for 0=t=|E, — E|/v
while E= E, — vtfor|E, — E||/v=t=2|E, — E|/v.

Now extend the spreadsheet by doubling the length of the time column to 0 (0.05) 50.

For t= 25 use the reversed direction of the voltage scan, so that Eruns back from E, to E;
as E= E, —v(t—25). Aplot of Evs. t would now have the form of an isosceles triangle.
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Fig.6.11-2: The dependence of the currentratio (6.11-1) (black) and of its semi-
differential (blue) on time ¢ (left) and potential E (right). Note that the traces in the left-
hand panel have, as it were, been folded back.

11 Again call the SemiDifferentiate macro, and apply it to the entire data set.

12 Plottheresulting curve, together with i/j;,,, as a function of .

13 Also plot the resulting curve, together with i/ij;;,, as a function of E.

14 Compare your results with Fig. 6.11-2.

The two plots in Fig. 6.11-2 are now quite different: the signal as a function
of time shows oxidation first, followed (after reversal of the scan direction)
by a reduction of the just-oxidized) material. The same signal in the cyclic
voltammogram is folded back because it is plotted not versus time, but
versus the applied potential.

15 Again double the length of the time axis, and make the potential retrace the ‘up’ and

‘down’ scans a second time.

16 Calculate the resulting semi-differential, and plot the resulting curve, together with
i/iim, as a function of fand of E, respectively. Compare with Fig. 6.11-3.

Note that the second cycle does not quite retrace the first. However, the
difference between subsequent cycles becomes rather small, and after a few
cycles a steady-state cyclic voltammogram is approached. You can of course
verify this by further extending the simulation. In that case you may want to
reduce the data density by using, e.g., At= 0.2 instead, thereby changing the
voltage increments to AtXv=0.2X0.02=0.004, as otherwise the macro
might become quite slow.
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Fig.6.11-3: The dependence of the current ratio (6.11-1) (black) and of its semi-
differential (blue) on time ¢ (top) and potential E (bottom).

Linear sweep and cyclic voltammetry 2

We will now illustrate the use of semi-integration to convert a linear sweep
voltammogram into the shape of the equivalent stationary current-voltage
curve. To this end we will use an experimental data set kindly provided by
Hromadova & Fawcett, obtained for the reduction on Au(110) of 0.5 mM
[Co(NH3)g] (ClO4)3 in 0.093 M aqueous HCIO, at 25 °C, using a scan rate of 20
mVs~!, asdescribed in J. Phys. Chem. 104A (2000) 4356.

Instructions for exercise 6.12

1 Startanew spreadsheet.

2 Importthe data setlabeled Hromadova & Fawcett.
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Fig.6.12. (a): The linear sweep voltammogram (black) of the reduction of 0.5 mM
[Co(NH3)g] (C104)3in 0.093 M aqueous HCIO4 at Au(110), at 25 °C, with a scan rate of
20mVs~ !, andits semi-integral (blue). (c) through (f): The same after the original data
set has been thinned by successive factors of 2, finally (in panel f) ending up with only 15
equidistant data points. Data from Hromadova & Fawcett, J. Phys. Chem. 104A (2000)
4356.

3 Insertafewlines above the data table to make space for constants and column headings.

4 The first data column contains the time, in seconds, and the second column the current,

in pA.
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5 Use the macro Semilntegrate to convert the linear sweep voltammogram to its steady-
state counterpart. In this form it can readily be analyzed by the methods pioneered by
Koutecky, and described in, e.g., Principles of Polarographyby Heyrovsky & Kiita
(Academic Press 1966).

6 Asinanynumerical integration or differentiation, the data density must be sufficient.
Since the data are given, their density cannot be increased, but we can see the effect of
reducing the data density by culling data from the original set. An auxiliary macro,
DataThinner, is provided for this purpose. Check it out. Figure 6.12 illustrates what
happens with this data set when its density is reduced successively by factors of two. In
this case of high-quality experimental data, the resulting data deterioration in the semi-
integral is barely noticeable in the graphs, even after several repeated reduction steps.

Summary

This chapter showcases various ways in which spreadsheets can be applied
to problems of instrumental chemical analysis, with examples taken from
spectroscopy, chromatography, and electrochemistry.

We started with a simple set of spectrometric observations from which we
could determine a pK, by extrapolating its value to infinite dilution. Then we
used matrix algebra to solve a set of simultaneous equations representing
the spectrometric analysis of a mixture. In section 6.3 we showed the power
and convenience of performing the same type of analysis using far more
than the minimum number of input data, improving data precision (by
diminishing the effects of experimental uncertainty) while at the same time
simplifying the analysis (by using a standard least squares routine).
Subsequently we used the spreadsheet to illustrate the general appearance
of absorbance-absorbance diagrams, diagnostic plots that are most useful
in establishing the number of separately identifiable species involved in
equilibria oflight-absorbing compounds.

In sections 6.5 through 6.7 we simulated chromatographic plate theory
and used it to demonstrate some of the basic results of partition chromatog-
raphy: the dependence of retention volume on the partition coefficient of
the eluting species, and the volume ratio of the mobile and stationary
phases in the column. In sections 6.8 and 6.9 we explored the predictions of
plate theory for the width of the chromatographic peak — and found the
theoretical plate to be a somewhat shaky concept. In this example, then, we
used the spreadsheet to help us evaluate the numerical consequences of a
theory, thereby allowing us to ask more fundamental questions regarding
the underlying model.
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The last section dealing with chromatography returned to the more
mundane problem of using the spreadsheet to determine the parameters of
the van Deemter equation. Alternatively we could have used Solver plus
SolverAid.

In section 6.10, we used the spreadsheet to simulate polarograms, fairly
complicated, time-dependent current-voltage curves observed on drop-
ping mercury electrodes, with faradaic currents determined by diffusion
coefficients, the Nernst equation, and drop growth, plus (background)
charging currents. And in sections 6.11 and 6.12 we encountered transfor-
mations that can convert a linear sweep voltammogram onto the shape of a
polarographic wave and vice versa, thereby making them more easily
amenable to further mathematical analysis.

There are countless analytical uses of spreadsheets, and we could have
picked many other examples. In fact, some of the cases incorporated in
earlier chapters of this book would have fitted right in here, such as resolving
different radiochemical half-lives, a problem addressed in section 3.6.
Additional illustrations will be given in chapters 7 and 8. But even from the
few examples given here you will get the idea: spreadsheets can be used
profitably for many quantitative aspects of chemical analysis: for simulating
mathematical relations, for extracting specific information from experi-
mental data, and for general data fitting.

Many of the data-fitting procedures demonstrated so far are based on
least-squares analysis. In the next chapter we will encounter Fourier trans-
formation, which can often provide an alternative approach to solving such
problems.



PART V MATHEMATICAL METHODS

CHAPTER 7

Introduction to Fourier transformation

We can describe the sine wave A sin(27f#) as a never-ending function of
time ¢, forever oscillating between the limits +A and —A. Alternately we can
represent it in the frequency domain as a signal with a single frequency, f,
and a given, fixed amplitude, A. The two descriptions are fully equivalent,
and illustrate that, in this example, the same function can be represented
either as a continuous function of time ¢, or as a single-valued function of
frequency f. In general, any time-dependent phenomenon can alternatively
be expressed as a function of frequency, and vice versa, and Fourier transfor-
mation allows us to transform data from the time domain to the frequency
domain, and back. Since Fourier transformation is a mathematical opera-
tion, time and frequency are merely examples of two associated parame-
ters x and 1/x that have a dimensionless product. In spectroscopy,
wavelength A and wavenumber v form another pair of such associated
parameters.

Fourier transformation has found important applications in many
branches of science; here we mention especially its use in various analytical
instruments (such as nuclear magnetic resonance, infrared, and mass
spectrometry), and in signal processing. Below we will illustrate some prop-
erties of Fourier transformation in the latter context.

The Fourier transform F(f) of a time-dependent function f(¢) will be

defined as

F(f) = ff(t)e*z’ffftdt (7.1-1)
which can be combined with Euler’s theorem

e /¥ = cos(x) — jsin(x) (7.1-2)
toyield
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F(f) = ff(t)cos(27rft)dt—jff(t)sin(ZTrft)dt (7.1-3)

where F(f) and f(¢) are continuous functions of time ¢ and frequency f
respectively, while j=\/— 1. Numerical computation has difficulty with
infinity, and the discrete Fourier transform is therefore defined somewhat
differently, namely as

F(f) =D f®)cos@mk/N)dt—j >, f(t)sin(2mk/ N)dt (7.1-4)
k=0 k=0
where the frequencies are restricted to the discrete set k=0, 1, 2, ..., N. Itis

the discrete Fourier transform that is readily calculated on a computer, and
that has revolutionized the way Fourier transformation is used in instru-
mentation and signal analysis. Consequently, it is the discrete Fourier trans-
form which we will use here: from now on, when we mention Fourier
transformation, we will mean discrete Fourier transformation.

In order to facilitate the calculations, a macro computing the Fourier
transform of an array of complex numbers is provided; the program is
described in some detail in section 9.5. (For details about the Fourier trans-
form method itself you might want to consult books such as R. Bracewell,
The Fourier Transform and its Applications, McGraw-Hill, 1965, or E. O.
Brigham, The Fast Fourier Transform, Prentice-Hall, 1974, 2nd ed. 1988.) The
macro has the following properties, restrictions, and requirements:

(a) Theinputdatacanbereal, imaginary or complex. In fact, they will be
treated as complex numbers; when they are real, their imaginary compo-
nents just happen to be zero, and similarly the real components will be
zero for imaginary input data. The same applies to the output data.

(b) The macroisrestricted to kinput data, where kis an integer power of 2,
from 2! = 2 through 2'° = 1024. Allowable k-values are therefore 2, 4, 8, 16,
32,64,128,256,512, and 1024. (This limitation is linked to the version of
Excel used; Excel 97, 98, and 2000 can handle larger arrays, and users of
these versions may want to increase the maximum value of kin the macro
accordingly.)

(¢) Theinputdata are preferably centeredaround t= 0 or f=0.

(d) The macro requires a specific, three-column format. The first column con-
tains the variable (such as time, frequency, etc.), the second the real parts
of the input data, and the third their imaginary components. When the
input data are real, the third column should contain zeros and/or blanks;
likewise, when the input data are imaginary numbers, the second column
should be filled with zeros and/or blanks.

(e) The macro writes its output again in the three columns immediately to the
right of the input data. The output uses the same format as the input: first
the variable, then the real components of the output data, and finally its
imaginary components.
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(f) After operation, the output will remain highlighted, thereby facilitating
subsequent operations, such as inverse transformation.

(g) Inorder to use the macro, firsthighlight the three-columns-wide block
containing the input data, then call the macro. The specific mechanism of
calling the macro depends on how it has been installed. The general
method is via Tools = Macro. In the resulting Macro dialog box you can
then select either Forward() or Inverse(). It is convenient to assign these
macros shortcut key combinations (e.g., Ctrl + F and Ctrl + f, or Ctrl + £
and Ctrl + gin case you do not want to use the Shift key), and even more
convenient to build them into the menu, or to insert an icon for themin a
toolbar. The various methods of installing the macro are described in
section 10.4, and the macro itselfis detailed in section 10.5.

In what follows we will assume that the forward and inverse Fourier trans-
form macros have been installed; if this is not the case, follow the installa-
tion instructions given in section 10.4 before proceeding with the exercises
of the present chapter.

Instructions for exercise 7.1

1 Openanew spreadsheet.

2 Reserve the top 8 rows for thumbnail sketches.

3 Incell A9 place thelabel A =, in B9 enter the numerical value 3, in C9 place the label f =,

and in D9 deposit the instruction = pi()/8. (In order to emphasize that these form
pairs, use the align right and align lefticons on the formula bar to shift thelabel to the
right, and the associated value to the left.)

4 Inrow 11 deposit thelabels time, Re, Im, frequency, Re, and Im.
5 Incolumn A, starting with cell A13, place the numbers -8, -7, -6,-,—1,0,1,-,6,7,
i.e.,—8(1)7.

6 InB13 deposit the instruction = $B$9*COS(A13*$D$9), and copy this down to row 28.
7 FillC13:C28 with zeros.

8 PlotA13:C28 on the sheet, in A1:C8, which should show one cycle of a cosine wave,

10

centered around = 0.

Highlight A13:C28, and call the macro Forward(). This is all it takes to perform a Fourier
transformation.

Plot the output of the macro, D13:F28, in a thumbnail sketch at D1:F8. The spreadsheet
should nowresemble Fig. 7.1-1.
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-1
-8 -4 0 4 t 8||-050 -025 000 025 f0.50
A=3 B= 0.3927
time Re Im frequency Re Im
-8 -3.000 0 -0.5000 0.000 0.000
-7 -2.772 0 -0.4375 0.000 0.000
-6 -2.121 0 -0.3750 0.000 0.000
-5 -1.148 0 -0.3125 0.000 0.000
-4 0.000 0 -0.2500 0.000 0.000
-3 1.148 0 -0.1875 0.000 0.000
-2 2.121 0 -0.1250 0.000 0.000
-1 2.772 0 -0.0625 1.500 0.000
0 3.000 0 0.0000 0.000 0.000
1 2.712 0 0.0625 1.500 0.000
z 2.121 0 0.1250 0.000 0.000
3 1.148 0 0.1875 0.000 0.000
4 0.000 0 0.2500 0.000 0.000
5 -1.148 0 0.3125 0.000 0.000
6 -2.121 0 0.3750 0.000 0.000
7 -2.772 0 0.4375 0.000 0.000

Fig.7.1-1: The spreadsheet as it should look after Fourier transformation of a cosine
wave 3 cos(7t/8). In the figures, the colored dots show the real components of the trans-
form, the open circles its imaginary component.

The thumbnail sketches tell the story. The left graph shows the cosine
wave, plotted as a function of time . The Fourier transform is to its right, ina
graph that has frequency fas its abscissa (horizontal axis). Just like the time
scale, the frequency scale starts at a negative value. The Fourier transform
generates results for both positive and negative frequencies, even though
the latter have no apparent physical meaning.
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Also note that, in the plot of the cosine wave, the point at #=+8 is missing.
This is fully intentional: the data string shown is interpreted by the Fourier
transform as a segment of an infinitely repeating sequence, and the first
point of the next segment will start at £= 8. The digital Fourier transforma-
tion requires precisely one repeat unit, then analyzes this unit as if the signal
contained an infinite number of repeating units on either side.

Upon comparison of the thumbnail plots in Fig. 7.1-1 with those in many
standard texts on Fourier transformation you may notice that the input data
are customarily displayed starting at = 0, with the output data shown on a
frequency axis with a discontinuity in its middle. The way we display the
data here avoids this discontinuity in the frequency axis, but in all other
respects is fully equivalent to the usual representation.

Now let’s see how to read the transform. If we ignore the negative frequen-
cies for the moment, we see that the Fourier transform of a cosine is a single
point, since all other points (at positive frequencies) have the value zero.
That single point has a frequency of 0.0625 Hz, where 0.0625 = 1/16, where
16is the period of the time segment used. Its amplitude is 1.5, which is half of
the value 3 stored in $B$9. (The other half can be found at f=— 0.0625Hz.) In
the next exercise we will change both the frequency and the amplitude to see
what happens.

Change the value of the amplitude, and verify that the amplitude of the Fourier trans-
form tracks that of the cosine wave. Note that the Fourier transform is not automatic:
you must invoke the macro before you will see the consequent change in columns D
through E and in the right thumbnail sketch.

Change the time scale used, and look at what happens with the transform.

Also change the frequency in $D$9, say to 7/4 or /2. Observe the resulting change in
the transform.

Now change the instructionin A13:A28 from cosine to sine, and transform the data.
You will see that a sine wave has an imaginary Fourier transform, as illustrated in
Fig.7.1-2.

Place thelabel C = in cell E9, and D = in G9, together with some associated numbers,
such as 2 in cell F9 and in cell H9. Also, change the code in A13:A28 to the sum of a
sine and a cosine, with different frequencies and amplitudes. Observe the transform: it
should be the sum of the transforms of the individual cosines, each with its own fre-
quency and amplitude, see Fig. 7.1-3.

Sines and cosines oscillate symmetrically around zero, and therefore have zero
average over the time period considered in the transform. Add an offset to the function
and see what happens in that case. Figure 7.1-4 gives it away: an offset only affects the
point at zero-frequency in the transform. That zero-frequency contribution indeed
shows the function average.
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Fig.7.1-2: The function 3 sin(sf) and its Fourier transform. The continuous line through
the sine wave is shown in order to emphasize the underlying function, sampled here at
discrete intervals. Again, the colored dots show the real components, the open circles

theimaginary components.
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Fig.7.1-3: The function cos(#t/2) + 3 sin(##) and its Fourier transform.
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Fig.7.1-4: The function cos(#t/2) + 3 sin(t) — 1 and its Fourier transform.

It is one of the main properties of Fourier transforms that they allow us to
view the individual components of a complex mixture of sinusoidal signals.
In Fig. 7.1-3 we see the cosine in the real part of the transform, at f= 0.25 Hz,
and the sine in its imaginary component, with a frequency of 0.5 Hz and a
three times larger amplitude.

Fourier transformation is a two-way street: there is a forward transform
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(which we have used so far) as well as an inverse transform. The latter brings
us back from, say, the frequency domain to the time domain. This is possible
because Fourier transformation leads to a unique relation between a func-
tion and its transform, and vice versa, so that we can recover the original
function unambiguously with an inverse Fourier transform.

An example of a unique transform pair is the pH: to every value of [H*] >0
we can assign a corresponding pH, and likewise from every pH we can
compute a specific [H]; no information is lost in going from one to the
other. There is, of course, a difference: the pH is a single number, while the
Fourier transformation involves an entire function. Nonetheless, the idea of
uniqueness is applicable to both. But note that not all familiar transforms
are unique: when we specify x, the quantity sin(x) is well-defined, but when
we specify the value of sin(x) we cannot recover x without ambiguity: when
X = xpis asolution, so is x = xy = 2n, where nis an arbitrary integer.

17 Highlight D13:D28 and call the inverse Fourier transform. Plot it in G1:18. You should
getback a replica of the graph in A1:C8.

It is not necessary to use just sines or cosines. A square wave is also an infi-
nitely repetitive signal, and we can use just one repeat unit of it. A new
aspect of a square wave is that it has discontinuities. Where the function
switches abruptly from, say, + 1 to — 1, you should use its average value at
that discontinuity, i.e., [(+ 1) + (= 1)]/2=0.

18 Extend A13:A28to A44.

19 Enter 1in B13:B20,0in B21, — 1in B22:B36, 0in B37, and 1 in B38:B44. Now call the
forward Fourier transform, and follow that up with an inverse Fourier transform to
make sure that you recover the original signal.

Figure 7.1-5 illustrates a square wave symmetrical around ¢= 0, and its
Fourier transform. Such a square wave can indeed be considered as the sum
of anumber of cosines,

squ(wl) = 4 {cos(wt) - 1 cos(Bwt) + 1 cos(bwt) —l cos(7wt) + }
T 3 5 7

:éj (-1 cg;[f;ﬁhwﬂ (7.1-5)

m n=0

Upon checking you will find that the coefficients produced by the 16-point
Fourier transformation are not quite equal to 2/[(2n+ 1)7], because we
do not use an infinite series. (Still, we get fairly close even with a 16-point
transform, with only four cosines, the first coefficient being 0.628 instead of
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Fig.7.1-5: The square wave and its Fourier transform.
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Fig.7.1-6: The function y =2 [a, cos(w?) + azcos(3w!) + ascos(bwt) + a;cos(7wh)], with
o= /2, and the coeflicients a; =0.628, a3 =—0.187, a5 =0.0835, and a, =— 0.0249, pro-
duced by the Fourier transform of a square wave, see Fig. 7.1-5. Even though just four
terms provide a rather poor approximation of a square wave, the black line goes exactly
through all 16 colored points of the square wave.

2/7=0.637.) Interestingly, even though the Fourier series is truncated, the
inverse transform exactly duplicates the original function. Figure 7.1-6 illus-
trates why this is so, with only four cosine terms: while the expression a,
cos(wt) + ag cos(3wt) + as cos(5wt) + a; cos(7wt) does not provide a very
good approximation of a square wave, it does go precisely through the dis-
crete points of the original waveform.

Transients are usually non-repeating signals, but there is no harm in
thinking about them as samples of an infinitely repeating set of them, as
long as these repeat units do not overlap, i.e., aslong as the repeat unit shows
the transient reaching its final state, to within the required precision. Again,
when the transient starts at = 0 with a sudden transition from 0 to e, its
value at £= 0 should be taken as 4(0 + %) = %4(0 + 1) = 0.5.

20 InB13deposit the instruction = $B$9*exp (— $E$9*A13), and copy this down till row 28.
21 SetthevalueinB9to 2, and thatin E9 to 5.

22 Call the forward Fourier transform, then the inverse transform.
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Fig.7.1-7: The transient 2e"5’and its Fourier transform.

23 Again see for yourself what happens when you change (one at the time) the values in
cells B9 and E9 respectively.

Figure 7.1-7 illustrates that the Fourier transform method indeed also
works for transients. This may not come as a surprise to an analytical
chemist, since some of the major instrumental analytical methods that use
Fourier transformation apply that method to transients, such as the free
induction decay in FI-NMR, and the interferogram in FT-IR.

We will now summarize some of the most important properties of the
digital Fourier transform. These properties are merely stated here. Readers
interested in their mathematical proofs should consult textbooks dealing
specifically with Fourier transformation.

1 Fourier transformation allows us to switch almost effortlessly between two
complementary aspects of a function of time ¢, and its representation in
terms of the corresponding frequencies f. Instead of time ¢and frequency f
we can use other parameters that are inversely related to each other (so that
their product is dimensionless), such as wavelength A and wavenumber v.
Although we treat Fourier transformation here as a mathematical concept,
such a transformation is not outside our normal, daily experience. When we
hear a bird in the woods, we can easily follow the song by its pitch (fre-
quency) even though there may be many other, simultaneous sounds at
other frequencies, such as the noise of the wind in the trees. When we listen
to an orchestra, we can focus on the flutes, or the cellos, by virtue of their
specific frequency ranges, even though the sound of both is mixed with that
of many other instruments as a function of time. In other words, for sound
our brain performs the equivalence of a Fourier transform. The same
applies to vision: when we experience a color, we will often know immedi-
ately its major components. Both of these skills can of course be honed by
training, but apparently are already present in rudimentary form in our
untrained brains. Digital Fourier transformation performs this service for us
on numbers in data sets, explicitly and almost instantaneously.
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2 The continuousFourier transformation of a periodic (i.e., infinitely repeti-

tive), continuous function f(¢) of time ¢is arepresentation F(f) in the fre-
quency domain that contains only discretefrequencies f. The Fourier
transform of a non-repetitive, continuous function f(¢), such as a single
transient, is a continuousfunction F(f) of frequency f. Such distinctions
disappear, of course, in digital Fourier transformation, where both the
input and output arrays are discrete. Some consequences of the discrete
nature of the input data in digital Fourier transformation will be discussed
insection 7.4.

3 The Fourier transform provides a uniquerelation between a function and

its transform, i.e., there is no loss of information when we replace a function
by its Fourier transform, or vice versa. This property is, of course, crucial in
Fourier transform spectrometry, since it allows us to measure a time-
dependent function and obtain from it the spectrum, i.e., its representation
in the frequency domain.

4 The Fourier transform assumes that its input constitutes one complete

repeat unit of an infinitely repetitive signal. For non-periodic signals, many
problems (of which some are detailed in section 7.4) can be avoided by
making sure that f(¢) starts and ends at the same value, and with the same
derivatives. ‘Same’'ness here is not necessarily a mathematical identity, but
is best defined in terms of the required precision.

5 Functions that are symmetrical around = 0, i.e., functions such that

f(— t) =1f(t), have a real Fourier transform. Such functions are called even;
we started out with such an even function in our first sample function,
cos(wt). For odd functions, i.e., where f(— t) =— {(¢), the resulting Fourier
transform is imaginary, as was illustrated by sin(w #). In general, functions
will be neither even nor odd, in which case their Fourier transform will be
complex, i.e., with both real and imaginary components.

6 A shiftin timein the time domain corresponds in the Fourier transform

domain to a shiftin phase angle, and vice versa. In mathematical terms,
when f(¢) is shifted in time by #, to f(z + #,), the corresponding Fourier trans-
form will be shifted from F(f) to F(f) X exp[— 2mjfto], where j=V — 1.
Similarly, F(f+ fp) has the inverse transform F(¢) X exp[2mjfyt].

7 Differentiation in the time domain corresponds to division by 27 j fin the

frequency domain. Likewise, integration in the time domain corresponds to
multiplication by 27 j fin the frequency domain. We will use these proper-
ties in section 7.4.

8 One of the most useful properties of Fourier transformation is that it con-

verts a convolution into a multiplication. (Convolution is one of many cor-
relations, i.e., mathematical operations between functions, that can be
greatly simplified by Fourier transformation.) Since convolution is arather
involved mathematical operation, whereas multiplication is simple, convo-
lutions are often performed with the help of Fourier transformation. We will
explore this property in more detail in sections 7.5 and 7.6.
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Fig.7.1-8: The Gaussian y= (0.9/c) exp[— (¢/¢)*] (left) and its Fourier transform (right)
for ¢ =3 (top) and c= 0.4 (bottom).

To end this section we now illustrate some of the above properties. Many of
the figures shown on the next two pages involve the Gaussian function
y=(alc) exp[— (t/c)?], where the pre-exponential factor (1/c) is used to
compare peaks occupying the same area. A Gaussian is a convenient func-
tion because its Fourier transform is again a Gaussian, and the same applies
to the inverse transform. The factor a = 0.9 is used here merely to obtain con-
venient scales. Gaussians curves are common in chromatograms. In Fig. 7.1-
8 we see that the narrower is the original function, the wider is its transform.

Figure 7.1-9 shows the effect of moving the center of the Gaussian peak, at
which point the function is no longer even (in the sense discussed above
under point (5), i.e., symmetrical around ¢=0), so that its transform has
bothreal and imaginary components.

Figure 7.1-10 compares the Fourier transforms of a Gaussian and a
Lorentzian peak. The Lorentzian peak has wider ‘tails’, and consequently a
narrower Fourier transform. The comparison is made between the
Gaussian yg = aexp[— (t/¢) 2] and a Lorentzian of equal area, y; = (a/ Vo[l
+ (£/0)?, see section 8.6. Lorentzian curves are often encountered in
spectroscopy.

As a convenience to the user, the Fourier transform macro will accept
two types of input: data that are properly centered (i.e., with sequence
numbers ranging from — 22 to 2M2—1), or data that start at zero (i.e.,
ranging from 0 to 2V —1).
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Fig.7.1-9: The Gaussian y= 0.9 exp[— (£ — f,)?] (left) and its Fourier transform (right) for
o =10 (top) and #, = 2 (bottom).

Fig.7.1-10: The Gaussian yg = 0.9 exp[— 2 (top left) and a Lorentzian y;, = 0.9/Vm /
(1 + £?) of equal area (bottom left), together with their Fourier transforms (top right and
bottom right respectively).
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Interpolation and filtering

We will now illustrate a powerful pair of properties of Fourier transforma-
tion, namely its power to interpolate and to filter data. First we look at inter-
polation. The idea is as follows. Imagine that a periodic signal is completely
described by a given set of frequencies, i.e., it does not contain any frequen-
cies higher than a given value f,,,. Its Fourier transform will reflect that.
Now go to the Fourier transform, extend it to frequencies above f,.x, and
specify that the signal has zero contributions at those higher frequencies;
this process is called zero-filling. When we apply an inverse transformation
to this extended data set, we will recover the original signal with added, inter-
polated points, since the longer frequency record corresponds to a more
detailed representation in time .

Instructions for exercise 7.2-1

1

Start a new spreadsheet, and organize it like the earlier one, or just copy that earlier
one.

Here we will use a rather minimal, four-point data set: for time in A13:A16 enter —2,
—1,0,and 1, for the real components of the signalin B13:B16 enter 0, —1,0,and 1, and
place zerosin C13:C16. There should be no data below row 16.

Run the Fourier transform of this data set. The graphs should look like those in Fig.
7.2-1. Aninverse transform should yield a replica of the input data.

Copy the column headingsin D11:F11 to G11:111, and thosein A11:C11 toJ11:L11.

5 CopyD13:F16 to G27.

Highlight G29:G30, grab its common handle, and drag that handle down to G44.
Likewise, activate G27:G28, grab the common handle, and extend the column upwards
to G13.Yes, it will do that!

Now comes the trick: we add zeros to the higher frequencies by filling the blocks
H13:126 and H31:144 with zeros.

8 Make a thumbnail graph of H13:H44 and I13:144 vs. G13:G44 in G1:18.

9 Highlight block G13:144 and call in the inverse Fourier transform.

10

Make a thumbnail graph of K13:K44 and L13:144 vs.J13:J44 in J1:L8. Your spreadsheet
should nowresemble thatin Fig. 7.2-2.

What you have just done can be interpreted as follows. You had a sine wave
with only four points per cycle. After Fourier transformation, you extended
the transform to 32 frequencies, but without adding any content. By doing
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Fig.7.2-1: The spreadsheet for a four-point sine wave and (in color) its Fourier trans-
form.

so, you have provided additional information, viz. that there is no noise at
the higher frequencies added. This is equivalent to specifying that the curve
is smooth between the original data points. Upon inverse transformation,
you then reconstructed 32 data points of the original signal, eight times as
many as it had originally. Those extra points show up as an interpolation.

As mentioned earlier, the real power of Fourier transformation lies in its
application to general functions rather than to just sines and cosines. To
illustrate this, we will now use a simple Gaussian curve as our input, then
interpolate it.

11 Place an amplitude A in B9, a center value B in D9, and a peak width C for the Gaussian

peakin F9.

12 Place theinstruction = $B$9*exp(— (((A13-$D$9)/$F$9)/2)) in B13, and copy this
down to cell B44. Fill C13:C44 with zeros.

13 Adjust the numerical values of the constants in row 9 to give you a complete though
sparse Gaussian peak. Just for the fun of it, select F9 such that the peak maximum falls

in the range between two adjacent data points. The visible part of the Gaussian peak

should occupy no more than about 20% of the data set.

14 Compute the Fourier transform of A13:C44.

15 Graph the inputand output data, and compare these with Fig. 7.2-3.
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Fig.7.2-2: The part of the spreadsheet containing the zero-filled transform, and its
inverse Fourier transformation. The seed from Fig. 7.2-1 is shown in block G27:130.

1
5
S
4
E
6
5
G
10
11| frequency Re Im
12
S -4.00 0.00 0.00
14| -3.75 0.00 0.00
15 -3.50 0.00 0.00
16/ -3.25 0.00 0.00
17| -3.00 0.00 0.00
18 -2.75 0.00 0.00
191 -2.50 0.00 0.00
20 -2.25 0.00 0.00
21 -2.00 0.00 0.00
22 -1.75 0.00 0.00
A -1.50 0.00 0.00
241 -1.25 0.00 0.00
25 -1.00 0.00 0.00
26 -0.75 0.00 0.00
27 -0.50 0.00 0.00
28 025 0.00 0.50
29. 0.00 0.00 0.00
30| 028 0.00 0.50
31 0.50 0.00 0.00
32 0.75 0.00 0.00
33 1.00 0.00 0.00
34 .23 0.00 0.00
35 1.50 0.00 0.00
30 175 0.00 0.00
37 2.00 0.00 0.00
38 225 0.00 0.00
39 2.50 0.00 0.00
40 275 0.00 0.00
41 3.00 0.00 0.00
42 3.25 0.00 0.00
43 3.50 0.00 0.00
44 3.75 0.00 0.00

time

-2.000
-1.875
-1.750
-1.625
-1.500
-1.375
-1.250
-1.125
-1.000
-0.875
-0.750
-0.625
-0.500
-0.375
-0.250
-0.125
0.000
0.125
0.250
0.375
0.500
0.625
0.750
0.875
1.000
1.125
1.250
1.375
1.500
1.625
1.750
1.875

Re

0.000
-0.195
-0.383
-0.556
-0.707
-0.831
-0.924
-(.981
-1.000
-0.981
-0.924
-0.831
-0.707
-0.556
-0.383
-0.195
0.000
0.195
0.383
0.556
0.707
0.831
0.924
(.981
1.000
0.981
0.924
0.831
0.707
0.556
0.383
0.195

Im

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
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Fig.7.2-3: A 32-point data set containing about six points of a Gaussian curve, y = 3 X
exp[- (x—4.56)2/ (1.5)?], and its inverse Fourier transform.
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Fig.7.2-4: The central part of the curve obtained after zero-filling the Fourier transform
to 512 points, followed by inverse transformation.

Now copy block D13:F44 to G253.

Grab G253:G254 by the handle and draw back to G13. Likewise extend the frequency
scale down to G524.

Fill H13:1252 and H286:1524 with zeros.

Call the inverse Fourier transform of the data in block G13:1524. You should now see
thereconstructed input curve, but with 16 times as many points, 15 of them inter-
polated.

Graph the interpolated curve, and compare with Fig. 7.2-4.

While the original curve had only six points that rose significantly above
the baseline, the interpolated curve clearly has quite a few more. Note that
we have not added any real information to the original data set, but have
merely interpolated it, without making any assumptions on the shape of the
underlying data set, other than that it is noise-free. Consequently we can,
e.g., determine the peak position by fitting a number of points near the peak
maximum to a low-order polynomial such as y= ay + a;x + a,x%, using the
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Savitzky—Golay method, and then find the peak maximum from the coeffi-
cients as Xpeak = — 1/ 2a,.

Now we will do the opposite. We will take a signal, add random noise, and
Fourier transform it. If we know the main frequencies of the signal, we can
remove alarge part of the noise, simply by setting all signals at unneeded fre-
quencies equal to zero. Upon inverse transformation we will then recover
most of the original signal, while we discriminate against much of the noise.
Filtering is usually such a trade-off: giving up some signal in return for losing
much more noise.

As our signal we will take a set of Gaussian curves that might represent,
e.g., a chromatogram or an NMR spectrum. We will first generate such a set,
and examine its Fourier transform. We will see that most of the transform is
localized in a rather small part of the frequency spectrum. This implies that
we can delete much of the frequency spectrum with relatively little loss of
signal, and we will test this.

Then we will be ready for a more realistic ‘experiment’, by adding random
noise to the signal. Now that we know in what frequency range we can filter
out the noise with relative impunity, we will do so, and observe the resulting,
filtered data.

Instructions for exercise 7.2-2

1 Openanew spreadsheet.

2 IncellsAl, B1, and C1 place labels for amplitude, center, and width.

3 Incells A3:A7 deposit some amplitudes, in B3:B7 some peak centers, and in C3:C7
some peak widths.

4 Inrow 11 place thelabels time, Re, Im, freq., Re, Im, freq., Re, Im, time, Re, Im, noise. We
will here use ‘time’ and ‘frequency’ as generic parameters, as might be appropriate for
chromatography, but ‘time’ might also represent elution volume, NMR frequency,
NMR magnetic field shift in ppm, potential in electrochemistry, distance in crystallog-
raphy, etc., and ‘frequency’ its inverse.

5 InA13:A524 place the rank order numbers —256 (1) 255.

6 InB13 enter the instruction = $A$3*EXP(— (((A13 — $B$3)/$C$3)A2)) + -, the dots
representing similar expressions for the variables in rows 4 through 7.

7 Add acolumn of zeros for the imaginary component of the signal, in C13:C524, then
Fourier transform the resulting data set.

8 Plottheinputsignal and its transform. Figure 7.2-5 illustrates what you might obtain
for frequency spectrum.

9 Inspection of the low-frequency (middle) section of the spectrum suggests that
frequencies above a given value contribute little to the transformed signal, and may
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Fig.7.2-5: (a) The input signal and (b) its Fourier transform.
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Fig.7.2-6: The central section of Fig. 7.2-5b.

therefore be expendable. (The specific cut-off frequency depends, of course, on the
functions used, and on your judgement as to what contribution is small enough to be
neglected.) In the example of Fig. 7.2-6, an absolute cut-off frequency | f| of about 0.07
appears reasonable.

10 In G13 place the instruction = D13, and copy this to G13:1524, thereby making a copy of
D13:F524.

11 Then, in that copy, replace the data at higher frequencies by zeros. For example, for a
cut-offat|f|> 0.05, zero the datain H13:1243 and H295:1524.

12 Highlight G13:1524 and inverse transform it. Plot the recovered signal; it should resem-
ble the original closely. Upon closer inspection you will find that there are oscillatory
differences, that can be made acceptably small by proper choice of the cut-off fre-
quency, see Fig. 7.2-7. Looking at those residuals, as in Fig. 7.2-7b, is much more infor-
mative than a visual comparison of the curves.
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Fig.7.2-7: (a) The filtered output signal, and (b) the differences between it and the origi-
nal shown in Fig. 7.2a for a cut-offat | f| = 0.07.
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Fig.7.2-8: (a) The noisy input signal, and (b) the same after Fourier transformation,
removal of all frequency components with |f1=0.07, and inverse transformation.

Now introduce a column of Gaussian noise (Tools = Data Analysis ® Random Number
Generation = Distribution Normal, Mean 0, Standard Deviation 1) and modify the
signal in B13:B524 by adding to it na (for noise amplitude) times that noise. The value
of nashould of course be placed near the top of the spreadsheet, together with its
label. By setting na equal to 0 you will recover the earlier signal.

Fourier transform the noise-containing signal, in A13:C524.
Filter the transformed signal.
Inverse transform this filtered output.

Figure 7.2-8 illustrates such a noisy input signal and its filtered output.

In order to remove noise by Fourier-transform filtering we can look at the
transform, as in Fig. 7.2-6. However, it is often more convenient to inspect
the power spectrum, which is a (usually semi-logarithmic) plot of the mag-
nitude (i.e., of the square root of the sum of squares of the real and imaginary
components) of the Fourier transform. Such a power spectrum is shown in
Fig. 7.2-9, both for a noise-free signal, and for the same signal with noise.
The power spectrum is symmetrical, i.e., the information at negative and
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Fig.7.2-9: (a) The power spectrum of Fig. 7.2-5 (b) the same enlarged to show its top in
greater detail, and (c) the power spectrum of Fig. 7.2-8.

positive frequencies is identical, and it is therefore commonly displayed
only for positive frequencies. Moreover, by using a logarithmically com-
pressed vertical scale, orders-of-magnitude differences are emphasized,
thereby more clearly delineating the frequency region where the signal
dominates, and that where the noise is the more important factor. A power
spectrum often allows us to make an informed choice of the cut-off fre-
quency.

18 Calculate and plot the power spectrum, i.e., log P = % log (Re? + Im?) vs. frequency.

Here Re and Im refer to the real and imaginary components of the Fourier transform,
in columns E and E Plot log P only for positive frequencies, as in Fig. 7.2-9.

The power of the noise-free signal falls off rapidly with frequency, until it
hits the truncation noise at about 107'6 due to the finite number of digits
used to represent numbers in Excel. After we add Gaussian noise (so-called
‘white’ noise because its average power is independent of frequency; i.e., it is
represented in the power spectrum by a roughly horizontal line), that added
noise becomes dominant at all but the lowest frequencies. This is the ratio-
nale for replacing the higher-frequency contributions by zeros. The power
spectrum suggests where this is done most appropriately. In the above
example, the cut-off should occur where the power falls below about -2, at f
=0.042. As can be seen in Fig. 7.2-6, by cutting off the frequency compo-
nents at £>0.042, we introduce some signal distortion. Clearly, the noise
forces our hand here, since we would have preferred to keep the frequencies
in the range between 0.042 and 0.07. There is, of course, also noise at the
lower-frequency components, but zero-filling at those frequencies would
remove more signal than noise, and would therefore be counterproductive.

The above example illustrates the trade-offs involved in filtering out
noise. It is clear from Fig. 7.2-9 that zero-filling at higher frequencies works
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only as long as the power of the low-frequency signal components signifi-
cantly exceeds that of the corresponding noise. Otherwise, any information
about the signal will be ‘buried’ in the noise. In sections 8.3 and 8.4 we will
encounter some correlation methods that can sometimes still pull a buried
signal out of the noise.

The above examples have illustrated the use of a sharp cut-off filter, equiv-
alent to multiplying the Fourier transform by 1 up to a cut-off frequency, and
by 0 at higher frequencies. A more gradual cut-off can of course be made by
multiplying the frequency spectrum by some frequency-dependent attenu-
ating function, instead of the abrupt pass-all-or-none approach of the
example. There are many such more gradual filtering functions, usually
named after their originators, such as Hamming, Hanning, Parzen, and
Welch. Unfortunately, with a gradual cut-off filter, it is not so clear what
compromise between noise-reduction and signal distortion is being struck.

In principle, Fourier transformation allows you to be much more specific,
and to pick out or reject, e.g., a single frequency or a specific set of frequen-
cies. For example, one can tune in to a particular frequency (the digital
equivalent of a sharply tuned filter, or of a lock-in amplifier, see section 8.4),
or selectively remove ‘noise’ at, say, 60, 120, and 180 Hz, while leaving signals
at other frequencies unaffected. However, this requires that the selected fre-
quency or frequencies precisely coincide with those used in the Fourier
transformation, in order to avoid the so-called leakage to be described in
section 7.4.

Differentiation

Differentiating a function in the Fourier transform domain is, in principle,
both straightforward and easy. Differentiation with respect to time ¢in the
time domain is equivalent to multiplication by jo =27 j fin the frequency
domain. (The product 27 times fis called the angular frequency w.) This
is perhaps most readily illustrated using Euler’s formula, e* /= cos(jw)
+ jsin(jw), which upon differentiation yields de*/“!/dt=+ joe™/"
Therefore, differentiation of a function can be accomplished by taking its
Fourier transform, multiplying the resulting data by jw, and inverse trans-
forming this. The Fourier transform of the original function is, in general,
a complex number, a + jb, and multiplication by jo therefore results in jo
(a+ jb) =w (— b+ ja). Consequently, in order to differentiate a function in
the time domain, we Fourier transform it, then in a copy exchange the
real and imaginary columns in the transform, multiply the data now in
the real column by —w and those in the imaginary column by w, then
apply an inverse transformation. Below we will illustrate this for a
Gaussian curve.
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Instructions for exercise 7.3

1
2

N O 1 W

Open a new spreadsheet.

Organize it the same way as the preceding spreadsheet, with the input signal in
columns A-C, its transform in D-E a copy of that transform in G-I, and the final result in
J-L. This way you can play with the input data without having to change the instruc-
tions every time.

In A13:A524 place values for time .

In B13:B524 place the instruction for one (or more) Gaussian(s).
In C13:C524 place zeros.

In G13 place the instruction = D13.

In H13 deposit the instruction = 2*PI()*D13*F13, and in I13 the instruction
=—2*PI)*D13*E13.

8 Copy theinstructionsin G13:113 down to row 524.

9 You are now ready to go. Highlight A13:C524 and call the forward Fourier transform.

10

11

12

13

14

15

Then highlight G13:1524 and use the inverse Fourier transform instead. Voila.

Plotthe input data (B13:B524 versus A13:A524; there is nothing to see in C13:C524) and
the final result where, likewise, you only need to show the real component. Figure 7.3-1
illustrates what you what you might see.

Note that we need not symmetrize the time scale of the input signal around zero, but
that the output will be computed that way. If it bothers you, add 256 to the t-scale, as
we have done in Fig. 7.3-2b.

Add some noise to the signal in B13:B524, and see how it tends to swamp the derivative.
Figure 7.3-2 illustrates this. Of course you will see this only afteryou have again used
the forward and inverse transforms, as in (9). The Fourier transform is performed by a
macro. Macros do notupdate automatically, as the standard spreadsheet functions do.

Wow, that is not a pretty picture! The noise is obviously much more important in the
derivative than itis in the original curve, for areason that will be explained in section
8.8. Note the change in vertical scale in the plot of the derivative, in order to keep most
of the data inside the picture frame.

But by now you know what to do: set the higher-frequency data in the transform equal
to zero, as in section 7.2, and try again. Now, in one single operation, you both differen-
tiate and filter out most of the noise, asillustrated in Fig. 7.3-3. You are now in control.

Apply the same to a set of peaks with noise, as in Fig. 7.3-4.
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Fig.7.3-1: (a) A Gaussian peak, and (b) its first derivative.
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Fig.7.3-3: (a) The same Gaussian peak with noise, and (b) its filtered first derivative.
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Fig.7.3-4: (a) The signal of Fig. 7.2-8, and (b) its first derivative (after filtering by zero-
fillingat|f1>0.042).

Aliasing and leakage

A discussion of the digital Fourier transform would be incomplete without a
consideration of its inherent problems. Digital Fourier transformation has
two weak spots that are both consequences of its digital nature. Because we
only use a finite data set, some frequencies will fall outside the available fre-
quency range, and will then be misrepresented; this is called aliasing.
Another consequence of the finite set of frequencies is that some frequen-
cies inside the range covered will not fit either, because they fall in between
the available frequencies. This leads to leakage. Below we will illustrate alias-
ingon asmall data set, and leakage on alarge set. Once you understand what
causes these problems you can often avoid them: homme averti en vaut
deux, forewarned is forearmed.

Instructions for exercise 7.4-1

1 Openanew spreadsheet.

2 Organize it in the fashion of exercise 7.1 (see Fig. 7.1-1), with space at the top, in rows 1
through 8, for small graphs.

3 InA9and C9depositthelabels A =and B =, and in B9 and D9 place the corresponding
numerical values 1.

4 Inrow 11 place thelabels time, Re, Im, freq., Re, Im, time, Re, Imin A11:111.
5 InA13:A20 depositthe numbers —4, —3, -2, —1,0, 1,2, and 3.

6 InB13deposit = $B$9*COS($D$9*PI()*$A13/4). Note the dollar sign in front of the
letter A for a mixed absolute/relative address.
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7 InA22:A102 deposit the numbers —4.0, —3.9, —3.8, ..., 3.9, 4.0.

8 Copy theinstructions from A20 to J22. (This is where the dollar sign preceding the
letter A comes in handy.) Copy the instruction down to J102.

9 InAl:C8 make athumbnail graph of the signal. In it, display the datain A13:A102 as
circles, thosein D13:D102 as aline. (Note that A21:A102 and D13:D21 are left blank.) At
this point, the top of your spreadsheet should look more or less like Fig. 7.4-1.

10 Incell]9 place thelabel B’ =, and in cell K9 the instruction = D9.
11 CopyD22:D102 to K22:K102.

12 Modify the instruction in K22 to refer to $K$9 rather than to $D$9, so that it will now
read = $B$9*COS($K$9*PI()*$A13/4). Copy this instruction down to K102.

)

i

s

e

I

g _

10

11 time Re Im freq

it o

13 - -2.000 0.000

14 -3 -1.414 0.000

s -2 0.000 0.000

16 -1 1.414 0.000

17 0 2.000 0.000

18 1 1.414 0.000

19 2 0.000 0.000

20 3 -1.414 0.000

21

22 -4.0 -2.000
23 -3.9 -1.994
4. -3.8 -1.975

Fig.7.4-1: The top left and right corners of the spreadsheet in exercise 7.4.
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Fig.7.4-2:From left to right: (a) the signal for B =5, (b) its transform, and (c) the inverse
transform of the latter. The line in (a) shows the cosine for B = 5, and that in (c) the
cosine wave for B’ = 3, drawn through the samedata points.
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Fig.7.4-3: From left to right: (a) the signal for B = 6, (b) its transform, and (c) the inverse
transform of the latter. The line in (a) shows the cosine for B = 6, and thatin (c) the
cosine wave for B’ = 2, drawn through the same data points.
13 Highlight block A13:C20, and Fourier transform it. The result will show in D13:F20.

14

now contain areplica of A13:C20.

15
D13:D20.

16

J13:J102 vs. G13:G102. The third panel should resemble the first.

17

—

0 :} Q0000000
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g |
I

2 0 244

¢

0006000000

t 4

Continue with the inverse Fourier transform of D13:F20. The result in G13:120 should

In D1:F8 make a graph of the data in block D13:F20, i.e., of E13:E20 and F13:F20 vs.

In G1:18 make a graph of the data in block G13:K102. Then remove the curve for

Change the value of Bin cell D9 to 2, then to 3, and see what happens.

18 We will for the moment skip B = 4, and jump directly to B = 5. Everything seems to be
OKuntil you notice that the middle panel is the same as the one you found for B = 3.

Indeed, when you substitute a 3 for B’ in cell K9 (so that it no longer automatically

traces cell D9) you will see that such alower-frequency cosine fits the data just as well,

see Fig. 7.4-2.
19

=2, see Fig. 7.4-3.

Try B = 6. Its transformation is identical to that for B = 2, as you can again verify by
comparing the resultin the third panel with B’
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What you see here is that an eight-point Fourier transform apparently
cannot count beyond 4, because it clearly confuses B=5 with B=3, and
likewise 6 with 2, and 7 with 1. This is called aliasing: a cosine with B=5 can
masquerade under the alias B = 3.

For your consolation: the transform is still slightly smarter than those
birds that count zero, one, many, so that a birdwatcher’s blind entered by
three observers is considered empty after the bird has seen two observers
leave again: for such a bird brain, ‘many’ minus ‘many’ is zero!

As with most problems, aliasing is easily prevented once you understand
what causes it. You will avoid aliasing by using a sufficiently large data set.
Which immediately brings up the question: what is meant by ‘sufficiently
large’? The answer, called the Nyquist theorem, is that you need to sample
more than two points per cycle of any periodic signal in order to avoid alias-
ing. Otherwise the sample is said to be undersampled.

Note that this has nothing to do with the Fourier transform per se, but
everything with the more general problem of representing continuous func-
tions by discrete samples of such functions. The Nyquist theorem specifies
that the underlying, continuous, repetitive function cannot be defined
properly unless one samples it more than twice per its repeat period.

Let’s go back to the spreadsheet to experiment some more.

20 Now try B = 4. In the graph you might miss its transform, since the real point at f =4

21

has the value 2, and therefore may require a change of vertical scale in the middle
thumbnail sketch.

But the problem is really more serious than that: while the frequency is well-defined,
itsamplitude is not. This is illustrated in Fig. 7.4-4 with the signal y = 3[sin(27 f#) +
cos(2m f1)], which fits the data equally well. And there are many more such combina-
tions.

Figure 7.4-4 illustrates the Nyquist criterion: the signal is sampled at
exactly two points per cycle, which is just not good enough. In this border-
line case the frequency is recovered, but the amplitudes of the possible sine
and cosine components of the signal are not.

The above illustrates what happens when the signal frequency lies outside
the range of frequencies used in the Fourier analysis, in which case the
digital Fourier transform will misread that frequency as one within its range.
As already indicated, another problem occurs when the frequency lies
within the analysis range, and also satisfies the Nyquist criterion (i.e., is
sampled more than twice during the repeat cycle of that signal), but has a
frequency that does not quite fit those of the analysis, as illustrated below.
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Fig.7.4-4: From left to right: (a) the signal for B = 4, (b) its transform, and (c) the inverse
transform of the signal in (b). The line in (c) shows the sum of a sine and cosine wave,
withA=3andB =4.

Instructions for exercise 7.4-2

1 Openanew spreadsheet, and organize it as that in exercise 7.4-1, with rows 1 through 8
reserved for small graphs, and with similar labels.

2 InA13:A140 deposit the numbers — 64, —63, ..., —1,0,1, ...,62,63.

In B13 deposit the instruction = $B$9*COS(A13*$D$9) where $B$9 refers to the ampli-

tude, and $D$9 to the frequency.

In B9 place the value 1, and in D9 the value = PI1() /8, where 7/8 ~ 0.3927.

w

In C13:C140 enter zeros.
Make a graph of the signal in A1:C8.

Compute the Fourier transform of the signal in D13:F140.

W N O un b

In D1:F8 make a graph of the transform or, better yet, of its middle half, for
—0.25 =f=0.25 (since there isnothing to be seen at higher frequencies).

9 The top of the spreadsheet should nowlooklike Fig. 7.4-5.

10 Now change the value in D9 from 7/8 to, say, 0.4, and repeat the transformation. Figure
7.4-6 shows what you should see.

In Fig. 7.4-5 the cosine wave fits exactly eight times, and this shows in its
transform, which exhibits a single point at f= =8 X (1/128) = =0.0625. On
the other hand, the cosine wave in Fig. 7.4-6 does not quite form a repeating
sequence, and its frequency, 7/(0.4 X 128) = 0.06136, likewise does not fit

any of the frequencies used in the transform. Consequently the Fourier
transform cannot represent this cosine as a single frequency (because it
does not have the proper frequency to do so) but instead finds a combina-
tion of sine and cosine waves at adjacent frequencies to describe it. This is
what is called leakage: the signal at an in-between (but unavailable) fre-

quency as it were leaks into the adjacent (available) analysis frequencies.
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-64 0 t 64 -0.25 0.00 I 025 I
A= 1 B= 0.39269908

time Re Im frequency Re Im

-64 1.000 0 -0.500 0.000 0.000

-63 0.924 0 -0.492 0.000 0.000

-62 0.707 0 -0.484 0.000 0.000

-61 0.383 0 -0.477 0.000 0.000

Fig.7.4-5: The top of the spreadsheet showing the function y= cos(s ¢/ 8) and its
Fourier transform.

0.5 ® ®
Y
0.0 m
-0.5
-0.25 0.00 f 0.25

Fig.7.4-6: The function y = cos (0.4 ¢) and its Fourier transform.

11 Imagine thatyou take experimental data at arate of 1 point per millisecond, a quite
comfortable rate for an analog-to-digital converter, and quite sufficient for many ana-
lytical experiments, such as the output of a gas chromatograph. Unavoidably, the
signal will also contain some 60 Hz emanating from the transformers in the power sup-
plies of the instrument. (The main frequencyis 60 Hz in the US; in most other coun-
tries, it would be 50 Hz.) In D9 enter the corresponding frequency, = 1000/60 (where
the factor 1000 is used to express the frequency in the corresponding units of per milli-
second) or = 1000/50 (outside the US). Figures 7.4-7 and 7.4-8 illustrate what happens
with the Fourier transform of such a signal.
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Fig.7.4-7: The function y= cos (27 X 60 t) sampled at 1 ms intervals, and the central
portion of its Fourier transform.
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0.000 t/s 0.064 -250 0 f/Hz 250

Fig.7.4-8: The function y= cos (27 X 50 t) sampled at 1 ms intervals, and the central
portion of its Fourier transform.

Keep in mind that leakage does notmisrepresent the signal, but expresses
it in terms of the available frequencies. It is successful in doing so. It is just
that a simpler representation would be obtained if the appropriate fre-
quency were available.

In both figures, leakage occurs because the Fourier transform of a data set
for —0.064 = £<0.064 s has the frequencies * nfwhere n=0, 1,2, 3, ..., 64
and f=1/0.128 = 7.8125 Hz. Therefore, around 50 and 60 Hz, the closest the
transform can come to represent this signal is with 46.875, 54.6875, or 62.5
Hz.

We could have avoided this leakage by selecting a slightly different time
interval: at 60 Hz, an interval of 1.0416667 ms would have put the 60 Hz
signal in a single frequency slot, and likewise an interval of, e.g., 1.25 ms
would have put a 50 Hz signal in its unique place. A possible benefit of doing
so would be that we can then simply filter out any unwanted mains signal by
transforming, setting that single frequency to zero, and inverse transform-
ing. Here you have the ultimate in frequency-selective filtering, where you
just pick off the one frequency you want to remove. In practice there will
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Fig.7.4-9: The function y = exp(—10¢) for > 0 with superimposed 60 Hz pick-up of 0.1
sin (277X 60¢) + 0.05 cos (27 X 60t), sampled at 20 ms intervals (left) and at 16% msinter-
vals (right).

usually be several related signals, e.g., at 120 and 180 Hz, but these harmon-
ics can be removed simultaneously because they are exact multiples of the
fundamental frequency to be removed. This is not to suggest that it is OK to
be careless with so-called mains-frequency pick-up: prevention (by proper
design and signal shielding) is always preferable to restoration.

Which brings us to a related point. Modern computer-based data acquisi-
tion methods sometimes show a low-frequency oscillation superimposed
on the signal. Say that we have a transient signal decaying with a time con-
stant of 0.1 s, and sampled with a 20 ms. Any 60 Hz pick-up will then show as
a 10 Hz oscillation, i.e., as the beat frequency between the sampling rate of
50 Hz and the 60 Hz pick-up. Fig. 7.4-9a illustrates this.

Here, then, we have an example of aliasing that has nothing to do with
Fourier transformation! The remedy is simple: first reduce the source of the
pick-up as much as possible, by careful signal shielding. If that does not
suffice, use a different sampling rate, so that the beat frequency disappears.
In this case, sample at 60 rather than at 50 Hz, i.e., at 165 ms intervals. Figure
7.4-9b shows the result. In this case, the 60 Hz signal has been converted
into a constant offset, because it is sampled always at exactly the same
moment in its 60 Hz cycle. What happens when you cannot hit it quite at this
sampling rate, but have to settle for, say, once every 16 ms? Try it out on the
spreadsheet.

Convolution

When we record the spectrum of a compound, the data obtained reflect both
the spectrum itself, and the properties of the spectrometer, such as its slit
width. When the slits are wide open, we usually get plenty of light on the
photodetector but the spectrum may become blurred, i.e., lose resolution.
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On the other hand, when the slits are too narrow, we may have too little light
on the photodetector to make a measurement. Clearly, we must often make
an instrumental compromise between resolution and sensitivity. No matter
what compromise is used, what we observe is, in mathematical terms, the
convolution of the actual spectrum of the cell and the distortion of the
spectrometer.

Similarly, when we listen to music through a speaker, what we hear is the
original music, distorted by its passage through whatever recording device
(microphone + amplifier), storing device (such as tape, casette, record,
compact disk), and audio reproduction system (amplifier, speaker) is used.
More precisely, what we hear is the convolution of the original music and the
instrumental response.

Likewise, when we use a laser flash to excite fluorescence, we can
observe a decay curve of that fluorescence. When the laser flash is not of
negligible duration compared to the decay time, we actually observe the
convolution of the flash intensity and the intrinsic fluorescent decay of the
sample.

The list of examples can go on, since convolution is a quite general phe-
nomenon every time an instrument is used to make a measurement.
However, the list is by no means restricted to instrumental distortion. For
example, in atomic absorption, the absorption process is typically observed
at the relatively high temperatures of a flame or a plasma. Consequently,
Doppler broadening (which leads to a Gaussian distribution) convolves
with the absorption process (exhibiting a Lorentzian distribution) because
the absorbing particles move with respect to the light source. Similarly, in
the formation of precipitates, nucleation convolves with crystal growth,
since no crystallite can grow before it has been nucleated. Yet another
example is the effect of time-dependent diffusion in cyclic voltammetry, as
described in section 6.12. In general, when more than one physical process
must be taken into account, chances are that a convolution is involved.

What, precisely, is convolution? It is an integral that contains both the
original signal (the true spectrum, the original music, the intrinsic fluores-
cent decay, the absorption spectrum of non-moving species, the growth
process apart from nucleation, the stationary current-voltage curve without
diffusion, etc.) as well as the ‘distorting’ effect. In the integral, the two are as
it were forced to slide past each other. The mathematical definition of the
convolution of two functions, x(¢) and y(¢), is

©

X() - y(t) = f ) Y~ 1) dr (7.5-1)

—o

where tis a variable (here we use the symbol ¢ because it often represents
time), and 7 is a so-called dummy variable, which only has meaning
inside the integral. A detailed discussion of the mathematical properties of
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ABC DEF GHI JKL MNO PQR
x(t) X(f) y() Y(f) XY X*y
\\ FT / \ FT / multiply Xand Y — XY \ FT1/

Fig.7.5-1: The layout of the data in convolution exercise 7.5-1. The top row identifies the
columns used, the middle row the functions encountered there, and the bottom row the
mathematical operations between them. The data for X - Yare computed as the prod-
ucts of the complex numbers in X(f) and Y(f).

convolution lies outside the realm of this book, but can be found in many
textbooks on mathematics or on mathematical physics. Here we merely
mention one property, namely commutation: x(¢) « y(t) = y(t) « x(£).

The connection of convolution with Fourier transformation (and the
reason to include it in this chapter) lies in the convolution theorem, which
shows that a convolution in the time domain is equivalent to a simple multi-
plication in the frequency domain, and vice versa:

x(#) »y@) = X(f) - Y(f) (7.5-2)

Consequently we can use Fourier transformation to perform a convolu-
tion. This is illustrated in spreadsheet exercise 7.5-1 by using a simulated
spectrum of three almost baseline-separated peaks, and showing the broad-
ening (i.e., loss of resolution) resulting from, e.g., using a spectrometer with
wide-open slits. Alternatively one might think of that example in terms of,
say, nearly baseline-separated chromatographic peaks, distorted by a detec-
tor with too large a dead volume. The mathematical symbols # and fmerely
denote complementary parameters, such that their product is dimension-
less. We will here describe convolution generically in terms of time and fre-
quency, but ¢ could also stand for, say, wavelength, in which case fwould
denote wave number.

Before we embark on exercise 7.5-1 we will first sketch its spreadsheet
layout, see Fig. 7.5-1. We will use two input functions, x(¢) and y(t), to be
placed in columns ABC and GHI respectively, say £in column A, the real part
Re(x) of xin B, and its imaginary part Im(x) in C. Columns DEF and JKL are
reserved for their Fourier transforms, X(f) and Y( f) respectively. In columns
MNO we then multiply X and Yto form their product, X- Y, and in columns
PQR we finally calculate the convolution x = yby inverse Fourier transforma-
tion of X-Y. Note that the individual components of X(f) and Y(f) are
complex numbers, which must be taken into account in computing their
product.

Below we will convolve a synthetic signal (in A12:B75) with a window
function (in G12:H75) and observe what happens. First we will use a II-
shaped window function, one that mimics the effect of, say, anarrowsliton a
spectrum as long as edge diffraction can be neglected.
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Instructions for exercise 7.5-1

Open a spreadsheet.

In cellsA10, G10 and P10 deposit the label time; in cells D10, J10 and M 10 the label
freq., in cells B10, E10, H10, K10, N10, and Q10 the label real, and in cells C10, F10, 110,
L10,010, and R10 the label imag.

3 IncellsA12:A75 and G12:G75 place the times — 4 (0.125) 3.875.
4 Incell B12 deposit the instruction = 0.4*EXP(— ((2.3 + A12)A2)/0.2) + 0.5*

O 0 N & wn

10
11
12
13
14

15
16

EXP(— ((0.7 + A12)72)/0.2) + 0.3*EXP(— ((1.1— A12)/72)/0.2) or a similar expression
containing a number of almost baseline-separated peaks. (Here we use Gaussians, but
you can take other functions.) Copy this instruction down to row 75.

In C12:C75 deposit zeros.

In A1:C8 place a thumbnail sketch of the function x(f).

Fourier transform these data to generate X( f) in columns DEE

In D1:F8 place a small graph of X(f).

Fill H12:175 with zeros, then deposit the value 1 in cell H44.

Plot y(t) in G1:18.

Fourier transform G12:175 to obtain Y( f) inJ12:L75.

Plot Y(f)inJ1:L8.

Copy the frequency scale (i.e., the contents of D12:D75 or J12:J75) to M12:M75.

Now comes the multiplication of the complex numbers. Consider X( f) as a set of
complex numbers e+ j fwherej =\ — 1, and likewise Y(f) as a set of complex
numbers k+j€.We then have (e+jf) (k+j€) = (ek— f€) +j(e€ + fk). Therefore, in
cellN12 deposit the instruction = E12*¥*K12 — F12*L12 (for the real part of that
product), andin cell 012 the instruction = E12*L12 + F12*K12 (for its imaginary part).
This will generate the product X - Y. Copy these two instructions down to row 75.

Make a graph of X - Yin M1:08.

Finally, use the inverse Fourier transform of M12:075 to compute the convolution x« y
in P12:R75, and show it graphically in P1:Q8. The top of your spreadsheet should now
look similar to Fig. 7.5-2.

The operation does not modify the original signal beyond reducing its
amplitude, as an ideal monochromator slit also would, by restricting the
amount of light that reaches the photodetector. Below we will take care of
that signal attenuation.
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-4.000 0.000 0.000 -4000 0000 0000 -4.000 0.000 0.000
| -3.875 0000 0000 -3875 0000 0000 -3875 0000 0.000
1 -3.750 0000 0000 -3.750 0.000 0000 -3.750 0.000 0.000

0.1 002 0.01
.001
[s]
.000
-
0.0 001 0.00
-4 0o f -4 0 f 4 -4 0 ¢t 4
Wissismvengt wviiesessds b i R,

-4.000 0.016 0.000 -4.000 0.000 0.000 -4.000 0.000 0.000
-3.875 0.016 0.000 -3875 0.000 0.000 -3.875 0.000 0.000
-3.750 0.016 0.000 -3.750 0.000 0.000 -3.750 0.000 0.000

Fig.7.5-2: The top of the spreadsheet, shown here in two parts (since it is too wide to
display in one piece), as it might look at this point.
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17

18

19
20
21

22

23
24

25

Fourier transformation

Normalizing the window function is most readily done by using as normalizing factor
the average value of the window function y(t) used. Therefore, modify the instruction
in N12 by dividing it by AVERAGE ($H$12:$H$75) or, equivalently, by $K$44, and simi-
larly correct the instruction in O12. Copy both modifications down to row 75.

Repeat the inverse FFT 0of M12:075. Now you should recover the original function of
A12:C75 without attenuation, because we have effectively convolved it with the digital
equivalent of a Dirac delta function, which is zero everywhere except at one place
(here: = 0), where itis solarge that it has unit area.

We are now ready to explore the consequences of various window func-
tions.

Replace the zeros by onesin H42, H43, H45, and H46.
Apply the Fourier transform to G12:175, and the inverse Fourier transform to M12:075.

You have now simulated opening the monochromator slits (without changing the
amount of light falling on the photodetector, because of the normalization you built in
atstep 17), and you will see the resulting distortion of the output signal, as illustrated
in Fig. 7.5-3.

Figure 7.5-3 also shows the effects of widening the window even further. Verify those
results.

Other window functions, such as triangular windows of variable widths,
can also be used. In fact, there is a whole bevy of window functions available,
often named after their originators or proponents, such as Bartlett,
Hamming, Hanning, Parzen (for the triangular window), and Welch. Some of
these are discussed in Section 12.7 of the book Numerical Recipes (W. H.
Press et al., Cambridge University Press 1986).

Refill H12:H75 with zeros.

Replace the zeros in H41 through H47 by 0.25, 0.5, 0.75, 1, 0.75, 0.5, and 0.25 respec-
tively. This constitutes a triangular window.

Fourier transform G12:175, then inverse Fourier transform M12:075.

We note that the convolution causes a broadening of the original peaks,
reducing their heights and increasing their widths, thereby increasing
their overlap. This smearing effect can be reduced by using a narrower
(and therefore less distorting) window function y(t), or worsened by
making y(t) broader. Incidentally, in this particular example, by using a
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Fig.7.5-3: Distortion resulting from a rectangular window of increasing width.

(a): Original signal; (b): after convolution with a five-point rectangular window func-
tion; (c): after convolution with a nine-point rectangular window function; (d): after
convolution with a 13-point rectangular window function.

rectangular window of 15 or more points, we may even generate phantom
peaks!

While there will be other convolution exercises, we will postpone them
until we have simplified the computation. To that end a simple macro is pro-
vided, called Convolution. For the sake of simplicity it assumes that the
input functions have no imaginary components, and that the same applies
to the resulting output function. Moreover, it does not display any of the
intermediate transforms. These constraints greatly simplify the spread-
sheet, since now only four columns are needed: one for the common time
scale, two for the two real input functions, and one for the result. The macro
handles all mathematical manipulations out-of-sight, but the method
follows the same logic as exercise 7.5-1, and its VBA code is given in section
10.6. You will need this macro for the next few exercises; if it has not yet been
installed on your computer, this is the time to copy it from the disk(ette) into
your spreadsheet module.

For the convenience of the user, the Convolution macro has been written
such as to accept a time scale that can start at any arbitrary value. Of course,
the time increments must still be equidistant, and there must be 2V input
data, where Nis a positive integer subject to the constraint2 < N<10.
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N A e e s B T
1o
2
3
4 |05 - o
5 :
6
o
3 0 2 4 6 t 8
9
10 time X y x*y
11
12 0.000 0.000 0.000 0.000
13 0.125 0.000 0.000 0.000
14 0.250 0.000 0.000 0.001
15 0.375 0.000 0.000 0.002
16 0.500 0.000 0.000 0.006
17 0.625 0.001 0.000 0.014
18 0.750 0.004 0.000 0.031

Fig.7.5-4: The top of the spreadsheet showing a convolution. The original function xis
shown in color, the window function yas open circles, and the convolution x = yas solid
black circles.

Instructions for exercise 7.5-2

Open a new spreadsheet.
In cells A10 through D10 deposit the labels time, X, y, and x*y respectively.
In cells A12:A75 place the times 0 (0.125) 7.875.

In cell B12 deposit the instruction = 0.4*EXP(— ((1.7 — A12)A2)/0.2) + 0.5*
EXP(— ((3.3 —A12)72)/0.2) + 0.3*EXP(— ((5.1 — A12)72)/0.2) or a similar expression.
Copy this instruction down to row 75.

B W N =

5 In C12:C75 deposit the nine-point rectangular window function used in exercise 7.5-1.
Make sure that it is centered around C44, i.e., that its ones are placed in C40:C48.

6 Highlight the area A12:C75, and call the macro Convolution.
7 Theresult x* ywillnow appearin D12:D75.

8 InAl:D8 make a graph of x, y, and x = yversus t. Figure 7.5-4 shows what the top of your
spreadsheet might now look like.
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Fig.7.5-5: Shifting the center of the window function (here a nine-point rectangular
function) off-center causes a time shift of the resulting convolution (solid black circles).

Now, with the macro taking care of the mechanics of convolution, we can
more conveniently explore its properties. First, move the window function y
around on the time axis.

Move the set of nine contiguous 1’s in C12:C75 a few spaces forward or back, and
record the resulting convolution. Remember, the convolution macro does not update
automatically, but must be invoked every time you want it updated.

Also, move it more boldly, i.e., more than a just a few spaces. Figure 7.5-5 shows such a
result.

Clearly, shifting ywith respect to xyields a phase shift of the resulting con-
volution x * y. It is as if the open circles drag the closed circles with them. In
order to avoid such phase shifts we will below only use centered window
functions.

Explore the effect of other window functions, such as the triangular function (see exer-
cise 7.5-1 under instruction 24), a trapezoidal function, a Gaussian, a Lorentzian, or
whatever.

Note that too wide a window function may make the convolution spill over an edge.
You can avoid this by adding zeros to the beginning and end of columns B and C, with
an accompanying extension of the time scale in column A. The total number of points
must remain an integer power of 2, so that it is best in the present example to add 32
zeros at both the beginning and end.
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Deconvolution

Why belabor convolution? Obviously, instruments or methods sometimes
distort what we want to measure, and the answer would seem to be to build
instruments or utilize methods that introduce less distortion. True enough,
but we seldom can wait for the ideal instrument or procedure, and typically
need to work with what is available to us now. Here is where convolution
comes in or, rather, deconvolution.

We will first summarize what we have found so far. Let us assume that we
have some quantity g (such as a spectrum, a chromatogram, or a decay
curve) that we want to measure, with a minimum of distortion. The observa-
tion convolutes this with a response function r, which may be caused by,
e.g., instrumental distortion. Consequently what we measure is the signal s,
which is related to g by

s—qer (7.6-1)

In general, g, r, and s will be functions of wavelength (for a spectrum), of
time (for an audio response, or a fluorescent decay), etc. We measure the
signal s, but we are really interested in the underlying, undistorted quantity
q. We have seen that Fourier transformation converts (7.6-1) into a simple
multiplication,

S=QXR (7.6-2)

where, as before, capital symbols denote the Fourier-transformed quan-
tities, and the sign X stands for multiplication.

Let us assume for the moment that we can measure the instrument
response function r by itself. We certainly can measure the signal s. We then
take their Fourier transforms, which yields R and S. Equation (7.6-2) now
allows us to calculate Q simply as Q= S/ R. From there it is only an inverse
Fourier transformation to calculate g, the quantity of interest, corrected for
distortion! This process is called deconvolution. The same macro that can
perform a convolution can also do the deconvolution. The relevance of
deconvolution to spectrometry is illustrated in W. E. Blass and G. W. Halsey,
Deconvolution of Absorption Spectra, Academic Press 1981, and P A.
Jansson, Deconvolution with Applications in Spectroscopy, Academic Press
1984.

You may think that this sounds too good to be true, and it often is: in prac-
tice it may not always be possible to recover the undistorted signal. But
sometimes we can, and the following exercises will demonstrate under what
conditions this may be the case.
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Instructions for exercise 7.6-1

B W N =

1%, ]

10

Reopen the same spreadsheet used for exercise 7.5-2.
Place the labels time, x *y, y, and x (or, if you prefer, s, r, and q) in cells E10 through H10.
Copy the column starting with A12 to cell E12.

Likewise, copy the data forx *yin column D to the new column E And copy the column
foryfrom Cto G. Do not fill column H.

Highlight the data in columns E through G, and use the macro to deconvolve them.

Ignore for now the input box labeled Adjustable Hanning Window; when it shows, just
enter 0.

In E1:H8 plot the data in columns F through H versus those in column E. You should
obtain a copy of the graph in A1:D8, except that the input and output curves are
exchanged!

Also compute, in column I, the difference between corresponding data (on the same
row) in columns B and H. You may have to multiply the difference by quite alarge
factor to see non-zero numbers.

So far so good: the method works beautifully. Then why the warning on the
previous page? Here is the problem: the presence of noise often makes
deconvolution impractical or even impossible. Again, we will use the
spreadsheet to demonstrate this.

Generate two columns of Gaussian noise of zero average and unit standard deviation,
and in new columns add natimes that noise to both the signal in column F and the
response function in column G. (Of course add noise from a differentset to each
column.) The noise amplitude nais used to control the amount of noise added.

Now increase the value of nafrom, say, IE—12to 1E—6, 1E—3 and 1E — 2, every time
invoking the macro to perform the deconvolution.

As Fig. 7.6-1b shows, deconvolution is extremely sensitive to noise. While
convolution smears out and smoothens the data, deconvolution does the
opposite. Aslong as the noise is very much smaller than the signal, deconvo-
lution works well; with relatively more noise, deconvolution may not be fea-
sible.

Since our deconvolution method is based on Fourier transformation, a
simple method for noise reduction suggests itself: take the Fourier transforms
X-Yand Yofthe noisy functions x* yand y, and filter both (or just Y in case yis
noise-free) by replacing their high-frequency parts by zeros before perform-
ing their division. Here we use a somewhat more gradual high-frequency
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Fig.7.6-1: Deconvolution of x * y with y when both have added Gaussian noise of ampli-
tude na = 0.001 (left) and 0.01 (right) respectively. Colored points: the deconvoluted
data; colored line: the original curve.

cut-off function [0.5+ 0.5 cos(7f/fmax)]", based on the Hanning window
0.5 + 0.5 cos(7f/ fmax), made adjustable with the parameter w so that we can
select the minimum noise reduction needed.

Figure 7.6-3 illustrates some results of such filtering on the data of Fig. 7.6-
1b. As can be seen, the presence of noise now generates oscillations, and fil-
tering these out by increasing w (i.e., by narrowing the frequency range)
introduces considerable distortion. Deconvolution clearly works best for
signals with a very high signal-to-noise ratio.

In order to see what is happening here we go back to the power spectrum.
Figure 7.6-2 shows the power spectra of the original function (the colored
curves in Figs. 7.5-4 and 7.5-5) on two different scales, and the power spec-
trum of the same with added noise as was used in Fig. 7.6-1b. Clearly, when
the noise gets larger, it will obscure all but a few low frequencies, and eventu-
ally these will be overwhelmed as well. At that point, the original signal obvi-
ously cannot be recovered any more by deconvolution.

Keep in mind that, because of the Nyquist criterion, the number of avail-
able frequencies is only half the number of data points. Or, to put it differ-
ently, all frequencies f in the Fourier transform have their negative
counterparts at — f. The largest number you can therefore select for filtering
is halfthe number of data points in the set, and at that point you would filter
out everything!

In order to decide at what frequency to start filtering, we go back to the
power spectrum. Figure 7.6-2 shows the power spectra of the original func-
tion (the colored curves in Figs. 7.5-4 and 7.5-5) on two different scales, and
the power spectrum of the same with added noise as was used in Fig. 7.6-1b.
Clearly, when the noise gets larger, it will obscure all but a few low frequen-
cies, and eventually these will be overwhelmed as well. At that point, the
original signal obviously cannot be recovered any more by deconvolution.

Unfortunately, the boundary between signal and noise is not sharp: there
is signal and noise at all frequencies. The color in Fig. 7.6-2 suggests what
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Fig.7.6-2: The power spectrum % log (Re? + Im?) vs. f of the original spectrum (left) and
that of the same with added Gaussian noise, na= 0.001 (middle panel) or na=0.01
(right). The bottom panels show the same with an enlarged vertical scale. Large solid
circles: the power spectrum; small open circles: the power spectrum of the noise-free
signal. Color is used to indicate those data points that are mostly ‘signal’, while black sig-
nifies mostly ‘noise’. As indicated by a few points in the middle panels, that distinction is

somewhat ambiguous.
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Fig.7.6-3: Deconvolution of the noisy spectrum of Fig. 7.6-1b (with na = 0.01) while fil-
tering out the contributions at the intermediate, Fourier-transformed signal for the top
25 (left panel), 26 (middle), or 28 (right) frequencies. The thin colored line shows the
original, noise-free function.
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Fig.7.6-4.From left to right, the various stages in exercise 7.6-2: the assumed fluores-
cence decay signal x, the assumed laser intensity curve y, the resulting measured signal
x+*y,and the recovered ‘true’ fluorescence decay signal after deconvolution of x* y
with y.

points are predominantly signal or noise, and even that distinction is not
unambiguous. The deconvolution macro is set up to select those contiguous
frequencies where the noise is predominant, and zero out the correspond-
ing contributions before the final inverse Fourier transformation. Other
arrangements, in which, e.g., the ambiguous data are given an intermediate
weight, are of course possible. Here we merely illustrate the principle by
using an easily implemented scheme. The bottom right panel in Fig. 7.6-2
suggests that, in that case, only six (of the total of 32) frequencies are worth
keeping.

Here is another example. In laser-excited fluorescence, the fluorescence
typically decays exponentially, and can then be characterized by a time con-
stant 7. When that time constant is much larger than the length of the laser
pulse, the resulting fluorescent signal is a simple exponential. However,
when ris not much larger than the time the laser light excites the sample, the
resulting signal (assuming the fluorescence is a linear function of excitation
light intensity) will be the convolution of the two. Figure 7.6-4 illustrates this
with a simulated sequence in which the fluorescence signal x is convoluted
with the laser intensity y to generate the measured output x * y. When the
laser intensity is known, the measured signal can be deconvoluted to recre-
ate the underlying fluorescent decay curve. As before, the method can
readily be overwhelmed by the presence of noise. In experiments where sub-
sequent use of deconvolution is anticipated, one should therefore strive for
minimal noise levels in both the signal and the window fraction.

Instructions for exercise 7.6-2

1 Openanew spreadsheet.

2 Incolumn A enter the label time, and values for a time scale of 2Y numbers, such as — 32

(1) 31.
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In column B, below the label x, enter a hypothetical fluorescence decay curve, such as
x=¢e%3for >0 (and x= 0 for <0, x= 0.5 for £= 0).

In column C, under the label y, enter a hypothetical laser intensity curve. In the example
shown in Fig. 7.6-4 we have used the most asymmetric curve shown in Fig. 8.6-3, given
by y=1/(e 3%+ %5,

In column D we then use the macro to compute the convolution x * y.
In column E copy the corresponding contents of column A.
Likewise, in column F copy x * y, and in column G the function y.

Deconvolution of the contents of columns E:G will now generate x.

The take-home message of this section is that, as long as the signals
involved are relatively noise-free, deconvolution is possible. In that case we
can correct our observations for artifacts that are reproducibly measurable
or theoretically predictable.

Summary

Fourier transformation has become a ubiquitous method in chemical meth-
odology and instrumentation. Molecular structures are solved by Fourier
transformation of their X-ray diffractograms, and when you see a scanning
tunneling microgram in which the atoms or molecules look like smooth
balls, you are almost surely looking at a picture that has been filtered by two-
dimensional Fourier transformation. Virtually all modern NMR instruments
are based on Fourier transformation, and the same applies to most infrared
spectrometers. Outside chemistry, Fourier transformation plays a role in
many other areas, e.g., in the solution of partial differential equations, the
design of antennas, and the processing of satellite pictures. We have devoted
this entire chapter to Fourier transformation because of its general impor-
tance to modern instrumental methods of chemical analysis.

The concept of Fourier transformation is the representation of a time-
domain function f(¢) in the frequency domain as F(f), and vice versa. Such
transformations are firmly based on human experience: for instance, we
hear sound as a sequential phenomenon (i.e., a function of time), yet the
brain also analyzes it in terms of pitch, i.e., as a function of frequency. In our
description of Fourier transformation we have kept the mathematics to a
minimum, but instead have used graphics to demonstrate some of its main
principles. Consider this, therefore, as a visual introduction to the topic, asa
means to whet your appetite for it, to demonstrate its power, and to alert you
to its limitations. With a fast and convenient Fourier transform macro, the
method is now so easy to implement that we can use the spreadsheet to
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learn about Fourier transformation and its properties in an intuitive, non-
mathematical way. This can then be followed by a more formal description if
and when we are ready for that.

In using Fourier transformation one should be aware that there are several
conflicting conventions. For example, many engineering texts (as well as the
Numerical Recipes) use conventions for forward and inverse transforms that
are the opposite from those used in mathematics and physics; the latter con-
vention is used here. Likewise, there are different conventions for how to
distribute the scale factors between the forward and inverse transform, and
for whether the time and frequency axes should be centered around zero (as
used here) or start at zero. (The Fourier transform macro will accept either
input format).

When the use of Fourier transformation in data analysis is anticipated, itis
best to design the experiment such that 2V data points will be taken, in order
to take advantage of the speed of 2V-based Fourier transform algorithms.
Also make sure that the data can be represented as a segment of an infinitely
repeating chain, otherwise you may introduce artifacts in the transform. In
practice, the latter requires that the underlying function and its first few
derivatives at the beginning and end of the sample match each other to
within experimental error. For transient phenomena this can most readily
be achieved by taking a sufficiently long sample so that, at the end of the
sampling interval, the signal has fully returned to its baseline value.



CHAPTER 8

In this chapter we will encounter a number of standard mathematical oper-
ations that are conveniently performed and/or illustrated on a spreadsheet.
We start with a brief description of the logic underlying the Goal Seek and
Solver methods of Excel. Then we consider two methods often encountered
in spectroscopy, viz. signal averaging and lock-in amplification.
Subsequently the focus shifts toward numerical methods, such as peak
fitting, integration, differentiation, and interpolation, some of which we
have already encountered in one form or another in the context of least
squares analysis and/or Fourier transformation. Finally we describe some
matrix operations that are easy to perform with Excel.

The Newton-Raphson method

The Newton-Raphson method is often used to solve problems involving a
single variable, and is implemented in Excel as Tools = Goal Seek. The
method requires that a function F(x) can be formulated as an explicit mathe-
matical expression in terms of a variable x. We now want to know for what
value of x the function F(x) has a particular value, A. The Newton—-Raphson
approach then searches for a value of xfor which F(x) is equal to A. Often one
selects A= 0, in which case the corresponding value of x is called a root of
the function F(x).

The Newton-Raphson algorithm must start with a reasonably close first
estimate, x, of the desired value x, for which F(x,) = A. If the function F(x)
were linear between x = xp and x,, we could find x, simply from
dF(x) _ F(x) F(xo)

dx  Xp— X4 or ta= X~ dF(x)/dx

(8.1-1)

In general, of course, F(x) will not be linear in the interval from x, to x,, but
aslong as the non-linearity is not too severe, we can use (8.1-1) as a first step
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F(x)

initial | guess

Fig.8.1-1: The Newton-Raphson algorithm finds the root of an equation through itera-
tion, of which the first three steps are shown here.

in an iterative procedure, obtaining an improved estimate, x;, that we can
then use as the starting point for further refinement, etc. As we move closer
to the value x, the linearity of the function will usually improve (since, over a
sufficiently small interval, most physically well-behaved functions
approach linearity) so that we will quickly home in on the correct answer.
The first three steps in such a sequence are depicted in Fig. 8.1-1.

Equation (8.1-1) contains the derivative dF(x)/dx, but the spreadsheet
does not need to determine that derivative in a formal, mathematical way:
instead, it uses AF(x)/Ax, just as we did in exercise 2.3.

When the initial estimate is far off, the Newton-Raphson method may not
converge; in fact, when the initial value is located at an x-value where F(x)
goes through a minimum or maximum, the denominator in (8.1-1) will
become zero, so that (8.1-1) will place the next iteration at either + « or — <.
Furthermore, the Newton-Raphson algorithm will find only one root at a
time, regardless of how many roots there are. On the other hand, when the
method works, it is usually very efficient and fast. Exercise 8.1 illustrates how
the Newton-Raphson algorithm works.

Instructions for exercise 8.1

1 Openanewspreadsheet.

2 Incolumn A depositx-valuesin the range 0 (0.2) 8.

3 Incolumn B compute sin(x).

4 Plot the sine wave; it will serve you as reference.
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In cell C1 deposit an x-value, say, 2.
In cell D1 deposit = sin(C1).

Select Tools = Goal Seek... and in the Goal Seek dialog box specify to Set cell: D1 To
value: 0 By changing cell: C1 = OK.

8 Note that the cell to be changed should contain a numerical value, not an instruction,

10

11

because the latter will prevent Goal Seek from adjusting the value.
Cell C1 should now show a value close to 7 (= 3.141593), and D1 a value close to 0.

The agreement may not be very good. This will happen when the algorithm does not
use a sufficiently high precision. In that case, click on Tools => Options..., select the
Calculation tab, then in Iteration see what is listed for Maximum Change. If it is some-
thinglike 0.001, add a few zeros behind the decimal point, click on OK, and try

Goal Seek again. You should now get a much closer approximation of the true zero
crossing.

Instead of 2, place other values in C1 and try Goal Seek again. Make a crude map of the
results obtained for a handful of initial values. What do they show?

Non-linear least squares

The operation of the Solver is much harder to illustrate, because it is a multi-
parameter adjustment. Moreover, it is a much more sophisticated routine,
capable of using several different optimizing algorithms. It can even include
constraints on the variables. In the previous chapters we already used Solver
extensively, and we will here only add a few comments about it.

Solver finds a minimum in the sum of the squares of the residuals very
much like precipitation on mountains finds its way to the ocean: it does not
know where to go, but just follows the local slope down. And just as some of it
may end up in alake without outlet to the ocean, Solver may end up inalocal
(rather than the global) minimum. Which way the solution will go depends,
for both running water and non-linear least squares, on the point of depar-
ture. When the initial conditions in Solver are close to the final ones, chances
of getting stuckin alocal minimum are greatly reduced.

The sum of squares of the residuals makes a multi-dimensional surface,
with mountain tops and valleys. The most popular algorithm to slide down
that surface and find its lowest point is associated with the names of
Levenberg and Marquardt, and is described in detail in, e.g., chapter 14 of
the Numerical Recipes.

In Solver you can assign up to two constraints per cell, and up to 100
additional constraints. The constraints are < = (for<), > = (for=), = (for
equality), int (for integer), and bin (for binary). Constraints are useful to
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avoid physically unrealistic solutions, such as those with negative concen-
trations or equilibrium constants.

As a practical matter, with more than a few adjustable parameters it is
often advisable to use Solver incrementally, starting with just a few variables,
and successively adding more of them. In either case you need reasonable
guess values for all parameters. We illustrated this guided, gradual approach
insection4.11.

Unlike water that flows smoothly from high to low, a computer must take
discrete steps. The step size in Solver is determined by the largest adjustable
variables. When the smaller variables are of a quite different magnitude,
such as the K,;’s in many polyprotic acids, use their pK,’s instead as the
adjustable parameters, in order to make a more even playing field. The same
can be achieved when you Use Automatic Scaling in the Solver Options.

Whether Solver performs a weighted or unweighted least-squares optimi-
zation is under full control of the user. In case you want Solver to do a
weighted least squares, simply multiply each of the squares of the residuals
by their individual weights before adding them as SRR, in which case you
minimize the sum of the squares of the weighted residuals. Weighting can be
applied for various reasons: (1) you may know the variances of the various
points, (2) you may want to correct for some earlier transformation, or (3)
you may want to downplay some parts of the data set, and emphasize others.
While the latter is rather arbitrary, it may sometimes be necessary to reduce
the effect of some extreme points which otherwise might overwhelm all
other data.

You can interrupt Solver by pressing the Escape button on your keyboard.
This will abort the calculation being done at that time, and show the previ-
ous result calculated by Solver. Help = Answer Wizard contains a large
number of useful comments and hints concerning Solver, as does the
Answer Wizard Index. Consult these if you want to know more about it.

Solver provides values for the parameters of a non-linear least-squares fit,
but no estimates of their precision. The latter can be obtained with the
macro SolverAid described in chapter 10.

Signal averaging

In pushing an experimental method to its maximum sensitivity, one often
runs into random noise as the limiting factor. When such noise is indeed
random, and is not correlated with the signal, one can sometimes use signal
averaging (also called co-addition) to reduce the effect of the noise. Below
we will illustrate the method, using as our example a set of Gaussian peaks
with added Gaussian noise.
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Instructions for exercise 8.3

1 Open anew spreadsheet.

Inrow 1 depositlabels for nine constants, A through I, plus a noise amplitude na, and
(in cell K1) an offset for plotting the results.

3 Userow 2 for the corresponding numerical values.

4 InA6:A106 deposit the numbers1 (1) 100.

5 InB110:Q210 deposit Gaussian noise (“normal” Distribution) of zero Mean and unit

Standard deviation.

In B6 deposit an expression for the sum of three Gaussians, of the form Aexp[— B
(x—C)?] + Dexp[— E(x— F)?] + Gexp[— H(x—I)?], and to this add some noise ampli-
tude natimes the Gaussian noise stored in cell B110.

7 Copy theinstruction from B6 to the entire block B6:Q106.
8 In S6 deposit the instruction = (B6 + C6 + D6 + E6)/4 + $K$2, where $K$2 contains the

10

11

12

offset constant. Copy this instruction to all cells in S6:S106.

Similarly, in columnsT, U, and V compute the averages of columns F through 1, J
through M, and N through Q respectively, plus the same offset.

Likewise, in column X, calculate the average of columns S through'V, again together
with the offset $K$2.

In column Z calculate the noise-free function Aexp[— B (x — C)?] + Dexp[— E (x — F)?]
+ Gexp[— H(x— 1)?], to which you add an offset, such as + 3*$K$2.

Plot B6:B106, S6:5106, X6:X106, and Z6:2106 versus A6:A106 to display, in sequence, a
noisy curve, the average of four or sixteen of such curves, and the original, noise-free
function. Figure 8.3-1 shows such a graph.

At best, signal averaging yields an improvement of the signal-to-noise
ratio proportional to VN, where N is the number of signals averaged.
Consequently, the method is rather inefficient and time-consuming, except
when the entire curve can be obtained in a very short time, as with fluores-
cence transients following a short laser pulse.

Successful signal averaging also requires that the experimental conditions
are very reproducible. When some measurement parameters experience
appreciable drift from one sample to the next, averaging them may not lead
to anyimprovement in the signal-to-noise ratio.
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Fig.8.3-1, from top to bottom: A simulated sample with noise, the average of four and
sixteen such samples, and the noise-free signal.

Lock-in amplification

The terms lock-in amplification and synchronous detection describe a
correlation method commonly used in spectrometry. It requires that the
light source be modulated at a given, known frequency. The signal is then
analyzed for the component of the same frequency and the same phase, or
with a fixed phase shift. In this way, random fluctuations, even those at the
same measurement frequency, will be attenuated, because random fluctua-
tions will also be random with respect to the phase of the signal source.
Lock-in amplification is also used to distinguish, say, atomic absorption
from atomic emission, since only the absorption signal will be encoded by
modulating the amplitude of the external light source.

Lock-in amplification can be understood mathematically in terms of the
multiplication of a sine wave and a square wave. Below we will use a graphi-
cal approach, which illustrates rather than derives the result.
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Instructions for exercise 8.4

B2 W N =

(%,

Open a new spreadsheet.
Inrow 1 depositlabels for 7, phase angle ¢, offset ¢, noise amplitude na, and average.
Use A2 through C2 for associated numerical values.

In row 4 deposit labels for x, ref. (for the reference sine wave), sqw(x) (where sqw is
shorthand for square wave), signal, and rect.signal.

Fill A6:A406 with 0 (0.01) 4 times , using 7 as stored in $A$2.

6 InB6:B406 compute the sine of the angle listed in column A. This will simulate the ref-

erence signal.

In C6 calculate the corresponding reference square wave. Conceptually the simplest
way to do so would be with = B6/ABS(B6), but this may cause trouble at the zero-
crossings of the sine wave. It is therefore preferable to use = IF(ABS(B6)

<1E —10,0,B6/ABS(B6)) or = IF(B6 > 1E —10,1,IF(B6 < — 1E — 10, — 1,0)) instead.
Copy this down to row 406.

8 Incolumn D deposit Gaussian noise.

9 In column E compute the simulated signal as sin(x + ¢) + & (wWhere ¢ is the phase angle

10

11

12
13

in $B$2 and ¢ the offset in $C$2) together with some added noise (of amplitude con-
trolled by nain $D$2).

In row F calculate the synchronouslyrectified signal as the product of the terms in
columns CandE.

In cell D2 compute the average of the synchronously rectified signal as =
SUM (F6:F406)/400.

Make a graph showing these various signals, such as Fig. 8.4-1.

Vary the phase angle ¢, the offset ¢, and the noise amplitude na, and record the result-
ing changes in the average, in cell E2.

You will notice that the average is maintained reasonably well even for a
signal-to-noise ratio of 1. When the averaging is done over a far larger
number of cycles, synchronous detection can pull otherwise invisible
signals out of noise. The average is directly proportional to the cosine of the
phase angle ¢ between the signal and the reference.

Typical analytical applications of lock-in amplification occur in atomic
absorption spectrometry, where it lets us discriminate between emission
and absorption at the very same wavelength, and in classical infrared
spectrometry, where the light sources are of low intensity, the detectors have
low sensitivity, and all surrounding materials radiate as well. By mechani-
cally chopping (i.e., interrupting) the beam from the light source at, e.g., 13
Hz, and by using a reference signal tied to the rotating chopper blades, an
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Fig.8.4-1, from top to bottom: A reference sine wave, the same converted into a square
wave, a noisy sine wave signal, and the same as multiplied by the square wave. In this
example, the average value of the bottom curve (displayed in color) is within 3% of its
value in the absence of noise.

infrared spectrometer ignores the heat emitted by its human operator,
unless that operator can nimbly dance back and forth at 13 Hz, while also
staying in phase with the chopper blades.

Data smoothing

‘Noisy’ experimental data sometimes need to be smoothed. In this context,
smoothing is nof meant to be the drawing of a continuous curve, with con-
tinuous derivatives, through all available points, as can be done in Excel
simply by double-clicking on a curve and using the command sequence
Format Data Series = Patterns ® Smoothed Line. That method works well
for presenting an inherently smooth theoretical curve based on relatively
few data points, see Figs. 1.3-1 and 1.3-2, but is of little use for noisy experi-
mental data, because the curve goes through all points, and thereby tends to
emphasize the noise.

Instead, we mean here the use of experimental data that can be expected
to lie on a smooth curve but fail to do so as the result of measurement uncer-
tainties. Whenever the data are equidistant (i.e., taken at constant incre-
ments of the independent variable) and the errors are random and follow a
single Gaussian distribution, the least-squares method is appropriate, con-
venient, and readily implemented on a spreadsheet. In section 3.3 we
already encountered this procedure, which is based on least-squares fitting
of the data to a polynomial, and uses so-called convoluting integers. This
method is, in fact, quite old, and goes back to work by Sheppard (Proc. 5™
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Congress of Math., Cambridge (1912) Il p. 348; Proc. London Math. Soc. (2) 13
(1914) 97) and Sherriff (Proc. Roy. Soc. Edinburgh 40 (1920) 112), which soon
thereafter found its way into the well-known textbook on numerical analysis
by E. Whittaker and G. Robinson, The Calculus of Observations, a Treatise on
Numerical Mathematics, Blackie & Sons, 2nd ed. (1924) p. 290. By and large,
however, the community of analytical chemists only became aware of this
method more than half a century later, through a paper by Savitzky & Golay
(Anal. Chem. 36 (1964) 1627).

Even though least-squares methods are sometimes considered to be
‘objective’, there are still two subjective choices to be made in this applica-
tion of data fitting to a moving polynomial: what length of polynomial to
use, and what polynomial order. Typically, the longer the polynomial, and
the lower its order, the more smoothing is obtained, but the larger is the
risk of introducing systematic distortion. For example, the Savitzky-Golay
tables for smoothing allow data sets up to 25 points long (only odd
numbers of data points are used, so that the smoothed data can replace
the noisy ones) and offer several choices for polynomial order, such as
quadratic & cubic or quartic & quintic. Sherriff already presented convo-
luting integers for longer data sets as well as for higher-order polynomials.

The tables of convoluting integers listed by Savitzky and Golay contained
alarge number of errors, and were subsequently corrected by Steinier et al.
(Anal. Chem. 44 (1972) 1906). Subsequently, Madden (Anal. Chem. 50 (1978)
1383) gave simple formulas for them, so that these numbers are now readily
calculated on a computer. Recently, Barak (Anal. Chem. 67 (1995) 2758)
extended the method by letting the program self-optimize the polynomial
order, so that the user only needs to select the length (i.e., the number of
data points) of the moving polynomial, and specify the upper limit of the
polynomial order. This program, kindly provided by Prof. Barak, is described
insection 10.9.

Below we will use a simple example to explain the principle of the stan-
dard, non-self-optimizing method. Say that we have five data pairs x,y such
that the x-values are equidistant, with a nearest-neighbor distance 8. For
any odd-numbered set of equidistant data (such as the five considered
here), the x-value in the middle of the set is the average & of the x-values in
the set. We now start by subtracting x from all five x-values, so that the new
x-values willbe -2, -85, 0, §, and 245.

Now we are ready to use the least-squares analysis. In our example we will
fit the five data pairs (shifted as just explained in the x-direction by the
amount —% ) to a parabola, i.e., to y= ay + a;x + a,x>. The general formulas
for doing that were given in section 3.2, and are here repeated as:

> 28 Xy
=23 ¥ Dxy|[D 8.5-1)
> Xx Dy
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a=>F Dxy Dx|[D (8.5-2)
¥ Xy N
2y 2 X

a=>xy 22 Dx|[D (8.5-3)
Sy Sx N
PEIEDT DY

D= 2"3 Exz Ex (8.5-4)
>xF Dx N

While these equations look rather formidable, they are readily simplified
for our set of equidistant data centered around x = 0 (because we subtracted
x). First we consider the expression for Din (8.5-4). It only contains terms in
x, and several of these are zero. Specifically, since the data are equidistant in
x, all sums of odd powers of x must be zero, i.e.,3x=—26—-8+0+8+28=0
and 33 = (—28)% + (— 8)% + (8)% + (26)3 = 0. Furthermore, since we know the
x-values (they are —25, — 3§, 0, §, and 26), we can evaluate the remaining
sumsas 3x* = (—28)*+ (= O)*+ (5)*+ (28)*= (16 + 1 + 1 + 16) 64 =345% 32
=(—282%+(— 82+ (8% +(28)>=(4+1+1+4)8>°=108% and N=5. The
entire expression for D therefore reduces to (348% X (108%) X (5) — (108%) X
(108%) X (108%) = (1700 — 1000) 8% = 70085:

3458* 0 1082
D=| 0 1082 0 |=7008° (8.5-5)
108% 0 5
Nowlook at the expression for g, in (8.5-1). It has the same type of terms as
D, plus some terms with y, but the latter contain y only to unit power. As
before, Sx=0, 3x% =0, Sx*=34564, and 3x® = 106 2. That leaves three terms,
in the right-most column of (8.5-1), which we evaluate as follows: 2y = y_, +
Vot Yo+ Vit ¥, 2xy=(=2y,—yq + 31 +2y,) X8, and 2y = 4y, + ¥ + n
+ 4y,) X 8%. Thus, (8.5-1) becomes
348 0 Ay + Y+ +4y,) 8%
ap=| 0 108 (—yo—ya+y+y)d 7006°

1082 0 Yotyat+tnty
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_ (348 (108%) (Yo + ya+ Yo+ 1+ 12) — (A + yoy + 31 + 43289 (1089 (1087

70082

_ (— 60y, + 240y, + 340y, + 240y, — 60y5) 8°
7008°

_ 3y_2 + 12y_1 + 17y0 + 12y1 - 3)/2
35

(8.5-6)

Consequently we have simplified the entire expression for g, to a set of
integer coefficients with which to multiply the various y-values. Now, when
we need to smooth the data set, this is all we need. We simply replace the
y-value at the central; point, y,, by the value calculated at x= x, for the
parabola, i.e., by deqc = o + a1 Xp + GpXo> = g since x5 = 0.

The same method that reduces (8.5-1) to (8.5-6) can be used to identify a;
and a,. For example, we can find the value of the first derivative of the func-
tion as (dyeae/dX)y—0 = (a1 + @2X)x—o = a1, and its second derivative as
(dzycalc/dxz)xzo =2ap.

Consequently there are separate tables of convoluting integers for
smoothing to a quadratic, for finding the first derivative of a quadratic, and
for finding its second derivative, all with different entries for data sets con-
taining 5, 7, 9, 11, etc. points. Once the required value is computed, we drop
the first point of the data set, add a new one (i.e., we slide the five-point
sample past the original data set) and start again, using the same coeffi-
cients. This makes the method ideally suited for spreadsheet use. Note that,
in all these applications, we do not need the value of x. However, there are
also some cases where X is required, as when we use this method for interpo-
lation, see section 10.2.

Now that we understand how the method works, at least in principle, we
will take a sine wave, add Gaussian noise, and explore the result of least-
squares smoothing.

Instructions for exercise 8.5

1 Openanewspreadsheet.

2 Inrow 1 enter labels for the increment Ax, and the noise amplitude na.

3 Inrow 2 enter corresponding numbers, e.g., 0.02*Pi() and 0.2.

4 Inrow 4 depositlabels for x, sin(x), noise, and the sum s + n of the sine wave and na

times the noise.

5 Startingin cell A6 calculate x = 0 (Ax) 7. For Ax = 0.027 the column will then extend to

All7.
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In column B compute sin(x), in C deposit ‘normal’ noise of unit standard deviation and
zero mean, and in D calculate sin(x) plus the product of the noise amplitude (in B2)
and the noise (in C6:C117).

First we will use a five-point quadratic as our moving polynomial. For this, the tables
list the convoluting integers as —3, 12,17, 12, and —3, and the normalizing factor as 35,
see (8.5-6). In cell E8 therefore deposit the instruction = (= 3*D6 + 12*D7 + 17*D8 +
12*D9 —3*D10)/35, and copy this down to E115. We start in cell E8, and stop in cell
E115, because a five-point polynomial needs two points before, and two points past,
the midpoint where it computes its result.

In column F we will use a 15-point quadratic, for which the convoluting integers are
—78,—13,42,87,122,147,162,167, 162, 147,122,87, 42, —13, —78, with anormalizing
factor of 143. We therefore deposit the instruction = (= 78*D6 — 13*D7 + 42*D8 +
87*D9 + 122*D10 + 147*D11 + 162*D12 + 167*D13 + 162*D14 + 147*D15 + 122*D16 +
87*D17 +42*D18 —13*D19 — 78*D20) /143 in cell F13. Copy this down to cell 110. Note
that, for a 15-point polynomial, we now must leave 7 points free on either side.

Likewise, in column G, use a 25-point quadratic, for which the convoluting integers are
—253,—138, —33,62,147,222,287,342,387,422,447,462,467,462, 447,422,387, 342,
287,222,147,62, —33, —138, —253, while the corresponding normalizing factor is
5175. Place the corresponding instruction = (—253* D6 — 138*D7— ~*—253*D30) /5175
in G18, then copy it down to cell 105, since we mustleave 12 points free on either side
for a 25-point polynomial.

Plot graphs of B, D, E, E and G versus A, or combine them in one graph by giving the
datain columnsE, F and G an offset of, say, + 1, + 2, and + 3 respectively, together with
reference curves which reproduce the data in B with the same offsets.

Figure 8.5-1 illustrates what you might see using separate plots. As it happens in this
example, the initial noise is mostly positive. Consequently, the smoothed curves start
too high. Remember: even perfectly random noise only averages out to zero for a suffi-
cientlylarge set. Asyou can see here, even a 25-point data set is clearly not large
enough. Of course, your noise data will be different.

Of the various methods described here, signal averaging does not intro-
duce distortion (as long as the instrumental settings don’t drift) and requires
no assumptions as to the nature of the noise. On the other hand, itis a rather
time-consuming way to remove noise, since each point is averaged individ-
ually. Least-squares smoothing of equidistant data assumes a relation
between neighboring data, and can therefore be much faster than signal
averaging, at the risk of distorting the underlying signal.

As described in chapter 7, Fourier transformation can provide another
way to smooth these equidistant data, by first transforming the data, then
setting the predominantly noise-related frequencies to zero, followed by
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Fig.8.5-1, from top to bottom: A sine wave with Gaussian noise (black circles), and the
same after filtering with a 5-, 15-, and 25-point quadratic polynomial. The noise-free
sine wave is shown in color.
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inverse transformation. In the above example, Fourier transformation
would be very easy indeed, because the noise-free signal is a single sine
wave. An advantage of this approach is that no points are lost at the edges; a
disadvantage (at least with the FFT macro provided here) is that the number
of data points must be an integer power of 2, e.g., 128.

Peak fitting

Many spectrometric peaks can be described reasonably well in terms of one
of two model peak shapes, those of a Gaussian and of a Lorentzian (or
Cauchy) peak. Leaving out the normalizing factors as immaterial in the
present context, the Gaussian peak can be described as

_ _ 2
x—B) ] 8.6-1)

y=A exp[?

where A is the amplitude, B specifies the location of the peak center, and C
controls the peak width. The full width at half height of the peak is given by
wy = 2CVIn2 =~ 1.665, C, and the peak area by ACV 7~ 1.7725 AC.

Likewise we can write the Lorentzian peak shape as

A

1+ @x- B?/C? (8.6-2)

y
for which we find the peak height A, the center of the peak at x = B, the full
peak width at halfheightas wy, = 2C, and the peak area as wAC.

Lorentzians are much wider at their base than Gaussian peaks of the same
area and height. Mixtures of them can be used to obtain a single peak with
variable profile, such as the weighted sum of a Gaussian and a Lorentzian,

- (x— B)? + Q1-HA
Cc? 1+ (x— B)?/C?

y=fA exp[ (8.6-3)
where the weighting factor f is an additional, adjustable variable with a
value ranging from 0 to 1. Alternatively, one can use a weighted product of a
Gaussian and a Lorentzian. Other combinations are also possible; e.g., in the
theory of absorption of a Doppler-broadened line one encounters the con-
volution of a Gaussian and a Lorentzian.

Instructions for exercise 8.6

1 Openanewspreadsheet.

2 Enterlabels for A, B, Cand area in row 1, and enter corresponding values in row 2, such

asA=1,B=5,andC=1.
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Inrow 4 deposit the column headings x and Gaussian.
In A6:A106 place the numbers 0 (0.1) 10.
In column B calculate a Gaussian according to (8.6-1).

In cell D2 calculate the area as = 0.1*SUM (B6:B106), and compare your answer with
the theoretical result ACV 7~ 1.7725 AC.

Use two cells, A6 and B6, to determine the half-width w1, using Goal Seek. First deposit
the value 4.5in A6, call Tools = Goal Seek, then Set cell B6 To value 0.5 By changing cell
A6.You will find x = 4.167445 (had you started elsewhere, you might have found the
othervalue, x = 5.832555) from which the half-width follows as 2 X (5 — 4.167445) or

2 X (5.832555 — 5) =1.6651.

8 In C6:C106 calculate a Lorentzian according to (8.6-2).

10

11

12

Itis easy to verify that wy, = 2Cby inspection, since that implies that the function has
thevalue 0.5 atboth B— Cand B+ C.

Itis not so easy to determine its area: merely determining 0.1 X SUM (C6:C106) comes
up far short of 7= 3.1416.

Make a graph of B6:C106 vs. A6:A106. This immediately shows why the area is not cal-
culated correctly: the Lorentzian peak has such wide tails that summation over merely
five half-widths is not enough.

Therefore extend the table to row 956, and then determine half the area as

0.1 X SUM(C56:C1056). This time the answer is closer, 1.5608, but it is still not the
1.5708 one expects. Even going out to 100 half-widths is not quite enough for the
numerical integration of a Lorentzian!

Another expression with variable band shape is

A
T {l+@°- D(x- B2/ cHe

y (8.6-4)

1.2

y
0.8 1

04 |

0 5 X 10

Fig.8.6-1: A Gaussian curve (colored) and a Lorentzian curve (black), eachwithA=1,
B=5,and C=1.
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Fig. 8.6-2: Curves with adjustable band shape according to 8.6-4, computed with
A=C=1,B=5,anda=1 X 107 (black curve), 0.5 (colored), 1.0 (black), and 1.9
(colored) respectively. For reference, a Gaussian is shown as a thin black curve inside the
others (close to the curve for a= 1 X 107%).

where 0 <a< 2. This curve is Lorentzian for a= 1, and is even wider at the
base than a Lorentzian for 1 < a < 2. It has a half-width of 2C, and an area of
ACV 7 T(1/a—1/2) 1122 —1T(1/a)}. For a=2 the area under the curve is
infinite. Figure 8.6-2 shows this function for various values of a.

Not all experimental peaks are symmetrical around their center, and there
are various schemes to generate skewed curves to fit such asymmetric
experimental data. For example, Losev (Applied Spectrosc. 48 (1994) 1289)
used a function of the form

A
~expl— alx— 0] + exp[b(x — c)]

y (8.6-5)

where A, a, b, and care positive numbers. The parameters Aand cdetermine
the height and x-position of the peak respectively, while a and b control its
shape. The peak has a maximum of height a¥@*? pb/(@*b/(q+ p), at a dis-
tance [In(a/b)]/(a+ b) from ¢, and an area wA/{(a+ b) cos[/4m (a— b)/
(a+ b)1}. Figure 8.6-3 shows what it can look like. By exchanging the values of
aand bthe curves in Fig. 8.6-3 can be skewed towards the other side.

Figure 8.6-4 illustrates a curve calculated with another expression,

In[1+ s(x— B)/C
s

2
y=Aexp[—{ ]} ] forl1+s(x—B)/C>0
(8.6-6)

y=0 for1+s(x—B)/C=0

which has a skewness parameter s, where the sign of s determines in which
direction the curve is stretched. When s tends to 0, the curve approaches a
Gaussian. (Setting s equal to 0 will lead to the well-known problems
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Fig. 8.6-3: Curves with adjustable asymmetry according to 8.6-5, computed withA=1,
c=>5,and a= b= 2 (thickblack curve), a= 3, b=1 (colored curve),and a= 3.5, b= 0.5
(thin black curve).

0 5 X 10

Fig.8.6-4: A skewed ‘Gaussian’ curve with s=— 1.5 (colored) together with the
symmetrical Gaussian and Lorentzian curves (black), allwithA=1,B=5,C=1.

associated with dividing zero by zero; we therefore use the series expansion
In [1+ s(x— B)/C] = s(x— B)/C—% [s(x— B)/C]*> + - to obtain the limit for s
— 0 as y=Aexpl(x— B)?/C?], which is indeed Gaussian.) For — 2 < s< 2 the
area under this curve is finite, and is given by (AC V) exp[s®/(41n2)].

For more information on fitting model expressions to peak-shaped
experimental curves you might want to consult the review by Fraser &
Suzuki in J. A. Blackburn, ed., Spectral Analysis: Methods and Techniques,
Dekker, 1970, from which some of the above discussion was abstracted.
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Integration

Integration of peak areas is often used to obtain precise values for the con-
centrations of sample components. Many elegant methods have been
devised to integrate analytical functions, but few of these are readily trans-
ferable to discrete, experimental data points. Fortunately, integration by
summation of the areas of trapezoids of height (y;+ y;+1)/2 times width
(x;+1 — x;) often suffices, and is readily implemented on a spreadsheet. When
the signal is available in Fourier-transformed form, integration can be
implemented by multiplying all components of the Fourier transform by jo
before inverse transformation.

We will now use the last part of spreadsheet exercise 6.7 to illustrate some
ofthe practical problems of integration. In exercise 6.7 we computed the area
A, retention time #,, and standard deviation o, of a simulated chromato-
graphic peak, based on (6.7-1) through (6.7-3). For = 0.2, the simulated
peak had its maximum value at a retention time of about 120, and its long-
time tail (where the response still made a significant contribution to the inte-
gral) reached well beyond ¢=200. Since the calculation did not extend
beyond = 200, some of that tail was missed, and the integral was too low. As
a consequence, we found .= 119.90 instead of 120. Once we understand the
origin of this problem, its possible remedy is clear: extend the computation
to larger values of 7. Indeed, by extending the spreadsheet of Fig. 6.5-1 to row
306 (i.e., to r=200) we obtain A = 1.00, £, = 120.00, uf, = 24.00, o, = 21.90, and
N,=23.99. Even longer times t would be needed for, say, u = 0.1, where the
peak maximum (at £.= 240) already fell outside the earlier-used time range.

For large values of u we encountered another difficulty: the number of
simulated points was too small to use a simple trapezoidal integration. For
example, at = 0.9, we had only about ten points that make a significant
contribution to the peak. Even though this was a simulation, we could not
increase the point density, because =1 is the smallest step size of the
model; in many practical integrations, the step size may be limited by
instrumental factors and likewise be fixed. In computing the standard devi-
ation this difficulty was exacerbated because we calculated o, as the differ-
ence between two larger numbers.

When we have too few points to justify linearizing the function between
adjacent points (as the trapezoidal integration does) we can use an algo-
rithm based on a higher-order polynomial, which thereby can more faith-
fully represent the curvature of the function between adjacent
measurement points. The Newton-Cotes method does just that for equidis-
tant points, and is a moving polynomial method with fixed coeflicients, just
as the Savitzky-Golay method used for smoothing and differentation dis-
cussed in sections 8.5 and 8.8. For example, the formula for the area under
the curve between x; and x,,, is
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Table 8.7-1: The coefficients for Newton—Cotes integration of equidistant

points.

Order n Coefficients c; Denominator

1 1,1 Sc=2

2 1,4,1 6

3 1,3,3,1 8

4 7,32,12,32,7 90

5 19,75, 50, 50, 75,19 288

6 41,216,27,272,27,216,41 840

7 751,3577,1323, 2989, 2989, 1323,3577, 751 17280

8 989, 5888, —928, 10496, —4540, 10496, —928,5888,989 28350

nl +1 +1

f fdx=nd D cif(x;) / e (8.7-1)
i=1 i=1

1

where the function f(x) is defined at n + 1 equidistant x-values in terms of
the coefficients c;, and § is the spacing of adjacent points on the x-axis. For
example, the integral for a five-point fit (so that n =5 — 1 = 4) of data with an
x-spacing of0.11is

f Fdx=4X0.1X [7f(x)) + 32f(xs) + 12f(x3) + 32f(xg) +7f(x5)]/90 (8.7-2)

where the coefficients are 7, 32, 12, 32, and 7, with a sum of
7+32+ 12+ 32+ 7=290.This is a very convenient form for spreadsheet use.
Other Newton—-Cotes coeflicients are listed in Table 8.7-1. Exercise 8.7 illus-
trates its application.

Note that the trapezoidal rule is the first-order member of this method. In
the above example, fourth-order Newton-Cotes integration for u=0.9
yields A=1.00, t.=26.67, ut,=24.00, 0,=1.72, and N,=24.00. In fact,
almost equally accurate results can already be obtained with a second-order
Newton—Cotes fit.

Instructions for exercise 8.7

1 Openanew spreadsheet.

2 InAl enter thelabel k=, in B1 a value such as 0.3, in C1 thelabel 6=, and in D1 a corre-
sponding numerical value, e.g., 1.

3 Inrow 3 enter the labels t, exp, integral, n = 1, and n = 4 respectively.
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In A5 deposit a zero, in A6 the instruction =A5 + $D$1, in B5 the instruction
=EXP($B$1*A5), and in B6 the instruction =EXP($B$1*A6).

In C6 compute the integral, =(1/$B$1)*(B6-$B$5).
In D6 integrate by the trapezoidal rule as =D5 + (A6 — A5)*(B6 + B5)/2.
Copy the instructions to cells in A6:D6 down to row 25.

Now go to E9 and deposit there the instruction =4*$D$1*(7*B5 + 32*B6
+12*B7 + 32*B8 + 7*B9)/90.

In cell E13 deposit the instruction =E9 + 4*$D$1*(7*B9 +32*B10 + 12*B11
+32*B12 + 7*B13)/90, then copy this instruction to cells E17, E21, and E25.

Compare the results of the integration in D25 and E25 with the exact result in C25.

Change the value of §in D1 to 0.1, and verify that result of the integration remains
correct upon changing the x-spacing.

Change the value of §to 10, in order to see the limitations of approximating an expo-

nential in terms of a fourth-order polynomial y = ay + a;x + ax? + asx® + a,x*.

A third common source of difficulties in numerical integrations is trunca-
tion error, observed when parameters are carried through the computation
to an insufficient number of digits. Fortunately, the automatic double preci-
sion of the spreadsheet greatly reduces the importance of truncation errors,
so that they only seldom need to be considered. When the integration is per-
formed off-screen, in a function or in a macro, the computation should be
specified to use double precision.

Integration is relatively insensitive to noise, but is very sensitive to bias or
offset, such as may result from an incorrect zero setting of the measuring
instrument, or from some other phenomenon affecting the baseline. That
integration is relatively insensitive to noise is readily seen when we consider
noise in terms of its Fourier-analyzed components, i.e.,

f[F(t) + noise + offset]d¢ = f[F(t) +> sin(wt + @)+ cos(wt + ¢)+ Cldt

1 1 .
—f[F(t)dt—; gcos(wwr ¢)+; gsm(wﬁ- o)+C|dt (8.7-3)

where we have replaced the offset by a constant, C, and neglected the inte-
gration constants of the noise components sin(wf+ ¢) and cos (wt+ ¢),
assuming that the noise averages out to zero. We see from (8.7-3) that the
effect of noise on the integral is attenuated by a factor w, the angular fre-
quency of that particular noise component. Consequently, the higher the
noise frequency with respect to the dominant frequencies in the function
F(t), the less it will affect the integral. For most experimental data encoun-
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tered in chemical analysis, the noise is mostly at frequencies higher than the
dominant frequencies of the signal, in which case integration reduces their
relative importance. However, we have no such luck with baseline correc-
tions, instrumental offset and baseline drift, and so-called “pink noise”, all of
which typically occur at frequencies below those of the signal. These often
contribute to the integral in direct proportion to the integration interval,
even when parts of that interval may not contain much signal. Therefore the
integration interval is often taken as small as possible, although this might
introduce systematic errors in functions with a ‘wide footprint’, such as
Lorentzian peaks, see the top panel in Fig. 3.3-2.

Even more severe problems arise when we need to integrate areas under
overlapping peaks. In that case, it is often not the mechanics of integration
that limit the reliability of the results, but the applicability of models that
describe the underlying peak shapes, see section 8.6. On the other hand,
separating adjacent integration domains by using as domain boundary the
minimum in a saddle point between two partially overlapping peaks, can
lead to serious systematic errors in both integrals.

Differentiation

Differentiation is the counterpoint of integration: it is less sensitive to drift
and offset at frequencies below those of the signal, but is more strongly
affected by noise at frequencies above those of the signal itself. This follows
directly from the model used in section 8.6, because

d . _d ,
P [F(t) + noise + offset] = dt[F(t) +§ sin(wt + (p)+2 cos(wt+ @)+ c]

= % + wg cos(wt+ ¢)— wg sin(wt+¢) (8.8-1)
where the effect of the constant offset has disappeared (because dC/d¢=0)
but that of the various noise components is magnified by the multipliers w.
As a consequence, differentiation of experimental data must usually be
combined with noise filtering, and then suffers from the signal distortion
resulting from such filtering.

The Savitzky—Golay method combines filtering with single or multiple
differentiation in one operation. Moreover, as we have already seen in
section 8.5, it is very convenient for spreadsheet use. In the spreadsheet
exercise we will differentiate a noisy sine wave and compare the result with
its analytical derivative, a cosine. Then we will compute the second deriva-
tive, and again compare the result with the theoretical second derivative, an
inverted sine wave. We could also compute that second derivative stepwise,
as the derivative of the derivative, but the present route is simpler and loses
fewer points at the edges.
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Instructions for exercise 8.8

1
2
3
4

10

11

Open a new spreadsheet.
Inrow 1 enter labels for the increment Ax, and for the noise amplitude na.
In row 2 enter corresponding numbers, e.g., 0.027rand 0.

Inrow 4 depositlabels for x, sin(x), cos(x), — sin(x), noise, the sum s + n of the sine wave
and the noise, the first derivative, and the second derivative. (When you try to enter
—sin(x), Excel will interpret this as anumber. In order to make it alabel, highlight the
cell, and use Format = Cells ® Number = Text, or precede the instruction by an apos-
trophe.)

In cells A6:A117 calculate x = 0 (increment ) 6.974.

In columns B through D compute sin(x), cos(x) and — sin(x), in column E deposit
‘normal’ noise of unit standard deviation and zero mean, and in F calculate sin(x) plus
the product of the noise amplitude (in B2) and the noise (in E6:E117).

For the first derivative, using a five-point quadratic as our moving polynomial, the
tables list the convoluting integers as — 2, — 1, 0, 1, and 2, and the normalizing factor as
10 times the increment Ax. In cell G8 therefore deposit the instruction = (— 2*F6—F7

+ F9 + 2*F10)/(10*$B$2), and copy this down to G115.

For a second derivative, calculated using a five-point quadratic, we have the convolut-
ingintegers 2, —1, —2, — 1, 2, with anormalizing factor 7(Ax)2. Therefore, in cell H8,
use = (2*F6 — F7 — 2*F8 — F9 + 2*F10)/ (7*$B$2*$B$2) and copy this instruction down
to H115.

Plot rows D through H versus A.

Figure 8.8-1 illustrates that the second derivative will be much noisier than the first,
which in turn is much noisier than the data set in column D.

The noise can be reduced by using a longer polynomial, such as a 15-point or even a
25-point polynomial. The filtering is stronger, but artificial waves appear, with a period
of the polynomial length, as illustrated in Fig. 8.8-2.

As can be seen in Fig. 8.8-1, a hardly noticeable amount of noise in a func-
tion can lead to quite dramatic fluctuations in its second derivative.

When the experimental data are not equidistant, a moving polynomial fit
can still be used, but the convenience of the Savitzky—Golay method is lost.
In that case you may have to write a macro to fit a given data set to a poly-
nomial, and then change the cell addresses to make the polynomial move
along the curve. Consult chapter 10 in case you want to write your own
macros.

In chapter 7 we saw that Fourier transformation can also be used to differ-
entiate data. Just as the Savitzky—Golay method, Fourier transformation
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Fig.8.8-1: A sine wave with added noise (colored circles), its first derivative (black
circles) and its second derivative (black triangles), calculated using a five-point qua-
dratic. Noise amplitude used, from top to bottom: 0, 0.0003, 0.001, and 0.003.
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Fig.8.8-2: A sine wave with added noise (colored circles), its first derivative (black
circles) and its second derivative (black triangles), calculated using a 15-point qua-
dratic. Noise amplitude used, from top to bottom: 0.003, 0.01, 0.03, and 0.10.
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needs equidistant data. Moreover, the FFT routines provided require that
the number of data points be an integer power of 2, and that the two ends
match in their values and derivatives. When those additional requirements
are met, FFT is a very powerful and efficient method, which provides com-
plete control over the noise filtering while differentiating. Moreover, with
FTT one does notlose any points near the edges of the data set.

However, no matter what method you will use, when you anticipate
having to differentiate experimental data, make sure that they have minimal
noise to start with, because differentiation always enhances noise, and all
noise reduction methods introduce distortion, which you will want to keep
to aminimum.

Semi-integration and semi-differentiation

As our final example we will here describe a rather specialized method
useful in problems involving signal, heat, and mass transport, insofar as
these can be described by a partial differential equation of the type
aylat= ad*yl 9x* where tis time, xis distance, and ais a constant. Depending
on the field, such equations are known as the telegraphers equation in com-
munication theory (where yis voltage or current, and a is the product of the
distributed resistance and the distributed capacitance along a transmission
line), the equation for heat conduction in physics (where y and a represent
temperature and thermal conductivity respectively), or Fick’s law in chem-
istry and biology (where y stands for concentration, and a for diffusion
coefficient). Here we will specifically apply this method to planar diffusion
of electroactive species in solution.

In many electroanalytical experiments, diffusion is essentially planar and
semi-infinite, i.e., the equi-concentration planes are planar rather than
curved, and the concentration cat a sufficiently large distance from the elec-
trode, c¢,_,., remains essentially constant during the experiment. If, more-
over, the experiment starts at a well-defined time #=0 with a uniform
concentration throughout the cell, then the interfacial concentration
difference u=c—c,_,. is the convolution of the diffusional flux J (the
amount of material passing per unit time through a unit cross-sectional
area) and 1/ =Dy, i.e.,

1
V 7Dt

where the asterisk denotes a convolution (not to be mistaken for the pro-
grammer’s use of the same symbol for multiplication). The faradaic current
igis directly proportional to the flux J of the electroactive species at the elec-

u=J*

(8.9-1)

trode/solution interface, the proportionality constant being nFA, where n is
the number of electrons involved in the electrode reaction, Fis the Faraday,
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and Ais the electrode area. An equivalent way to describe (8.9-1) is in terms
of a semi-integral,

1 d*1/2]

“VD dr 092

where the notation d~"y/dt " of semi-integration is the counterpart of
semi-differentiation, d”y/dt", hence the name.

In their book Fundamentals of electrochemical science (Academic Press
1994) Oldham and Myland list two different algorithms for semi-integration,
of which we have used the more efficient one in section 10.10.

Semi-integration can be used to transform a linear sweep voltammo-
gram into the corresponding stationary current-voltage curve. Likewise,
semi-differentiation can be used for the inverse process, i.e., to convert a
stationary current-voltage curve into the corresponding linear sweep volt-
ammogram. Consequently, the extensive existing theory for the shapes of
polarographic waves for a variety of reaction mechanisms is readily applica-
ble to cyclic voltammetry.

Interpolation

Interpolating in a data set can often be done by fitting the existing data
points around the sought value to an appropriate function, and by then
using the parameters of that function to calculate the desired value. For
example, when the interpolation is to data within a segment that can be
described approximately by a parabola, you can fit the data to the parabola
y=ag+ a;x + a,x%, and then interpolate the value at the desired x-value x; as
y=ap+ a;x; + axx;%. It is convenient to use a polynomial, since it will allow
you to use a least-squares routine.

Alternatively, you can use Solver to fit data to any analytical function of
your fancy, then use the fitting parameters to compute the function at any
given point within the range covered.

When you have many data to interpolate, it is usually most convenient to
fit the entire data set in the region of interest to an appropriate analytical
expression, from which you can then calculate all required data. If you have
no idea what would be an appropriate function, or you cannot obtain a rea-
sonably close fit to the data, a small sliding polynomial crawling over the
experimental data set may have to be used instead. The Interpolate macro of
section 10.2 allows you to fit a moving polynomial of 2n + 1 equidistant data
toaparabola.

In either case, make sure that you use more experimental data points than
adjustable parameters, and many more when the data are very noisy.
Locating the position of a peak maximum uses a similar approach, and only
differs in that one then does not prescribe the x-value but, instead, deter-
mines from the calculated parameters where the maximum occurs. For the
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parabola y= ay + a,x + a,x>, the extremum (maximum or minimum) occurs
atdy/dx=a; + 2a,x=0o0r x=—a,/2a,.

Fourier transformation can also be used for interpolation, provided that
the data are equidistant, and the sought values are located at fractions of Ax
that are integer multiples of 1/2" where nis, again, an integer, see Fig. 7.2-4.

Matrix manipulation

In this section we will briefly review the most salient aspects of matrix algebra,
insofar as these are used in solving sets of simultaneous equations with linear
coefficients. We already encountered the power and convenience of this
method in section 6.2, and we will use matrices again in section 10.7, where
we will see how they form the backbone of least squares analysis. Here we
merely provide a short review. If you are not already somewhat familiar with
matrices, the discussion to follow is mostlikely too short, and you may have to
consult a mathematics book for a more detailed explanation. For the sake of
simplicity, we will restrict ourselves here to two-dimensional matrices.

A two-dimensional matrix is a rectangular array of symbols, called coeffi-
cients, which are given double indices to specify their position in the array,
as in this example of an m-by-n matrix

iy G2 iz g ... Gip
py Oy o3 oy ... oy

A= aszy azo azs azqg ... azy, (811-1)
Umy Oz Oz Gpa .- Opp

where m denotes the number of rows, and »n the number of columns. (You
should memorize the order: first rows, then columns. As a mnemonic device,
just think of the basic electrical RC circuit of a resistor and a capacitor.) We
usually denote the entire array by a single, bold-printed capital, such as A,
and then refer to its individual coefficients as a;j. In general, a matrix coeffi-
cient can be a number, an equation, a mathematical operator, a text string,
whatever.

With each matrix we can associate a determinant, which contains only
corresponding numbers. Determinants are typically shown within vertical
lines rather than brackets. A determinant is a matrix, but not necessarily the
other way around, just as a cow is a mammal, but not all mammals are cows.
In the type of numerical problems encountered in chemical analysis we
often deal with determinants rather than matrices (and this certainly
applies to the examples in this book), but we will use the more general
matrix notation here.

The size of the above matrix A is specified as m X n, which is pronounced
as m-by-n. Matrices can be added and subtracted as long as they have the
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same size (by which we mean that they have identical m- and n-values, not
just identical products m X n), in which case we merely add or subtract all
coefficients with identical indices, i.e., C = A + B implies that all cjjare given
by cij=a;+ b,-j. Since a;; + b,-j = b,-]- + a; it follows that A+ B =B + A, and the
same holds for the difference, A — B=B — A, i.e., matrix addition and sub-
traction are commutative.

The rules for matrix multiplication are more complicated, because matrix
multiplication is not commutative, that is, AB # B A. The product C = AB of
the m X nmatrixA and the p X gmatrix B is defined only when the number n
of columns in A is equal to the number p of rows in B, i.e., n = p. In that case
the coeflicients of the product matrix are given by

cy= ;ambn,- (8.11-2)

Similarly, the product B A is defined only when the number g of columns
in B equals the number m of rows in A, i.e., g = m, in which case the coeffi-
cients of the product matrix D = BA are

dyj= kEbimamj (8.11-3)
=1

Consequently there are two products, C=A B and D =B A which, in
general, are quite different.

An important special matrix is the unit matrix, which is a square matrix
(i.e., ithas equal numbers of rows and columns) with coefficients that are all
0, except that they are 1 on its main (top-left to bottom-right) diagonal
(where the coefficients have equal indices, i.e., where i= j). For the appro-
priately chosen unit matrix (i.e., of such size that the product is defined) we
have the property

AI=TA=A (8.11-4)

Moreover, for any square matrix A with non-zero determinant we can also
define a unique inverse matrix A~ such that

ATA=AAT= (8.11-5)

Determining the inverse of a matrix by hand is a fairly complicated matter.
Fortunately, Excel has a built-in function, MINVERSE, that will perform the
inversion. It also has a matrix multiplication function, MMULT, that will cal-
culate the product of two matrices. In order to let the spreadsheet know that
your instructions concern an entire block or array rather than an individual
cell, these two functions require that you first highlight the entire block to
which the instruction applies, and then enter the instruction while simulta-
neouslydepressing Ctrl, Shift, and Enter.

Somewhat inconsistently, a third matrix operation, TRANSPOSE, is a
standard Excel operation. Transposition of a matrix is simply the exchange
of rows and columns, i.e., when A has the coefficients a;;, then its transpose
AT has the coefficients aj;, To transpose a matrix you highlight it, copy it to
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the clipboard with Ctrl + ¢, and select the top left corner of the block where
you want the transpose to appear. Only then select Edit = Paste Special, in
the Paste Special dialog box (on its bottom row) select Transpose, and click
OK. That will do it.

The values of m and nin matrix A of (8.11-1) must be positive integers, i.e.,
members of the set 1, 2, 3, .... When m=1 and n>1 we have a horizontal
vector, asin

a, a4, az Gy ...4a, (8.11-6)

where the index m has been dropped as unnecessary, while m>1and n=1
defines a vertical vector,

a
ay
az (8.11-7)

A

in which case the index n has been deleted. All rules for matrix operations
apply to vectors, so that we need not consider them as special. For m =1 and
n=1we have a 1 X 1 matrix, which is simply a scalar. In Excel, vectors are
represented as matrices with one index 1, such as M(1,7n) or M(m,1).

So far we have described the mechanics of matrix operations, but we have
yet to demonstrate its power. We already illustrated this in section 6.2, where
we took a set of simultaneous equations of the form

Vi= i X1+ QpXp+ Aiz Xzt -+ Ay Xy (8.11-8)
which we rewrote in matrix notation as

Y=AX (8.11-9)
and then solved for X through left-multiplication by A1,
A'Y=ATAX=1IX=X (8.11-10)

where we have used (8.11-5) and (8.11-4) respectively.

Instructions for exercise 8.11

1 Openanew spreadsheet.
2 IncolumnA, starting with cell A1, enter the numbers 1, 3,2, and 1.

3 Likewise, in column B enter the numbers 6, 16, 24, 15; in column C the sequence 4, 10,
13, 4; and in column D the numbers 4, 14, 17, and 8.
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The resulting array should occupy the block A1:D4, and look like
1 6 4 4
3 16 10 14
2 24 13 17
1 15 4 8

This will be our test array, a 4 X 4 matrix.

Matrix inversion. In order to invert this matrix, we first select a location for its inverse,
by selecting the top left corner cell of where you want the inverse to appear, say F1.

Highlight the space required for the result. The inverse of a 4 X 4 matrixisalsoa4 X 4
matrix, so in this example you need to highlight the block F1:14.

7 Type = MINVERSE(A1:D4) but don’t press the Enter key yet.

10

11

12

13

14

15

Now hold down the Control and Shift keys, and with both of these down press the Enter
key. That will do it: you should see the inverse in block F1:14.

Matrix multiplication. As our second exercise we will now multiply the two matrices
we already have on the spreadsheet. Since one is the inverse of the other, their product
should of course be the unit matrix. The procedure is analogous to that of steps (5)
through (8).

Go to the left top corner of where you want the product to appear, say A6. Highlight the
required area, say A6:D9. Type = MMULT (A1:D4,F1:14), and hold down Ctrl + Shift
while depressing Enter.

You should indeed obtain the unit matrix, although the zeros may have some round-
off errors, though typically less than 10715

Verify that the product F1:14 times A1:D4 also yields the unit matrix by calculating that
product in F6:19.

Note that the spreadsheet deals with arrays as entire blocks rather than with individual
cells. This is perhaps best illustrated by trying to erase partof an array. Highlight A6:D8
and press Delete. Nothing will be deleted; instead you will get an error message,
“Cannot change part of an array”. Acknowledge the message box and highlight A6:D9.
Now you will have no problem erasing it.

The determinant. This is an easy one, because the determinant of a matrix is a scalar (a
single number) so you need not use the Ctrl + Shift + Enter trick. Just go to any empty
cell, deposit the instruction = MDETERM (A1:D4) and (yes) press Enter. The answer,
—-196, will appear.

Try the same for the determinant of F1:14. Then multiply the two determinants: their

product should be 1.

In summary, then, only for matrix inversion and multiplication do you need to high-
light the entire block where the result should appear, and then enter the instruction
while holding down Ctrl + Shift.
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Overflow

So far we have relied on the double precision of the spreadsheet to hold our
computed quantities. However, we occasionally encounter situations in
which we seem to be limited by the finite number of digits (corresponding to
about 15 decimal figures) the spreadsheet uses to represent any measure.
Here we will use factorials to illustrate this problem, and a way around it.

The factorial n! of a positive integer nis definedas nX (n— 1) X (n—2) X (n
— 3) X X2 X 1. Factorials often occur in statistics. For example, given the
probability p of observing a given result in a single trial, the binomial prob-
ability of Py, ,(n) of obtaining that same result ntimes in a set of Nexperiments
isp"(1 - p)N‘" N!/{(N— n)! nl}. Many scientific derivations involve statistics,
not just for data analysis, but at a much more fundamental level, as demon-
strated, e.g., by the chromatographic plate theory described in sections 6.5
through 6.8.

As illustrated in exercise 8.11, it is very simple to compute factorials of
positive integers. The factorial V! of an integer Nis, by definition, an integer.
But factorials grow so quickly with N that, beyond N= 20, N! can no longer
be represented as an integer. Of course, the spreadsheet can still represents
factorials of numbers larger than 20 in scientific notation, to 15 significant
digits, which is usually more than enough.

Instructions for exercise 8.12

1 Openanew spreadsheet.
2 IncellsAl and B1 enter labels N and N! respectively.

3 Incell A4 depositthe number 1, in cell A5 the instruction = A4 + 1, and copy this
instruction down to row 203.

4 In cell B4 deposit the value 1, in cell B5 the instruction = A5*B4, and also copy this
instruction down to row 203.

Take a look at row 174. From there on, N! is no longer computed, because
it is just too big to be represented by the software. The spreadsheet fails us
because 172! is of the order of 103%®, which exceeds the ability of the spread-
sheet to represent the number at all: the limit lies at 2!9%* — 1, or just above
1.797 X 103%8), The spreadsheet uses the error message #NUM! to warn us
that it cannot represent such a large number, a situation called overflow.
(The same error message is also used in case of underflow, when a number is
smaller than 271924 )) Here, then, is a rather common problem: many calcula-
tions involving factorials require N! / {{N— n)! n!}, which is a much smaller
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number than N!. But how can we evaluate N! / {(N— n)! n!} when N!itself is
beyond the reach of the spreadsheet? Or when both M and (N— n)! n! exceed
the capacity of the spreadsheet?

While we will seldom encounter numbers greater that 1.797 X 103% in our
measurements, a number such as 180! in a calculation is not at all uncom-
mon. We therefore in